AArch64LoadStoreOptimizer.cpp
78 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
//===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that performs load / store related peephole
// optimizations. This pass should be run after register allocation.
//
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <limits>
using namespace llvm;
#define DEBUG_TYPE "aarch64-ldst-opt"
STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
STATISTIC(NumPostFolded, "Number of post-index updates folded");
STATISTIC(NumPreFolded, "Number of pre-index updates folded");
STATISTIC(NumUnscaledPairCreated,
"Number of load/store from unscaled generated");
STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming",
"Controls which pairs are considered for renaming");
// The LdStLimit limits how far we search for load/store pairs.
static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
cl::init(20), cl::Hidden);
// The UpdateLimit limits how far we search for update instructions when we form
// pre-/post-index instructions.
static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
cl::Hidden);
// Enable register renaming to find additional store pairing opportunities.
static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming",
cl::init(true), cl::Hidden);
#define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
namespace {
using LdStPairFlags = struct LdStPairFlags {
// If a matching instruction is found, MergeForward is set to true if the
// merge is to remove the first instruction and replace the second with
// a pair-wise insn, and false if the reverse is true.
bool MergeForward = false;
// SExtIdx gives the index of the result of the load pair that must be
// extended. The value of SExtIdx assumes that the paired load produces the
// value in this order: (I, returned iterator), i.e., -1 means no value has
// to be extended, 0 means I, and 1 means the returned iterator.
int SExtIdx = -1;
// If not none, RenameReg can be used to rename the result register of the
// first store in a pair. Currently this only works when merging stores
// forward.
Optional<MCPhysReg> RenameReg = None;
LdStPairFlags() = default;
void setMergeForward(bool V = true) { MergeForward = V; }
bool getMergeForward() const { return MergeForward; }
void setSExtIdx(int V) { SExtIdx = V; }
int getSExtIdx() const { return SExtIdx; }
void setRenameReg(MCPhysReg R) { RenameReg = R; }
void clearRenameReg() { RenameReg = None; }
Optional<MCPhysReg> getRenameReg() const { return RenameReg; }
};
struct AArch64LoadStoreOpt : public MachineFunctionPass {
static char ID;
AArch64LoadStoreOpt() : MachineFunctionPass(ID) {
initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry());
}
AliasAnalysis *AA;
const AArch64InstrInfo *TII;
const TargetRegisterInfo *TRI;
const AArch64Subtarget *Subtarget;
// Track which register units have been modified and used.
LiveRegUnits ModifiedRegUnits, UsedRegUnits;
LiveRegUnits DefinedInBB;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
// Scan the instructions looking for a load/store that can be combined
// with the current instruction into a load/store pair.
// Return the matching instruction if one is found, else MBB->end().
MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
LdStPairFlags &Flags,
unsigned Limit,
bool FindNarrowMerge);
// Scan the instructions looking for a store that writes to the address from
// which the current load instruction reads. Return true if one is found.
bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
MachineBasicBlock::iterator &StoreI);
// Merge the two instructions indicated into a wider narrow store instruction.
MachineBasicBlock::iterator
mergeNarrowZeroStores(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator MergeMI,
const LdStPairFlags &Flags);
// Merge the two instructions indicated into a single pair-wise instruction.
MachineBasicBlock::iterator
mergePairedInsns(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Paired,
const LdStPairFlags &Flags);
// Promote the load that reads directly from the address stored to.
MachineBasicBlock::iterator
promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
MachineBasicBlock::iterator StoreI);
// Scan the instruction list to find a base register update that can
// be combined with the current instruction (a load or store) using
// pre or post indexed addressing with writeback. Scan forwards.
MachineBasicBlock::iterator
findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
int UnscaledOffset, unsigned Limit);
// Scan the instruction list to find a base register update that can
// be combined with the current instruction (a load or store) using
// pre or post indexed addressing with writeback. Scan backwards.
MachineBasicBlock::iterator
findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
// Find an instruction that updates the base register of the ld/st
// instruction.
bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI,
unsigned BaseReg, int Offset);
// Merge a pre- or post-index base register update into a ld/st instruction.
MachineBasicBlock::iterator
mergeUpdateInsn(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Update, bool IsPreIdx);
// Find and merge zero store instructions.
bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI);
// Find and pair ldr/str instructions.
bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
// Find and promote load instructions which read directly from store.
bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
// Find and merge a base register updates before or after a ld/st instruction.
bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI);
bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt);
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; }
};
char AArch64LoadStoreOpt::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
AARCH64_LOAD_STORE_OPT_NAME, false, false)
static bool isNarrowStore(unsigned Opc) {
switch (Opc) {
default:
return false;
case AArch64::STRBBui:
case AArch64::STURBBi:
case AArch64::STRHHui:
case AArch64::STURHHi:
return true;
}
}
// These instruction set memory tag and either keep memory contents unchanged or
// set it to zero, ignoring the address part of the source register.
static bool isTagStore(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case AArch64::STGOffset:
case AArch64::STZGOffset:
case AArch64::ST2GOffset:
case AArch64::STZ2GOffset:
return true;
}
}
static unsigned getMatchingNonSExtOpcode(unsigned Opc,
bool *IsValidLdStrOpc = nullptr) {
if (IsValidLdStrOpc)
*IsValidLdStrOpc = true;
switch (Opc) {
default:
if (IsValidLdStrOpc)
*IsValidLdStrOpc = false;
return std::numeric_limits<unsigned>::max();
case AArch64::STRDui:
case AArch64::STURDi:
case AArch64::STRQui:
case AArch64::STURQi:
case AArch64::STRBBui:
case AArch64::STURBBi:
case AArch64::STRHHui:
case AArch64::STURHHi:
case AArch64::STRWui:
case AArch64::STURWi:
case AArch64::STRXui:
case AArch64::STURXi:
case AArch64::LDRDui:
case AArch64::LDURDi:
case AArch64::LDRQui:
case AArch64::LDURQi:
case AArch64::LDRWui:
case AArch64::LDURWi:
case AArch64::LDRXui:
case AArch64::LDURXi:
case AArch64::STRSui:
case AArch64::STURSi:
case AArch64::LDRSui:
case AArch64::LDURSi:
return Opc;
case AArch64::LDRSWui:
return AArch64::LDRWui;
case AArch64::LDURSWi:
return AArch64::LDURWi;
}
}
static unsigned getMatchingWideOpcode(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Opcode has no wide equivalent!");
case AArch64::STRBBui:
return AArch64::STRHHui;
case AArch64::STRHHui:
return AArch64::STRWui;
case AArch64::STURBBi:
return AArch64::STURHHi;
case AArch64::STURHHi:
return AArch64::STURWi;
case AArch64::STURWi:
return AArch64::STURXi;
case AArch64::STRWui:
return AArch64::STRXui;
}
}
static unsigned getMatchingPairOpcode(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Opcode has no pairwise equivalent!");
case AArch64::STRSui:
case AArch64::STURSi:
return AArch64::STPSi;
case AArch64::STRDui:
case AArch64::STURDi:
return AArch64::STPDi;
case AArch64::STRQui:
case AArch64::STURQi:
return AArch64::STPQi;
case AArch64::STRWui:
case AArch64::STURWi:
return AArch64::STPWi;
case AArch64::STRXui:
case AArch64::STURXi:
return AArch64::STPXi;
case AArch64::LDRSui:
case AArch64::LDURSi:
return AArch64::LDPSi;
case AArch64::LDRDui:
case AArch64::LDURDi:
return AArch64::LDPDi;
case AArch64::LDRQui:
case AArch64::LDURQi:
return AArch64::LDPQi;
case AArch64::LDRWui:
case AArch64::LDURWi:
return AArch64::LDPWi;
case AArch64::LDRXui:
case AArch64::LDURXi:
return AArch64::LDPXi;
case AArch64::LDRSWui:
case AArch64::LDURSWi:
return AArch64::LDPSWi;
}
}
static unsigned isMatchingStore(MachineInstr &LoadInst,
MachineInstr &StoreInst) {
unsigned LdOpc = LoadInst.getOpcode();
unsigned StOpc = StoreInst.getOpcode();
switch (LdOpc) {
default:
llvm_unreachable("Unsupported load instruction!");
case AArch64::LDRBBui:
return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
case AArch64::LDURBBi:
return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
case AArch64::LDRHHui:
return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
StOpc == AArch64::STRXui;
case AArch64::LDURHHi:
return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
StOpc == AArch64::STURXi;
case AArch64::LDRWui:
return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
case AArch64::LDURWi:
return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
case AArch64::LDRXui:
return StOpc == AArch64::STRXui;
case AArch64::LDURXi:
return StOpc == AArch64::STURXi;
}
}
static unsigned getPreIndexedOpcode(unsigned Opc) {
// FIXME: We don't currently support creating pre-indexed loads/stores when
// the load or store is the unscaled version. If we decide to perform such an
// optimization in the future the cases for the unscaled loads/stores will
// need to be added here.
