BuildTree.cpp
64 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Syntax/BuildTree.h"
#include "clang/AST/ASTFwd.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/IgnoreExpr.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Tooling/Syntax/Nodes.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "clang/Tooling/Syntax/Tree.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <cstddef>
#include <map>
using namespace clang;
// Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
// generated by the compiler, as well as in implicit conversions like the one
// wrapping `1` in `X x = 1;`.
static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
auto NumArgs = C->getNumArgs();
if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
Expr *A = C->getArg(0);
if (C->getParenOrBraceRange().isInvalid())
return A;
}
}
return E;
}
// In:
// struct X {
// X(int)
// };
// X x = X(1);
// Ignores the implicit `CXXFunctionalCastExpr` that wraps
// `CXXConstructExpr X(1)`.
static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
if (F->getCastKind() == CK_ConstructorConversion)
return F->getSubExpr();
}
return E;
}
static Expr *IgnoreImplicit(Expr *E) {
return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
IgnoreImplicitConstructorSingleStep,
IgnoreCXXFunctionalCastExprWrappingConstructor);
}
LLVM_ATTRIBUTE_UNUSED
static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }
namespace {
/// Get start location of the Declarator from the TypeLoc.
/// E.g.:
/// loc of `(` in `int (a)`
/// loc of `*` in `int *(a)`
/// loc of the first `(` in `int (*a)(int)`
/// loc of the `*` in `int *(a)(int)`
/// loc of the first `*` in `const int *const *volatile a;`
///
/// It is non-trivial to get the start location because TypeLocs are stored
/// inside out. In the example above `*volatile` is the TypeLoc returned
/// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
/// returns.
struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
auto L = Visit(T.getInnerLoc());
if (L.isValid())
return L;
return T.getLParenLoc();
}
// Types spelled in the prefix part of the declarator.
SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
return HandlePointer(T);
}
SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
return HandlePointer(T);
}
SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
return HandlePointer(T);
}
SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
return HandlePointer(T);
}
SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
return HandlePointer(T);
}
// All other cases are not important, as they are either part of declaration
// specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
// existing declarators (e.g. QualifiedTypeLoc). They cannot start the
// declarator themselves, but their underlying type can.
SourceLocation VisitTypeLoc(TypeLoc T) {
auto N = T.getNextTypeLoc();
if (!N)
return SourceLocation();
return Visit(N);
}
SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
if (T.getTypePtr()->hasTrailingReturn())
return SourceLocation(); // avoid recursing into the suffix of declarator.
return VisitTypeLoc(T);
}
private:
template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
auto L = Visit(T.getPointeeLoc());
if (L.isValid())
return L;
return T.getLocalSourceRange().getBegin();
}
};
} // namespace
static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) {
return isa<CXXDefaultArgExpr>(It);
});
return llvm::make_range(Args.begin(), FirstDefaultArg);
}
static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
switch (E.getOperator()) {
// Comparison
case OO_EqualEqual:
case OO_ExclaimEqual:
case OO_Greater:
case OO_GreaterEqual:
case OO_Less:
case OO_LessEqual:
case OO_Spaceship:
// Assignment
case OO_Equal:
case OO_SlashEqual:
case OO_PercentEqual:
case OO_CaretEqual:
case OO_PipeEqual:
case OO_LessLessEqual:
case OO_GreaterGreaterEqual:
case OO_PlusEqual:
case OO_MinusEqual:
case OO_StarEqual:
case OO_AmpEqual:
// Binary computation
case OO_Slash:
case OO_Percent:
case OO_Caret:
case OO_Pipe:
case OO_LessLess:
case OO_GreaterGreater:
case OO_AmpAmp:
case OO_PipePipe:
case OO_ArrowStar:
case OO_Comma:
return syntax::NodeKind::BinaryOperatorExpression;
case OO_Tilde:
case OO_Exclaim:
return syntax::NodeKind::PrefixUnaryOperatorExpression;
// Prefix/Postfix increment/decrement
case OO_PlusPlus:
case OO_MinusMinus:
switch (E.getNumArgs()) {
case 1:
return syntax::NodeKind::PrefixUnaryOperatorExpression;
case 2:
return syntax::NodeKind::PostfixUnaryOperatorExpression;
default:
llvm_unreachable("Invalid number of arguments for operator");
}
// Operators that can be unary or binary
case OO_Plus:
case OO_Minus:
case OO_Star:
case OO_Amp:
switch (E.getNumArgs()) {
case 1:
return syntax::NodeKind::PrefixUnaryOperatorExpression;
case 2:
return syntax::NodeKind::BinaryOperatorExpression;
default:
llvm_unreachable("Invalid number of arguments for operator");
}
return syntax::NodeKind::BinaryOperatorExpression;
// Not yet supported by SyntaxTree
case OO_New:
case OO_Delete:
case OO_Array_New:
case OO_Array_Delete:
case OO_Coawait:
case OO_Subscript:
case OO_Arrow:
return syntax::NodeKind::UnknownExpression;
case OO_Call:
return syntax::NodeKind::CallExpression;
case OO_Conditional: // not overloadable
case NUM_OVERLOADED_OPERATORS:
case OO_None:
llvm_unreachable("Not an overloadable operator");
}
llvm_unreachable("Unknown OverloadedOperatorKind enum");
}
/// Get the start of the qualified name. In the examples below it gives the
/// location of the `^`:
/// `int ^a;`
/// `int *^a;`
/// `int ^a::S::f(){}`
static SourceLocation getQualifiedNameStart(NamedDecl *D) {
assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
"only DeclaratorDecl and TypedefNameDecl are supported.");
auto DN = D->getDeclName();
bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
if (IsAnonymous)
return SourceLocation();
if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
if (DD->getQualifierLoc()) {
return DD->getQualifierLoc().getBeginLoc();
}
}
return D->getLocation();
}
/// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
/// `int a;` -> range of ``,
/// `int *a = nullptr` -> range of `= nullptr`.
