BuildTree.cpp 64 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Syntax/BuildTree.h"
#include "clang/AST/ASTFwd.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/IgnoreExpr.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Tooling/Syntax/Nodes.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "clang/Tooling/Syntax/Tree.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <cstddef>
#include <map>

using namespace clang;

// Ignores the implicit `CXXConstructExpr` for copy/move constructor calls
// generated by the compiler, as well as in implicit conversions like the one
// wrapping `1` in `X x = 1;`.
static Expr *IgnoreImplicitConstructorSingleStep(Expr *E) {
  if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
    auto NumArgs = C->getNumArgs();
    if (NumArgs == 1 || (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
      Expr *A = C->getArg(0);
      if (C->getParenOrBraceRange().isInvalid())
        return A;
    }
  }
  return E;
}

// In:
// struct X {
//   X(int)
// };
// X x = X(1);
// Ignores the implicit `CXXFunctionalCastExpr` that wraps
// `CXXConstructExpr X(1)`.
static Expr *IgnoreCXXFunctionalCastExprWrappingConstructor(Expr *E) {
  if (auto *F = dyn_cast<CXXFunctionalCastExpr>(E)) {
    if (F->getCastKind() == CK_ConstructorConversion)
      return F->getSubExpr();
  }
  return E;
}

static Expr *IgnoreImplicit(Expr *E) {
  return IgnoreExprNodes(E, IgnoreImplicitSingleStep,
                         IgnoreImplicitConstructorSingleStep,
                         IgnoreCXXFunctionalCastExprWrappingConstructor);
}

LLVM_ATTRIBUTE_UNUSED
static bool isImplicitExpr(Expr *E) { return IgnoreImplicit(E) != E; }

namespace {
/// Get start location of the Declarator from the TypeLoc.
/// E.g.:
///   loc of `(` in `int (a)`
///   loc of `*` in `int *(a)`
///   loc of the first `(` in `int (*a)(int)`
///   loc of the `*` in `int *(a)(int)`
///   loc of the first `*` in `const int *const *volatile a;`
///
/// It is non-trivial to get the start location because TypeLocs are stored
/// inside out. In the example above `*volatile` is the TypeLoc returned
/// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
/// returns.
struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
  SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
    auto L = Visit(T.getInnerLoc());
    if (L.isValid())
      return L;
    return T.getLParenLoc();
  }

  // Types spelled in the prefix part of the declarator.
  SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
    return HandlePointer(T);
  }

  SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
    return HandlePointer(T);
  }

  // All other cases are not important, as they are either part of declaration
  // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
  // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
  // declarator themselves, but their underlying type can.
  SourceLocation VisitTypeLoc(TypeLoc T) {
    auto N = T.getNextTypeLoc();
    if (!N)
      return SourceLocation();
    return Visit(N);
  }

  SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
    if (T.getTypePtr()->hasTrailingReturn())
      return SourceLocation(); // avoid recursing into the suffix of declarator.
    return VisitTypeLoc(T);
  }

private:
  template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
    auto L = Visit(T.getPointeeLoc());
    if (L.isValid())
      return L;
    return T.getLocalSourceRange().getBegin();
  }
};
} // namespace

static CallExpr::arg_range dropDefaultArgs(CallExpr::arg_range Args) {
  auto FirstDefaultArg = std::find_if(Args.begin(), Args.end(), [](auto It) {
    return isa<CXXDefaultArgExpr>(It);
  });
  return llvm::make_range(Args.begin(), FirstDefaultArg);
}

static syntax::NodeKind getOperatorNodeKind(const CXXOperatorCallExpr &E) {
  switch (E.getOperator()) {
  // Comparison
  case OO_EqualEqual:
  case OO_ExclaimEqual:
  case OO_Greater:
  case OO_GreaterEqual:
  case OO_Less:
  case OO_LessEqual:
  case OO_Spaceship:
  // Assignment
  case OO_Equal:
  case OO_SlashEqual:
  case OO_PercentEqual:
  case OO_CaretEqual:
  case OO_PipeEqual:
  case OO_LessLessEqual:
  case OO_GreaterGreaterEqual:
  case OO_PlusEqual:
  case OO_MinusEqual:
  case OO_StarEqual:
  case OO_AmpEqual:
  // Binary computation
  case OO_Slash:
  case OO_Percent:
  case OO_Caret:
  case OO_Pipe:
  case OO_LessLess:
  case OO_GreaterGreater:
  case OO_AmpAmp:
  case OO_PipePipe:
  case OO_ArrowStar:
  case OO_Comma:
    return syntax::NodeKind::BinaryOperatorExpression;
  case OO_Tilde:
  case OO_Exclaim:
    return syntax::NodeKind::PrefixUnaryOperatorExpression;
  // Prefix/Postfix increment/decrement
  case OO_PlusPlus:
  case OO_MinusMinus:
    switch (E.getNumArgs()) {
    case 1:
      return syntax::NodeKind::PrefixUnaryOperatorExpression;
    case 2:
      return syntax::NodeKind::PostfixUnaryOperatorExpression;
    default:
      llvm_unreachable("Invalid number of arguments for operator");
    }
  // Operators that can be unary or binary
  case OO_Plus:
  case OO_Minus:
  case OO_Star:
  case OO_Amp:
    switch (E.getNumArgs()) {
    case 1:
      return syntax::NodeKind::PrefixUnaryOperatorExpression;
    case 2:
      return syntax::NodeKind::BinaryOperatorExpression;
    default:
      llvm_unreachable("Invalid number of arguments for operator");
    }
    return syntax::NodeKind::BinaryOperatorExpression;
  // Not yet supported by SyntaxTree
  case OO_New:
  case OO_Delete:
  case OO_Array_New:
  case OO_Array_Delete:
  case OO_Coawait:
  case OO_Subscript:
  case OO_Arrow:
    return syntax::NodeKind::UnknownExpression;
  case OO_Call:
    return syntax::NodeKind::CallExpression;
  case OO_Conditional: // not overloadable
  case NUM_OVERLOADED_OPERATORS:
  case OO_None:
    llvm_unreachable("Not an overloadable operator");
  }
  llvm_unreachable("Unknown OverloadedOperatorKind enum");
}

