AArch64InstrInfo.h 20.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
//===- AArch64InstrInfo.h - AArch64 Instruction Information -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64INSTRINFO_H
#define LLVM_LIB_TARGET_AARCH64_AARCH64INSTRINFO_H

#include "AArch64.h"
#include "AArch64RegisterInfo.h"
#include "AArch64StackOffset.h"
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/MachineCombinerPattern.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/TypeSize.h"

#define GET_INSTRINFO_HEADER
#include "AArch64GenInstrInfo.inc"

namespace llvm {

class AArch64Subtarget;
class AArch64TargetMachine;

static const MachineMemOperand::Flags MOSuppressPair =
    MachineMemOperand::MOTargetFlag1;
static const MachineMemOperand::Flags MOStridedAccess =
    MachineMemOperand::MOTargetFlag2;

#define FALKOR_STRIDED_ACCESS_MD "falkor.strided.access"

class AArch64InstrInfo final : public AArch64GenInstrInfo {
  const AArch64RegisterInfo RI;
  const AArch64Subtarget &Subtarget;

public:
  explicit AArch64InstrInfo(const AArch64Subtarget &STI);

  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
  /// such, whenever a client has an instance of instruction info, it should
  /// always be able to get register info as well (through this method).
  const AArch64RegisterInfo &getRegisterInfo() const { return RI; }

  unsigned getInstSizeInBytes(const MachineInstr &MI) const override;

  bool isAsCheapAsAMove(const MachineInstr &MI) const override;

  bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
                             Register &DstReg, unsigned &SubIdx) const override;

  bool
  areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
                                  const MachineInstr &MIb) const override;

  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex) const override;
  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex) const override;

  /// Does this instruction set its full destination register to zero?
  static bool isGPRZero(const MachineInstr &MI);

  /// Does this instruction rename a GPR without modifying bits?
  static bool isGPRCopy(const MachineInstr &MI);

  /// Does this instruction rename an FPR without modifying bits?
  static bool isFPRCopy(const MachineInstr &MI);

  /// Return true if pairing the given load or store is hinted to be
  /// unprofitable.
  static bool isLdStPairSuppressed(const MachineInstr &MI);

  /// Return true if the given load or store is a strided memory access.
  static bool isStridedAccess(const MachineInstr &MI);

  /// Return true if this is an unscaled load/store.
  static bool isUnscaledLdSt(unsigned Opc);
  static bool isUnscaledLdSt(MachineInstr &MI) {
    return isUnscaledLdSt(MI.getOpcode());
  }

  /// Returns the unscaled load/store for the scaled load/store opcode,
  /// if there is a corresponding unscaled variant available.
  static Optional<unsigned> getUnscaledLdSt(unsigned Opc);

  /// Scaling factor for (scaled or unscaled) load or store.
  static int getMemScale(unsigned Opc);
  static int getMemScale(const MachineInstr &MI) {
    return getMemScale(MI.getOpcode());
  }


  /// Returns the index for the immediate for a given instruction.
  static unsigned getLoadStoreImmIdx(unsigned Opc);

  /// Return true if pairing the given load or store may be paired with another.
  static bool isPairableLdStInst(const MachineInstr &MI);

  /// Return the opcode that set flags when possible.  The caller is
  /// responsible for ensuring the opc has a flag setting equivalent.
  static unsigned convertToFlagSettingOpc(unsigned Opc, bool &Is64Bit);

  /// Return true if this is a load/store that can be potentially paired/merged.
  bool isCandidateToMergeOrPair(const MachineInstr &MI) const;

  /// Hint that pairing the given load or store is unprofitable.
  static void suppressLdStPair(MachineInstr &MI);

  bool getMemOperandsWithOffsetWidth(
      const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
      int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
      const TargetRegisterInfo *TRI) const override;

  /// If \p OffsetIsScalable is set to 'true', the offset is scaled by `vscale`.
  /// This is true for some SVE instructions like ldr/str that have a
  /// 'reg + imm' addressing mode where the immediate is an index to the
  /// scalable vector located at 'reg + imm * vscale x #bytes'.
  bool getMemOperandWithOffsetWidth(const MachineInstr &MI,
                                    const MachineOperand *&BaseOp,
                                    int64_t &Offset, bool &OffsetIsScalable,
                                    unsigned &Width,
                                    const TargetRegisterInfo *TRI) const;

  /// Return the immediate offset of the base register in a load/store \p LdSt.
  MachineOperand &getMemOpBaseRegImmOfsOffsetOperand(MachineInstr &LdSt) const;

