HashedNameToDIE.cpp
19.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
//===-- HashedNameToDIE.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "HashedNameToDIE.h"
#include "llvm/ADT/StringRef.h"
bool DWARFMappedHash::ExtractDIEArray(
const DIEInfoArray &die_info_array,
llvm::function_ref<bool(DIERef ref)> callback) {
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i)
if (!callback(DIERef(die_info_array[i])))
return false;
return true;
}
void DWARFMappedHash::ExtractDIEArray(
const DIEInfoArray &die_info_array, const dw_tag_t tag,
llvm::function_ref<bool(DIERef ref)> callback) {
if (tag == 0) {
ExtractDIEArray(die_info_array, callback);
return;
}
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i) {
const dw_tag_t die_tag = die_info_array[i].tag;
bool tag_matches = die_tag == 0 || tag == die_tag;
if (!tag_matches) {
if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
tag_matches = tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
}
if (tag_matches) {
if (!callback(DIERef(die_info_array[i])))
return;
}
}
}
void DWARFMappedHash::ExtractDIEArray(
const DIEInfoArray &die_info_array, const dw_tag_t tag,
const uint32_t qualified_name_hash,
llvm::function_ref<bool(DIERef ref)> callback) {
if (tag == 0) {
ExtractDIEArray(die_info_array, callback);
return;
}
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i) {
if (qualified_name_hash != die_info_array[i].qualified_name_hash)
continue;
const dw_tag_t die_tag = die_info_array[i].tag;
bool tag_matches = die_tag == 0 || tag == die_tag;
if (!tag_matches) {
if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
tag_matches = tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
}
if (tag_matches) {
if (!callback(DIERef(die_info_array[i])))
return;
}
}
}
void DWARFMappedHash::ExtractClassOrStructDIEArray(
const DIEInfoArray &die_info_array,
bool return_implementation_only_if_available,
llvm::function_ref<bool(DIERef ref)> callback) {
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i) {
const dw_tag_t die_tag = die_info_array[i].tag;
if (!(die_tag == 0 || die_tag == DW_TAG_class_type ||
die_tag == DW_TAG_structure_type))
continue;
bool is_implementation =
(die_info_array[i].type_flags & eTypeFlagClassIsImplementation) != 0;
if (is_implementation != return_implementation_only_if_available)
continue;
if (return_implementation_only_if_available) {
// We found the one true definition for this class, so only return
// that
callback(DIERef(die_info_array[i]));
return;
}
if (!callback(DIERef(die_info_array[i])))
return;
}
}
void DWARFMappedHash::ExtractTypesFromDIEArray(
const DIEInfoArray &die_info_array, uint32_t type_flag_mask,
uint32_t type_flag_value, llvm::function_ref<bool(DIERef ref)> callback) {
const size_t count = die_info_array.size();
for (size_t i = 0; i < count; ++i) {
if ((die_info_array[i].type_flags & type_flag_mask) == type_flag_value) {
if (!callback(DIERef(die_info_array[i])))
return;
}
}
}
const char *DWARFMappedHash::GetAtomTypeName(uint16_t atom) {
switch (atom) {
case eAtomTypeNULL:
return "NULL";
case eAtomTypeDIEOffset:
return "die-offset";
case eAtomTypeCUOffset:
return "cu-offset";
case eAtomTypeTag:
return "die-tag";
case eAtomTypeNameFlags:
return "name-flags";
case eAtomTypeTypeFlags:
return "type-flags";
case eAtomTypeQualNameHash:
return "qualified-name-hash";
}
return "<invalid>";
}
DWARFMappedHash::DIEInfo::DIEInfo(dw_offset_t o, dw_tag_t t, uint32_t f,
uint32_t h)
: die_offset(o), tag(t), type_flags(f), qualified_name_hash(h) {}
DWARFMappedHash::Prologue::Prologue(dw_offset_t _die_base_offset)
: die_base_offset(_die_base_offset), atoms(), atom_mask(0),
min_hash_data_byte_size(0), hash_data_has_fixed_byte_size(true) {
// Define an array of DIE offsets by first defining an array, and then define
// the atom type for the array, in this case we have an array of DIE offsets.
AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4);
}
void DWARFMappedHash::Prologue::ClearAtoms() {
hash_data_has_fixed_byte_size = true;
min_hash_data_byte_size = 0;
atom_mask = 0;
atoms.clear();
}
bool DWARFMappedHash::Prologue::ContainsAtom(AtomType atom_type) const {
return (atom_mask & (1u << atom_type)) != 0;
}
void DWARFMappedHash::Prologue::Clear() {
die_base_offset = 0;
ClearAtoms();
}
void DWARFMappedHash::Prologue::AppendAtom(AtomType type, dw_form_t form) {
atoms.push_back({type, form});
atom_mask |= 1u << type;
switch (form) {
case DW_FORM_indirect:
case DW_FORM_exprloc:
case DW_FORM_flag_present:
case DW_FORM_ref_sig8:
llvm_unreachable("Unhandled atom form");
case DW_FORM_addrx:
case DW_FORM_string:
case DW_FORM_block:
case DW_FORM_block1:
case DW_FORM_sdata:
case DW_FORM_udata:
case DW_FORM_ref_udata:
case DW_FORM_GNU_addr_index:
case DW_FORM_GNU_str_index:
hash_data_has_fixed_byte_size = false;
LLVM_FALLTHROUGH;
case DW_FORM_flag:
case DW_FORM_data1:
case DW_FORM_ref1:
case DW_FORM_sec_offset:
min_hash_data_byte_size += 1;
break;
case DW_FORM_block2:
hash_data_has_fixed_byte_size = false;
LLVM_FALLTHROUGH;
case DW_FORM_data2:
case DW_FORM_ref2:
min_hash_data_byte_size += 2;
break;
case DW_FORM_block4:
hash_data_has_fixed_byte_size = false;
LLVM_FALLTHROUGH;
case DW_FORM_data4:
case DW_FORM_ref4:
case DW_FORM_addr:
case DW_FORM_ref_addr:
case DW_FORM_strp:
min_hash_data_byte_size += 4;
break;
case DW_FORM_data8:
case DW_FORM_ref8:
min_hash_data_byte_size += 8;
break;
}
}
lldb::offset_t
DWARFMappedHash::Prologue::Read(const lldb_private::DataExtractor &data,
lldb::offset_t offset) {
ClearAtoms();
die_base_offset = data.GetU32(&offset);
const uint32_t atom_count = data.GetU32(&offset);
if (atom_count == 0x00060003u) {
// Old format, deal with contents of old pre-release format.
while (data.GetU32(&offset)) {
/* do nothing */;
}
// Hardcode to the only known value for now.
AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4);
} else {
for (uint32_t i = 0; i < atom_count; ++i) {
AtomType type = (AtomType)data.GetU16(&offset);
dw_form_t form = (dw_form_t)data.GetU16(&offset);
AppendAtom(type, form);
}
}
return offset;
}
size_t DWARFMappedHash::Prologue::GetByteSize() const {
// Add an extra count to the atoms size for the zero termination Atom that
// gets written to disk.
return sizeof(die_base_offset) + sizeof(uint32_t) +
atoms.size() * sizeof(Atom);
}
size_t DWARFMappedHash::Prologue::GetMinimumHashDataByteSize() const {
return min_hash_data_byte_size;
}
bool DWARFMappedHash::Prologue::HashDataHasFixedByteSize() const {
return hash_data_has_fixed_byte_size;
}
size_t DWARFMappedHash::Header::GetByteSize(const HeaderData &header_data) {
return header_data.GetByteSize();
}
lldb::offset_t DWARFMappedHash::Header::Read(lldb_private::DataExtractor &data,
lldb::offset_t offset) {
offset = MappedHash::Header<Prologue>::Read(data, offset);
if (offset != UINT32_MAX) {
offset = header_data.Read(data, offset);
}
return offset;
}
bool DWARFMappedHash::Header::Read(const lldb_private::DWARFDataExtractor &data,
lldb::offset_t *offset_ptr,
DIEInfo &hash_data) const {
const size_t num_atoms = header_data.atoms.size();
if (num_atoms == 0)
return false;
for (size_t i = 0; i < num_atoms; ++i) {
DWARFFormValue form_value(nullptr, header_data.atoms[i].form);
if (!form_value.ExtractValue(data, offset_ptr))
return false;
switch (header_data.atoms[i].type) {
case eAtomTypeDIEOffset: // DIE offset, check form for encoding
hash_data.die_offset =
DWARFFormValue::IsDataForm(form_value.Form())
? form_value.Unsigned()
: form_value.Reference(header_data.die_base_offset);
break;
case eAtomTypeTag: // DW_TAG value for the DIE
hash_data.tag = (dw_tag_t)form_value.Unsigned();
break;
case eAtomTypeTypeFlags: // Flags from enum TypeFlags
hash_data.type_flags = (uint32_t)form_value.Unsigned();
break;
case eAtomTypeQualNameHash: // Flags from enum TypeFlags
hash_data.qualified_name_hash = form_value.Unsigned();
break;
default:
// We can always skip atoms we don't know about.