/// `int a{}` -> range of `{}`.
/// `int a()` -> range of `()`.
static SourceRange getInitializerRange(Decl *D) {
if (auto *V = dyn_cast<VarDecl>(D)) {
auto *I = V->getInit();
// Initializers in range-based-for are not part of the declarator
if (I && !V->isCXXForRangeDecl())
return I->getSourceRange();
}
return SourceRange();
}
/// Gets the range of declarator as defined by the C++ grammar. E.g.
/// `int a;` -> range of `a`,
/// `int *a;` -> range of `*a`,
/// `int a[10];` -> range of `a[10]`,
/// `int a[1][2][3];` -> range of `a[1][2][3]`,
/// `int *a = nullptr` -> range of `*a = nullptr`.
/// `int S::f(){}` -> range of `S::f()`.
/// FIXME: \p Name must be a source range.
static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
SourceLocation Name,
SourceRange Initializer) {
SourceLocation Start = GetStartLoc().Visit(T);
SourceLocation End = T.getEndLoc();
assert(End.isValid());
if (Name.isValid()) {
if (Start.isInvalid())
Start = Name;
if (SM.isBeforeInTranslationUnit(End, Name))
End = Name;
}
if (Initializer.isValid()) {
auto InitializerEnd = Initializer.getEnd();
assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
End == InitializerEnd);
End = InitializerEnd;
}
return SourceRange(Start, End);
}
namespace {
/// All AST hierarchy roots that can be represented as pointers.
using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
/// Maintains a mapping from AST to syntax tree nodes. This class will get more
/// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
/// FIXME: expose this as public API.
class ASTToSyntaxMapping {
public:
void add(ASTPtr From, syntax::Tree *To) {
assert(To != nullptr);
assert(!From.isNull());
bool Added = Nodes.insert({From, To}).second;
(void)Added;
assert(Added && "mapping added twice");
}
void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
assert(To != nullptr);
assert(From.hasQualifier());
bool Added = NNSNodes.insert({From, To}).second;
(void)Added;
assert(Added && "mapping added twice");
}
syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
syntax::Tree *find(NestedNameSpecifierLoc P) const {
return NNSNodes.lookup(P);
}
private:
llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
};
} // namespace
/// A helper class for constructing the syntax tree while traversing a clang
/// AST.
///
/// At each point of the traversal we maintain a list of pending nodes.
/// Initially all tokens are added as pending nodes. When processing a clang AST
/// node, the clients need to:
/// - create a corresponding syntax node,
/// - assign roles to all pending child nodes with 'markChild' and
/// 'markChildToken',
/// - replace the child nodes with the new syntax node in the pending list
/// with 'foldNode'.
///
/// Note that all children are expected to be processed when building a node.
///
/// Call finalize() to finish building the tree and consume the root node.
class syntax::TreeBuilder {
public:
TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
for (const auto &T : Arena.getTokenBuffer().expandedTokens())
LocationToToken.insert({T.location().getRawEncoding(), &T});
}
llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
const SourceManager &sourceManager() const {
return Arena.getSourceManager();
}
/// Populate children for \p New node, assuming it covers tokens from \p
/// Range.
void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
assert(New);
Pending.foldChildren(Arena, Range, New);
if (From)
Mapping.add(From, New);
}
void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
// FIXME: add mapping for TypeLocs
foldNode(Range, New, nullptr);
}
void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
NestedNameSpecifierLoc From) {
assert(New);
Pending.foldChildren(Arena, Range, New);
if (From)
Mapping.add(From, New);
}
/// Populate children for \p New list, assuming it covers tokens from a
/// subrange of \p SuperRange.
void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
ASTPtr From) {
assert(New);
auto ListRange = Pending.shrinkToFitList(SuperRange);
Pending.foldChildren(Arena, ListRange, New);
if (From)
Mapping.add(From, New);
}
/// Notifies that we should not consume trailing semicolon when computing
/// token range of \p D.
void noticeDeclWithoutSemicolon(Decl *D);
/// Mark the \p Child node with a corresponding \p Role. All marked children
/// should be consumed by foldNode.