/// Get the start of the qualified name. In the examples below it gives the
/// location of the `^`:
///     `int ^a;`
///     `int *^a;`
///     `int ^a::S::f(){}`
static SourceLocation getQualifiedNameStart(NamedDecl *D) {
  assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
         "only DeclaratorDecl and TypedefNameDecl are supported.");

  auto DN = D->getDeclName();
  bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
  if (IsAnonymous)
    return SourceLocation();

  if (const auto *DD = dyn_cast<DeclaratorDecl>(D)) {
    if (DD->getQualifierLoc()) {
      return DD->getQualifierLoc().getBeginLoc();
    }
  }

  return D->getLocation();
}

/// Gets the range of the initializer inside an init-declarator C++ [dcl.decl].
///     `int a;` -> range of ``,
///     `int *a = nullptr` -> range of `= nullptr`.
///     `int a{}` -> range of `{}`.
///     `int a()` -> range of `()`.
static SourceRange getInitializerRange(Decl *D) {
  if (auto *V = dyn_cast<VarDecl>(D)) {
    auto *I = V->getInit();
    // Initializers in range-based-for are not part of the declarator
    if (I && !V->isCXXForRangeDecl())
      return I->getSourceRange();
  }

  return SourceRange();
}

/// Gets the range of declarator as defined by the C++ grammar. E.g.
///     `int a;` -> range of `a`,
///     `int *a;` -> range of `*a`,
///     `int a[10];` -> range of `a[10]`,
///     `int a[1][2][3];` -> range of `a[1][2][3]`,
///     `int *a = nullptr` -> range of `*a = nullptr`.
///     `int S::f(){}` -> range of `S::f()`.
/// FIXME: \p Name must be a source range.
static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
                                      SourceLocation Name,
                                      SourceRange Initializer) {
  SourceLocation Start = GetStartLoc().Visit(T);
  SourceLocation End = T.getEndLoc();
  assert(End.isValid());
  if (Name.isValid()) {
    if (Start.isInvalid())
      Start = Name;
    if (SM.isBeforeInTranslationUnit(End, Name))
      End = Name;
  }
  if (Initializer.isValid()) {
    auto InitializerEnd = Initializer.getEnd();
    assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) ||
           End == InitializerEnd);
    End = InitializerEnd;
  }
  return SourceRange(Start, End);
}

namespace {
/// All AST hierarchy roots that can be represented as pointers.
using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
/// Maintains a mapping from AST to syntax tree nodes. This class will get more
/// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
/// FIXME: expose this as public API.
class ASTToSyntaxMapping {
public:
  void add(ASTPtr From, syntax::Tree *To) {
    assert(To != nullptr);
    assert(!From.isNull());

    bool Added = Nodes.insert({From, To}).second;
    (void)Added;
    assert(Added && "mapping added twice");
  }

  void add(NestedNameSpecifierLoc From, syntax::Tree *To) {
    assert(To != nullptr);
    assert(From.hasQualifier());

    bool Added = NNSNodes.insert({From, To}).second;
    (void)Added;
    assert(Added && "mapping added twice");
  }

  syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }

  syntax::Tree *find(NestedNameSpecifierLoc P) const {
    return NNSNodes.lookup(P);
  }

private:
  llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
  llvm::DenseMap<NestedNameSpecifierLoc, syntax::Tree *> NNSNodes;
};
} // namespace

/// A helper class for constructing the syntax tree while traversing a clang
/// AST.
///
/// At each point of the traversal we maintain a list of pending nodes.
/// Initially all tokens are added as pending nodes. When processing a clang AST
/// node, the clients need to:
///   - create a corresponding syntax node,
///   - assign roles to all pending child nodes with 'markChild' and
///     'markChildToken',
///   - replace the child nodes with the new syntax node in the pending list
///     with 'foldNode'.
///
/// Note that all children are expected to be processed when building a node.
///
/// Call finalize() to finish building the tree and consume the root node.
class syntax::TreeBuilder {
public:
  TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
    for (const auto &T : Arena.getTokenBuffer().expandedTokens())
      LocationToToken.insert({T.location().getRawEncoding(), &T});
  }

  llvm::BumpPtrAllocator &allocator() { return Arena.getAllocator(); }
  const SourceManager &sourceManager() const {
    return Arena.getSourceManager();
  }

  /// Populate children for \p New node, assuming it covers tokens from \p
  /// Range.
  void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, ASTPtr From) {
    assert(New);
    Pending.foldChildren(Arena, Range, New);
    if (From)
      Mapping.add(From, New);
  }

  void foldNode(ArrayRef<syntax::Token> Range, syntax::Tree *New, TypeLoc L) {
    // FIXME: add mapping for TypeLocs
    foldNode(Range, New, nullptr);
  }

  void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
                NestedNameSpecifierLoc From) {
    assert(New);
    Pending.foldChildren(Arena, Range, New);
    if (From)
      Mapping.add(From, New);
  }

  /// Populate children for \p New list, assuming it covers tokens from a
  /// subrange of \p SuperRange.
  void foldList(ArrayRef<syntax::Token> SuperRange, syntax::List *New,
                ASTPtr From) {
    assert(New);
    auto ListRange = Pending.shrinkToFitList(SuperRange);
    Pending.foldChildren(Arena, ListRange, New);
    if (From)
      Mapping.add(From, New);
  }

  /// Notifies that we should not consume trailing semicolon when computing
  /// token range of \p D.
  void noticeDeclWithoutSemicolon(Decl *D);

  /// Mark the \p Child node with a corresponding \p Role. All marked children
  /// should be consumed by foldNode.
  /// When called on expressions (clang::Expr is derived from clang::Stmt),
  /// wraps expressions into expression statement.
  void markStmtChild(Stmt *Child, NodeRole Role);
  /// Should be called for expressions in non-statement position to avoid
  /// wrapping into expression statement.
  void markExprChild(Expr *Child, NodeRole Role);
  /// Set role for a token starting at \p Loc.
  void markChildToken(SourceLocation Loc, NodeRole R);
  /// Set role for \p T.
  void markChildToken(const syntax::Token *T, NodeRole R);

  /// Set role for \p N.
  void markChild(syntax::Node *N, NodeRole R);
  /// Set role for the syntax node matching \p N.
  void markChild(ASTPtr N, NodeRole R);
  /// Set role for the syntax node matching \p N.
  void markChild(NestedNameSpecifierLoc N, NodeRole R);

  /// Finish building the tree and consume the root node.
  syntax::TranslationUnit *finalize() && {
    auto Tokens = Arena.getTokenBuffer().expandedTokens();
    assert(!Tokens.empty());
    assert(Tokens.back().kind() == tok::eof);

    // Build the root of the tree, consuming all the children.
    Pending.foldChildren(Arena, Tokens.drop_back(),
                         new (Arena.getAllocator()) syntax::TranslationUnit);

    auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
    TU->assertInvariantsRecursive();
    return TU;
  }

  /// Finds a token starting at \p L. The token must exist if \p L is valid.
  const syntax::Token *findToken(SourceLocation L) const;

  /// Finds the syntax tokens corresponding to the \p SourceRange.
  ArrayRef<syntax::Token> getRange(SourceRange Range) const {
    assert(Range.isValid());
    return getRange(Range.getBegin(), Range.getEnd());
  }

  /// Finds the syntax tokens corresponding to the passed source locations.
  /// \p First is the start position of the first token and \p Last is the start
  /// position of the last token.
  ArrayRef<syntax::Token> getRange(SourceLocation First,
                                   SourceLocation Last) const {
    assert(First.isValid());
    assert(Last.isValid());
    assert(First == Last ||
           Arena.getSourceManager().isBeforeInTranslationUnit(First, Last));
    return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
  }

