secondary_test.cpp
6.16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//===-- secondary_test.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "tests/scudo_unit_test.h"
#include "secondary.h"
#include <stdio.h>
#include <condition_variable>
#include <mutex>
#include <random>
#include <thread>
#include <vector>
template <class SecondaryT> static void testSecondaryBasic(void) {
scudo::GlobalStats S;
S.init();
std::unique_ptr<SecondaryT> L(new SecondaryT);
L->init(&S);
const scudo::uptr Size = 1U << 16;
void *P = L->allocate(Size);
EXPECT_NE(P, nullptr);
memset(P, 'A', Size);
EXPECT_GE(SecondaryT::getBlockSize(P), Size);
L->deallocate(P);
// If the Secondary can't cache that pointer, it will be unmapped.
if (!L->canCache(Size))
EXPECT_DEATH(memset(P, 'A', Size), "");
const scudo::uptr Align = 1U << 16;
P = L->allocate(Size + Align, Align);
EXPECT_NE(P, nullptr);
void *AlignedP = reinterpret_cast<void *>(
scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
memset(AlignedP, 'A', Size);
L->deallocate(P);
std::vector<void *> V;
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(L->allocate(Size));
std::shuffle(V.begin(), V.end(), std::mt19937(std::random_device()()));
while (!V.empty()) {
L->deallocate(V.back());
V.pop_back();
}
scudo::ScopedString Str(1024);
L->getStats(&Str);
Str.output();
}
TEST(ScudoSecondaryTest, SecondaryBasic) {
testSecondaryBasic<scudo::MapAllocator<scudo::MapAllocatorNoCache>>();
testSecondaryBasic<scudo::MapAllocator<scudo::MapAllocatorCache<>>>();
testSecondaryBasic<
scudo::MapAllocator<scudo::MapAllocatorCache<128U, 64U, 1UL << 20>>>();
}
using LargeAllocator = scudo::MapAllocator<scudo::MapAllocatorCache<>>;
// This exercises a variety of combinations of size and alignment for the
// MapAllocator. The size computation done here mimic the ones done by the
// combined allocator.
TEST(ScudoSecondaryTest, SecondaryCombinations) {
constexpr scudo::uptr MinAlign = FIRST_32_SECOND_64(8, 16);
constexpr scudo::uptr HeaderSize = scudo::roundUpTo(8, MinAlign);
std::unique_ptr<LargeAllocator> L(new LargeAllocator);
L->init(nullptr);
for (scudo::uptr SizeLog = 0; SizeLog <= 20; SizeLog++) {
for (scudo::uptr AlignLog = FIRST_32_SECOND_64(3, 4); AlignLog <= 16;
AlignLog++) {
const scudo::uptr Align = 1U << AlignLog;
for (scudo::sptr Delta = -128; Delta <= 128; Delta += 8) {
if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
continue;
const scudo::uptr UserSize =
scudo::roundUpTo((1U << SizeLog) + Delta, MinAlign);
const scudo::uptr Size =
HeaderSize + UserSize + (Align > MinAlign ? Align - HeaderSize : 0);
void *P = L->allocate(Size, Align);
EXPECT_NE(P, nullptr);
void *AlignedP = reinterpret_cast<void *>(
scudo::roundUpTo(reinterpret_cast<scudo::uptr>(P), Align));
memset(AlignedP, 0xff, UserSize);
L->deallocate(P);
}
}
}
scudo::ScopedString Str(1024);
L->getStats(&Str);
Str.output();
}
TEST(ScudoSecondaryTest, SecondaryIterate) {
std::unique_ptr<LargeAllocator> L(new LargeAllocator);
L->init(nullptr);
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
for (scudo::uptr I = 0; I < 32U; I++)
V.push_back(L->allocate((std::rand() % 16) * PageSize));
auto Lambda = [V](scudo::uptr Block) {
EXPECT_NE(std::find(V.begin(), V.end(), reinterpret_cast<void *>(Block)),
V.end());
};
L->disable();
L->iterateOverBlocks(Lambda);
L->enable();
while (!V.empty()) {
L->deallocate(V.back());
V.pop_back();
}
scudo::ScopedString Str(1024);
L->getStats(&Str);
Str.output();
}
TEST(ScudoSecondaryTest, SecondaryOptions) {
std::unique_ptr<LargeAllocator> L(new LargeAllocator);
L->init(nullptr);
// Attempt to set a maximum number of entries higher than the array size.
EXPECT_FALSE(L->setOption(scudo::Option::MaxCacheEntriesCount, 4096U));
// A negative number will be cast to a scudo::u32, and fail.
EXPECT_FALSE(L->setOption(scudo::Option::MaxCacheEntriesCount, -1));
if (L->canCache(0U)) {
// Various valid combinations.
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntriesCount, 4U));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 20));
EXPECT_TRUE(L->canCache(1UL << 18));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 17));
EXPECT_FALSE(L->canCache(1UL << 18));
EXPECT_TRUE(L->canCache(1UL << 16));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntriesCount, 0U));
EXPECT_FALSE(L->canCache(1UL << 16));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntriesCount, 4U));
EXPECT_TRUE(L->setOption(scudo::Option::MaxCacheEntrySize, 1UL << 20));
EXPECT_TRUE(L->canCache(1UL << 16));
}
}
static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready;
static void performAllocations(LargeAllocator *L) {
std::vector<void *> V;
const scudo::uptr PageSize = scudo::getPageSizeCached();
{
std::unique_lock<std::mutex> Lock(Mutex);
while (!Ready)
Cv.wait(Lock);
}
for (scudo::uptr I = 0; I < 128U; I++) {
// Deallocate 75% of the blocks.
const bool Deallocate = (rand() & 3) != 0;
void *P = L->allocate((std::rand() % 16) * PageSize);
if (Deallocate)
L->deallocate(P);
else
V.push_back(P);
}
while (!V.empty()) {
L->deallocate(V.back());
V.pop_back();
}
}
TEST(ScudoSecondaryTest, SecondaryThreadsRace) {
Ready = false;
std::unique_ptr<LargeAllocator> L(new LargeAllocator);
L->init(nullptr, /*ReleaseToOsInterval=*/0);
std::thread Threads[16];
for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
Threads[I] = std::thread(performAllocations, L.get());
{
std::unique_lock<std::mutex> Lock(Mutex);
Ready = true;
Cv.notify_all();
}
for (auto &T : Threads)
T.join();
scudo::ScopedString Str(1024);
L->getStats(&Str);
Str.output();
}