/// When called on expressions (clang::Expr is derived from clang::Stmt),
/// wraps expressions into expression statement.
void markStmtChild(Stmt *Child, NodeRole Role);
/// Should be called for expressions in non-statement position to avoid
/// wrapping into expression statement.
void markExprChild(Expr *Child, NodeRole Role);
/// Set role for a token starting at \p Loc.
void markChildToken(SourceLocation Loc, NodeRole R);
/// Set role for \p T.
void markChildToken(const syntax::Token *T, NodeRole R);
/// Set role for \p N.
void markChild(syntax::Node *N, NodeRole R);
/// Set role for the syntax node matching \p N.
void markChild(ASTPtr N, NodeRole R);
/// Set role for the syntax node matching \p N.
void markChild(NestedNameSpecifierLoc N, NodeRole R);
/// Finish building the tree and consume the root node.
syntax::TranslationUnit *finalize() && {
auto Tokens = Arena.getTokenBuffer().expandedTokens();
assert(!Tokens.empty());
assert(Tokens.back().kind() == tok::eof);
// Build the root of the tree, consuming all the children.
Pending.foldChildren(Arena, Tokens.drop_back(),
new (Arena.getAllocator()) syntax::TranslationUnit);
auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
TU->assertInvariantsRecursive();
return TU;
}
/// Finds a token starting at \p L. The token must exist if \p L is valid.
const syntax::Token *findToken(SourceLocation L) const;
/// Finds the syntax tokens corresponding to the \p SourceRange.
ArrayRef<syntax::Token> getRange(SourceRange Range) const {
assert(Range.isValid());
return getRange(Range.getBegin(), Range.getEnd());
}
/// Finds the syntax tokens corresponding to the passed source locations.
/// \p First is the start position of the first token and \p Last is the start
/// position of the last token.
ArrayRef<syntax::Token> getRange(SourceLocation First,
SourceLocation Last) const {
assert(First.isValid());
assert(Last.isValid());
assert(First == Last ||
Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
}
ArrayRef<syntax::Token>
getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
auto Tokens = getRange(D->getSourceRange());
return maybeAppendSemicolon(Tokens, D);
}
/// Returns true if \p D is the last declarator in a chain and is thus
/// reponsible for creating SimpleDeclaration for the whole chain.
bool isResponsibleForCreatingDeclaration(const Decl *D) const {
assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
"only DeclaratorDecl and TypedefNameDecl are supported.");
const Decl *Next = D->getNextDeclInContext();
// There's no next sibling, this one is responsible.
if (Next == nullptr) {
return true;
}
// Next sibling is not the same type, this one is responsible.
if (D->getKind() != Next->getKind()) {
return true;
}
// Next sibling doesn't begin at the same loc, it must be a different
// declaration, so this declarator is responsible.
if (Next->getBeginLoc() != D->getBeginLoc()) {
return true;
}
// NextT is a member of the same declaration, and we need the last member to
// create declaration. This one is not responsible.
return false;
}
ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
ArrayRef<syntax::Token> Tokens;
// We want to drop the template parameters for specializations.
if (const auto *S = dyn_cast<TagDecl>(D))
Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
else
Tokens = getRange(D->getSourceRange());
return maybeAppendSemicolon(Tokens, D);
}
ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
return getRange(E->getSourceRange());
}
/// Find the adjusted range for the statement, consuming the trailing
/// semicolon when needed.
ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
auto Tokens = getRange(S->getSourceRange());
if (isa<CompoundStmt>(S))
return Tokens;
// Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
// all statements that end with those. Consume this semicolon here.
if (Tokens.back().kind() == tok::semi)
return Tokens;
return withTrailingSemicolon(Tokens);
}
private:
ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
const Decl *D) const {
if (isa<NamespaceDecl>(D))
return Tokens;
if (DeclsWithoutSemicolons.count(D))
return Tokens;
// FIXME: do not consume trailing semicolon on function definitions.
// Most declarations own a semicolon in syntax trees, but not in clang AST.
return withTrailingSemicolon(Tokens);
}
ArrayRef<syntax::Token>
withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
assert(!Tokens.empty());
assert(Tokens.back().kind() != tok::eof);
// We never consume 'eof', so looking at the next token is ok.
if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
return Tokens;
}
void setRole(syntax::Node *N, NodeRole R) {
assert(N->getRole() == NodeRole::Detached);
N->setRole(R);
}
/// A collection of trees covering the input tokens.
/// When created, each tree corresponds to a single token in the file.
/// Clients call 'foldChildren' to attach one or more subtrees to a parent
/// node and update the list of trees accordingly.
///
/// Ensures that added nodes properly nest and cover the whole token stream.
struct Forest {
Forest(syntax::Arena &A) {
assert(!A.getTokenBuffer().expandedTokens().empty());
assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
// Create all leaf nodes.
// Note that we do not have 'eof' in the tree.
for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
auto *L = new (A.getAllocator()) syntax::Leaf(&T);
L->Original = true;
L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
Trees.insert(Trees.end(), {&T, L});
}
}
void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
assert(!Range.empty());
auto It = Trees.lower_bound(Range.begin());
assert(It != Trees.end() && "no node found");
assert(It->first == Range.begin() && "no child with the specified range");
assert((std::next(It) == Trees.end() ||
std::next(It)->first == Range.end()) &&
"no child with the specified range");
assert(It->second->getRole() == NodeRole::Detached &&
"re-assigning role for a child");
It->second->setRole(Role);
}
/// Shrink \p Range to a subrange that only contains tokens of a list.
/// List elements and delimiters should already have correct roles.
ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
auto BeginChildren = Trees.lower_bound(Range.begin());
assert((BeginChildren == Trees.end() ||
BeginChildren->first == Range.begin()) &&
"Range crosses boundaries of existing subtrees");
auto EndChildren = Trees.lower_bound(Range.end());
assert(
(EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
"Range crosses boundaries of existing subtrees");
auto BelongsToList = [](decltype(Trees)::value_type KV) {
auto Role = KV.second->getRole();
return Role == syntax::NodeRole::ListElement ||
Role == syntax::NodeRole::ListDelimiter;
};
auto BeginListChildren =
std::find_if(BeginChildren, EndChildren, BelongsToList);
auto EndListChildren =
std::find_if_not(BeginListChildren, EndChildren, BelongsToList);
return ArrayRef<syntax::Token>(BeginListChildren->first,
EndListChildren->first);
}
/// Add \p Node to the forest and attach child nodes based on \p Tokens.
void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
syntax::Tree *Node) {
// Attach children to `Node`.
assert(Node->getFirstChild() == nullptr && "node already has children");
auto *FirstToken = Tokens.begin();
auto BeginChildren = Trees.lower_bound(FirstToken);
assert((BeginChildren == Trees.end() ||
BeginChildren->first == FirstToken) &&
"fold crosses boundaries of existing subtrees");
auto EndChildren = Trees.lower_bound(Tokens.end());
assert(
(EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
"fold crosses boundaries of existing subtrees");
// We need to go in reverse order, because we can only prepend.
for (auto It = EndChildren; It != BeginChildren; --It) {
auto *C = std::prev(It)->second;
if (C->getRole() == NodeRole::Detached)
C->setRole(NodeRole::Unknown);
Node->prependChildLowLevel(C);
}
// Mark that this node came from the AST and is backed by the source code.
Node->Original = true;
Node->CanModify =
A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();
Trees.erase(BeginChildren, EndChildren);
Trees.insert({FirstToken, Node});
}
// EXPECTS: all tokens were consumed and are owned by a single root node.
syntax::Node *finalize() && {
assert(Trees.size() == 1);
auto *Root = Trees.begin()->second;
Trees = {};
return Root;
}
std::string str(const syntax::Arena &A) const {
std::string R;
for (auto It = Trees.begin(); It != Trees.end(); ++It) {
unsigned CoveredTokens =
It != Trees.end()
? (std::next(It)->first - It->first)
: A.getTokenBuffer().expandedTokens().end() - It->first;
R += std::string(
formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
It->first->text(A.getSourceManager()), CoveredTokens));
R += It->second->dump(A.getSourceManager());
}
return R;
}
private:
/// Maps from the start token to a subtree starting at that token.
/// Keys in the map are pointers into the array of expanded tokens, so
/// pointer order corresponds to the order of preprocessor tokens.
std::map<const syntax::Token *, syntax::Node *> Trees;
};
/// For debugging purposes.
std::string str() { return Pending.str(Arena); }
syntax::Arena &Arena;
/// To quickly find tokens by their start location.
llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
LocationToToken;
Forest Pending;
llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
ASTToSyntaxMapping Mapping;
};
namespace {
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
public:
explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
: Builder(Builder), Context(Context) {}
bool shouldTraversePostOrder() const { return true; }
bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
return processDeclaratorAndDeclaration(DD);
}
bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
return processDeclaratorAndDeclaration(TD);
}
bool VisitDecl(Decl *D) {
assert(!D->isImplicit());
Builder.foldNode(Builder.getDeclarationRange(D),
new (allocator()) syntax::UnknownDeclaration(), D);
return true;
}
// RAV does not call WalkUpFrom* on explicit instantiations, so we have to
// override Traverse.
// FIXME: make RAV call WalkUpFrom* instead.
bool
TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
return false;
if (C->isExplicitSpecialization())
return true; // we are only interested in explicit instantiations.
auto *Declaration =
cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
foldExplicitTemplateInstantiation(
Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
return true;
}
bool WalkUpFromTemplateDecl(TemplateDecl *S) {
foldTemplateDeclaration(
Builder.getDeclarationRange(S),
Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
Builder.getDeclarationRange(S->getTemplatedDecl()), S);
return true;
}
bool WalkUpFromTagDecl(TagDecl *C) {
// FIXME: build the ClassSpecifier node.
if (!C->isFreeStanding()) {
assert(C->getNumTemplateParameterLists() == 0);
return true;
}
handleFreeStandingTagDecl(C);
return true;
}
syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
assert(C->isFreeStanding());
// Class is a declaration specifier and needs a spanning declaration node.
auto DeclarationRange = Builder.getDeclarationRange(C);
syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
Builder.foldNode(DeclarationRange, Result, nullptr);
// Build TemplateDeclaration nodes if we had template parameters.
auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
Result =
foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
DeclarationRange = R;
};
if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
ConsumeTemplateParameters(*S->getTemplateParameters());
for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
return Result;
}
bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
// We do not want to call VisitDecl(), the declaration for translation
// unit is built by finalize().
return true;
}
bool WalkUpFromCompoundStmt(CompoundStmt *S) {
using NodeRole = syntax::NodeRole;
Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
for (auto *Child : S->body())
Builder.markStmtChild(Child, NodeRole::Statement);
Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::CompoundStatement, S);
return true;
}
// Some statements are not yet handled by syntax trees.
bool WalkUpFromStmt(Stmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::UnknownStatement, S);
return true;
}
bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
// We override to traverse range initializer as VarDecl.
