ExternalFunctions.cpp 17.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file contains both code to deal with invoking "external" functions, but
//  also contains code that implements "exported" external functions.
//
//  There are currently two mechanisms for handling external functions in the
//  Interpreter.  The first is to implement lle_* wrapper functions that are
//  specific to well-known library functions which manually translate the
//  arguments from GenericValues and make the call.  If such a wrapper does
//  not exist, and libffi is available, then the Interpreter will attempt to
//  invoke the function using libffi, after finding its address.
//
//===----------------------------------------------------------------------===//

#include "Interpreter.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Config/config.h" // Detect libffi
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cmath>
#include <csignal>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <map>
#include <mutex>
#include <string>
#include <utility>
#include <vector>

#ifdef HAVE_FFI_CALL
#ifdef HAVE_FFI_H
#include <ffi.h>
#define USE_LIBFFI
#elif HAVE_FFI_FFI_H
#include <ffi/ffi.h>
#define USE_LIBFFI
#endif
#endif

using namespace llvm;

static ManagedStatic<sys::Mutex> FunctionsLock;

typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;

#ifdef USE_LIBFFI
typedef void (*RawFunc)();
static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
#endif

static Interpreter *TheInterpreter;

static char getTypeID(Type *Ty) {
  switch (Ty->getTypeID()) {
  case Type::VoidTyID:    return 'V';
  case Type::IntegerTyID:
    switch (cast<IntegerType>(Ty)->getBitWidth()) {
      case 1:  return 'o';
      case 8:  return 'B';
      case 16: return 'S';
      case 32: return 'I';
      case 64: return 'L';
      default: return 'N';
    }
  case Type::FloatTyID:   return 'F';
  case Type::DoubleTyID:  return 'D';
  case Type::PointerTyID: return 'P';
  case Type::FunctionTyID:return 'M';
  case Type::StructTyID:  return 'T';
  case Type::ArrayTyID:   return 'A';
  default: return 'U';
  }
}

// Try to find address of external function given a Function object.
// Please note, that interpreter doesn't know how to assemble a
// real call in general case (this is JIT job), that's why it assumes,
// that all external functions has the same (and pretty "general") signature.
// The typical example of such functions are "lle_X_" ones.
static ExFunc lookupFunction(const Function *F) {
  // Function not found, look it up... start by figuring out what the
  // composite function name should be.
  std::string ExtName = "lle_";
  FunctionType *FT = F->getFunctionType();
  ExtName += getTypeID(FT->getReturnType());
  for (Type *T : FT->params())
    ExtName += getTypeID(T);
  ExtName += ("_" + F->getName()).str();

  sys::ScopedLock Writer(*FunctionsLock);
  ExFunc FnPtr = (*FuncNames)[ExtName];
  if (!FnPtr)
    FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
  if (!FnPtr)  // Try calling a generic function... if it exists...
    FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
        ("lle_X_" + F->getName()).str());
  if (FnPtr)
    ExportedFunctions->insert(std::make_pair(F, FnPtr));  // Cache for later
  return FnPtr;
}

#ifdef USE_LIBFFI
static ffi_type *ffiTypeFor(Type *Ty) {
  switch (Ty->getTypeID()) {
    case Type::VoidTyID: return &ffi_type_void;
    case Type::IntegerTyID:
      switch (cast<IntegerType>(Ty)->getBitWidth()) {
        case 8:  return &ffi_type_sint8;
        case 16: return &ffi_type_sint16;
        case 32: return &ffi_type_sint32;
        case 64: return &ffi_type_sint64;
      }
    case Type::FloatTyID:   return &ffi_type_float;
    case Type::DoubleTyID:  return &ffi_type_double;
    case Type::PointerTyID: return &ffi_type_pointer;
    default: break;
  }
  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
  report_fatal_error("Type could not be mapped for use with libffi.");
  return NULL;
}