  /// Returns true if opcode \p Opc is a memory operation. If it is, set
  /// \p Scale, \p Width, \p MinOffset, and \p MaxOffset accordingly.
  ///
  /// For unscaled instructions, \p Scale is set to 1.
  static bool getMemOpInfo(unsigned Opcode, TypeSize &Scale, unsigned &Width,
                           int64_t &MinOffset, int64_t &MaxOffset);

  bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
                           ArrayRef<const MachineOperand *> BaseOps2,
                           unsigned NumLoads, unsigned NumBytes) const override;

  void copyPhysRegTuple(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                        const DebugLoc &DL, MCRegister DestReg,
                        MCRegister SrcReg, bool KillSrc, unsigned Opcode,
                        llvm::ArrayRef<unsigned> Indices) const;
  void copyGPRRegTuple(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                       DebugLoc DL, unsigned DestReg, unsigned SrcReg,
                       bool KillSrc, unsigned Opcode, unsigned ZeroReg,
                       llvm::ArrayRef<unsigned> Indices) const;
  void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                   const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
                   bool KillSrc) const override;

  void storeRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MBBI, Register SrcReg,
                           bool isKill, int FrameIndex,
                           const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) const override;

  void loadRegFromStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI, Register DestReg,
                            int FrameIndex, const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;

  // This tells target independent code that it is okay to pass instructions
  // with subreg operands to foldMemoryOperandImpl.
  bool isSubregFoldable() const override { return true; }

  using TargetInstrInfo::foldMemoryOperandImpl;
  MachineInstr *
  foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
                        ArrayRef<unsigned> Ops,
                        MachineBasicBlock::iterator InsertPt, int FrameIndex,
                        LiveIntervals *LIS = nullptr,
                        VirtRegMap *VRM = nullptr) const override;

  /// \returns true if a branch from an instruction with opcode \p BranchOpc
  ///  bytes is capable of jumping to a position \p BrOffset bytes away.
  bool isBranchOffsetInRange(unsigned BranchOpc,
                             int64_t BrOffset) const override;

  MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const override;

  bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                     MachineBasicBlock *&FBB,
                     SmallVectorImpl<MachineOperand> &Cond,
                     bool AllowModify = false) const override;
  bool analyzeBranchPredicate(MachineBasicBlock &MBB,
                              MachineBranchPredicate &MBP,
                              bool AllowModify) const override;
  unsigned removeBranch(MachineBasicBlock &MBB,
                        int *BytesRemoved = nullptr) const override;
  unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                        MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                        const DebugLoc &DL,
                        int *BytesAdded = nullptr) const override;
  bool
  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
  bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
                       Register, Register, Register, int &, int &,
                       int &) const override;
  void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                    const DebugLoc &DL, Register DstReg,
                    ArrayRef<MachineOperand> Cond, Register TrueReg,
                    Register FalseReg) const override;
  void getNoop(MCInst &NopInst) const override;

  bool isSchedulingBoundary(const MachineInstr &MI,
                            const MachineBasicBlock *MBB,
                            const MachineFunction &MF) const override;

  /// analyzeCompare - For a comparison instruction, return the source registers
  /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
  /// Return true if the comparison instruction can be analyzed.
  bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
                      Register &SrcReg2, int &CmpMask,
                      int &CmpValue) const override;
  /// optimizeCompareInstr - Convert the instruction supplying the argument to
  /// the comparison into one that sets the zero bit in the flags register.
  bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
                            Register SrcReg2, int CmpMask, int CmpValue,
                            const MachineRegisterInfo *MRI) const override;
  bool optimizeCondBranch(MachineInstr &MI) const override;

  /// Return true when a code sequence can improve throughput. It
  /// should be called only for instructions in loops.
  /// \param Pattern - combiner pattern
  bool isThroughputPattern(MachineCombinerPattern Pattern) const override;
  /// Return true when there is potentially a faster code sequence
  /// for an instruction chain ending in ``Root``. All potential patterns are
  /// listed in the ``Patterns`` array.
  bool getMachineCombinerPatterns(
      MachineInstr &Root,
      SmallVectorImpl<MachineCombinerPattern> &Patterns) const override;
  /// Return true when Inst is associative and commutative so that it can be
  /// reassociated.
  bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
  /// When getMachineCombinerPatterns() finds patterns, this function generates
  /// the instructions that could replace the original code sequence
  void genAlternativeCodeSequence(
      MachineInstr &Root, MachineCombinerPattern Pattern,
      SmallVectorImpl<MachineInstr *> &InsInstrs,
      SmallVectorImpl<MachineInstr *> &DelInstrs,
      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
  /// AArch64 supports MachineCombiner.
  bool useMachineCombiner() const override;