// RAV traverses it as a statement, we produce invalid node kinds in that
// case.
// FIXME: should do this in RAV instead?
bool Result = [&, this]() {
if (S->getInit() && !TraverseStmt(S->getInit()))
return false;
if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
return false;
if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
return false;
if (S->getBody() && !TraverseStmt(S->getBody()))
return false;
return true;
}();
WalkUpFromCXXForRangeStmt(S);
return Result;
}
bool TraverseStmt(Stmt *S) {
if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
// We want to consume the semicolon, make sure SimpleDeclaration does not.
for (auto *D : DS->decls())
Builder.noticeDeclWithoutSemicolon(D);
} else if (auto *E = dyn_cast_or_null<Expr>(S)) {
return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
}
return RecursiveASTVisitor::TraverseStmt(S);
}
// Some expressions are not yet handled by syntax trees.
bool WalkUpFromExpr(Expr *E) {
assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
Builder.foldNode(Builder.getExprRange(E),
new (allocator()) syntax::UnknownExpression, E);
return true;
}
bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
// The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
// referencing the location of the UDL suffix (`_w` in `1.2_w`). The
// UDL suffix location does not point to the beginning of a token, so we
// can't represent the UDL suffix as a separate syntax tree node.
return WalkUpFromUserDefinedLiteral(S);
}
syntax::UserDefinedLiteralExpression *
buildUserDefinedLiteral(UserDefinedLiteral *S) {
switch (S->getLiteralOperatorKind()) {
case UserDefinedLiteral::LOK_Integer:
return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
case UserDefinedLiteral::LOK_Floating:
return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
case UserDefinedLiteral::LOK_Character:
return new (allocator()) syntax::CharUserDefinedLiteralExpression;
case UserDefinedLiteral::LOK_String:
return new (allocator()) syntax::StringUserDefinedLiteralExpression;
case UserDefinedLiteral::LOK_Raw:
case UserDefinedLiteral::LOK_Template:
// For raw literal operator and numeric literal operator template we
// cannot get the type of the operand in the semantic AST. We get this
// information from the token. As integer and floating point have the same
// token kind, we run `NumericLiteralParser` again to distinguish them.
auto TokLoc = S->getBeginLoc();
auto TokSpelling =
Builder.findToken(TokLoc)->text(Context.getSourceManager());
auto Literal =
NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
Context.getLangOpts(), Context.getTargetInfo(),
Context.getDiagnostics());
if (Literal.isIntegerLiteral())
return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
else {
assert(Literal.isFloatingLiteral());
return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
}
}
llvm_unreachable("Unknown literal operator kind.");
}
bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
return true;
}
// FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
// `DependentTemplateSpecializationType` case.
/// Given a nested-name-specifier return the range for the last name
/// specifier.
///
/// e.g. `std::T::template X<U>::` => `template X<U>::`
SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
auto SR = NNSLoc.getLocalSourceRange();
// The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
// return the desired `SourceRange`, but there is a corner case. For a
// `DependentTemplateSpecializationType` this method returns its
// qualifiers as well, in other words in the example above this method
// returns `T::template X<U>::` instead of only `template X<U>::`
if (auto TL = NNSLoc.getTypeLoc()) {
if (auto DependentTL =
TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
// The 'template' keyword is always present in dependent template
// specializations. Except in the case of incorrect code
// TODO: Treat the case of incorrect code.
SR.setBegin(DependentTL.getTemplateKeywordLoc());
}
}
return SR;
}
syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
switch (NNS.getKind()) {
case NestedNameSpecifier::Global:
return syntax::NodeKind::GlobalNameSpecifier;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
case NestedNameSpecifier::Identifier:
return syntax::NodeKind::IdentifierNameSpecifier;
case NestedNameSpecifier::TypeSpecWithTemplate:
return syntax::NodeKind::SimpleTemplateNameSpecifier;
case NestedNameSpecifier::TypeSpec: {
const auto *NNSType = NNS.getAsType();
assert(NNSType);
if (isa<DecltypeType>(NNSType))
return syntax::NodeKind::DecltypeNameSpecifier;
if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
NNSType))
return syntax::NodeKind::SimpleTemplateNameSpecifier;
return syntax::NodeKind::IdentifierNameSpecifier;
}
default:
// FIXME: Support Microsoft's __super
llvm::report_fatal_error("We don't yet support the __super specifier",
true);
}
}
syntax::NameSpecifier *
buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
assert(NNSLoc.hasQualifier());
auto NameSpecifierTokens =
Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
case syntax::NodeKind::GlobalNameSpecifier:
return new (allocator()) syntax::GlobalNameSpecifier;
case syntax::NodeKind::IdentifierNameSpecifier: {
assert(NameSpecifierTokens.size() == 1);
Builder.markChildToken(NameSpecifierTokens.begin(),
syntax::NodeRole::Unknown);
auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
Builder.foldNode(NameSpecifierTokens, NS, nullptr);
return NS;
}
case syntax::NodeKind::SimpleTemplateNameSpecifier: {
// TODO: Build `SimpleTemplateNameSpecifier` children and implement
// accessors to them.
// Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
// some `TypeLoc`s have inside them the previous name specifier and
// we want to treat them independently.
auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
Builder.foldNode(NameSpecifierTokens, NS, nullptr);
return NS;
}
case syntax::NodeKind::DecltypeNameSpecifier: {
const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
return nullptr;
auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
// TODO: Implement accessor to `DecltypeNameSpecifier` inner
// `DecltypeTypeLoc`.
// For that add mapping from `TypeLoc` to `syntax::Node*` then:
// Builder.markChild(TypeLoc, syntax::NodeRole);
Builder.foldNode(NameSpecifierTokens, NS, nullptr);
return NS;
}
default:
llvm_unreachable("getChildKind() does not return this value");
}
}
// To build syntax tree nodes for NestedNameSpecifierLoc we override
// Traverse instead of WalkUpFrom because we want to traverse the children
// ourselves and build a list instead of a nested tree of name specifier
// prefixes.
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
if (!QualifierLoc)
return true;
for (auto It = QualifierLoc; It; It = It.getPrefix()) {
auto *NS = buildNameSpecifier(It);
if (!NS)
return false;
Builder.markChild(NS, syntax::NodeRole::ListElement);
Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
}
Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
new (allocator()) syntax::NestedNameSpecifier,
QualifierLoc);
return true;
}
syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKeywordLoc,
SourceRange UnqualifiedIdLoc,
ASTPtr From) {
if (QualifierLoc) {
Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
if (TemplateKeywordLoc.isValid())
Builder.markChildToken(TemplateKeywordLoc,
syntax::NodeRole::TemplateKeyword);
}
auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
nullptr);
Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);
auto IdExpressionBeginLoc =
QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();
auto *TheIdExpression = new (allocator()) syntax::IdExpression;
Builder.foldNode(
Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
TheIdExpression, From);
return TheIdExpression;
}
bool WalkUpFromMemberExpr(MemberExpr *S) {
// For `MemberExpr` with implicit `this->` we generate a simple
// `id-expression` syntax node, beacuse an implicit `member-expression` is
// syntactically undistinguishable from an `id-expression`
if (S->isImplicitAccess()) {
buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
return true;
}
auto *TheIdExpression = buildIdExpression(
S->getQualifierLoc(), S->getTemplateKeywordLoc(),
SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);
Builder.markChild(TheIdExpression, syntax::NodeRole::Member);
Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::MemberExpression, S);
return true;
}
bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
SourceRange(S->getLocation(), S->getEndLoc()), S);
return true;
}
// Same logic as DeclRefExpr.
bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
SourceRange(S->getLocation(), S->getEndLoc()), S);
return true;
}
bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
if (!S->isImplicit()) {
Builder.markChildToken(S->getLocation(),
syntax::NodeRole::IntroducerKeyword);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::ThisExpression, S);
}
return true;
}
bool WalkUpFromParenExpr(ParenExpr *S) {
Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::ParenExpression, S);
return true;
}
bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::IntegerLiteralExpression, S);
return true;
}
bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::CharacterLiteralExpression, S);
return true;
}
bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::FloatingLiteralExpression, S);
return true;
}
bool WalkUpFromStringLiteral(StringLiteral *S) {
Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::StringLiteralExpression, S);
return true;
}
bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::BoolLiteralExpression, S);
return true;
}
bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::CxxNullPtrExpression, S);
return true;
}
bool WalkUpFromUnaryOperator(UnaryOperator *S) {
Builder.markChildToken(S->getOperatorLoc(),
syntax::NodeRole::OperatorToken);
Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);
if (S->isPostfix())
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::PostfixUnaryOperatorExpression,
S);
else
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::PrefixUnaryOperatorExpression,
S);
return true;
}
bool WalkUpFromBinaryOperator(BinaryOperator *S) {
Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
Builder.markChildToken(S->getOperatorLoc(),
syntax::NodeRole::OperatorToken);
Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::BinaryOperatorExpression, S);
return true;
}
/// Builds `CallArguments` syntax node from arguments that appear in source
/// code, i.e. not default arguments.
syntax::CallArguments *
buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
for (auto *Arg : Args) {
Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
const auto *DelimiterToken =
std::next(Builder.findToken(Arg->getEndLoc()));
if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
}
auto *Arguments = new (allocator()) syntax::CallArguments;
if (!Args.empty())
Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
(*(Args.end() - 1))->getEndLoc()),
Arguments, nullptr);
return Arguments;
}
bool WalkUpFromCallExpr(CallExpr *S) {
Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);
const auto *LParenToken =
std::next(Builder.findToken(S->getCallee()->getEndLoc()));
// FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
// the test on decltype desctructors.
if (LParenToken->kind() == clang::tok::l_paren)
Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
Builder.markChild(buildCallArguments(S->arguments()),
syntax::NodeRole::Arguments);
Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getRange(S->getSourceRange()),
new (allocator()) syntax::CallExpression, S);
return true;
}
bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
// Ignore the implicit calls to default constructors.
if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
S->getParenOrBraceRange().isInvalid())
return true;
return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
}
bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
// To construct a syntax tree of the same shape for calls to built-in and
// user-defined operators, ignore the `DeclRefExpr` that refers to the
// operator and treat it as a simple token. Do that by traversing
// arguments instead of children.
for (auto *child : S->arguments()) {
// A postfix unary operator is declared as taking two operands. The
// second operand is used to distinguish from its prefix counterpart. In
// the semantic AST this "phantom" operand is represented as a
// `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
// operand because it does not correspond to anything written in source
// code.