static void *ffiValueFor(Type *Ty, const GenericValue &AV,
                         void *ArgDataPtr) {
  switch (Ty->getTypeID()) {
    case Type::IntegerTyID:
      switch (cast<IntegerType>(Ty)->getBitWidth()) {
        case 8: {
          int8_t *I8Ptr = (int8_t *) ArgDataPtr;
          *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
          return ArgDataPtr;
        }
        case 16: {
          int16_t *I16Ptr = (int16_t *) ArgDataPtr;
          *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
          return ArgDataPtr;
        }
        case 32: {
          int32_t *I32Ptr = (int32_t *) ArgDataPtr;
          *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
          return ArgDataPtr;
        }
        case 64: {
          int64_t *I64Ptr = (int64_t *) ArgDataPtr;
          *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
          return ArgDataPtr;
        }
      }
    case Type::FloatTyID: {
      float *FloatPtr = (float *) ArgDataPtr;
      *FloatPtr = AV.FloatVal;
      return ArgDataPtr;
    }
    case Type::DoubleTyID: {
      double *DoublePtr = (double *) ArgDataPtr;
      *DoublePtr = AV.DoubleVal;
      return ArgDataPtr;
    }
    case Type::PointerTyID: {
      void **PtrPtr = (void **) ArgDataPtr;
      *PtrPtr = GVTOP(AV);
      return ArgDataPtr;
    }
    default: break;
  }
  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
  report_fatal_error("Type value could not be mapped for use with libffi.");
  return NULL;
}

static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
                      const DataLayout &TD, GenericValue &Result) {
  ffi_cif cif;
  FunctionType *FTy = F->getFunctionType();
  const unsigned NumArgs = F->arg_size();

  // TODO: We don't have type information about the remaining arguments, because
  // this information is never passed into ExecutionEngine::runFunction().
  if (ArgVals.size() > NumArgs && F->isVarArg()) {
    report_fatal_error("Calling external var arg function '" + F->getName()
                      + "' is not supported by the Interpreter.");
  }

  unsigned ArgBytes = 0;

  std::vector<ffi_type*> args(NumArgs);
  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
       A != E; ++A) {
    const unsigned ArgNo = A->getArgNo();
    Type *ArgTy = FTy->getParamType(ArgNo);
    args[ArgNo] = ffiTypeFor(ArgTy);
    ArgBytes += TD.getTypeStoreSize(ArgTy);
  }

  SmallVector<uint8_t, 128> ArgData;
  ArgData.resize(ArgBytes);
  uint8_t *ArgDataPtr = ArgData.data();
  SmallVector<void*, 16> values(NumArgs);
  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
       A != E; ++A) {
    const unsigned ArgNo = A->getArgNo();
    Type *ArgTy = FTy->getParamType(ArgNo);
    values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
    ArgDataPtr += TD.getTypeStoreSize(ArgTy);
  }

  Type *RetTy = FTy->getReturnType();
  ffi_type *rtype = ffiTypeFor(RetTy);

  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) ==
      FFI_OK) {
    SmallVector<uint8_t, 128> ret;
    if (RetTy->getTypeID() != Type::VoidTyID)
      ret.resize(TD.getTypeStoreSize(RetTy));
    ffi_call(&cif, Fn, ret.data(), values.data());
    switch (RetTy->getTypeID()) {
      case Type::IntegerTyID:
        switch (cast<IntegerType>(RetTy)->getBitWidth()) {
          case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
          case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
          case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
          case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
        }
        break;
      case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
      case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
      case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
      default: break;
    }
    return true;
  }

  return false;
}
#endif // USE_LIBFFI

GenericValue Interpreter::callExternalFunction(Function *F,
                                               ArrayRef<GenericValue> ArgVals) {
  TheInterpreter = this;

  std::unique_lock<sys::Mutex> Guard(*FunctionsLock);

