SafepointIRVerifier.cpp 34.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Run a sanity check on the IR to ensure that Safepoints - if they've been
// inserted - were inserted correctly.  In particular, look for use of
// non-relocated values after a safepoint.  It's primary use is to check the
// correctness of safepoint insertion immediately after insertion, but it can
// also be used to verify that later transforms have not found a way to break
// safepoint semenatics.
//
// In its current form, this verify checks a property which is sufficient, but
// not neccessary for correctness.  There are some cases where an unrelocated
// pointer can be used after the safepoint.  Consider this example:
//
//    a = ...
//    b = ...
//    (a',b') = safepoint(a,b)
//    c = cmp eq a b
//    br c, ..., ....
//
// Because it is valid to reorder 'c' above the safepoint, this is legal.  In
// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
// idioms like this.  The verifier knows about these cases and avoids reporting
// false positives.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/SafepointIRVerifier.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "safepoint-ir-verifier"

using namespace llvm;

/// This option is used for writing test cases.  Instead of crashing the program
/// when verification fails, report a message to the console (for FileCheck
/// usage) and continue execution as if nothing happened.
static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
                               cl::init(false));

namespace {

/// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
/// of blocks unreachable from entry then propagates deadness using foldable
/// conditional branches without modifying CFG. So GVN does but it changes CFG
/// by splitting critical edges. In most cases passes rely on SimplifyCFG to
/// clean up dead blocks, but in some cases, like verification or loop passes
/// it's not possible.
class CFGDeadness {
  const DominatorTree *DT = nullptr;
  SetVector<const BasicBlock *> DeadBlocks;
  SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.

public:
  /// Return the edge that coresponds to the predecessor.
  static const Use& getEdge(const_pred_iterator &PredIt) {
    auto &PU = PredIt.getUse();
    return PU.getUser()->getOperandUse(PU.getOperandNo());
  }

  /// Return true if there is at least one live edge that corresponds to the
  /// basic block InBB listed in the phi node.
  bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
    assert(!isDeadBlock(InBB) && "block must be live");
    const BasicBlock* BB = PN->getParent();
    bool Listed = false;
    for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
      if (InBB == *PredIt) {
        if (!isDeadEdge(&getEdge(PredIt)))
          return true;
        Listed = true;
      }
    }
    (void)Listed;
    assert(Listed && "basic block is not found among incoming blocks");
    return false;
  }


  bool isDeadBlock(const BasicBlock *BB) const {
    return DeadBlocks.count(BB);
  }

  bool isDeadEdge(const Use *U) const {
    assert(cast<Instruction>(U->getUser())->isTerminator() &&
           "edge must be operand of terminator");
    assert(cast_or_null<BasicBlock>(U->get()) &&
           "edge must refer to basic block");
    assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) &&
           "isDeadEdge() must be applied to edge from live block");
    return DeadEdges.count(U);
  }

  bool hasLiveIncomingEdges(const BasicBlock *BB) const {
    // Check if all incoming edges are dead.
    for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
      auto &PU = PredIt.getUse();
      const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
      if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
        return true; // Found a live edge.
    }
    return false;
  }

  void processFunction(const Function &F, const DominatorTree &DT) {
    this->DT = &DT;

    // Start with all blocks unreachable from entry.
    for (const BasicBlock &BB : F)
      if (!DT.isReachableFromEntry(&BB))
        DeadBlocks.insert(&BB);

    // Top-down walk of the dominator tree
    ReversePostOrderTraversal<const Function *> RPOT(&F);
    for (const BasicBlock *BB : RPOT) {
      const Instruction *TI = BB->getTerminator();
      assert(TI && "blocks must be well formed");

      // For conditional branches, we can perform simple conditional propagation on
      // the condition value itself.
      const BranchInst *BI = dyn_cast<BranchInst>(TI);
      if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
        continue;

      // If a branch has two identical successors, we cannot declare either dead.
      if (BI->getSuccessor(0) == BI->getSuccessor(1))
        continue;