break;
}
}
return hash_data.die_offset != DW_INVALID_OFFSET;
}
DWARFMappedHash::MemoryTable::MemoryTable(
lldb_private::DWARFDataExtractor &table_data,
const lldb_private::DWARFDataExtractor &string_table, const char *name)
: MappedHash::MemoryTable<uint32_t, Header, DIEInfoArray>(table_data),
m_data(table_data), m_string_table(string_table), m_name(name) {}
const char *
DWARFMappedHash::MemoryTable::GetStringForKeyType(KeyType key) const {
// The key in the DWARF table is the .debug_str offset for the string
return m_string_table.PeekCStr(key);
}
bool DWARFMappedHash::MemoryTable::ReadHashData(uint32_t hash_data_offset,
HashData &hash_data) const {
lldb::offset_t offset = hash_data_offset;
// Skip string table offset that contains offset of hash name in .debug_str.
offset += 4;
const uint32_t count = m_data.GetU32(&offset);
if (count > 0) {
hash_data.resize(count);
for (uint32_t i = 0; i < count; ++i) {
if (!m_header.Read(m_data, &offset, hash_data[i]))
return false;
}
} else
hash_data.clear();
return true;
}
DWARFMappedHash::MemoryTable::Result
DWARFMappedHash::MemoryTable::GetHashDataForName(
llvm::StringRef name, lldb::offset_t *hash_data_offset_ptr,
Pair &pair) const {
pair.key = m_data.GetU32(hash_data_offset_ptr);
pair.value.clear();
// If the key is zero, this terminates our chain of HashData objects for this
// hash value.
if (pair.key == 0)
return eResultEndOfHashData;
// There definitely should be a string for this string offset, if there
// isn't, there is something wrong, return and error.
const char *strp_cstr = m_string_table.PeekCStr(pair.key);
if (strp_cstr == nullptr) {
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
const uint32_t count = m_data.GetU32(hash_data_offset_ptr);
const size_t min_total_hash_data_size =
count * m_header.header_data.GetMinimumHashDataByteSize();
if (count > 0 && m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr,
min_total_hash_data_size)) {
// We have at least one HashData entry, and we have enough data to parse at
// least "count" HashData entries.
// First make sure the entire C string matches...
const bool match = name == strp_cstr;
if (!match && m_header.header_data.HashDataHasFixedByteSize()) {
// If the string doesn't match and we have fixed size data, we can just
// add the total byte size of all HashData objects to the hash data
// offset and be done...
*hash_data_offset_ptr += min_total_hash_data_size;
} else {
// If the string does match, or we don't have fixed size data then we
// need to read the hash data as a stream. If the string matches we also
// append all HashData objects to the value array.
for (uint32_t i = 0; i < count; ++i) {
DIEInfo die_info;
if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) {
// Only happened if the HashData of the string matched...
if (match)
pair.value.push_back(die_info);
} else {
// Something went wrong while reading the data.
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
}
}
// Return the correct response depending on if the string matched or not...
if (match) {
// The key (cstring) matches and we have lookup results!
return eResultKeyMatch;
} else {
// The key doesn't match, this function will get called again for the
// next key/value or the key terminator which in our case is a zero
// .debug_str offset.
return eResultKeyMismatch;
}
} else {
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
}
DWARFMappedHash::MemoryTable::Result
DWARFMappedHash::MemoryTable::AppendHashDataForRegularExpression(
const lldb_private::RegularExpression ®ex,
lldb::offset_t *hash_data_offset_ptr, Pair &pair) const {
pair.key = m_data.GetU32(hash_data_offset_ptr);
// If the key is zero, this terminates our chain of HashData objects for this
// hash value.
if (pair.key == 0)
return eResultEndOfHashData;
// There definitely should be a string for this string offset, if there
// isn't, there is something wrong, return and error.
const char *strp_cstr = m_string_table.PeekCStr(pair.key);
if (strp_cstr == nullptr)
return eResultError;
const uint32_t count = m_data.GetU32(hash_data_offset_ptr);
const size_t min_total_hash_data_size =
count * m_header.header_data.GetMinimumHashDataByteSize();
if (count > 0 && m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr,
min_total_hash_data_size)) {
const bool match = regex.Execute(llvm::StringRef(strp_cstr));
if (!match && m_header.header_data.HashDataHasFixedByteSize()) {
// If the regex doesn't match and we have fixed size data, we can just
// add the total byte size of all HashData objects to the hash data
// offset and be done...