  bool expandPostRAPseudo(MachineInstr &MI) const override;

  std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned TF) const override;
  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const override;
  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableBitmaskMachineOperandTargetFlags() const override;
  ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
  getSerializableMachineMemOperandTargetFlags() const override;

  bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
                                   bool OutlineFromLinkOnceODRs) const override;
  outliner::OutlinedFunction getOutliningCandidateInfo(
      std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
  outliner::InstrType
  getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const override;
  bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
                              unsigned &Flags) const override;
  void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
                          const outliner::OutlinedFunction &OF) const override;
  MachineBasicBlock::iterator
  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator &It, MachineFunction &MF,
                     const outliner::Candidate &C) const override;
  bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const override;
  /// Returns the vector element size (B, H, S or D) of an SVE opcode.
  uint64_t getElementSizeForOpcode(unsigned Opc) const;
  /// Returns true if the instruction has a shift by immediate that can be
  /// executed in one cycle less.
  static bool isFalkorShiftExtFast(const MachineInstr &MI);
  /// Return true if the instructions is a SEH instruciton used for unwinding
  /// on Windows.
  static bool isSEHInstruction(const MachineInstr &MI);

  Optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
                                      Register Reg) const override;

  Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI,
                                                 Register Reg) const override;

#define GET_INSTRINFO_HELPER_DECLS
#include "AArch64GenInstrInfo.inc"

protected:
  /// If the specific machine instruction is an instruction that moves/copies
  /// value from one register to another register return destination and source
  /// registers as machine operands.
  Optional<DestSourcePair>
  isCopyInstrImpl(const MachineInstr &MI) const override;

private:
  unsigned getInstBundleLength(const MachineInstr &MI) const;

  /// Sets the offsets on outlined instructions in \p MBB which use SP
  /// so that they will be valid post-outlining.
  ///
  /// \param MBB A \p MachineBasicBlock in an outlined function.
  void fixupPostOutline(MachineBasicBlock &MBB) const;

  void instantiateCondBranch(MachineBasicBlock &MBB, const DebugLoc &DL,
                             MachineBasicBlock *TBB,
                             ArrayRef<MachineOperand> Cond) const;
  bool substituteCmpToZero(MachineInstr &CmpInstr, unsigned SrcReg,
                           const MachineRegisterInfo *MRI) const;

  /// Returns an unused general-purpose register which can be used for
  /// constructing an outlined call if one exists. Returns 0 otherwise.
  unsigned findRegisterToSaveLRTo(const outliner::Candidate &C) const;
};

/// Return true if there is an instruction /after/ \p DefMI and before \p UseMI
/// which either reads or clobbers NZCV.
bool isNZCVTouchedInInstructionRange(const MachineInstr &DefMI,
                                     const MachineInstr &UseMI,
                                     const TargetRegisterInfo *TRI);

/// emitFrameOffset - Emit instructions as needed to set DestReg to SrcReg
/// plus Offset.  This is intended to be used from within the prolog/epilog
/// insertion (PEI) pass, where a virtual scratch register may be allocated
/// if necessary, to be replaced by the scavenger at the end of PEI.
void emitFrameOffset(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
                     const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
                     StackOffset Offset, const TargetInstrInfo *TII,
                     MachineInstr::MIFlag = MachineInstr::NoFlags,
                     bool SetNZCV = false, bool NeedsWinCFI = false,
                     bool *HasWinCFI = nullptr);

/// rewriteAArch64FrameIndex - Rewrite MI to access 'Offset' bytes from the
/// FP. Return false if the offset could not be handled directly in MI, and
/// return the left-over portion by reference.
bool rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
                              unsigned FrameReg, StackOffset &Offset,
                              const AArch64InstrInfo *TII);

/// Use to report the frame offset status in isAArch64FrameOffsetLegal.
enum AArch64FrameOffsetStatus {
  AArch64FrameOffsetCannotUpdate = 0x0, ///< Offset cannot apply.
  AArch64FrameOffsetIsLegal = 0x1,      ///< Offset is legal.
  AArch64FrameOffsetCanUpdate = 0x2     ///< Offset can apply, at least partly.
};