  // Do a lookup to see if the function is in our cache... this should just be a
  // deferred annotation!
  std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
  if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
                                                   : FI->second) {
    Guard.unlock();
    return Fn(F->getFunctionType(), ArgVals);
  }

#ifdef USE_LIBFFI
  std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
  RawFunc RawFn;
  if (RF == RawFunctions->end()) {
    RawFn = (RawFunc)(intptr_t)
      sys::DynamicLibrary::SearchForAddressOfSymbol(std::string(F->getName()));
    if (!RawFn)
      RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
    if (RawFn != 0)
      RawFunctions->insert(std::make_pair(F, RawFn));  // Cache for later
  } else {
    RawFn = RF->second;
  }

  Guard.unlock();

  GenericValue Result;
  if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
    return Result;
#endif // USE_LIBFFI

  if (F->getName() == "__main")
    errs() << "Tried to execute an unknown external function: "
      << *F->getType() << " __main\n";
  else
    report_fatal_error("Tried to execute an unknown external function: " +
                       F->getName());
#ifndef USE_LIBFFI
  errs() << "Recompiling LLVM with --enable-libffi might help.\n";
#endif
  return GenericValue();
}

//===----------------------------------------------------------------------===//
//  Functions "exported" to the running application...
//

// void atexit(Function*)
static GenericValue lle_X_atexit(FunctionType *FT,
                                 ArrayRef<GenericValue> Args) {
  assert(Args.size() == 1);
  TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
  GenericValue GV;
  GV.IntVal = 0;
  return GV;
}

// void exit(int)
static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
  TheInterpreter->exitCalled(Args[0]);
  return GenericValue();
}

// void abort(void)
static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
  //FIXME: should we report or raise here?
  //report_fatal_error("Interpreted program raised SIGABRT");
  raise (SIGABRT);
  return GenericValue();
}

// int sprintf(char *, const char *, ...) - a very rough implementation to make
// output useful.
static GenericValue lle_X_sprintf(FunctionType *FT,
                                  ArrayRef<GenericValue> Args) {
  char *OutputBuffer = (char *)GVTOP(Args[0]);
  const char *FmtStr = (const char *)GVTOP(Args[1]);
  unsigned ArgNo = 2;

  // printf should return # chars printed.  This is completely incorrect, but
  // close enough for now.
  GenericValue GV;
  GV.IntVal = APInt(32, strlen(FmtStr));
  while (true) {
    switch (*FmtStr) {
    case 0: return GV;             // Null terminator...
    default:                       // Normal nonspecial character
      sprintf(OutputBuffer++, "%c", *FmtStr++);
      break;
    case '\\': {                   // Handle escape codes
      sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
      FmtStr += 2; OutputBuffer += 2;
      break;
    }
    case '%': {                    // Handle format specifiers
      char FmtBuf[100] = "", Buffer[1000] = "";
      char *FB = FmtBuf;
      *FB++ = *FmtStr++;
      char Last = *FB++ = *FmtStr++;
      unsigned HowLong = 0;
      while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
             Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
             Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
             Last != 'p' && Last != 's' && Last != '%') {
        if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
        Last = *FB++ = *FmtStr++;
      }
      *FB = 0;

      switch (Last) {
      case '%':
        memcpy(Buffer, "%", 2); break;
      case 'c':
        sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
        break;
      case 'd': case 'i':
      case 'u': case 'o':
      case 'x': case 'X':
        if (HowLong >= 1) {
          if (HowLong == 1 &&
              TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
              sizeof(long) < sizeof(int64_t)) {
            // Make sure we use %lld with a 64 bit argument because we might be
            // compiling LLI on a 32 bit compiler.
            unsigned Size = strlen(FmtBuf);
            FmtBuf[Size] = FmtBuf[Size-1];
            FmtBuf[Size+1] = 0;
            FmtBuf[Size-1] = 'l';
          }
          sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
        } else
          sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
        break;
      case 'e': case 'E': case 'g': case 'G': case 'f':
        sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
      case 'p':
        sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
      case 's':
        sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
      default:
        errs() << "<unknown printf code '" << *FmtStr << "'!>";
        ArgNo++; break;
      }
      size_t Len = strlen(Buffer);
      memcpy(OutputBuffer, Buffer, Len + 1);
      OutputBuffer += Len;
      }
      break;
    }
  }
  return GV;
}