switch (Opc) {
default:
llvm_unreachable("Opcode has no pre-indexed equivalent!");
case AArch64::STRSui:
return AArch64::STRSpre;
case AArch64::STRDui:
return AArch64::STRDpre;
case AArch64::STRQui:
return AArch64::STRQpre;
case AArch64::STRBBui:
return AArch64::STRBBpre;
case AArch64::STRHHui:
return AArch64::STRHHpre;
case AArch64::STRWui:
return AArch64::STRWpre;
case AArch64::STRXui:
return AArch64::STRXpre;
case AArch64::LDRSui:
return AArch64::LDRSpre;
case AArch64::LDRDui:
return AArch64::LDRDpre;
case AArch64::LDRQui:
return AArch64::LDRQpre;
case AArch64::LDRBBui:
return AArch64::LDRBBpre;
case AArch64::LDRHHui:
return AArch64::LDRHHpre;
case AArch64::LDRWui:
return AArch64::LDRWpre;
case AArch64::LDRXui:
return AArch64::LDRXpre;
case AArch64::LDRSWui:
return AArch64::LDRSWpre;
case AArch64::LDPSi:
return AArch64::LDPSpre;
case AArch64::LDPSWi:
return AArch64::LDPSWpre;
case AArch64::LDPDi:
return AArch64::LDPDpre;
case AArch64::LDPQi:
return AArch64::LDPQpre;
case AArch64::LDPWi:
return AArch64::LDPWpre;
case AArch64::LDPXi:
return AArch64::LDPXpre;
case AArch64::STPSi:
return AArch64::STPSpre;
case AArch64::STPDi:
return AArch64::STPDpre;
case AArch64::STPQi:
return AArch64::STPQpre;
case AArch64::STPWi:
return AArch64::STPWpre;
case AArch64::STPXi:
return AArch64::STPXpre;
case AArch64::STGOffset:
return AArch64::STGPreIndex;
case AArch64::STZGOffset:
return AArch64::STZGPreIndex;
case AArch64::ST2GOffset:
return AArch64::ST2GPreIndex;
case AArch64::STZ2GOffset:
return AArch64::STZ2GPreIndex;
case AArch64::STGPi:
return AArch64::STGPpre;
}
}
static unsigned getPostIndexedOpcode(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Opcode has no post-indexed wise equivalent!");
case AArch64::STRSui:
case AArch64::STURSi:
return AArch64::STRSpost;
case AArch64::STRDui:
case AArch64::STURDi:
return AArch64::STRDpost;
case AArch64::STRQui:
case AArch64::STURQi:
return AArch64::STRQpost;
case AArch64::STRBBui:
return AArch64::STRBBpost;
case AArch64::STRHHui:
return AArch64::STRHHpost;
case AArch64::STRWui:
case AArch64::STURWi:
return AArch64::STRWpost;
case AArch64::STRXui:
case AArch64::STURXi:
return AArch64::STRXpost;
case AArch64::LDRSui:
case AArch64::LDURSi:
return AArch64::LDRSpost;
case AArch64::LDRDui:
case AArch64::LDURDi:
return AArch64::LDRDpost;
case AArch64::LDRQui:
case AArch64::LDURQi:
return AArch64::LDRQpost;
case AArch64::LDRBBui:
return AArch64::LDRBBpost;
case AArch64::LDRHHui:
return AArch64::LDRHHpost;
case AArch64::LDRWui:
case AArch64::LDURWi:
return AArch64::LDRWpost;
case AArch64::LDRXui:
case AArch64::LDURXi:
return AArch64::LDRXpost;
case AArch64::LDRSWui:
return AArch64::LDRSWpost;
case AArch64::LDPSi:
return AArch64::LDPSpost;
case AArch64::LDPSWi:
return AArch64::LDPSWpost;
case AArch64::LDPDi:
return AArch64::LDPDpost;
case AArch64::LDPQi:
return AArch64::LDPQpost;
case AArch64::LDPWi:
return AArch64::LDPWpost;
case AArch64::LDPXi:
return AArch64::LDPXpost;
case AArch64::STPSi:
return AArch64::STPSpost;
case AArch64::STPDi:
return AArch64::STPDpost;
case AArch64::STPQi:
return AArch64::STPQpost;
case AArch64::STPWi:
return AArch64::STPWpost;
case AArch64::STPXi:
return AArch64::STPXpost;
case AArch64::STGOffset:
return AArch64::STGPostIndex;
case AArch64::STZGOffset:
return AArch64::STZGPostIndex;
case AArch64::ST2GOffset:
return AArch64::ST2GPostIndex;
case AArch64::STZ2GOffset:
return AArch64::STZ2GPostIndex;
case AArch64::STGPi:
return AArch64::STGPpost;
}
}
static bool isPairedLdSt(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case AArch64::LDPSi:
case AArch64::LDPSWi:
case AArch64::LDPDi:
case AArch64::LDPQi:
case AArch64::LDPWi:
case AArch64::LDPXi:
case AArch64::STPSi:
case AArch64::STPDi:
case AArch64::STPQi:
case AArch64::STPWi:
case AArch64::STPXi:
case AArch64::STGPi:
return true;
}
}
// Returns the scale and offset range of pre/post indexed variants of MI.
static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale,
int &MinOffset, int &MaxOffset) {
bool IsPaired = isPairedLdSt(MI);
bool IsTagStore = isTagStore(MI);
// ST*G and all paired ldst have the same scale in pre/post-indexed variants
// as in the "unsigned offset" variant.
// All other pre/post indexed ldst instructions are unscaled.
Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1;
if (IsPaired) {
MinOffset = -64;
MaxOffset = 63;
} else {
MinOffset = -256;
MaxOffset = 255;
}
}
static MachineOperand &getLdStRegOp(MachineInstr &MI,
unsigned PairedRegOp = 0) {
assert(PairedRegOp < 2 && "Unexpected register operand idx.");
unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0;
return MI.getOperand(Idx);
}
static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) {
unsigned Idx = isPairedLdSt(MI) ? 2 : 1;
return MI.getOperand(Idx);
}
static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) {
unsigned Idx = isPairedLdSt(MI) ? 3 : 2;
return MI.getOperand(Idx);
}
static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst,
MachineInstr &StoreInst,
const AArch64InstrInfo *TII) {
assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
int LoadSize = TII->getMemScale(LoadInst);
int StoreSize = TII->getMemScale(StoreInst);
int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst)
? getLdStOffsetOp(StoreInst).getImm()
: getLdStOffsetOp(StoreInst).getImm() * StoreSize;
int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst)
? getLdStOffsetOp(LoadInst).getImm()
: getLdStOffsetOp(LoadInst).getImm() * LoadSize;
return (UnscaledStOffset <= UnscaledLdOffset) &&
(UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
}
static bool isPromotableZeroStoreInst(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
return (Opc == AArch64::STRWui || Opc == AArch64::STURWi ||
isNarrowStore(Opc)) &&
getLdStRegOp(MI).getReg() == AArch64::WZR;
}
static bool isPromotableLoadFromStore(MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
// Scaled instructions.