  ArrayRef<syntax::Token>
  getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
    auto Tokens = getRange(D->getSourceRange());
    return maybeAppendSemicolon(Tokens, D);
  }

  /// Returns true if \p D is the last declarator in a chain and is thus
  /// reponsible for creating SimpleDeclaration for the whole chain.
  bool isResponsibleForCreatingDeclaration(const Decl *D) const {
    assert((isa<DeclaratorDecl, TypedefNameDecl>(D)) &&
           "only DeclaratorDecl and TypedefNameDecl are supported.");

    const Decl *Next = D->getNextDeclInContext();

    // There's no next sibling, this one is responsible.
    if (Next == nullptr) {
      return true;
    }

    // Next sibling is not the same type, this one is responsible.
    if (D->getKind() != Next->getKind()) {
      return true;
    }
    // Next sibling doesn't begin at the same loc, it must be a different
    // declaration, so this declarator is responsible.
    if (Next->getBeginLoc() != D->getBeginLoc()) {
      return true;
    }

    // NextT is a member of the same declaration, and we need the last member to
    // create declaration. This one is not responsible.
    return false;
  }

  ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
    ArrayRef<syntax::Token> Tokens;
    // We want to drop the template parameters for specializations.
    if (const auto *S = dyn_cast<TagDecl>(D))
      Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
    else
      Tokens = getRange(D->getSourceRange());
    return maybeAppendSemicolon(Tokens, D);
  }

  ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
    return getRange(E->getSourceRange());
  }

  /// Find the adjusted range for the statement, consuming the trailing
  /// semicolon when needed.
  ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
    auto Tokens = getRange(S->getSourceRange());
    if (isa<CompoundStmt>(S))
      return Tokens;

    // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
    // all statements that end with those. Consume this semicolon here.
    if (Tokens.back().kind() == tok::semi)
      return Tokens;
    return withTrailingSemicolon(Tokens);
  }

private:
  ArrayRef<syntax::Token> maybeAppendSemicolon(ArrayRef<syntax::Token> Tokens,
                                               const Decl *D) const {
    if (isa<NamespaceDecl>(D))
      return Tokens;
    if (DeclsWithoutSemicolons.count(D))
      return Tokens;
    // FIXME: do not consume trailing semicolon on function definitions.
    // Most declarations own a semicolon in syntax trees, but not in clang AST.
    return withTrailingSemicolon(Tokens);
  }

  ArrayRef<syntax::Token>
  withTrailingSemicolon(ArrayRef<syntax::Token> Tokens) const {
    assert(!Tokens.empty());
    assert(Tokens.back().kind() != tok::eof);
    // We never consume 'eof', so looking at the next token is ok.
    if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
      return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
    return Tokens;
  }

  void setRole(syntax::Node *N, NodeRole R) {
    assert(N->getRole() == NodeRole::Detached);
    N->setRole(R);
  }

  /// A collection of trees covering the input tokens.
  /// When created, each tree corresponds to a single token in the file.
  /// Clients call 'foldChildren' to attach one or more subtrees to a parent
  /// node and update the list of trees accordingly.
  ///
  /// Ensures that added nodes properly nest and cover the whole token stream.
  struct Forest {
    Forest(syntax::Arena &A) {
      assert(!A.getTokenBuffer().expandedTokens().empty());
      assert(A.getTokenBuffer().expandedTokens().back().kind() == tok::eof);
      // Create all leaf nodes.
      // Note that we do not have 'eof' in the tree.
      for (const auto &T : A.getTokenBuffer().expandedTokens().drop_back()) {
        auto *L = new (A.getAllocator()) syntax::Leaf(&T);
        L->Original = true;
        L->CanModify = A.getTokenBuffer().spelledForExpanded(T).hasValue();
        Trees.insert(Trees.end(), {&T, L});
      }
    }

    void assignRole(ArrayRef<syntax::Token> Range, syntax::NodeRole Role) {
      assert(!Range.empty());
      auto It = Trees.lower_bound(Range.begin());
      assert(It != Trees.end() && "no node found");
      assert(It->first == Range.begin() && "no child with the specified range");
      assert((std::next(It) == Trees.end() ||
              std::next(It)->first == Range.end()) &&
             "no child with the specified range");
      assert(It->second->getRole() == NodeRole::Detached &&
             "re-assigning role for a child");
      It->second->setRole(Role);
    }

    /// Shrink \p Range to a subrange that only contains tokens of a list.
    /// List elements and delimiters should already have correct roles.
    ArrayRef<syntax::Token> shrinkToFitList(ArrayRef<syntax::Token> Range) {
      auto BeginChildren = Trees.lower_bound(Range.begin());
      assert((BeginChildren == Trees.end() ||
              BeginChildren->first == Range.begin()) &&
             "Range crosses boundaries of existing subtrees");

      auto EndChildren = Trees.lower_bound(Range.end());
      assert(
          (EndChildren == Trees.end() || EndChildren->first == Range.end()) &&
          "Range crosses boundaries of existing subtrees");

      auto BelongsToList = [](decltype(Trees)::value_type KV) {
        auto Role = KV.second->getRole();
        return Role == syntax::NodeRole::ListElement ||
               Role == syntax::NodeRole::ListDelimiter;
      };

      auto BeginListChildren =
          std::find_if(BeginChildren, EndChildren, BelongsToList);

      auto EndListChildren =
          std::find_if_not(BeginListChildren, EndChildren, BelongsToList);

      return ArrayRef<syntax::Token>(BeginListChildren->first,
                                     EndListChildren->first);
    }

    /// Add \p Node to the forest and attach child nodes based on \p Tokens.
    void foldChildren(const syntax::Arena &A, ArrayRef<syntax::Token> Tokens,
                      syntax::Tree *Node) {
      // Attach children to `Node`.
      assert(Node->getFirstChild() == nullptr && "node already has children");

      auto *FirstToken = Tokens.begin();
      auto BeginChildren = Trees.lower_bound(FirstToken);

      assert((BeginChildren == Trees.end() ||
              BeginChildren->first == FirstToken) &&
             "fold crosses boundaries of existing subtrees");
      auto EndChildren = Trees.lower_bound(Tokens.end());
      assert(
          (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
          "fold crosses boundaries of existing subtrees");

      // We need to go in reverse order, because we can only prepend.
      for (auto It = EndChildren; It != BeginChildren; --It) {
        auto *C = std::prev(It)->second;
        if (C->getRole() == NodeRole::Detached)
          C->setRole(NodeRole::Unknown);
        Node->prependChildLowLevel(C);
      }

      // Mark that this node came from the AST and is backed by the source code.
      Node->Original = true;
      Node->CanModify =
          A.getTokenBuffer().spelledForExpanded(Tokens).hasValue();

      Trees.erase(BeginChildren, EndChildren);
      Trees.insert({FirstToken, Node});
    }