*hash_data_offset_ptr += min_total_hash_data_size;
} else {
// If the string does match, or we don't have fixed size data then we
// need to read the hash data as a stream. If the string matches we also
// append all HashData objects to the value array.
for (uint32_t i = 0; i < count; ++i) {
DIEInfo die_info;
if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) {
// Only happened if the HashData of the string matched...
if (match)
pair.value.push_back(die_info);
} else {
// Something went wrong while reading the data
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
}
}
// Return the correct response depending on if the string matched or not...
if (match) {
// The key (cstring) matches and we have lookup results!
return eResultKeyMatch;
} else {
// The key doesn't match, this function will get called again for the
// next key/value or the key terminator which in our case is a zero
// .debug_str offset.
return eResultKeyMismatch;
}
} else {
*hash_data_offset_ptr = UINT32_MAX;
return eResultError;
}
}
void DWARFMappedHash::MemoryTable::AppendAllDIEsThatMatchingRegex(
const lldb_private::RegularExpression ®ex,
DIEInfoArray &die_info_array) const {
const uint32_t hash_count = m_header.hashes_count;
Pair pair;
for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) {
lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx);
while (hash_data_offset != UINT32_MAX) {
const lldb::offset_t prev_hash_data_offset = hash_data_offset;
Result hash_result =
AppendHashDataForRegularExpression(regex, &hash_data_offset, pair);
if (prev_hash_data_offset == hash_data_offset)
break;
// Check the result of getting our hash data.
switch (hash_result) {
case eResultKeyMatch:
case eResultKeyMismatch:
// Whether we matches or not, it doesn't matter, we keep looking.
break;
case eResultEndOfHashData:
case eResultError:
hash_data_offset = UINT32_MAX;
break;
}
}
}
die_info_array.swap(pair.value);
}
void DWARFMappedHash::MemoryTable::AppendAllDIEsInRange(
const uint32_t die_offset_start, const uint32_t die_offset_end,
DIEInfoArray &die_info_array) const {
const uint32_t hash_count = m_header.hashes_count;
for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) {
bool done = false;
lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx);
while (!done && hash_data_offset != UINT32_MAX) {
KeyType key = m_data.GetU32(&hash_data_offset);
// If the key is zero, this terminates our chain of HashData objects for
// this hash value.
if (key == 0)
break;
const uint32_t count = m_data.GetU32(&hash_data_offset);
for (uint32_t i = 0; i < count; ++i) {
DIEInfo die_info;
if (m_header.Read(m_data, &hash_data_offset, die_info)) {
if (die_info.die_offset == 0)
done = true;
if (die_offset_start <= die_info.die_offset &&
die_info.die_offset < die_offset_end)
die_info_array.push_back(die_info);
}
}
}
}
}
bool DWARFMappedHash::MemoryTable::FindByName(
llvm::StringRef name, llvm::function_ref<bool(DIERef ref)> callback) {
if (name.empty())
return true;
DIEInfoArray die_info_array;
FindByName(name, die_info_array);
return DWARFMappedHash::ExtractDIEArray(die_info_array, callback);
}
void DWARFMappedHash::MemoryTable::FindByNameAndTag(
llvm::StringRef name, const dw_tag_t tag,
llvm::function_ref<bool(DIERef ref)> callback) {
DIEInfoArray die_info_array;
FindByName(name, die_info_array);
DWARFMappedHash::ExtractDIEArray(die_info_array, tag, callback);
}
void DWARFMappedHash::MemoryTable::FindByNameAndTagAndQualifiedNameHash(
llvm::StringRef name, const dw_tag_t tag,
const uint32_t qualified_name_hash,
llvm::function_ref<bool(DIERef ref)> callback) {
DIEInfoArray die_info_array;
FindByName(name, die_info_array);
DWARFMappedHash::ExtractDIEArray(die_info_array, tag, qualified_name_hash,
callback);
}
void DWARFMappedHash::MemoryTable::FindCompleteObjCClassByName(
llvm::StringRef name, llvm::function_ref<bool(DIERef ref)> callback,
bool must_be_implementation) {
DIEInfoArray die_info_array;
FindByName(name, die_info_array);
if (must_be_implementation &&
GetHeader().header_data.ContainsAtom(eAtomTypeTypeFlags)) {
// If we have two atoms, then we have the DIE offset and the type flags
// so we can find the objective C class efficiently.
DWARFMappedHash::ExtractTypesFromDIEArray(
die_info_array, UINT32_MAX, eTypeFlagClassIsImplementation, callback);
return;
}
// We don't only want the one true definition, so try and see what we can
// find, and only return class or struct DIEs. If we do have the full
// implementation, then return it alone, else return all possible
// matches.
bool found_implementation = false;
DWARFMappedHash::ExtractClassOrStructDIEArray(
die_info_array, true /*return_implementation_only_if_available*/,
[&](DIERef ref) {
found_implementation = true;
// Here the return value does not matter as we are called at most once.
return callback(ref);
});
if (found_implementation)
return;
DWARFMappedHash::ExtractClassOrStructDIEArray(
die_info_array, false /*return_implementation_only_if_available*/,
callback);
}
void DWARFMappedHash::MemoryTable::FindByName(llvm::StringRef name,
DIEInfoArray &die_info_array) {
if (name.empty())
return;
Pair kv_pair;
if (Find(name, kv_pair))
die_info_array.swap(kv_pair.value);
}