case AArch64::LDRBBui:
case AArch64::LDRHHui:
case AArch64::LDRWui:
case AArch64::LDRXui:
// Unscaled instructions.
case AArch64::LDURBBi:
case AArch64::LDURHHi:
case AArch64::LDURWi:
case AArch64::LDURXi:
return true;
}
}
static bool isMergeableLdStUpdate(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
switch (Opc) {
default:
return false;
// Scaled instructions.
case AArch64::STRSui:
case AArch64::STRDui:
case AArch64::STRQui:
case AArch64::STRXui:
case AArch64::STRWui:
case AArch64::STRHHui:
case AArch64::STRBBui:
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
case AArch64::LDRXui:
case AArch64::LDRWui:
case AArch64::LDRHHui:
case AArch64::LDRBBui:
case AArch64::STGOffset:
case AArch64::STZGOffset:
case AArch64::ST2GOffset:
case AArch64::STZ2GOffset:
case AArch64::STGPi:
// Unscaled instructions.
case AArch64::STURSi:
case AArch64::STURDi:
case AArch64::STURQi:
case AArch64::STURWi:
case AArch64::STURXi:
case AArch64::LDURSi:
case AArch64::LDURDi:
case AArch64::LDURQi:
case AArch64::LDURWi:
case AArch64::LDURXi:
// Paired instructions.
case AArch64::LDPSi:
case AArch64::LDPSWi:
case AArch64::LDPDi:
case AArch64::LDPQi:
case AArch64::LDPWi:
case AArch64::LDPXi:
case AArch64::STPSi:
case AArch64::STPDi:
case AArch64::STPQi:
case AArch64::STPWi:
case AArch64::STPXi:
// Make sure this is a reg+imm (as opposed to an address reloc).
if (!getLdStOffsetOp(MI).isImm())
return false;
return true;
}
}
MachineBasicBlock::iterator
AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator MergeMI,
const LdStPairFlags &Flags) {
assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) &&
"Expected promotable zero stores.");
MachineBasicBlock::iterator E = I->getParent()->end();
MachineBasicBlock::iterator NextI = next_nodbg(I, E);
// If NextI is the second of the two instructions to be merged, we need
// to skip one further. Either way we merge will invalidate the iterator,
// and we don't need to scan the new instruction, as it's a pairwise
// instruction, which we're not considering for further action anyway.
if (NextI == MergeMI)
NextI = next_nodbg(NextI, E);
unsigned Opc = I->getOpcode();
bool IsScaled = !TII->isUnscaledLdSt(Opc);
int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I);
bool MergeForward = Flags.getMergeForward();
// Insert our new paired instruction after whichever of the paired
// instructions MergeForward indicates.
MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
// Also based on MergeForward is from where we copy the base register operand
// so we get the flags compatible with the input code.
const MachineOperand &BaseRegOp =
MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I);
// Which register is Rt and which is Rt2 depends on the offset order.
MachineInstr *RtMI;
if (getLdStOffsetOp(*I).getImm() ==
getLdStOffsetOp(*MergeMI).getImm() + OffsetStride)
RtMI = &*MergeMI;
else
RtMI = &*I;
int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
// Change the scaled offset from small to large type.
if (IsScaled) {
assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge");
OffsetImm /= 2;
}
// Construct the new instruction.
DebugLoc DL = I->getDebugLoc();
MachineBasicBlock *MBB = I->getParent();
MachineInstrBuilder MIB;
MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
.addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
.add(BaseRegOp)
.addImm(OffsetImm)
.cloneMergedMemRefs({&*I, &*MergeMI})
.setMIFlags(I->mergeFlagsWith(*MergeMI));
(void)MIB;
LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n ");
LLVM_DEBUG(I->print(dbgs()));
LLVM_DEBUG(dbgs() << " ");
LLVM_DEBUG(MergeMI->print(dbgs()));
LLVM_DEBUG(dbgs() << " with instruction:\n ");
LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
// Erase the old instructions.
I->eraseFromParent();
MergeMI->eraseFromParent();
return NextI;
}
// Apply Fn to all instructions between MI and the beginning of the block, until
// a def for DefReg is reached. Returns true, iff Fn returns true for all
// visited instructions. Stop after visiting Limit iterations.
static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg,
const TargetRegisterInfo *TRI, unsigned Limit,
std::function<bool(MachineInstr &, bool)> &Fn) {
auto MBB = MI.getParent();
for (MachineInstr &I :
instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) {
if (!Limit)
return false;
--Limit;
bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) {
return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() &&
TRI->regsOverlap(MOP.getReg(), DefReg);
});
if (!Fn(I, isDef))
return false;
if (isDef)
break;
}
return true;
}
static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units,
const TargetRegisterInfo *TRI) {
for (const MachineOperand &MOP : phys_regs_and_masks(MI))
if (MOP.isReg() && MOP.isKill())
Units.removeReg(MOP.getReg());
for (const MachineOperand &MOP : phys_regs_and_masks(MI))
if (MOP.isReg() && !MOP.isKill())
Units.addReg(MOP.getReg());
}
MachineBasicBlock::iterator
AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Paired,
const LdStPairFlags &Flags) {
MachineBasicBlock::iterator E = I->getParent()->end();
MachineBasicBlock::iterator NextI = next_nodbg(I, E);
// If NextI is the second of the two instructions to be merged, we need
// to skip one further. Either way we merge will invalidate the iterator,
// and we don't need to scan the new instruction, as it's a pairwise
// instruction, which we're not considering for further action anyway.
if (NextI == Paired)
NextI = next_nodbg(NextI, E);
int SExtIdx = Flags.getSExtIdx();
unsigned Opc =
SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
bool IsUnscaled = TII->isUnscaledLdSt(Opc);
int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1;
bool MergeForward = Flags.getMergeForward();
Optional<MCPhysReg> RenameReg = Flags.getRenameReg();
if (MergeForward && RenameReg) {
MCRegister RegToRename = getLdStRegOp(*I).getReg();
DefinedInBB.addReg(*RenameReg);
// Return the sub/super register for RenameReg, matching the size of
// OriginalReg.
auto GetMatchingSubReg = [this,
RenameReg](MCPhysReg OriginalReg) -> MCPhysReg {
for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg))
if (TRI->getMinimalPhysRegClass(OriginalReg) ==
TRI->getMinimalPhysRegClass(SubOrSuper))
return SubOrSuper;
llvm_unreachable("Should have found matching sub or super register!");
};
std::function<bool(MachineInstr &, bool)> UpdateMIs =
[this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) {
if (IsDef) {
bool SeenDef = false;
for (auto &MOP : MI.operands()) {
// Rename the first explicit definition and all implicit
// definitions matching RegToRename.
if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
(!SeenDef || (MOP.isDef() && MOP.isImplicit())) &&
TRI->regsOverlap(MOP.getReg(), RegToRename)) {
assert((MOP.isImplicit() ||
(MOP.isRenamable() && !MOP.isEarlyClobber())) &&
"Need renamable operands");
MOP.setReg(GetMatchingSubReg(MOP.getReg()));
SeenDef = true;
}
}
} else {
for (auto &MOP : MI.operands()) {
if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
TRI->regsOverlap(MOP.getReg(), RegToRename)) {
assert((MOP.isImplicit() ||
(MOP.isRenamable() && !MOP.isEarlyClobber())) &&
"Need renamable operands");
MOP.setReg(GetMatchingSubReg(MOP.getReg()));
}
}
}
LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n");
return true;
};
forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs);
#if !defined(NDEBUG)
// Make sure the register used for renaming is not used between the paired
// instructions. That would trash the content before the new paired
// instruction.
for (auto &MI :
iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>(
std::next(I), std::next(Paired)))
assert(all_of(MI.operands(),
[this, &RenameReg](const MachineOperand &MOP) {
return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
!TRI->regsOverlap(MOP.getReg(), *RenameReg);
}) &&
"Rename register used between paired instruction, trashing the "
"content");
#endif
}
// Insert our new paired instruction after whichever of the paired
// instructions MergeForward indicates.
MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
// Also based on MergeForward is from where we copy the base register operand
// so we get the flags compatible with the input code.
const MachineOperand &BaseRegOp =
MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I);
int Offset = getLdStOffsetOp(*I).getImm();
int PairedOffset = getLdStOffsetOp(*Paired).getImm();
bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode());
if (IsUnscaled != PairedIsUnscaled) {
// We're trying to pair instructions that differ in how they are scaled. If
// I is scaled then scale the offset of Paired accordingly. Otherwise, do
// the opposite (i.e., make Paired's offset unscaled).
int MemSize = TII->getMemScale(*Paired);
if (PairedIsUnscaled) {
// If the unscaled offset isn't a multiple of the MemSize, we can't
// pair the operations together.
assert(!(PairedOffset % TII->getMemScale(*Paired)) &&
"Offset should be a multiple of the stride!");
PairedOffset /= MemSize;
} else {
PairedOffset *= MemSize;
}
}
// Which register is Rt and which is Rt2 depends on the offset order.
MachineInstr *RtMI, *Rt2MI;
if (Offset == PairedOffset + OffsetStride) {
RtMI = &*Paired;
Rt2MI = &*I;
// Here we swapped the assumption made for SExtIdx.
// I.e., we turn ldp I, Paired into ldp Paired, I.
// Update the index accordingly.
if (SExtIdx != -1)
SExtIdx = (SExtIdx + 1) % 2;
} else {
RtMI = &*I;
Rt2MI = &*Paired;
}
int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
// Scale the immediate offset, if necessary.
if (TII->isUnscaledLdSt(RtMI->getOpcode())) {
assert(!(OffsetImm % TII->getMemScale(*RtMI)) &&
"Unscaled offset cannot be scaled.");
OffsetImm /= TII->getMemScale(*RtMI);
}
// Construct the new instruction.
MachineInstrBuilder MIB;
DebugLoc DL = I->getDebugLoc();
MachineBasicBlock *MBB = I->getParent();
MachineOperand RegOp0 = getLdStRegOp(*RtMI);
MachineOperand RegOp1 = getLdStRegOp(*Rt2MI);
// Kill flags may become invalid when moving stores for pairing.
if (RegOp0.isUse()) {
if (!MergeForward) {
// Clear kill flags on store if moving upwards. Example:
// STRWui %w0, ...
// USE %w1
// STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards
RegOp0.setIsKill(false);
RegOp1.setIsKill(false);
} else {
// Clear kill flags of the first stores register. Example:
// STRWui %w1, ...
// USE kill %w1 ; need to clear kill flag when moving STRWui downwards
// STRW %w0
Register Reg = getLdStRegOp(*I).getReg();
for (MachineInstr &MI : make_range(std::next(I), Paired))
MI.clearRegisterKills(Reg, TRI);
}
}
MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc)))
.add(RegOp0)
.add(RegOp1)
.add(BaseRegOp)
.addImm(OffsetImm)
.cloneMergedMemRefs({&*I, &*Paired})
.setMIFlags(I->mergeFlagsWith(*Paired));
(void)MIB;
LLVM_DEBUG(
dbgs() << "Creating pair load/store. Replacing instructions:\n ");
LLVM_DEBUG(I->print(dbgs()));
LLVM_DEBUG(dbgs() << " ");
LLVM_DEBUG(Paired->print(dbgs()));
LLVM_DEBUG(dbgs() << " with instruction:\n ");
if (SExtIdx != -1) {
// Generate the sign extension for the proper result of the ldp.
// I.e., with X1, that would be:
// %w1 = KILL %w1, implicit-def %x1
// %x1 = SBFMXri killed %x1, 0, 31
MachineOperand &DstMO = MIB->getOperand(SExtIdx);
// Right now, DstMO has the extended register, since it comes from an
// extended opcode.
Register DstRegX = DstMO.getReg();
// Get the W variant of that register.
Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
// Update the result of LDP to use the W instead of the X variant.
DstMO.setReg(DstRegW);
LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
// Make the machine verifier happy by providing a definition for
// the X register.
// Insert this definition right after the generated LDP, i.e., before
// InsertionPoint.
MachineInstrBuilder MIBKill =
BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
.addReg(DstRegW)
.addReg(DstRegX, RegState::Define);
MIBKill->getOperand(2).setImplicit();
// Create the sign extension.
MachineInstrBuilder MIBSXTW =
BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
.addReg(DstRegX)
.addImm(0)
.addImm(31);
(void)MIBSXTW;
LLVM_DEBUG(dbgs() << " Extend operand:\n ");
LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
} else {
LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
}
LLVM_DEBUG(dbgs() << "\n");
if (MergeForward)
for (const MachineOperand &MOP : phys_regs_and_masks(*I))
if (MOP.isReg() && MOP.isKill())
DefinedInBB.addReg(MOP.getReg());
// Erase the old instructions.
I->eraseFromParent();
Paired->eraseFromParent();
return NextI;
}
MachineBasicBlock::iterator
AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
MachineBasicBlock::iterator StoreI) {
MachineBasicBlock::iterator NextI =
next_nodbg(LoadI, LoadI->getParent()->end());
int LoadSize = TII->getMemScale(*LoadI);
int StoreSize = TII->getMemScale(*StoreI);
Register LdRt = getLdStRegOp(*LoadI).getReg();
const MachineOperand &StMO = getLdStRegOp(*StoreI);
Register StRt = getLdStRegOp(*StoreI).getReg();
bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
assert((IsStoreXReg ||
TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
"Unexpected RegClass");
MachineInstr *BitExtMI;
if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
// Remove the load, if the destination register of the loads is the same
// register for stored value.
if (StRt == LdRt && LoadSize == 8) {
for (MachineInstr &MI : make_range(StoreI->getIterator(),
LoadI->getIterator())) {
if (MI.killsRegister(StRt, TRI)) {
MI.clearRegisterKills(StRt, TRI);
break;
}
}
LLVM_DEBUG(dbgs() << "Remove load instruction:\n ");
LLVM_DEBUG(LoadI->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
LoadI->eraseFromParent();
return NextI;
}
// Replace the load with a mov if the load and store are in the same size.
BitExtMI =
BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
.addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
.add(StMO)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
.setMIFlags(LoadI->getFlags());
} else {
// FIXME: Currently we disable this transformation in big-endian targets as
// performance and correctness are verified only in little-endian.
if (!Subtarget->isLittleEndian())
return NextI;
bool IsUnscaled = TII->isUnscaledLdSt(*LoadI);
assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) &&
"Unsupported ld/st match");
assert(LoadSize <= StoreSize && "Invalid load size");
int UnscaledLdOffset = IsUnscaled
? getLdStOffsetOp(*LoadI).getImm()
: getLdStOffsetOp(*LoadI).getImm() * LoadSize;
int UnscaledStOffset = IsUnscaled
? getLdStOffsetOp(*StoreI).getImm()
: getLdStOffsetOp(*StoreI).getImm() * StoreSize;
int Width = LoadSize * 8;
unsigned DestReg =
IsStoreXReg ? Register(TRI->getMatchingSuperReg(
LdRt, AArch64::sub_32, &AArch64::GPR64RegClass))
: LdRt;
assert((UnscaledLdOffset >= UnscaledStOffset &&
(UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
"Invalid offset");
int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
int Imms = Immr + Width - 1;
if (UnscaledLdOffset == UnscaledStOffset) {
uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
| ((Immr) << 6) // immr
| ((Imms) << 0) // imms
;
BitExtMI =
BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
DestReg)
.add(StMO)
.addImm(AndMaskEncoded)
.setMIFlags(LoadI->getFlags());
} else {
BitExtMI =
BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
DestReg)
.add(StMO)
.addImm(Immr)
.addImm(Imms)
.setMIFlags(LoadI->getFlags());
}
}
// Clear kill flags between store and load.
for (MachineInstr &MI : make_range(StoreI->getIterator(),
BitExtMI->getIterator()))
if (MI.killsRegister(StRt, TRI)) {
MI.clearRegisterKills(StRt, TRI);
break;
}
LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n ");
LLVM_DEBUG(StoreI->print(dbgs()));
LLVM_DEBUG(dbgs() << " ");
LLVM_DEBUG(LoadI->print(dbgs()));
LLVM_DEBUG(dbgs() << " with instructions:\n ");
LLVM_DEBUG(StoreI->print(dbgs()));
LLVM_DEBUG(dbgs() << " ");
LLVM_DEBUG((BitExtMI)->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
// Erase the old instructions.