    // EXPECTS: all tokens were consumed and are owned by a single root node.
    syntax::Node *finalize() && {
      assert(Trees.size() == 1);
      auto *Root = Trees.begin()->second;
      Trees = {};
      return Root;
    }

    std::string str(const syntax::Arena &A) const {
      std::string R;
      for (auto It = Trees.begin(); It != Trees.end(); ++It) {
        unsigned CoveredTokens =
            It != Trees.end()
                ? (std::next(It)->first - It->first)
                : A.getTokenBuffer().expandedTokens().end() - It->first;

        R += std::string(
            formatv("- '{0}' covers '{1}'+{2} tokens\n", It->second->getKind(),
                    It->first->text(A.getSourceManager()), CoveredTokens));
        R += It->second->dump(A.getSourceManager());
      }
      return R;
    }

  private:
    /// Maps from the start token to a subtree starting at that token.
    /// Keys in the map are pointers into the array of expanded tokens, so
    /// pointer order corresponds to the order of preprocessor tokens.
    std::map<const syntax::Token *, syntax::Node *> Trees;
  };

  /// For debugging purposes.
  std::string str() { return Pending.str(Arena); }

  syntax::Arena &Arena;
  /// To quickly find tokens by their start location.
  llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
      LocationToToken;
  Forest Pending;
  llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
  ASTToSyntaxMapping Mapping;
};

namespace {
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
public:
  explicit BuildTreeVisitor(ASTContext &Context, syntax::TreeBuilder &Builder)
      : Builder(Builder), Context(Context) {}

  bool shouldTraversePostOrder() const { return true; }

  bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
    return processDeclaratorAndDeclaration(DD);
  }

  bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
    return processDeclaratorAndDeclaration(TD);
  }

  bool VisitDecl(Decl *D) {
    assert(!D->isImplicit());
    Builder.foldNode(Builder.getDeclarationRange(D),
                     new (allocator()) syntax::UnknownDeclaration(), D);
    return true;
  }

  // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
  // override Traverse.
  // FIXME: make RAV call WalkUpFrom* instead.
  bool
  TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
    if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
      return false;
    if (C->isExplicitSpecialization())
      return true; // we are only interested in explicit instantiations.
    auto *Declaration =
        cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
    foldExplicitTemplateInstantiation(
        Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
        Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
    return true;
  }

  bool WalkUpFromTemplateDecl(TemplateDecl *S) {
    foldTemplateDeclaration(
        Builder.getDeclarationRange(S),
        Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
        Builder.getDeclarationRange(S->getTemplatedDecl()), S);
    return true;
  }

  bool WalkUpFromTagDecl(TagDecl *C) {
    // FIXME: build the ClassSpecifier node.
    if (!C->isFreeStanding()) {
      assert(C->getNumTemplateParameterLists() == 0);
      return true;
    }
    handleFreeStandingTagDecl(C);
    return true;
  }

  syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
    assert(C->isFreeStanding());
    // Class is a declaration specifier and needs a spanning declaration node.
    auto DeclarationRange = Builder.getDeclarationRange(C);
    syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
    Builder.foldNode(DeclarationRange, Result, nullptr);

    // Build TemplateDeclaration nodes if we had template parameters.
    auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
      const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
      auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
      Result =
          foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
      DeclarationRange = R;
    };
    if (auto *S = dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
      ConsumeTemplateParameters(*S->getTemplateParameters());
    for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
      ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
    return Result;
  }

  bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
    // We do not want to call VisitDecl(), the declaration for translation
    // unit is built by finalize().
    return true;
  }

  bool WalkUpFromCompoundStmt(CompoundStmt *S) {
    using NodeRole = syntax::NodeRole;

    Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
    for (auto *Child : S->body())
      Builder.markStmtChild(Child, NodeRole::Statement);
    Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);

    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::CompoundStatement, S);
    return true;
  }

  // Some statements are not yet handled by syntax trees.
  bool WalkUpFromStmt(Stmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::UnknownStatement, S);
    return true;
  }

  bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
    // We override to traverse range initializer as VarDecl.
    // RAV traverses it as a statement, we produce invalid node kinds in that
    // case.
    // FIXME: should do this in RAV instead?
    bool Result = [&, this]() {
      if (S->getInit() && !TraverseStmt(S->getInit()))
        return false;
      if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
        return false;
      if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
        return false;
      if (S->getBody() && !TraverseStmt(S->getBody()))
        return false;
      return true;
    }();
    WalkUpFromCXXForRangeStmt(S);
    return Result;
  }

  bool TraverseStmt(Stmt *S) {
    if (auto *DS = dyn_cast_or_null<DeclStmt>(S)) {
      // We want to consume the semicolon, make sure SimpleDeclaration does not.
      for (auto *D : DS->decls())
        Builder.noticeDeclWithoutSemicolon(D);
    } else if (auto *E = dyn_cast_or_null<Expr>(S)) {
      return RecursiveASTVisitor::TraverseStmt(IgnoreImplicit(E));
    }
    return RecursiveASTVisitor::TraverseStmt(S);
  }

  // Some expressions are not yet handled by syntax trees.
  bool WalkUpFromExpr(Expr *E) {
    assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
    Builder.foldNode(Builder.getExprRange(E),
                     new (allocator()) syntax::UnknownExpression, E);
    return true;
  }

  bool TraverseUserDefinedLiteral(UserDefinedLiteral *S) {
    // The semantic AST node `UserDefinedLiteral` (UDL) may have one child node
    // referencing the location of the UDL suffix (`_w` in `1.2_w`). The
    // UDL suffix location does not point to the beginning of a token, so we
    // can't represent the UDL suffix as a separate syntax tree node.

    return WalkUpFromUserDefinedLiteral(S);
  }

  syntax::UserDefinedLiteralExpression *
  buildUserDefinedLiteral(UserDefinedLiteral *S) {
    switch (S->getLiteralOperatorKind()) {
    case UserDefinedLiteral::LOK_Integer:
      return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
    case UserDefinedLiteral::LOK_Floating:
      return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
    case UserDefinedLiteral::LOK_Character:
      return new (allocator()) syntax::CharUserDefinedLiteralExpression;
    case UserDefinedLiteral::LOK_String:
      return new (allocator()) syntax::StringUserDefinedLiteralExpression;
    case UserDefinedLiteral::LOK_Raw:
    case UserDefinedLiteral::LOK_Template:
      // For raw literal operator and numeric literal operator template we
      // cannot get the type of the operand in the semantic AST. We get this
      // information from the token. As integer and floating point have the same
      // token kind, we run `NumericLiteralParser` again to distinguish them.
      auto TokLoc = S->getBeginLoc();
      auto TokSpelling =
          Builder.findToken(TokLoc)->text(Context.getSourceManager());
      auto Literal =
          NumericLiteralParser(TokSpelling, TokLoc, Context.getSourceManager(),
                               Context.getLangOpts(), Context.getTargetInfo(),
                               Context.getDiagnostics());
      if (Literal.isIntegerLiteral())
        return new (allocator()) syntax::IntegerUserDefinedLiteralExpression;
      else {
        assert(Literal.isFloatingLiteral());
        return new (allocator()) syntax::FloatUserDefinedLiteralExpression;
      }
    }
    llvm_unreachable("Unknown literal operator kind.");
  }

  bool WalkUpFromUserDefinedLiteral(UserDefinedLiteral *S) {
    Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S), buildUserDefinedLiteral(S), S);
    return true;
  }