// int printf(const char *, ...) - a very rough implementation to make output
// useful.
static GenericValue lle_X_printf(FunctionType *FT,
                                 ArrayRef<GenericValue> Args) {
  char Buffer[10000];
  std::vector<GenericValue> NewArgs;
  NewArgs.push_back(PTOGV((void*)&Buffer[0]));
  NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
  GenericValue GV = lle_X_sprintf(FT, NewArgs);
  outs() << Buffer;
  return GV;
}

// int sscanf(const char *format, ...);
static GenericValue lle_X_sscanf(FunctionType *FT,
                                 ArrayRef<GenericValue> args) {
  assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");

  char *Args[10];
  for (unsigned i = 0; i < args.size(); ++i)
    Args[i] = (char*)GVTOP(args[i]);

  GenericValue GV;
  GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
                    Args[5], Args[6], Args[7], Args[8], Args[9]));
  return GV;
}

// int scanf(const char *format, ...);
static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
  assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");

  char *Args[10];
  for (unsigned i = 0; i < args.size(); ++i)
    Args[i] = (char*)GVTOP(args[i]);

  GenericValue GV;
  GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
                    Args[5], Args[6], Args[7], Args[8], Args[9]));
  return GV;
}

// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
// output useful.
static GenericValue lle_X_fprintf(FunctionType *FT,
                                  ArrayRef<GenericValue> Args) {
  assert(Args.size() >= 2);
  char Buffer[10000];
  std::vector<GenericValue> NewArgs;
  NewArgs.push_back(PTOGV(Buffer));
  NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
  GenericValue GV = lle_X_sprintf(FT, NewArgs);

  fputs(Buffer, (FILE *) GVTOP(Args[0]));
  return GV;
}

static GenericValue lle_X_memset(FunctionType *FT,
                                 ArrayRef<GenericValue> Args) {
  int val = (int)Args[1].IntVal.getSExtValue();
  size_t len = (size_t)Args[2].IntVal.getZExtValue();
  memset((void *)GVTOP(Args[0]), val, len);
  // llvm.memset.* returns void, lle_X_* returns GenericValue,
  // so here we return GenericValue with IntVal set to zero
  GenericValue GV;
  GV.IntVal = 0;
  return GV;
}

static GenericValue lle_X_memcpy(FunctionType *FT,
                                 ArrayRef<GenericValue> Args) {
  memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
         (size_t)(Args[2].IntVal.getLimitedValue()));

  // llvm.memcpy* returns void, lle_X_* returns GenericValue,
  // so here we return GenericValue with IntVal set to zero
  GenericValue GV;
  GV.IntVal = 0;
  return GV;
}

void Interpreter::initializeExternalFunctions() {
  sys::ScopedLock Writer(*FunctionsLock);
  (*FuncNames)["lle_X_atexit"]       = lle_X_atexit;
  (*FuncNames)["lle_X_exit"]         = lle_X_exit;
  (*FuncNames)["lle_X_abort"]        = lle_X_abort;

  (*FuncNames)["lle_X_printf"]       = lle_X_printf;
  (*FuncNames)["lle_X_sprintf"]      = lle_X_sprintf;
  (*FuncNames)["lle_X_sscanf"]       = lle_X_sscanf;
  (*FuncNames)["lle_X_scanf"]        = lle_X_scanf;
  (*FuncNames)["lle_X_fprintf"]      = lle_X_fprintf;
  (*FuncNames)["lle_X_memset"]       = lle_X_memset;
  (*FuncNames)["lle_X_memcpy"]       = lle_X_memcpy;
}