/// Check if the @p Offset is a valid frame offset for @p MI.
/// The returned value reports the validity of the frame offset for @p MI.
/// It uses the values defined by AArch64FrameOffsetStatus for that.
/// If result == AArch64FrameOffsetCannotUpdate, @p MI cannot be updated to
/// use an offset.eq
/// If result & AArch64FrameOffsetIsLegal, @p Offset can completely be
/// rewritten in @p MI.
/// If result & AArch64FrameOffsetCanUpdate, @p Offset contains the
/// amount that is off the limit of the legal offset.
/// If set, @p OutUseUnscaledOp will contain the whether @p MI should be
/// turned into an unscaled operator, which opcode is in @p OutUnscaledOp.
/// If set, @p EmittableOffset contains the amount that can be set in @p MI
/// (possibly with @p OutUnscaledOp if OutUseUnscaledOp is true) and that
/// is a legal offset.
int isAArch64FrameOffsetLegal(const MachineInstr &MI, StackOffset &Offset,
                              bool *OutUseUnscaledOp = nullptr,
                              unsigned *OutUnscaledOp = nullptr,
                              int64_t *EmittableOffset = nullptr);

static inline bool isUncondBranchOpcode(int Opc) { return Opc == AArch64::B; }

static inline bool isCondBranchOpcode(int Opc) {
  switch (Opc) {
  case AArch64::Bcc:
  case AArch64::CBZW:
  case AArch64::CBZX:
  case AArch64::CBNZW:
  case AArch64::CBNZX:
  case AArch64::TBZW:
  case AArch64::TBZX:
  case AArch64::TBNZW:
  case AArch64::TBNZX:
    return true;
  default:
    return false;
  }
}

static inline bool isIndirectBranchOpcode(int Opc) {
  switch (Opc) {
  case AArch64::BR:
  case AArch64::BRAA:
  case AArch64::BRAB:
  case AArch64::BRAAZ:
  case AArch64::BRABZ:
    return true;
  }
  return false;
}

/// Return opcode to be used for indirect calls.
unsigned getBLRCallOpcode(const MachineFunction &MF);

// struct TSFlags {
#define TSFLAG_ELEMENT_SIZE_TYPE(X)      (X)       // 3-bits
#define TSFLAG_DESTRUCTIVE_INST_TYPE(X) ((X) << 3) // 4-bit
#define TSFLAG_FALSE_LANE_TYPE(X)       ((X) << 7) // 2-bits
// }

namespace AArch64 {

enum ElementSizeType {
  ElementSizeMask = TSFLAG_ELEMENT_SIZE_TYPE(0x7),
  ElementSizeNone = TSFLAG_ELEMENT_SIZE_TYPE(0x0),
  ElementSizeB    = TSFLAG_ELEMENT_SIZE_TYPE(0x1),
  ElementSizeH    = TSFLAG_ELEMENT_SIZE_TYPE(0x2),
  ElementSizeS    = TSFLAG_ELEMENT_SIZE_TYPE(0x3),
  ElementSizeD    = TSFLAG_ELEMENT_SIZE_TYPE(0x4),
};

enum DestructiveInstType {
  DestructiveInstTypeMask       = TSFLAG_DESTRUCTIVE_INST_TYPE(0xf),
  NotDestructive                = TSFLAG_DESTRUCTIVE_INST_TYPE(0x0),
  DestructiveOther              = TSFLAG_DESTRUCTIVE_INST_TYPE(0x1),
  DestructiveUnary              = TSFLAG_DESTRUCTIVE_INST_TYPE(0x2),
  DestructiveBinaryImm          = TSFLAG_DESTRUCTIVE_INST_TYPE(0x3),
  DestructiveBinaryShImmUnpred  = TSFLAG_DESTRUCTIVE_INST_TYPE(0x4),
  DestructiveBinary             = TSFLAG_DESTRUCTIVE_INST_TYPE(0x5),
  DestructiveBinaryComm         = TSFLAG_DESTRUCTIVE_INST_TYPE(0x6),
  DestructiveBinaryCommWithRev  = TSFLAG_DESTRUCTIVE_INST_TYPE(0x7),
  DestructiveTernaryCommWithRev = TSFLAG_DESTRUCTIVE_INST_TYPE(0x8),
};

enum FalseLaneType {
  FalseLanesMask  = TSFLAG_FALSE_LANE_TYPE(0x3),
  FalseLanesZero  = TSFLAG_FALSE_LANE_TYPE(0x1),
  FalseLanesUndef = TSFLAG_FALSE_LANE_TYPE(0x2),
};

#undef TSFLAG_ELEMENT_SIZE_TYPE
#undef TSFLAG_DESTRUCTIVE_INST_TYPE
#undef TSFLAG_FALSE_LANE_TYPE

int getSVEPseudoMap(uint16_t Opcode);
int getSVERevInstr(uint16_t Opcode);
int getSVENonRevInstr(uint16_t Opcode);
}

} // end namespace llvm

#endif