  // FIXME: Fix `NestedNameSpecifierLoc::getLocalSourceRange` for the
  // `DependentTemplateSpecializationType` case.
  /// Given a nested-name-specifier return the range for the last name
  /// specifier.
  ///
  /// e.g. `std::T::template X<U>::` => `template X<U>::`
  SourceRange getLocalSourceRange(const NestedNameSpecifierLoc &NNSLoc) {
    auto SR = NNSLoc.getLocalSourceRange();

    // The method `NestedNameSpecifierLoc::getLocalSourceRange` *should*
    // return the desired `SourceRange`, but there is a corner case. For a
    // `DependentTemplateSpecializationType` this method returns its
    // qualifiers as well, in other words in the example above this method
    // returns `T::template X<U>::` instead of only `template X<U>::`
    if (auto TL = NNSLoc.getTypeLoc()) {
      if (auto DependentTL =
              TL.getAs<DependentTemplateSpecializationTypeLoc>()) {
        // The 'template' keyword is always present in dependent template
        // specializations. Except in the case of incorrect code
        // TODO: Treat the case of incorrect code.
        SR.setBegin(DependentTL.getTemplateKeywordLoc());
      }
    }

    return SR;
  }

  syntax::NodeKind getNameSpecifierKind(const NestedNameSpecifier &NNS) {
    switch (NNS.getKind()) {
    case NestedNameSpecifier::Global:
      return syntax::NodeKind::GlobalNameSpecifier;
    case NestedNameSpecifier::Namespace:
    case NestedNameSpecifier::NamespaceAlias:
    case NestedNameSpecifier::Identifier:
      return syntax::NodeKind::IdentifierNameSpecifier;
    case NestedNameSpecifier::TypeSpecWithTemplate:
      return syntax::NodeKind::SimpleTemplateNameSpecifier;
    case NestedNameSpecifier::TypeSpec: {
      const auto *NNSType = NNS.getAsType();
      assert(NNSType);
      if (isa<DecltypeType>(NNSType))
        return syntax::NodeKind::DecltypeNameSpecifier;
      if (isa<TemplateSpecializationType, DependentTemplateSpecializationType>(
              NNSType))
        return syntax::NodeKind::SimpleTemplateNameSpecifier;
      return syntax::NodeKind::IdentifierNameSpecifier;
    }
    default:
      // FIXME: Support Microsoft's __super
      llvm::report_fatal_error("We don't yet support the __super specifier",
                               true);
    }
  }

  syntax::NameSpecifier *
  buildNameSpecifier(const NestedNameSpecifierLoc &NNSLoc) {
    assert(NNSLoc.hasQualifier());
    auto NameSpecifierTokens =
        Builder.getRange(getLocalSourceRange(NNSLoc)).drop_back();
    switch (getNameSpecifierKind(*NNSLoc.getNestedNameSpecifier())) {
    case syntax::NodeKind::GlobalNameSpecifier:
      return new (allocator()) syntax::GlobalNameSpecifier;
    case syntax::NodeKind::IdentifierNameSpecifier: {
      assert(NameSpecifierTokens.size() == 1);
      Builder.markChildToken(NameSpecifierTokens.begin(),
                             syntax::NodeRole::Unknown);
      auto *NS = new (allocator()) syntax::IdentifierNameSpecifier;
      Builder.foldNode(NameSpecifierTokens, NS, nullptr);
      return NS;
    }
    case syntax::NodeKind::SimpleTemplateNameSpecifier: {
      // TODO: Build `SimpleTemplateNameSpecifier` children and implement
      // accessors to them.
      // Be aware, we cannot do that simply by calling `TraverseTypeLoc`,
      // some `TypeLoc`s have inside them the previous name specifier and
      // we want to treat them independently.
      auto *NS = new (allocator()) syntax::SimpleTemplateNameSpecifier;
      Builder.foldNode(NameSpecifierTokens, NS, nullptr);
      return NS;
    }
    case syntax::NodeKind::DecltypeNameSpecifier: {
      const auto TL = NNSLoc.getTypeLoc().castAs<DecltypeTypeLoc>();
      if (!RecursiveASTVisitor::TraverseDecltypeTypeLoc(TL))
        return nullptr;
      auto *NS = new (allocator()) syntax::DecltypeNameSpecifier;
      // TODO: Implement accessor to `DecltypeNameSpecifier` inner
      // `DecltypeTypeLoc`.
      // For that add mapping from `TypeLoc` to `syntax::Node*` then:
      // Builder.markChild(TypeLoc, syntax::NodeRole);
      Builder.foldNode(NameSpecifierTokens, NS, nullptr);
      return NS;
    }
    default:
      llvm_unreachable("getChildKind() does not return this value");
    }
  }

  // To build syntax tree nodes for NestedNameSpecifierLoc we override
  // Traverse instead of WalkUpFrom because we want to traverse the children
  // ourselves and build a list instead of a nested tree of name specifier
  // prefixes.
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc QualifierLoc) {
    if (!QualifierLoc)
      return true;
    for (auto It = QualifierLoc; It; It = It.getPrefix()) {
      auto *NS = buildNameSpecifier(It);
      if (!NS)
        return false;
      Builder.markChild(NS, syntax::NodeRole::ListElement);
      Builder.markChildToken(It.getEndLoc(), syntax::NodeRole::ListDelimiter);
    }
    Builder.foldNode(Builder.getRange(QualifierLoc.getSourceRange()),
                     new (allocator()) syntax::NestedNameSpecifier,
                     QualifierLoc);
    return true;
  }

  syntax::IdExpression *buildIdExpression(NestedNameSpecifierLoc QualifierLoc,
                                          SourceLocation TemplateKeywordLoc,
                                          SourceRange UnqualifiedIdLoc,
                                          ASTPtr From) {
    if (QualifierLoc) {
      Builder.markChild(QualifierLoc, syntax::NodeRole::Qualifier);
      if (TemplateKeywordLoc.isValid())
        Builder.markChildToken(TemplateKeywordLoc,
                               syntax::NodeRole::TemplateKeyword);
    }

    auto *TheUnqualifiedId = new (allocator()) syntax::UnqualifiedId;
    Builder.foldNode(Builder.getRange(UnqualifiedIdLoc), TheUnqualifiedId,
                     nullptr);
    Builder.markChild(TheUnqualifiedId, syntax::NodeRole::UnqualifiedId);

    auto IdExpressionBeginLoc =
        QualifierLoc ? QualifierLoc.getBeginLoc() : UnqualifiedIdLoc.getBegin();

    auto *TheIdExpression = new (allocator()) syntax::IdExpression;
    Builder.foldNode(
        Builder.getRange(IdExpressionBeginLoc, UnqualifiedIdLoc.getEnd()),
        TheIdExpression, From);

    return TheIdExpression;
  }

  bool WalkUpFromMemberExpr(MemberExpr *S) {
    // For `MemberExpr` with implicit `this->` we generate a simple
    // `id-expression` syntax node, beacuse an implicit `member-expression` is
    // syntactically undistinguishable from an `id-expression`
    if (S->isImplicitAccess()) {
      buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
                        SourceRange(S->getMemberLoc(), S->getEndLoc()), S);
      return true;
    }

    auto *TheIdExpression = buildIdExpression(
        S->getQualifierLoc(), S->getTemplateKeywordLoc(),
        SourceRange(S->getMemberLoc(), S->getEndLoc()), nullptr);