if (child->getSourceRange().isInvalid()) {
assert(getOperatorNodeKind(*S) ==
syntax::NodeKind::PostfixUnaryOperatorExpression);
continue;
}
if (!TraverseStmt(child))
return false;
}
return WalkUpFromCXXOperatorCallExpr(S);
}
bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
switch (getOperatorNodeKind(*S)) {
case syntax::NodeKind::BinaryOperatorExpression:
Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
Builder.markChildToken(S->getOperatorLoc(),
syntax::NodeRole::OperatorToken);
Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::BinaryOperatorExpression, S);
return true;
case syntax::NodeKind::PrefixUnaryOperatorExpression:
Builder.markChildToken(S->getOperatorLoc(),
syntax::NodeRole::OperatorToken);
Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::PrefixUnaryOperatorExpression,
S);
return true;
case syntax::NodeKind::PostfixUnaryOperatorExpression:
Builder.markChildToken(S->getOperatorLoc(),
syntax::NodeRole::OperatorToken);
Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
Builder.foldNode(Builder.getExprRange(S),
new (allocator()) syntax::PostfixUnaryOperatorExpression,
S);
return true;
case syntax::NodeKind::CallExpression: {
Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);
const auto *LParenToken =
std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
// FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
// fixed the test on decltype desctructors.
if (LParenToken->kind() == clang::tok::l_paren)
Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);
Builder.markChild(buildCallArguments(CallExpr::arg_range(
S->arg_begin() + 1, S->arg_end())),
syntax::NodeRole::Arguments);
Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getRange(S->getSourceRange()),
new (allocator()) syntax::CallExpression, S);
return true;
}
case syntax::NodeKind::UnknownExpression:
return WalkUpFromExpr(S);
default:
llvm_unreachable("getOperatorNodeKind() does not return this value");
}
}
bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }
bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
auto Tokens = Builder.getDeclarationRange(S);
if (Tokens.front().kind() == tok::coloncolon) {
// Handle nested namespace definitions. Those start at '::' token, e.g.
// namespace a^::b {}
// FIXME: build corresponding nodes for the name of this namespace.
return true;
}
Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
return true;
}
// FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
// results. Find test coverage or remove it.
bool TraverseParenTypeLoc(ParenTypeLoc L) {
// We reverse order of traversal to get the proper syntax structure.
if (!WalkUpFromParenTypeLoc(L))
return false;
return TraverseTypeLoc(L.getInnerLoc());
}
bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
new (allocator()) syntax::ParenDeclarator, L);
return true;
}
// Declarator chunks, they are produced by type locs and some clang::Decls.
bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
new (allocator()) syntax::ArraySubscript, L);
return true;
}
syntax::ParameterDeclarationList *
buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
for (auto *P : Params) {
Builder.markChild(P, syntax::NodeRole::ListElement);
const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
}
auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
if (!Params.empty())
Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
Params.back()->getEndLoc()),
Parameters, nullptr);
return Parameters;
}
bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
Builder.markChild(buildParameterDeclarationList(L.getParams()),
syntax::NodeRole::Parameters);
Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
new (allocator()) syntax::ParametersAndQualifiers, L);
return true;
}
bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
if (!L.getTypePtr()->hasTrailingReturn())
return WalkUpFromFunctionTypeLoc(L);
auto *TrailingReturnTokens = buildTrailingReturn(L);
// Finish building the node for parameters.
Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
return WalkUpFromFunctionTypeLoc(L);
}
bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
// In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
// to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
// "(Y::*mp)" We thus reverse the order of traversal to get the proper
// syntax structure.
if (!WalkUpFromMemberPointerTypeLoc(L))
return false;
return TraverseTypeLoc(L.getPointeeLoc());
}
bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
auto SR = L.getLocalSourceRange();
Builder.foldNode(Builder.getRange(SR),
new (allocator()) syntax::MemberPointer, L);
return true;
}
// The code below is very regular, it could even be generated with some
// preprocessor magic. We merely assign roles to the corresponding children
// and fold resulting nodes.
bool WalkUpFromDeclStmt(DeclStmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::DeclarationStatement, S);
return true;
}
bool WalkUpFromNullStmt(NullStmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::EmptyStatement, S);
return true;
}
bool WalkUpFromSwitchStmt(SwitchStmt *S) {
Builder.markChildToken(S->getSwitchLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::SwitchStatement, S);
return true;
}
bool WalkUpFromCaseStmt(CaseStmt *S) {
Builder.markChildToken(S->getKeywordLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::CaseStatement, S);
return true;
}
bool WalkUpFromDefaultStmt(DefaultStmt *S) {
Builder.markChildToken(S->getKeywordLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::DefaultStatement, S);
return true;
}
bool WalkUpFromIfStmt(IfStmt *S) {
Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::IfStatement, S);
return true;
}
bool WalkUpFromForStmt(ForStmt *S) {
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ForStatement, S);
return true;
}
bool WalkUpFromWhileStmt(WhileStmt *S) {
Builder.markChildToken(S->getWhileLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::WhileStatement, S);
return true;
}
bool WalkUpFromContinueStmt(ContinueStmt *S) {
Builder.markChildToken(S->getContinueLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ContinueStatement, S);
return true;
}
bool WalkUpFromBreakStmt(BreakStmt *S) {
Builder.markChildToken(S->getBreakLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::BreakStatement, S);
return true;
}
bool WalkUpFromReturnStmt(ReturnStmt *S) {
Builder.markChildToken(S->getReturnLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ReturnStatement, S);
return true;
}
bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::RangeBasedForStatement, S);
return true;
}
bool WalkUpFromEmptyDecl(EmptyDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::EmptyDeclaration, S);
return true;
}
bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::StaticAssertDeclaration, S);
return true;
}
bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::LinkageSpecificationDeclaration,
S);
return true;
}
bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::NamespaceAliasDefinition, S);
return true;
}
bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::UsingNamespaceDirective, S);
return true;
}
bool WalkUpFromUsingDecl(UsingDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::UsingDeclaration, S);
return true;
}
bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::UsingDeclaration, S);
return true;
}
bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::UsingDeclaration, S);
return true;
}
bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
Builder.foldNode(Builder.getDeclarationRange(S),
new (allocator()) syntax::TypeAliasDeclaration, S);
return true;
}
private:
/// Folds SimpleDeclarator node (if present) and in case this is the last
/// declarator in the chain it also folds SimpleDeclaration node.