      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
      if (!Cond)
        continue;

      addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
    }
  }

protected:
  void addDeadBlock(const BasicBlock *BB) {
    SmallVector<const BasicBlock *, 4> NewDead;
    SmallSetVector<const BasicBlock *, 4> DF;

    NewDead.push_back(BB);
    while (!NewDead.empty()) {
      const BasicBlock *D = NewDead.pop_back_val();
      if (isDeadBlock(D))
        continue;

      // All blocks dominated by D are dead.
      SmallVector<BasicBlock *, 8> Dom;
      DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
      // Do not need to mark all in and out edges dead
      // because BB is marked dead and this is enough
      // to run further.
      DeadBlocks.insert(Dom.begin(), Dom.end());

      // Figure out the dominance-frontier(D).
      for (BasicBlock *B : Dom)
        for (BasicBlock *S : successors(B))
          if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
            NewDead.push_back(S);
    }
  }

  void addDeadEdge(const Use &DeadEdge) {
    if (!DeadEdges.insert(&DeadEdge))
      return;

    BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
    if (hasLiveIncomingEdges(BB))
      return;

    addDeadBlock(BB);
  }
};
} // namespace

static void Verify(const Function &F, const DominatorTree &DT,
                   const CFGDeadness &CD);

namespace llvm {
PreservedAnalyses SafepointIRVerifierPass::run(Function &F,
                                               FunctionAnalysisManager &AM) {
  const auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  CFGDeadness CD;
  CD.processFunction(F, DT);
  Verify(F, DT, CD);
  return PreservedAnalyses::all();
}
} // namespace llvm

namespace {

struct SafepointIRVerifier : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid
  SafepointIRVerifier() : FunctionPass(ID) {
    initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    CFGDeadness CD;
    CD.processFunction(F, DT);
    Verify(F, DT, CD);
    return false; // no modifications
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredID(DominatorTreeWrapperPass::ID);
    AU.setPreservesAll();
  }

  StringRef getPassName() const override { return "safepoint verifier"; }
};
} // namespace

void llvm::verifySafepointIR(Function &F) {
  SafepointIRVerifier pass;
  pass.runOnFunction(F);
}

char SafepointIRVerifier::ID = 0;

FunctionPass *llvm::createSafepointIRVerifierPass() {
  return new SafepointIRVerifier();
}

INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
                      "Safepoint IR Verifier", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
                    "Safepoint IR Verifier", false, false)

static bool isGCPointerType(Type *T) {
  if (auto *PT = dyn_cast<PointerType>(T))
    // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
    // GC managed heap.  We know that a pointer into this heap needs to be
    // updated and that no other pointer does.
    return (1 == PT->getAddressSpace());
  return false;
}

static bool containsGCPtrType(Type *Ty) {
  if (isGCPointerType(Ty))
    return true;
  if (VectorType *VT = dyn_cast<VectorType>(Ty))
    return isGCPointerType(VT->getScalarType());
  if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
    return containsGCPtrType(AT->getElementType());
  if (StructType *ST = dyn_cast<StructType>(Ty))
    return llvm::any_of(ST->elements(), containsGCPtrType);
  return false;
}

// Debugging aid -- prints a [Begin, End) range of values.
template<typename IteratorTy>
static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
  OS << "[ ";
  while (Begin != End) {
    OS << **Begin << " ";
    ++Begin;
  }
  OS << "]";
}

/// The verifier algorithm is phrased in terms of availability.  The set of
/// values "available" at a given point in the control flow graph is the set of
/// correctly relocated value at that point, and is a subset of the set of
/// definitions dominating that point.

using AvailableValueSet = DenseSet<const Value *>;

/// State we compute and track per basic block.
struct BasicBlockState {
  // Set of values available coming in, before the phi nodes
  AvailableValueSet AvailableIn;

  // Set of values available going out
  AvailableValueSet AvailableOut;

  // AvailableOut minus AvailableIn.
  // All elements are Instructions
  AvailableValueSet Contribution;