LoadI->eraseFromParent();
return NextI;
}
static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
// Convert the byte-offset used by unscaled into an "element" offset used
// by the scaled pair load/store instructions.
if (IsUnscaled) {
// If the byte-offset isn't a multiple of the stride, there's no point
// trying to match it.
if (Offset % OffsetStride)
return false;
Offset /= OffsetStride;
}
return Offset <= 63 && Offset >= -64;
}
// Do alignment, specialized to power of 2 and for signed ints,
// avoiding having to do a C-style cast from uint_64t to int when
// using alignTo from include/llvm/Support/MathExtras.h.
// FIXME: Move this function to include/MathExtras.h?
static int alignTo(int Num, int PowOf2) {
return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
}
static bool mayAlias(MachineInstr &MIa,
SmallVectorImpl<MachineInstr *> &MemInsns,
AliasAnalysis *AA) {
for (MachineInstr *MIb : MemInsns)
if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false))
return true;
return false;
}
bool AArch64LoadStoreOpt::findMatchingStore(
MachineBasicBlock::iterator I, unsigned Limit,
MachineBasicBlock::iterator &StoreI) {
MachineBasicBlock::iterator B = I->getParent()->begin();
MachineBasicBlock::iterator MBBI = I;
MachineInstr &LoadMI = *I;
Register BaseReg = getLdStBaseOp(LoadMI).getReg();
// If the load is the first instruction in the block, there's obviously
// not any matching store.
if (MBBI == B)
return false;
// Track which register units have been modified and used between the first
// insn and the second insn.
ModifiedRegUnits.clear();
UsedRegUnits.clear();
unsigned Count = 0;
do {
MBBI = prev_nodbg(MBBI, B);
MachineInstr &MI = *MBBI;
// Don't count transient instructions towards the search limit since there
// may be different numbers of them if e.g. debug information is present.
if (!MI.isTransient())
++Count;
// If the load instruction reads directly from the address to which the
// store instruction writes and the stored value is not modified, we can
// promote the load. Since we do not handle stores with pre-/post-index,
// it's unnecessary to check if BaseReg is modified by the store itself.
// Also we can't handle stores without an immediate offset operand,
// while the operand might be the address for a global variable.
if (MI.mayStore() && isMatchingStore(LoadMI, MI) &&
BaseReg == getLdStBaseOp(MI).getReg() && getLdStOffsetOp(MI).isImm() &&
isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) {
StoreI = MBBI;
return true;
}
if (MI.isCall())
return false;
// Update modified / uses register units.
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
// Otherwise, if the base register is modified, we have no match, so
// return early.
if (!ModifiedRegUnits.available(BaseReg))
return false;
// If we encounter a store aliased with the load, return early.
if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false))
return false;
} while (MBBI != B && Count < Limit);
return false;
}
// Returns true if FirstMI and MI are candidates for merging or pairing.
// Otherwise, returns false.
static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI,
LdStPairFlags &Flags,
const AArch64InstrInfo *TII) {
// If this is volatile or if pairing is suppressed, not a candidate.
if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
return false;
// We should have already checked FirstMI for pair suppression and volatility.
assert(!FirstMI.hasOrderedMemoryRef() &&
!TII->isLdStPairSuppressed(FirstMI) &&
"FirstMI shouldn't get here if either of these checks are true.");
unsigned OpcA = FirstMI.getOpcode();
unsigned OpcB = MI.getOpcode();
// Opcodes match: nothing more to check.
if (OpcA == OpcB)
return true;
// Try to match a sign-extended load/store with a zero-extended load/store.
bool IsValidLdStrOpc, PairIsValidLdStrOpc;
unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
assert(IsValidLdStrOpc &&
"Given Opc should be a Load or Store with an immediate");
// OpcA will be the first instruction in the pair.
if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0);
return true;
}
// If the second instruction isn't even a mergable/pairable load/store, bail
// out.
if (!PairIsValidLdStrOpc)
return false;
// FIXME: We don't support merging narrow stores with mixed scaled/unscaled
// offsets.
if (isNarrowStore(OpcA) || isNarrowStore(OpcB))
return false;
// Try to match an unscaled load/store with a scaled load/store.
return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) &&
getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB);
// FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
}
static bool
canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween,
SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
const TargetRegisterInfo *TRI) {
if (!FirstMI.mayStore())
return false;
// Check if we can find an unused register which we can use to rename
// the register used by the first load/store.
auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg());
MachineFunction &MF = *FirstMI.getParent()->getParent();
if (!RegClass || !MF.getRegInfo().tracksLiveness())
return false;
auto RegToRename = getLdStRegOp(FirstMI).getReg();
// For now, we only rename if the store operand gets killed at the store.
if (!getLdStRegOp(FirstMI).isKill() &&
!any_of(FirstMI.operands(),
[TRI, RegToRename](const MachineOperand &MOP) {
return MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
MOP.isImplicit() && MOP.isKill() &&
TRI->regsOverlap(RegToRename, MOP.getReg());
})) {
LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n");
return false;
}
auto canRenameMOP = [TRI](const MachineOperand &MOP) {
if (MOP.isReg()) {
auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg());
// Renaming registers with multiple disjunct sub-registers (e.g. the
// result of a LD3) means that all sub-registers are renamed, potentially
// impacting other instructions we did not check. Bail out.
// Note that this relies on the structure of the AArch64 register file. In
// particular, a subregister cannot be written without overwriting the
// whole register.
if (RegClass->HasDisjunctSubRegs) {
LLVM_DEBUG(
dbgs()
<< " Cannot rename operands with multiple disjunct subregisters ("
<< MOP << ")\n");
return false;
}
}
return MOP.isImplicit() ||
(MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied());
};
bool FoundDef = false;
// For each instruction between FirstMI and the previous def for RegToRename,
// we
// * check if we can rename RegToRename in this instruction
// * collect the registers used and required register classes for RegToRename.
std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI,
bool IsDef) {
LLVM_DEBUG(dbgs() << "Checking " << MI << "\n");
// Currently we do not try to rename across frame-setup instructions.
if (MI.getFlag(MachineInstr::FrameSetup)) {
LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently ("
<< MI << ")\n");
return false;
}
UsedInBetween.accumulate(MI);
// For a definition, check that we can rename the definition and exit the
// loop.
FoundDef = IsDef;
// For defs, check if we can rename the first def of RegToRename.
if (FoundDef) {
// For some pseudo instructions, we might not generate code in the end
// (e.g. KILL) and we would end up without a correct def for the rename
// register.
// TODO: This might be overly conservative and we could handle those cases
// in multiple ways:
// 1. Insert an extra copy, to materialize the def.