template <class T> bool processDeclaratorAndDeclaration(T *D) {
auto Range = getDeclaratorRange(
Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
getQualifiedNameStart(D), getInitializerRange(D));
// There doesn't have to be a declarator (e.g. `void foo(int)` only has
// declaration, but no declarator).
if (!Range.getBegin().isValid()) {
Builder.markChild(new (allocator()) syntax::DeclaratorList,
syntax::NodeRole::Declarators);
Builder.foldNode(Builder.getDeclarationRange(D),
new (allocator()) syntax::SimpleDeclaration, D);
return true;
}
auto *N = new (allocator()) syntax::SimpleDeclarator;
Builder.foldNode(Builder.getRange(Range), N, nullptr);
Builder.markChild(N, syntax::NodeRole::ListElement);
if (!Builder.isResponsibleForCreatingDeclaration(D)) {
// If this is not the last declarator in the declaration we expect a
// delimiter after it.
const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
} else {
auto *DL = new (allocator()) syntax::DeclaratorList;
auto DeclarationRange = Builder.getDeclarationRange(D);
Builder.foldList(DeclarationRange, DL, nullptr);
Builder.markChild(DL, syntax::NodeRole::Declarators);
Builder.foldNode(DeclarationRange,
new (allocator()) syntax::SimpleDeclaration, D);
}
return true;
}
/// Returns the range of the built node.
syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
assert(L.getTypePtr()->hasTrailingReturn());
auto ReturnedType = L.getReturnLoc();
// Build node for the declarator, if any.
auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
ReturnedType.getEndLoc());
syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
if (ReturnDeclaratorRange.isValid()) {
ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
ReturnDeclarator, nullptr);
}
// Build node for trailing return type.
auto Return = Builder.getRange(ReturnedType.getSourceRange());
const auto *Arrow = Return.begin() - 1;
assert(Arrow->kind() == tok::arrow);
auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
if (ReturnDeclarator)
Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
auto *R = new (allocator()) syntax::TrailingReturnType;
Builder.foldNode(Tokens, R, L);
return R;
}
void foldExplicitTemplateInstantiation(
ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
const syntax::Token *TemplateKW,
syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
Builder.foldNode(
Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
}
syntax::TemplateDeclaration *foldTemplateDeclaration(
ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
auto *N = new (allocator()) syntax::TemplateDeclaration;
Builder.foldNode(Range, N, From);
Builder.markChild(N, syntax::NodeRole::Declaration);
return N;
}
/// A small helper to save some typing.
llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
syntax::TreeBuilder &Builder;
const ASTContext &Context;
};
} // namespace
void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
DeclsWithoutSemicolons.insert(D);
}
void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
if (Loc.isInvalid())
return;
Pending.assignRole(*findToken(Loc), Role);
}
void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
if (!T)
return;
Pending.assignRole(*T, R);
}
void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
assert(N);
setRole(N, R);
}
void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
auto *SN = Mapping.find(N);
assert(SN != nullptr);
setRole(SN, R);
}
void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
auto *SN = Mapping.find(NNSLoc);
assert(SN != nullptr);
setRole(SN, R);
}
void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
if (!Child)
return;
syntax::Tree *ChildNode;
if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
// This is an expression in a statement position, consume the trailing
// semicolon and form an 'ExpressionStatement' node.
markExprChild(ChildExpr, NodeRole::Expression);
ChildNode = new (allocator()) syntax::ExpressionStatement;
// (!) 'getStmtRange()' ensures this covers a trailing semicolon.
Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
} else {
ChildNode = Mapping.find(Child);
}
assert(ChildNode != nullptr);
setRole(ChildNode, Role);
}
void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
if (!Child)
return;
Child = IgnoreImplicit(Child);
syntax::Tree *ChildNode = Mapping.find(Child);
assert(ChildNode != nullptr);
setRole(ChildNode, Role);
}
const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
if (L.isInvalid())
return nullptr;
auto It = LocationToToken.find(L.getRawEncoding());
assert(It != LocationToToken.end());
return It->second;
}
syntax::TranslationUnit *
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
TreeBuilder Builder(A);
BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
return std::move(Builder).finalize();
}