  // True if this block contains a safepoint and thus AvailableIn does not
  // contribute to AvailableOut.
  bool Cleared = false;
};

/// A given derived pointer can have multiple base pointers through phi/selects.
/// This type indicates when the base pointer is exclusively constant
/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
/// NonConstant.
enum BaseType {
  NonConstant = 1, // Base pointers is not exclusively constant.
  ExclusivelyNull,
  ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
                          // set of constants, but they are not exclusively
                          // null.
};

/// Return the baseType for Val which states whether Val is exclusively
/// derived from constant/null, or not exclusively derived from constant.
/// Val is exclusively derived off a constant base when all operands of phi and
/// selects are derived off a constant base.
static enum BaseType getBaseType(const Value *Val) {

  SmallVector<const Value *, 32> Worklist;
  DenseSet<const Value *> Visited;
  bool isExclusivelyDerivedFromNull = true;
  Worklist.push_back(Val);
  // Strip through all the bitcasts and geps to get base pointer. Also check for
  // the exclusive value when there can be multiple base pointers (through phis
  // or selects).
  while(!Worklist.empty()) {
    const Value *V = Worklist.pop_back_val();
    if (!Visited.insert(V).second)
      continue;

    if (const auto *CI = dyn_cast<CastInst>(V)) {
      Worklist.push_back(CI->stripPointerCasts());
      continue;
    }
    if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
      Worklist.push_back(GEP->getPointerOperand());
      continue;
    }
    // Push all the incoming values of phi node into the worklist for
    // processing.
    if (const auto *PN = dyn_cast<PHINode>(V)) {
      for (Value *InV: PN->incoming_values())
        Worklist.push_back(InV);
      continue;
    }
    if (const auto *SI = dyn_cast<SelectInst>(V)) {
      // Push in the true and false values
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }
    if (isa<Constant>(V)) {
      // We found at least one base pointer which is non-null, so this derived
      // pointer is not exclusively derived from null.
      if (V != Constant::getNullValue(V->getType()))
        isExclusivelyDerivedFromNull = false;
      // Continue processing the remaining values to make sure it's exclusively
      // constant.
      continue;
    }
    // At this point, we know that the base pointer is not exclusively
    // constant.
    return BaseType::NonConstant;
  }
  // Now, we know that the base pointer is exclusively constant, but we need to
  // differentiate between exclusive null constant and non-null constant.
  return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
                                      : BaseType::ExclusivelySomeConstant;
}

static bool isNotExclusivelyConstantDerived(const Value *V) {
  return getBaseType(V) == BaseType::NonConstant;
}

namespace {
class InstructionVerifier;

/// Builds BasicBlockState for each BB of the function.
/// It can traverse function for verification and provides all required
/// information.
///
/// GC pointer may be in one of three states: relocated, unrelocated and
/// poisoned.
/// Relocated pointer may be used without any restrictions.
/// Unrelocated pointer cannot be dereferenced, passed as argument to any call
/// or returned. Unrelocated pointer may be safely compared against another
/// unrelocated pointer or against a pointer exclusively derived from null.
/// Poisoned pointers are produced when we somehow derive pointer from relocated
/// and unrelocated pointers (e.g. phi, select). This pointers may be safely
/// used in a very limited number of situations. Currently the only way to use
/// it is comparison against constant exclusively derived from null. All
/// limitations arise due to their undefined state: this pointers should be
/// treated as relocated and unrelocated simultaneously.
/// Rules of deriving:
/// R + U = P - that's where the poisoned pointers come from
/// P + X = P
/// U + U = U
/// R + R = R
/// X + C = X
/// Where "+" - any operation that somehow derive pointer, U - unrelocated,
/// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
/// nothing (in case when "+" is unary operation).
/// Deriving of pointers by itself is always safe.
/// NOTE: when we are making decision on the status of instruction's result:
/// a) for phi we need to check status of each input *at the end of
///    corresponding predecessor BB*.
/// b) for other instructions we need to check status of each input *at the
///    current point*.
///
/// FIXME: This works fairly well except one case
///     bb1:
///     p = *some GC-ptr def*
///     p1 = gep p, offset
///         /     |
///        /      |
///    bb2:       |
///    safepoint  |
///        \      |
///         \     |
///      bb3:
///      p2 = phi [p, bb2] [p1, bb1]
///      p3 = phi [p, bb2] [p, bb1]
///      here p and p1 is unrelocated
///           p2 and p3 is poisoned (though they shouldn't be)
///
/// This leads to some weird results:
///      cmp eq p, p2 - illegal instruction (false-positive)
///      cmp eq p1, p2 - illegal instruction (false-positive)
///      cmp eq p, p3 - illegal instruction (false-positive)
///      cmp eq p, p1 - ok
/// To fix this we need to introduce conception of generations and be able to
/// check if two values belong to one generation or not. This way p2 will be
/// considered to be unrelocated and no false alarm will happen.
class GCPtrTracker {
  const Function &F;
  const CFGDeadness &CD;
  SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
  DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
  // This set contains defs of unrelocated pointers that are proved to be legal
  // and don't need verification.
  DenseSet<const Instruction *> ValidUnrelocatedDefs;
  // This set contains poisoned defs. They can be safely ignored during
  // verification too.
  DenseSet<const Value *> PoisonedDefs;