// 2. Skip pseudo-defs until we find an non-pseudo def.
if (MI.isPseudo()) {
LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI
<< "\n");
return false;
}
for (auto &MOP : MI.operands()) {
if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() ||
!TRI->regsOverlap(MOP.getReg(), RegToRename))
continue;
if (!canRenameMOP(MOP)) {
LLVM_DEBUG(dbgs()
<< " Cannot rename " << MOP << " in " << MI << "\n");
return false;
}
RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
}
return true;
} else {
for (auto &MOP : MI.operands()) {
if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
!TRI->regsOverlap(MOP.getReg(), RegToRename))
continue;
if (!canRenameMOP(MOP)) {
LLVM_DEBUG(dbgs()
<< " Cannot rename " << MOP << " in " << MI << "\n");
return false;
}
RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
}
}
return true;
};
if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs))
return false;
if (!FoundDef) {
LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n");
return false;
}
return true;
}
// Check if we can find a physical register for renaming. This register must:
// * not be defined up to FirstMI (checking DefinedInBB)
// * not used between the MI and the defining instruction of the register to
// rename (checked using UsedInBetween).
// * is available in all used register classes (checked using RequiredClasses).
static Optional<MCPhysReg> tryToFindRegisterToRename(
MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB,
LiveRegUnits &UsedInBetween,
SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses,
const TargetRegisterInfo *TRI) {
auto &MF = *FirstMI.getParent()->getParent();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
// Checks if any sub- or super-register of PR is callee saved.
auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) {
return any_of(TRI->sub_and_superregs_inclusive(PR),
[&MF, TRI](MCPhysReg SubOrSuper) {
return TRI->isCalleeSavedPhysReg(SubOrSuper, MF);
});
};
// Check if PR or one of its sub- or super-registers can be used for all
// required register classes.
auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) {
return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) {
return any_of(TRI->sub_and_superregs_inclusive(PR),
[C, TRI](MCPhysReg SubOrSuper) {
return C == TRI->getMinimalPhysRegClass(SubOrSuper);
});
});
};
auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg());
for (const MCPhysReg &PR : *RegClass) {
if (DefinedInBB.available(PR) && UsedInBetween.available(PR) &&
!RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) &&
CanBeUsedForAllClasses(PR)) {
DefinedInBB.addReg(PR);
LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI)
<< "\n");
return {PR};
}
}
LLVM_DEBUG(dbgs() << "No rename register found from "
<< TRI->getRegClassName(RegClass) << "\n");
return None;
}
/// Scan the instructions looking for a load/store that can be combined with the
/// current instruction into a wider equivalent or a load/store pair.
MachineBasicBlock::iterator
AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
LdStPairFlags &Flags, unsigned Limit,
bool FindNarrowMerge) {
MachineBasicBlock::iterator E = I->getParent()->end();
MachineBasicBlock::iterator MBBI = I;
MachineBasicBlock::iterator MBBIWithRenameReg;
MachineInstr &FirstMI = *I;
MBBI = next_nodbg(MBBI, E);
bool MayLoad = FirstMI.mayLoad();
bool IsUnscaled = TII->isUnscaledLdSt(FirstMI);
Register Reg = getLdStRegOp(FirstMI).getReg();
Register BaseReg = getLdStBaseOp(FirstMI).getReg();
int Offset = getLdStOffsetOp(FirstMI).getImm();
int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1;
bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
Optional<bool> MaybeCanRename = None;
if (!EnableRenaming)
MaybeCanRename = {false};
SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses;
LiveRegUnits UsedInBetween;
UsedInBetween.init(*TRI);
Flags.clearRenameReg();
// Track which register units have been modified and used between the first
// insn (inclusive) and the second insn.
ModifiedRegUnits.clear();
UsedRegUnits.clear();
// Remember any instructions that read/write memory between FirstMI and MI.
SmallVector<MachineInstr *, 4> MemInsns;
for (unsigned Count = 0; MBBI != E && Count < Limit;
MBBI = next_nodbg(MBBI, E)) {
MachineInstr &MI = *MBBI;
UsedInBetween.accumulate(MI);
// Don't count transient instructions towards the search limit since there
// may be different numbers of them if e.g. debug information is present.
if (!MI.isTransient())
++Count;
Flags.setSExtIdx(-1);
if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) &&
getLdStOffsetOp(MI).isImm()) {
assert(MI.mayLoadOrStore() && "Expected memory operation.");
// If we've found another instruction with the same opcode, check to see
// if the base and offset are compatible with our starting instruction.
// These instructions all have scaled immediate operands, so we just
// check for +1/-1. Make sure to check the new instruction offset is
// actually an immediate and not a symbolic reference destined for
// a relocation.
Register MIBaseReg = getLdStBaseOp(MI).getReg();
int MIOffset = getLdStOffsetOp(MI).getImm();
bool MIIsUnscaled = TII->isUnscaledLdSt(MI);
if (IsUnscaled != MIIsUnscaled) {
// We're trying to pair instructions that differ in how they are scaled.
// If FirstMI is scaled then scale the offset of MI accordingly.
// Otherwise, do the opposite (i.e., make MI's offset unscaled).
int MemSize = TII->getMemScale(MI);
if (MIIsUnscaled) {
// If the unscaled offset isn't a multiple of the MemSize, we can't
// pair the operations together: bail and keep looking.
if (MIOffset % MemSize) {
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
UsedRegUnits, TRI);
MemInsns.push_back(&MI);
continue;
}
MIOffset /= MemSize;
} else {
MIOffset *= MemSize;
}
}
if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) ||
(Offset + OffsetStride == MIOffset))) {
int MinOffset = Offset < MIOffset ? Offset : MIOffset;
if (FindNarrowMerge) {
// If the alignment requirements of the scaled wide load/store
// instruction can't express the offset of the scaled narrow input,
// bail and keep looking. For promotable zero stores, allow only when
// the stored value is the same (i.e., WZR).
if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
(IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
UsedRegUnits, TRI);
MemInsns.push_back(&MI);
continue;
}
} else {
// Pairwise instructions have a 7-bit signed offset field. Single
// insns have a 12-bit unsigned offset field. If the resultant
// immediate offset of merging these instructions is out of range for
// a pairwise instruction, bail and keep looking.
if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
UsedRegUnits, TRI);
MemInsns.push_back(&MI);
continue;
}
// If the alignment requirements of the paired (scaled) instruction
// can't express the offset of the unscaled input, bail and keep
// looking.
if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
UsedRegUnits, TRI);
MemInsns.push_back(&MI);
continue;
}
}
// If the destination register of one load is the same register or a
// sub/super register of the other load, bail and keep looking. A
// load-pair instruction with both destination registers the same is
// UNPREDICTABLE and will result in an exception.
if (MayLoad &&
TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) {
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
TRI);
MemInsns.push_back(&MI);
continue;
}
// If the BaseReg has been modified, then we cannot do the optimization.
// For example, in the following pattern
// ldr x1 [x2]
// ldr x2 [x3]
// ldr x4 [x2, #8],
// the first and third ldr cannot be converted to ldp x1, x4, [x2]
if (!ModifiedRegUnits.available(BaseReg))
return E;
// If the Rt of the second instruction was not modified or used between
// the two instructions and none of the instructions between the second
// and first alias with the second, we can combine the second into the
// first.
if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) &&
!(MI.mayLoad() &&
!UsedRegUnits.available(getLdStRegOp(MI).getReg())) &&
!mayAlias(MI, MemInsns, AA)) {
Flags.setMergeForward(false);
Flags.clearRenameReg();
return MBBI;
}
// Likewise, if the Rt of the first instruction is not modified or used
// between the two instructions and none of the instructions between the
// first and the second alias with the first, we can combine the first
// into the second.
if (!(MayLoad &&
!UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) &&
!mayAlias(FirstMI, MemInsns, AA)) {
if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) {
Flags.setMergeForward(true);
Flags.clearRenameReg();
return MBBI;
}
if (DebugCounter::shouldExecute(RegRenamingCounter)) {
if (!MaybeCanRename)
MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween,
RequiredClasses, TRI)};
if (*MaybeCanRename) {
Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename(
FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses,
TRI);
if (MaybeRenameReg) {
Flags.setRenameReg(*MaybeRenameReg);
Flags.setMergeForward(true);
MBBIWithRenameReg = MBBI;
}
}
}
}
// Unable to combine these instructions due to interference in between.