    Builder.markChild(TheIdExpression, syntax::NodeRole::Member);

    Builder.markExprChild(S->getBase(), syntax::NodeRole::Object);
    Builder.markChildToken(S->getOperatorLoc(), syntax::NodeRole::AccessToken);

    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::MemberExpression, S);
    return true;
  }

  bool WalkUpFromDeclRefExpr(DeclRefExpr *S) {
    buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
                      SourceRange(S->getLocation(), S->getEndLoc()), S);

    return true;
  }

  // Same logic as DeclRefExpr.
  bool WalkUpFromDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *S) {
    buildIdExpression(S->getQualifierLoc(), S->getTemplateKeywordLoc(),
                      SourceRange(S->getLocation(), S->getEndLoc()), S);

    return true;
  }

  bool WalkUpFromCXXThisExpr(CXXThisExpr *S) {
    if (!S->isImplicit()) {
      Builder.markChildToken(S->getLocation(),
                             syntax::NodeRole::IntroducerKeyword);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::ThisExpression, S);
    }
    return true;
  }

  bool WalkUpFromParenExpr(ParenExpr *S) {
    Builder.markChildToken(S->getLParen(), syntax::NodeRole::OpenParen);
    Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::SubExpression);
    Builder.markChildToken(S->getRParen(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::ParenExpression, S);
    return true;
  }

  bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::IntegerLiteralExpression, S);
    return true;
  }

  bool WalkUpFromCharacterLiteral(CharacterLiteral *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::CharacterLiteralExpression, S);
    return true;
  }

  bool WalkUpFromFloatingLiteral(FloatingLiteral *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::FloatingLiteralExpression, S);
    return true;
  }

  bool WalkUpFromStringLiteral(StringLiteral *S) {
    Builder.markChildToken(S->getBeginLoc(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::StringLiteralExpression, S);
    return true;
  }

  bool WalkUpFromCXXBoolLiteralExpr(CXXBoolLiteralExpr *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::BoolLiteralExpression, S);
    return true;
  }

  bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
    Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::CxxNullPtrExpression, S);
    return true;
  }

  bool WalkUpFromUnaryOperator(UnaryOperator *S) {
    Builder.markChildToken(S->getOperatorLoc(),
                           syntax::NodeRole::OperatorToken);
    Builder.markExprChild(S->getSubExpr(), syntax::NodeRole::Operand);

    if (S->isPostfix())
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PostfixUnaryOperatorExpression,
                       S);
    else
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PrefixUnaryOperatorExpression,
                       S);

    return true;
  }

  bool WalkUpFromBinaryOperator(BinaryOperator *S) {
    Builder.markExprChild(S->getLHS(), syntax::NodeRole::LeftHandSide);
    Builder.markChildToken(S->getOperatorLoc(),
                           syntax::NodeRole::OperatorToken);
    Builder.markExprChild(S->getRHS(), syntax::NodeRole::RightHandSide);
    Builder.foldNode(Builder.getExprRange(S),
                     new (allocator()) syntax::BinaryOperatorExpression, S);
    return true;
  }

  /// Builds `CallArguments` syntax node from arguments that appear in source
  /// code, i.e. not default arguments.
  syntax::CallArguments *
  buildCallArguments(CallExpr::arg_range ArgsAndDefaultArgs) {
    auto Args = dropDefaultArgs(ArgsAndDefaultArgs);
    for (auto *Arg : Args) {
      Builder.markExprChild(Arg, syntax::NodeRole::ListElement);
      const auto *DelimiterToken =
          std::next(Builder.findToken(Arg->getEndLoc()));
      if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
        Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
    }

    auto *Arguments = new (allocator()) syntax::CallArguments;
    if (!Args.empty())
      Builder.foldNode(Builder.getRange((*Args.begin())->getBeginLoc(),
                                        (*(Args.end() - 1))->getEndLoc()),
                       Arguments, nullptr);

    return Arguments;
  }

  bool WalkUpFromCallExpr(CallExpr *S) {
    Builder.markExprChild(S->getCallee(), syntax::NodeRole::Callee);

    const auto *LParenToken =
        std::next(Builder.findToken(S->getCallee()->getEndLoc()));
    // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have fixed
    // the test on decltype desctructors.
    if (LParenToken->kind() == clang::tok::l_paren)
      Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);

    Builder.markChild(buildCallArguments(S->arguments()),
                      syntax::NodeRole::Arguments);

    Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);

    Builder.foldNode(Builder.getRange(S->getSourceRange()),
                     new (allocator()) syntax::CallExpression, S);
    return true;
  }

  bool WalkUpFromCXXConstructExpr(CXXConstructExpr *S) {
    // Ignore the implicit calls to default constructors.
    if ((S->getNumArgs() == 0 || isa<CXXDefaultArgExpr>(S->getArg(0))) &&
        S->getParenOrBraceRange().isInvalid())
      return true;
    return RecursiveASTVisitor::WalkUpFromCXXConstructExpr(S);
  }

  bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
    // To construct a syntax tree of the same shape for calls to built-in and
    // user-defined operators, ignore the `DeclRefExpr` that refers to the
    // operator and treat it as a simple token. Do that by traversing
    // arguments instead of children.
    for (auto *child : S->arguments()) {
      // A postfix unary operator is declared as taking two operands. The
      // second operand is used to distinguish from its prefix counterpart. In
      // the semantic AST this "phantom" operand is represented as a
      // `IntegerLiteral` with invalid `SourceLocation`. We skip visiting this
      // operand because it does not correspond to anything written in source
      // code.
      if (child->getSourceRange().isInvalid()) {
        assert(getOperatorNodeKind(*S) ==
               syntax::NodeKind::PostfixUnaryOperatorExpression);
        continue;
      }
      if (!TraverseStmt(child))
        return false;
    }
    return WalkUpFromCXXOperatorCallExpr(S);
  }

  bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
    switch (getOperatorNodeKind(*S)) {
    case syntax::NodeKind::BinaryOperatorExpression:
      Builder.markExprChild(S->getArg(0), syntax::NodeRole::LeftHandSide);
      Builder.markChildToken(S->getOperatorLoc(),
                             syntax::NodeRole::OperatorToken);
      Builder.markExprChild(S->getArg(1), syntax::NodeRole::RightHandSide);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::BinaryOperatorExpression, S);
      return true;
    case syntax::NodeKind::PrefixUnaryOperatorExpression:
      Builder.markChildToken(S->getOperatorLoc(),
                             syntax::NodeRole::OperatorToken);
      Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PrefixUnaryOperatorExpression,
                       S);
      return true;
    case syntax::NodeKind::PostfixUnaryOperatorExpression:
      Builder.markChildToken(S->getOperatorLoc(),
                             syntax::NodeRole::OperatorToken);
      Builder.markExprChild(S->getArg(0), syntax::NodeRole::Operand);
      Builder.foldNode(Builder.getExprRange(S),
                       new (allocator()) syntax::PostfixUnaryOperatorExpression,
                       S);
      return true;
    case syntax::NodeKind::CallExpression: {
      Builder.markExprChild(S->getArg(0), syntax::NodeRole::Callee);

      const auto *LParenToken =
          std::next(Builder.findToken(S->getArg(0)->getEndLoc()));
      // FIXME: Assert that `LParenToken` is indeed a `l_paren` once we have
      // fixed the test on decltype desctructors.
      if (LParenToken->kind() == clang::tok::l_paren)
        Builder.markChildToken(LParenToken, syntax::NodeRole::OpenParen);

      Builder.markChild(buildCallArguments(CallExpr::arg_range(
                            S->arg_begin() + 1, S->arg_end())),
                        syntax::NodeRole::Arguments);

      Builder.markChildToken(S->getRParenLoc(), syntax::NodeRole::CloseParen);

      Builder.foldNode(Builder.getRange(S->getSourceRange()),
                       new (allocator()) syntax::CallExpression, S);
      return true;
    }
    case syntax::NodeKind::UnknownExpression:
      return WalkUpFromExpr(S);
    default:
      llvm_unreachable("getOperatorNodeKind() does not return this value");
    }
  }

  bool WalkUpFromCXXDefaultArgExpr(CXXDefaultArgExpr *S) { return true; }

  bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
    auto Tokens = Builder.getDeclarationRange(S);
    if (Tokens.front().kind() == tok::coloncolon) {
      // Handle nested namespace definitions. Those start at '::' token, e.g.
      // namespace a^::b {}
      // FIXME: build corresponding nodes for the name of this namespace.
      return true;
    }
    Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
    return true;
  }

  // FIXME: Deleting the `TraverseParenTypeLoc` override doesn't change test
  // results. Find test coverage or remove it.
  bool TraverseParenTypeLoc(ParenTypeLoc L) {
    // We reverse order of traversal to get the proper syntax structure.
    if (!WalkUpFromParenTypeLoc(L))
      return false;
    return TraverseTypeLoc(L.getInnerLoc());
  }

  bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
    Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
    Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
                     new (allocator()) syntax::ParenDeclarator, L);
    return true;
  }

  // Declarator chunks, they are produced by type locs and some clang::Decls.
  bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
    Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
    Builder.markExprChild(L.getSizeExpr(), syntax::NodeRole::Size);
    Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
                     new (allocator()) syntax::ArraySubscript, L);
    return true;
  }

  syntax::ParameterDeclarationList *
  buildParameterDeclarationList(ArrayRef<ParmVarDecl *> Params) {
    for (auto *P : Params) {
      Builder.markChild(P, syntax::NodeRole::ListElement);
      const auto *DelimiterToken = std::next(Builder.findToken(P->getEndLoc()));
      if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
        Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
    }
    auto *Parameters = new (allocator()) syntax::ParameterDeclarationList;
    if (!Params.empty())
      Builder.foldNode(Builder.getRange(Params.front()->getBeginLoc(),
                                        Params.back()->getEndLoc()),
                       Parameters, nullptr);
    return Parameters;
  }

  bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
    Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);

    Builder.markChild(buildParameterDeclarationList(L.getParams()),
                      syntax::NodeRole::Parameters);

    Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
    Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
                     new (allocator()) syntax::ParametersAndQualifiers, L);
    return true;
  }

  bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
    if (!L.getTypePtr()->hasTrailingReturn())
      return WalkUpFromFunctionTypeLoc(L);

    auto *TrailingReturnTokens = buildTrailingReturn(L);
    // Finish building the node for parameters.
    Builder.markChild(TrailingReturnTokens, syntax::NodeRole::TrailingReturn);
    return WalkUpFromFunctionTypeLoc(L);
  }

  bool TraverseMemberPointerTypeLoc(MemberPointerTypeLoc L) {
    // In the source code "void (Y::*mp)()" `MemberPointerTypeLoc` corresponds
    // to "Y::*" but it points to a `ParenTypeLoc` that corresponds to
    // "(Y::*mp)" We thus reverse the order of traversal to get the proper
    // syntax structure.
    if (!WalkUpFromMemberPointerTypeLoc(L))
      return false;
    return TraverseTypeLoc(L.getPointeeLoc());
  }

  bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
    auto SR = L.getLocalSourceRange();
    Builder.foldNode(Builder.getRange(SR),
                     new (allocator()) syntax::MemberPointer, L);
    return true;
  }

  // The code below is very regular, it could even be generated with some
  // preprocessor magic. We merely assign roles to the corresponding children
  // and fold resulting nodes.
  bool WalkUpFromDeclStmt(DeclStmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::DeclarationStatement, S);
    return true;
  }

  bool WalkUpFromNullStmt(NullStmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::EmptyStatement, S);
    return true;
  }

  bool WalkUpFromSwitchStmt(SwitchStmt *S) {
    Builder.markChildToken(S->getSwitchLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::SwitchStatement, S);
    return true;
  }

  bool WalkUpFromCaseStmt(CaseStmt *S) {
    Builder.markChildToken(S->getKeywordLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseValue);
    Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::CaseStatement, S);
    return true;
  }

  bool WalkUpFromDefaultStmt(DefaultStmt *S) {
    Builder.markChildToken(S->getKeywordLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::DefaultStatement, S);
    return true;
  }

  bool WalkUpFromIfStmt(IfStmt *S) {
    Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getThen(), syntax::NodeRole::ThenStatement);
    Builder.markChildToken(S->getElseLoc(), syntax::NodeRole::ElseKeyword);
    Builder.markStmtChild(S->getElse(), syntax::NodeRole::ElseStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::IfStatement, S);
    return true;
  }

  bool WalkUpFromForStmt(ForStmt *S) {
    Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ForStatement, S);
    return true;
  }

  bool WalkUpFromWhileStmt(WhileStmt *S) {
    Builder.markChildToken(S->getWhileLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::WhileStatement, S);
    return true;
  }