public:
  GCPtrTracker(const Function &F, const DominatorTree &DT,
               const CFGDeadness &CD);

  bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
    return CD.hasLiveIncomingEdge(PN, InBB);
  }

  BasicBlockState *getBasicBlockState(const BasicBlock *BB);
  const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;

  bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }

  /// Traverse each BB of the function and call
  /// InstructionVerifier::verifyInstruction for each possibly invalid
  /// instruction.
  /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
  /// in order to prohibit further usages of GCPtrTracker as it'll be in
  /// inconsistent state.
  static void verifyFunction(GCPtrTracker &&Tracker,
                             InstructionVerifier &Verifier);

  /// Returns true for reachable and live blocks.
  bool isMapped(const BasicBlock *BB) const {
    return BlockMap.find(BB) != BlockMap.end();
  }

private:
  /// Returns true if the instruction may be safely skipped during verification.
  bool instructionMayBeSkipped(const Instruction *I) const;

  /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
  /// each of them until it converges.
  void recalculateBBsStates();

  /// Remove from Contribution all defs that legally produce unrelocated
  /// pointers and saves them to ValidUnrelocatedDefs.
  /// Though Contribution should belong to BBS it is passed separately with
  /// different const-modifier in order to emphasize (and guarantee) that only
  /// Contribution will be changed.
  /// Returns true if Contribution was changed otherwise false.
  bool removeValidUnrelocatedDefs(const BasicBlock *BB,
                                  const BasicBlockState *BBS,
                                  AvailableValueSet &Contribution);

  /// Gather all the definitions dominating the start of BB into Result. This is
  /// simply the defs introduced by every dominating basic block and the
  /// function arguments.
  void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
                            const DominatorTree &DT);

  /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
  /// which is the BasicBlockState for BB.
  /// ContributionChanged is set when the verifier runs for the first time
  /// (in this case Contribution was changed from 'empty' to its initial state)
  /// or when Contribution of this BB was changed since last computation.
  static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
                            bool ContributionChanged);

  /// Model the effect of an instruction on the set of available values.
  static void transferInstruction(const Instruction &I, bool &Cleared,
                                  AvailableValueSet &Available);
};

/// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
/// instruction (which uses heap reference) is legal or not, given our safepoint
/// semantics.
class InstructionVerifier {
  bool AnyInvalidUses = false;

public:
  void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
                         const AvailableValueSet &AvailableSet);

  bool hasAnyInvalidUses() const { return AnyInvalidUses; }

private:
  void reportInvalidUse(const Value &V, const Instruction &I);
};
} // end anonymous namespace

GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
                           const CFGDeadness &CD) : F(F), CD(CD) {
  // Calculate Contribution of each live BB.
  // Allocate BB states for live blocks.
  for (const BasicBlock &BB : F)
    if (!CD.isDeadBlock(&BB)) {
      BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
      for (const auto &I : BB)
        transferInstruction(I, BBS->Cleared, BBS->Contribution);
      BlockMap[&BB] = BBS;
    }

  // Initialize AvailableIn/Out sets of each BB using only information about
  // dominating BBs.
  for (auto &BBI : BlockMap) {
    gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
    transferBlock(BBI.first, *BBI.second, true);
  }

  // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
  // sets of each BB until it converges. If any def is proved to be an
  // unrelocated pointer, it will be removed from all BBSs.
  recalculateBBsStates();
}

BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
  auto it = BlockMap.find(BB);
  return it != BlockMap.end() ? it->second : nullptr;
}

const BasicBlockState *GCPtrTracker::getBasicBlockState(
    const BasicBlock *BB) const {
  return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
}

bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
  // Poisoned defs are skipped since they are always safe by itself by
  // definition (for details see comment to this class).
  return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
}

void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
                                  InstructionVerifier &Verifier) {
  // We need RPO here to a) report always the first error b) report errors in
  // same order from run to run.
  ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
  for (const BasicBlock *BB : RPOT) {
    BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
    if (!BBS)
      continue;

    // We destructively modify AvailableIn as we traverse the block instruction
    // by instruction.
    AvailableValueSet &AvailableSet = BBS->AvailableIn;
    for (const Instruction &I : *BB) {
      if (Tracker.instructionMayBeSkipped(&I))
        continue; // This instruction shouldn't be added to AvailableSet.

      Verifier.verifyInstruction(&Tracker, I, AvailableSet);

      // Model the effect of current instruction on AvailableSet to keep the set
      // relevant at each point of BB.
      bool Cleared = false;
      transferInstruction(I, Cleared, AvailableSet);
      (void)Cleared;
    }
  }
}

void GCPtrTracker::recalculateBBsStates() {
  SetVector<const BasicBlock *> Worklist;
  // TODO: This order is suboptimal, it's better to replace it with priority
  // queue where priority is RPO number of BB.
  for (auto &BBI : BlockMap)
    Worklist.insert(BBI.first);

  // This loop iterates the AvailableIn/Out sets until it converges.
  // The AvailableIn and AvailableOut sets decrease as we iterate.
  while (!Worklist.empty()) {
    const BasicBlock *BB = Worklist.pop_back_val();
    BasicBlockState *BBS = getBasicBlockState(BB);
    if (!BBS)
      continue; // Ignore dead successors.

    size_t OldInCount = BBS->AvailableIn.size();
    for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
      const BasicBlock *PBB = *PredIt;
      BasicBlockState *PBBS = getBasicBlockState(PBB);
      if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
        set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
    }

    assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");

    bool InputsChanged = OldInCount != BBS->AvailableIn.size();
    bool ContributionChanged =
        removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
    if (!InputsChanged && !ContributionChanged)
      continue;

    size_t OldOutCount = BBS->AvailableOut.size();
    transferBlock(BB, *BBS, ContributionChanged);
    if (OldOutCount != BBS->AvailableOut.size()) {
      assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
      Worklist.insert(succ_begin(BB), succ_end(BB));
    }
  }
}

bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
                                              const BasicBlockState *BBS,
                                              AvailableValueSet &Contribution) {
  assert(&BBS->Contribution == &Contribution &&
         "Passed Contribution should be from the passed BasicBlockState!");
  AvailableValueSet AvailableSet = BBS->AvailableIn;
  bool ContributionChanged = false;
  // For explanation why instructions are processed this way see
  // "Rules of deriving" in the comment to this class.
  for (const Instruction &I : *BB) {
    bool ValidUnrelocatedPointerDef = false;
    bool PoisonedPointerDef = false;
    // TODO: `select` instructions should be handled here too.
    if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
      if (containsGCPtrType(PN->getType())) {
        // If both is true, output is poisoned.
        bool HasRelocatedInputs = false;
        bool HasUnrelocatedInputs = false;
        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
          const BasicBlock *InBB = PN->getIncomingBlock(i);
          if (!isMapped(InBB) ||
              !CD.hasLiveIncomingEdge(PN, InBB))
            continue; // Skip dead block or dead edge.