// Keep looking.
}
}
if (Flags.getRenameReg())
return MBBIWithRenameReg;
// If the instruction wasn't a matching load or store. Stop searching if we
// encounter a call instruction that might modify memory.
if (MI.isCall())
return E;
// Update modified / uses register units.
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
// Otherwise, if the base register is modified, we have no match, so
// return early.
if (!ModifiedRegUnits.available(BaseReg))
return E;
// Update list of instructions that read/write memory.
if (MI.mayLoadOrStore())
MemInsns.push_back(&MI);
}
return E;
}
MachineBasicBlock::iterator
AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator Update,
bool IsPreIdx) {
assert((Update->getOpcode() == AArch64::ADDXri ||
Update->getOpcode() == AArch64::SUBXri) &&
"Unexpected base register update instruction to merge!");
MachineBasicBlock::iterator E = I->getParent()->end();
MachineBasicBlock::iterator NextI = next_nodbg(I, E);
// Return the instruction following the merged instruction, which is
// the instruction following our unmerged load. Unless that's the add/sub
// instruction we're merging, in which case it's the one after that.
if (NextI == Update)
NextI = next_nodbg(NextI, E);
int Value = Update->getOperand(2).getImm();
assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
"Can't merge 1 << 12 offset into pre-/post-indexed load / store");
if (Update->getOpcode() == AArch64::SUBXri)
Value = -Value;
unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
: getPostIndexedOpcode(I->getOpcode());
MachineInstrBuilder MIB;
int Scale, MinOffset, MaxOffset;
getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset);
if (!isPairedLdSt(*I)) {
// Non-paired instruction.
MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
.add(getLdStRegOp(*Update))
.add(getLdStRegOp(*I))
.add(getLdStBaseOp(*I))
.addImm(Value / Scale)
.setMemRefs(I->memoperands())
.setMIFlags(I->mergeFlagsWith(*Update));
} else {
// Paired instruction.
MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
.add(getLdStRegOp(*Update))
.add(getLdStRegOp(*I, 0))
.add(getLdStRegOp(*I, 1))
.add(getLdStBaseOp(*I))
.addImm(Value / Scale)
.setMemRefs(I->memoperands())
.setMIFlags(I->mergeFlagsWith(*Update));
}
(void)MIB;
if (IsPreIdx) {
++NumPreFolded;
LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store.");
} else {
++NumPostFolded;
LLVM_DEBUG(dbgs() << "Creating post-indexed load/store.");
}
LLVM_DEBUG(dbgs() << " Replacing instructions:\n ");
LLVM_DEBUG(I->print(dbgs()));
LLVM_DEBUG(dbgs() << " ");
LLVM_DEBUG(Update->print(dbgs()));
LLVM_DEBUG(dbgs() << " with instruction:\n ");
LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
// Erase the old instructions for the block.
I->eraseFromParent();
Update->eraseFromParent();
return NextI;
}
bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
MachineInstr &MI,
unsigned BaseReg, int Offset) {
switch (MI.getOpcode()) {
default:
break;
case AArch64::SUBXri:
case AArch64::ADDXri:
// Make sure it's a vanilla immediate operand, not a relocation or
// anything else we can't handle.
if (!MI.getOperand(2).isImm())
break;
// Watch out for 1 << 12 shifted value.
if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm()))
break;
// The update instruction source and destination register must be the
// same as the load/store base register.
if (MI.getOperand(0).getReg() != BaseReg ||
MI.getOperand(1).getReg() != BaseReg)
break;
int UpdateOffset = MI.getOperand(2).getImm();
if (MI.getOpcode() == AArch64::SUBXri)
UpdateOffset = -UpdateOffset;
// The immediate must be a multiple of the scaling factor of the pre/post
// indexed instruction.
int Scale, MinOffset, MaxOffset;
getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset);
if (UpdateOffset % Scale != 0)
break;
// Scaled offset must fit in the instruction immediate.
int ScaledOffset = UpdateOffset / Scale;
if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset)
break;
// If we have a non-zero Offset, we check that it matches the amount
// we're adding to the register.
if (!Offset || Offset == UpdateOffset)
return true;
break;
}
return false;
}
static bool needsWinCFI(const MachineFunction *MF) {
return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() &&
MF->getFunction().needsUnwindTableEntry();
}
MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
MachineBasicBlock::iterator E = I->getParent()->end();
MachineInstr &MemMI = *I;
MachineBasicBlock::iterator MBBI = I;
Register BaseReg = getLdStBaseOp(MemMI).getReg();
int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI);
// Scan forward looking for post-index opportunities. Updating instructions
// can't be formed if the memory instruction doesn't have the offset we're
// looking for.
if (MIUnscaledOffset != UnscaledOffset)
return E;
// If the base register overlaps a source/destination register, we can't
// merge the update. This does not apply to tag store instructions which
// ignore the address part of the source register.
// This does not apply to STGPi as well, which does not have unpredictable
// behavior in this case unlike normal stores, and always performs writeback
// after reading the source register value.
if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) {
bool IsPairedInsn = isPairedLdSt(MemMI);
for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
Register DestReg = getLdStRegOp(MemMI, i).getReg();
if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
return E;
}
}
// Track which register units have been modified and used between the first
// insn (inclusive) and the second insn.
ModifiedRegUnits.clear();
UsedRegUnits.clear();
MBBI = next_nodbg(MBBI, E);
// We can't post-increment the stack pointer if any instruction between
// the memory access (I) and the increment (MBBI) can access the memory
// region defined by [SP, MBBI].
const bool BaseRegSP = BaseReg == AArch64::SP;
if (BaseRegSP && needsWinCFI(I->getMF())) {
// FIXME: For now, we always block the optimization over SP in windows
// targets as it requires to adjust the unwind/debug info, messing up
// the unwind info can actually cause a miscompile.
return E;
}
for (unsigned Count = 0; MBBI != E && Count < Limit;
MBBI = next_nodbg(MBBI, E)) {
MachineInstr &MI = *MBBI;
// Don't count transient instructions towards the search limit since there
// may be different numbers of them if e.g. debug information is present.
if (!MI.isTransient())
++Count;
// If we found a match, return it.
if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset))
return MBBI;
// Update the status of what the instruction clobbered and used.
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
// Otherwise, if the base register is used or modified, we have no match, so
// return early.
// If we are optimizing SP, do not allow instructions that may load or store
// in between the load and the optimized value update.
if (!ModifiedRegUnits.available(BaseReg) ||
!UsedRegUnits.available(BaseReg) ||
(BaseRegSP && MBBI->mayLoadOrStore()))
return E;
}
return E;
}
MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
MachineBasicBlock::iterator I, unsigned Limit) {
MachineBasicBlock::iterator B = I->getParent()->begin();
MachineBasicBlock::iterator E = I->getParent()->end();
MachineInstr &MemMI = *I;
MachineBasicBlock::iterator MBBI = I;
Register BaseReg = getLdStBaseOp(MemMI).getReg();
int Offset = getLdStOffsetOp(MemMI).getImm();
// If the load/store is the first instruction in the block, there's obviously
// not any matching update. Ditto if the memory offset isn't zero.
if (MBBI == B || Offset != 0)
return E;
// If the base register overlaps a destination register, we can't
// merge the update.
if (!isTagStore(MemMI)) {
bool IsPairedInsn = isPairedLdSt(MemMI);
for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
Register DestReg = getLdStRegOp(MemMI, i).getReg();
if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
return E;
}
}
const bool BaseRegSP = BaseReg == AArch64::SP;
if (BaseRegSP && needsWinCFI(I->getMF())) {
// FIXME: For now, we always block the optimization over SP in windows
// targets as it requires to adjust the unwind/debug info, messing up
// the unwind info can actually cause a miscompile.
return E;
}
// Track which register units have been modified and used between the first
// insn (inclusive) and the second insn.