  bool WalkUpFromContinueStmt(ContinueStmt *S) {
    Builder.markChildToken(S->getContinueLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ContinueStatement, S);
    return true;
  }

  bool WalkUpFromBreakStmt(BreakStmt *S) {
    Builder.markChildToken(S->getBreakLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::BreakStatement, S);
    return true;
  }

  bool WalkUpFromReturnStmt(ReturnStmt *S) {
    Builder.markChildToken(S->getReturnLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markExprChild(S->getRetValue(), syntax::NodeRole::ReturnValue);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ReturnStatement, S);
    return true;
  }

  bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
    Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::RangeBasedForStatement, S);
    return true;
  }

  bool WalkUpFromEmptyDecl(EmptyDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::EmptyDeclaration, S);
    return true;
  }

  bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
    Builder.markExprChild(S->getAssertExpr(), syntax::NodeRole::Condition);
    Builder.markExprChild(S->getMessage(), syntax::NodeRole::Message);
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::StaticAssertDeclaration, S);
    return true;
  }

  bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::LinkageSpecificationDeclaration,
                     S);
    return true;
  }

  bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::NamespaceAliasDefinition, S);
    return true;
  }

  bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingNamespaceDirective, S);
    return true;
  }

  bool WalkUpFromUsingDecl(UsingDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingDeclaration, S);
    return true;
  }

  bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingDeclaration, S);
    return true;
  }

  bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::UsingDeclaration, S);
    return true;
  }

  bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
    Builder.foldNode(Builder.getDeclarationRange(S),
                     new (allocator()) syntax::TypeAliasDeclaration, S);
    return true;
  }

private:
  /// Folds SimpleDeclarator node (if present) and in case this is the last
  /// declarator in the chain it also folds SimpleDeclaration node.
  template <class T> bool processDeclaratorAndDeclaration(T *D) {
    auto Range = getDeclaratorRange(
        Builder.sourceManager(), D->getTypeSourceInfo()->getTypeLoc(),
        getQualifiedNameStart(D), getInitializerRange(D));

    // There doesn't have to be a declarator (e.g. `void foo(int)` only has
    // declaration, but no declarator).
    if (!Range.getBegin().isValid()) {
      Builder.markChild(new (allocator()) syntax::DeclaratorList,
                        syntax::NodeRole::Declarators);
      Builder.foldNode(Builder.getDeclarationRange(D),
                       new (allocator()) syntax::SimpleDeclaration, D);
      return true;
    }

    auto *N = new (allocator()) syntax::SimpleDeclarator;
    Builder.foldNode(Builder.getRange(Range), N, nullptr);
    Builder.markChild(N, syntax::NodeRole::ListElement);

    if (!Builder.isResponsibleForCreatingDeclaration(D)) {
      // If this is not the last declarator in the declaration we expect a
      // delimiter after it.
      const auto *DelimiterToken = std::next(Builder.findToken(Range.getEnd()));
      if (DelimiterToken->kind() == clang::tok::TokenKind::comma)
        Builder.markChildToken(DelimiterToken, syntax::NodeRole::ListDelimiter);
    } else {
      auto *DL = new (allocator()) syntax::DeclaratorList;
      auto DeclarationRange = Builder.getDeclarationRange(D);
      Builder.foldList(DeclarationRange, DL, nullptr);

      Builder.markChild(DL, syntax::NodeRole::Declarators);
      Builder.foldNode(DeclarationRange,
                       new (allocator()) syntax::SimpleDeclaration, D);
    }
    return true;
  }

  /// Returns the range of the built node.
  syntax::TrailingReturnType *buildTrailingReturn(FunctionProtoTypeLoc L) {
    assert(L.getTypePtr()->hasTrailingReturn());

    auto ReturnedType = L.getReturnLoc();
    // Build node for the declarator, if any.
    auto ReturnDeclaratorRange = SourceRange(GetStartLoc().Visit(ReturnedType),
                                             ReturnedType.getEndLoc());
    syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
    if (ReturnDeclaratorRange.isValid()) {
      ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
      Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
                       ReturnDeclarator, nullptr);
    }

    // Build node for trailing return type.
    auto Return = Builder.getRange(ReturnedType.getSourceRange());
    const auto *Arrow = Return.begin() - 1;
    assert(Arrow->kind() == tok::arrow);
    auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
    Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
    if (ReturnDeclarator)
      Builder.markChild(ReturnDeclarator, syntax::NodeRole::Declarator);
    auto *R = new (allocator()) syntax::TrailingReturnType;
    Builder.foldNode(Tokens, R, L);
    return R;
  }

  void foldExplicitTemplateInstantiation(
      ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
      const syntax::Token *TemplateKW,
      syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
    assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
    assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
    Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
    Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
    Builder.markChild(InnerDeclaration, syntax::NodeRole::Declaration);
    Builder.foldNode(
        Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
  }

  syntax::TemplateDeclaration *foldTemplateDeclaration(
      ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
      ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
    assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
    Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);

    auto *N = new (allocator()) syntax::TemplateDeclaration;
    Builder.foldNode(Range, N, From);
    Builder.markChild(N, syntax::NodeRole::Declaration);
    return N;
  }

  /// A small helper to save some typing.
  llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }

  syntax::TreeBuilder &Builder;
  const ASTContext &Context;
};
} // namespace

void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
  DeclsWithoutSemicolons.insert(D);
}

void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
  if (Loc.isInvalid())
    return;
  Pending.assignRole(*findToken(Loc), Role);
}

void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
  if (!T)
    return;
  Pending.assignRole(*T, R);
}

void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
  assert(N);
  setRole(N, R);
}

void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
  auto *SN = Mapping.find(N);
  assert(SN != nullptr);
  setRole(SN, R);
}
void syntax::TreeBuilder::markChild(NestedNameSpecifierLoc NNSLoc, NodeRole R) {
  auto *SN = Mapping.find(NNSLoc);
  assert(SN != nullptr);
  setRole(SN, R);
}

void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
  if (!Child)
    return;

  syntax::Tree *ChildNode;
  if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
    // This is an expression in a statement position, consume the trailing
    // semicolon and form an 'ExpressionStatement' node.
    markExprChild(ChildExpr, NodeRole::Expression);
    ChildNode = new (allocator()) syntax::ExpressionStatement;
    // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
    Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
  } else {
    ChildNode = Mapping.find(Child);
  }
  assert(ChildNode != nullptr);
  setRole(ChildNode, Role);
}

void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
  if (!Child)
    return;
  Child = IgnoreImplicit(Child);

  syntax::Tree *ChildNode = Mapping.find(Child);
  assert(ChildNode != nullptr);
  setRole(ChildNode, Role);
}

const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
  if (L.isInvalid())
    return nullptr;
  auto It = LocationToToken.find(L.getRawEncoding());
  assert(It != LocationToToken.end());
  return It->second;
}

syntax::TranslationUnit *
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
  TreeBuilder Builder(A);
  BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
  return std::move(Builder).finalize();
}