          const Value *InValue = PN->getIncomingValue(i);

          if (isNotExclusivelyConstantDerived(InValue)) {
            if (isValuePoisoned(InValue)) {
              // If any of inputs is poisoned, output is always poisoned too.
              HasRelocatedInputs = true;
              HasUnrelocatedInputs = true;
              break;
            }
            if (BlockMap[InBB]->AvailableOut.count(InValue))
              HasRelocatedInputs = true;
            else
              HasUnrelocatedInputs = true;
          }
        }
        if (HasUnrelocatedInputs) {
          if (HasRelocatedInputs)
            PoisonedPointerDef = true;
          else
            ValidUnrelocatedPointerDef = true;
        }
      }
    } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
               containsGCPtrType(I.getType())) {
      // GEP/bitcast of unrelocated pointer is legal by itself but this def
      // shouldn't appear in any AvailableSet.
      for (const Value *V : I.operands())
        if (containsGCPtrType(V->getType()) &&
            isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
          if (isValuePoisoned(V))
            PoisonedPointerDef = true;
          else
            ValidUnrelocatedPointerDef = true;
          break;
        }
    }
    assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
           "Value cannot be both unrelocated and poisoned!");
    if (ValidUnrelocatedPointerDef) {
      // Remove def of unrelocated pointer from Contribution of this BB and
      // trigger update of all its successors.
      Contribution.erase(&I);
      PoisonedDefs.erase(&I);
      ValidUnrelocatedDefs.insert(&I);
      LLVM_DEBUG(dbgs() << "Removing urelocated " << I
                        << " from Contribution of " << BB->getName() << "\n");
      ContributionChanged = true;
    } else if (PoisonedPointerDef) {
      // Mark pointer as poisoned, remove its def from Contribution and trigger
      // update of all successors.
      Contribution.erase(&I);
      PoisonedDefs.insert(&I);
      LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
                        << BB->getName() << "\n");
      ContributionChanged = true;
    } else {
      bool Cleared = false;
      transferInstruction(I, Cleared, AvailableSet);
      (void)Cleared;
    }
  }
  return ContributionChanged;
}

void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
                                        AvailableValueSet &Result,
                                        const DominatorTree &DT) {
  DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];

  assert(DTN && "Unreachable blocks are ignored");
  while (DTN->getIDom()) {
    DTN = DTN->getIDom();
    auto BBS = getBasicBlockState(DTN->getBlock());
    assert(BBS && "immediate dominator cannot be dead for a live block");
    const auto &Defs = BBS->Contribution;
    Result.insert(Defs.begin(), Defs.end());
    // If this block is 'Cleared', then nothing LiveIn to this block can be
    // available after this block completes.  Note: This turns out to be
    // really important for reducing memory consuption of the initial available
    // sets and thus peak memory usage by this verifier.
    if (BBS->Cleared)
      return;
  }

  for (const Argument &A : BB->getParent()->args())
    if (containsGCPtrType(A.getType()))
      Result.insert(&A);
}

void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
                                 bool ContributionChanged) {
  const AvailableValueSet &AvailableIn = BBS.AvailableIn;
  AvailableValueSet &AvailableOut = BBS.AvailableOut;

  if (BBS.Cleared) {
    // AvailableOut will change only when Contribution changed.
    if (ContributionChanged)
      AvailableOut = BBS.Contribution;
  } else {
    // Otherwise, we need to reduce the AvailableOut set by things which are no
    // longer in our AvailableIn
    AvailableValueSet Temp = BBS.Contribution;
    set_union(Temp, AvailableIn);
    AvailableOut = std::move(Temp);
  }

  LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
             PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
             dbgs() << " to ";
             PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
             dbgs() << "\n";);
}

void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
                                       AvailableValueSet &Available) {
  if (isa<GCStatepointInst>(I)) {
    Cleared = true;
    Available.clear();
  } else if (containsGCPtrType(I.getType()))
    Available.insert(&I);
}

void InstructionVerifier::verifyInstruction(
    const GCPtrTracker *Tracker, const Instruction &I,
    const AvailableValueSet &AvailableSet) {
  if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
    if (containsGCPtrType(PN->getType()))
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        const BasicBlock *InBB = PN->getIncomingBlock(i);
        const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
        if (!InBBS ||
            !Tracker->hasLiveIncomingEdge(PN, InBB))
          continue; // Skip dead block or dead edge.

        const Value *InValue = PN->getIncomingValue(i);

        if (isNotExclusivelyConstantDerived(InValue) &&
            !InBBS->AvailableOut.count(InValue))
          reportInvalidUse(*InValue, *PN);
      }
  } else if (isa<CmpInst>(I) &&
             containsGCPtrType(I.getOperand(0)->getType())) {
    Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    enum BaseType baseTyLHS = getBaseType(LHS),
                  baseTyRHS = getBaseType(RHS);

    // Returns true if LHS and RHS are unrelocated pointers and they are
    // valid unrelocated uses.
    auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
                                   &LHS, &RHS] () {
        // A cmp instruction has valid unrelocated pointer operands only if
        // both operands are unrelocated pointers.
        // In the comparison between two pointers, if one is an unrelocated
        // use, the other *should be* an unrelocated use, for this
        // instruction to contain valid unrelocated uses. This unrelocated
        // use can be a null constant as well, or another unrelocated
        // pointer.
        if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
          return false;
        // Constant pointers (that are not exclusively null) may have
        // meaning in different VMs, so we cannot reorder the compare
        // against constant pointers before the safepoint. In other words,
        // comparison of an unrelocated use against a non-null constant
        // maybe invalid.
        if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
             baseTyRHS == BaseType::NonConstant) ||
            (baseTyLHS == BaseType::NonConstant &&
             baseTyRHS == BaseType::ExclusivelySomeConstant))
          return false;

        // If one of pointers is poisoned and other is not exclusively derived
        // from null it is an invalid expression: it produces poisoned result
        // and unless we want to track all defs (not only gc pointers) the only
        // option is to prohibit such instructions.
        if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
            (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
            return false;

        // All other cases are valid cases enumerated below:
        // 1. Comparison between an exclusively derived null pointer and a
        // constant base pointer.
        // 2. Comparison between an exclusively derived null pointer and a
        // non-constant unrelocated base pointer.
        // 3. Comparison between 2 unrelocated pointers.
        // 4. Comparison between a pointer exclusively derived from null and a
        // non-constant poisoned pointer.
        return true;
    };
    if (!hasValidUnrelocatedUse()) {
      // Print out all non-constant derived pointers that are unrelocated
      // uses, which are invalid.
      if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
        reportInvalidUse(*LHS, I);
      if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
        reportInvalidUse(*RHS, I);
    }
  } else {
    for (const Value *V : I.operands())
      if (containsGCPtrType(V->getType()) &&
          isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
        reportInvalidUse(*V, I);
  }
}

void InstructionVerifier::reportInvalidUse(const Value &V,
                                           const Instruction &I) {
  errs() << "Illegal use of unrelocated value found!\n";
  errs() << "Def: " << V << "\n";
  errs() << "Use: " << I << "\n";
  if (!PrintOnly)
    abort();
  AnyInvalidUses = true;
}

static void Verify(const Function &F, const DominatorTree &DT,
                   const CFGDeadness &CD) {
  LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
                    << "\n");
  if (PrintOnly)
    dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";

  GCPtrTracker Tracker(F, DT, CD);

  // We now have all the information we need to decide if the use of a heap
  // reference is legal or not, given our safepoint semantics.

  InstructionVerifier Verifier;
  GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);

  if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
    dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
           << "\n";
  }
}