ModifiedRegUnits.clear();
UsedRegUnits.clear();
unsigned Count = 0;
do {
MBBI = prev_nodbg(MBBI, B);
MachineInstr &MI = *MBBI;
// Don't count transient instructions towards the search limit since there
// may be different numbers of them if e.g. debug information is present.
if (!MI.isTransient())
++Count;
// If we found a match, return it.
if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset))
return MBBI;
// Update the status of what the instruction clobbered and used.
LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
// Otherwise, if the base register is used or modified, we have no match, so
// return early.
if (!ModifiedRegUnits.available(BaseReg) ||
!UsedRegUnits.available(BaseReg))
return E;
} while (MBBI != B && Count < Limit);
return E;
}
bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
MachineBasicBlock::iterator &MBBI) {
MachineInstr &MI = *MBBI;
// If this is a volatile load, don't mess with it.
if (MI.hasOrderedMemoryRef())
return false;
// Make sure this is a reg+imm.
// FIXME: It is possible to extend it to handle reg+reg cases.
if (!getLdStOffsetOp(MI).isImm())
return false;
// Look backward up to LdStLimit instructions.
MachineBasicBlock::iterator StoreI;
if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
++NumLoadsFromStoresPromoted;
// Promote the load. Keeping the iterator straight is a
// pain, so we let the merge routine tell us what the next instruction
// is after it's done mucking about.
MBBI = promoteLoadFromStore(MBBI, StoreI);
return true;
}
return false;
}
// Merge adjacent zero stores into a wider store.
bool AArch64LoadStoreOpt::tryToMergeZeroStInst(
MachineBasicBlock::iterator &MBBI) {
assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store.");
MachineInstr &MI = *MBBI;
MachineBasicBlock::iterator E = MI.getParent()->end();
if (!TII->isCandidateToMergeOrPair(MI))
return false;
// Look ahead up to LdStLimit instructions for a mergable instruction.
LdStPairFlags Flags;
MachineBasicBlock::iterator MergeMI =
findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
if (MergeMI != E) {
++NumZeroStoresPromoted;
// Keeping the iterator straight is a pain, so we let the merge routine tell
// us what the next instruction is after it's done mucking about.
MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags);
return true;
}
return false;
}
// Find loads and stores that can be merged into a single load or store pair
// instruction.
bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
MachineInstr &MI = *MBBI;
MachineBasicBlock::iterator E = MI.getParent()->end();
if (!TII->isCandidateToMergeOrPair(MI))
return false;
// Early exit if the offset is not possible to match. (6 bits of positive
// range, plus allow an extra one in case we find a later insn that matches
// with Offset-1)
bool IsUnscaled = TII->isUnscaledLdSt(MI);
int Offset = getLdStOffsetOp(MI).getImm();
int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1;
// Allow one more for offset.
if (Offset > 0)
Offset -= OffsetStride;
if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
return false;
// Look ahead up to LdStLimit instructions for a pairable instruction.
LdStPairFlags Flags;
MachineBasicBlock::iterator Paired =
findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
if (Paired != E) {
++NumPairCreated;
if (TII->isUnscaledLdSt(MI))
++NumUnscaledPairCreated;
// Keeping the iterator straight is a pain, so we let the merge routine tell
// us what the next instruction is after it's done mucking about.
auto Prev = std::prev(MBBI);
MBBI = mergePairedInsns(MBBI, Paired, Flags);
// Collect liveness info for instructions between Prev and the new position
// MBBI.
for (auto I = std::next(Prev); I != MBBI; I++)
updateDefinedRegisters(*I, DefinedInBB, TRI);
return true;
}
return false;
}
bool AArch64LoadStoreOpt::tryToMergeLdStUpdate
(MachineBasicBlock::iterator &MBBI) {
MachineInstr &MI = *MBBI;
MachineBasicBlock::iterator E = MI.getParent()->end();
MachineBasicBlock::iterator Update;
// Look forward to try to form a post-index instruction. For example,
// ldr x0, [x20]
// add x20, x20, #32
// merged into:
// ldr x0, [x20], #32
Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
if (Update != E) {
// Merge the update into the ld/st.
MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false);
return true;
}
// Don't know how to handle unscaled pre/post-index versions below, so bail.
if (TII->isUnscaledLdSt(MI.getOpcode()))
return false;
// Look back to try to find a pre-index instruction. For example,
// add x0, x0, #8
// ldr x1, [x0]
// merged into:
// ldr x1, [x0, #8]!
Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit);
if (Update != E) {
// Merge the update into the ld/st.
MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
return true;
}
// The immediate in the load/store is scaled by the size of the memory
// operation. The immediate in the add we're looking for,
// however, is not, so adjust here.
int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI);
// Look forward to try to find a pre-index instruction. For example,
// ldr x1, [x0, #64]
// add x0, x0, #64
// merged into:
// ldr x1, [x0, #64]!
Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
if (Update != E) {
// Merge the update into the ld/st.
MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
return true;
}
return false;
}
bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
bool EnableNarrowZeroStOpt) {
bool Modified = false;
// Four tranformations to do here:
// 1) Find loads that directly read from stores and promote them by
// replacing with mov instructions. If the store is wider than the load,
// the load will be replaced with a bitfield extract.
// e.g.,
// str w1, [x0, #4]
// ldrh w2, [x0, #6]
// ; becomes
// str w1, [x0, #4]
// lsr w2, w1, #16
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
MBBI != E;) {
if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI))
Modified = true;
else
++MBBI;
}
// 2) Merge adjacent zero stores into a wider store.
// e.g.,
// strh wzr, [x0]
// strh wzr, [x0, #2]
// ; becomes
// str wzr, [x0]
// e.g.,
// str wzr, [x0]
// str wzr, [x0, #4]
// ; becomes
// str xzr, [x0]
if (EnableNarrowZeroStOpt)
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
MBBI != E;) {
if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI))
Modified = true;
else
++MBBI;
}
// 3) Find loads and stores that can be merged into a single load or store
// pair instruction.
// e.g.,
// ldr x0, [x2]
// ldr x1, [x2, #8]
// ; becomes
// ldp x0, x1, [x2]
if (MBB.getParent()->getRegInfo().tracksLiveness()) {
DefinedInBB.clear();
DefinedInBB.addLiveIns(MBB);
}
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
MBBI != E;) {
// Track currently live registers up to this point, to help with
// searching for a rename register on demand.
updateDefinedRegisters(*MBBI, DefinedInBB, TRI);
if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI))
Modified = true;
else
++MBBI;
}
// 4) Find base register updates that can be merged into the load or store
// as a base-reg writeback.
// e.g.,
// ldr x0, [x2]
// add x2, x2, #4
// ; becomes
// ldr x0, [x2], #4
for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
MBBI != E;) {
if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI))
Modified = true;
else
++MBBI;
}
return Modified;
}
bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
if (skipFunction(Fn.getFunction()))
return false;
Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget());
TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo());
TRI = Subtarget->getRegisterInfo();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
// Resize the modified and used register unit trackers. We do this once
// per function and then clear the register units each time we optimize a load
// or store.
ModifiedRegUnits.init(*TRI);
UsedRegUnits.init(*TRI);
DefinedInBB.init(*TRI);
bool Modified = false;
bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign();
for (auto &MBB : Fn) {
auto M = optimizeBlock(MBB, enableNarrowZeroStOpt);
Modified |= M;
}
return Modified;
}
// FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and
// stores near one another? Note: The pre-RA instruction scheduler already has
// hooks to try and schedule pairable loads/stores together to improve pairing
// opportunities. Thus, pre-RA pairing pass may not be worth the effort.
// FIXME: When pairing store instructions it's very possible for this pass to
// hoist a store with a KILL marker above another use (without a KILL marker).
// The resulting IR is invalid, but nothing uses the KILL markers after this
// pass, so it's never caused a problem in practice.
/// createAArch64LoadStoreOptimizationPass - returns an instance of the
/// load / store optimization pass.
FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
return new AArch64LoadStoreOpt();
}