SemaExpr.cpp
747 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//
#include "TreeTransform.h"
#include "UsedDeclVisitor.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Designator.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaFixItUtils.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace clang;
using namespace sema;
using llvm::RoundingMode;
/// Determine whether the use of this declaration is valid, without
/// emitting diagnostics.
bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
// See if this is an auto-typed variable whose initializer we are parsing.
if (ParsingInitForAutoVars.count(D))
return false;
// See if this is a deleted function.
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isDeleted())
return false;
// If the function has a deduced return type, and we can't deduce it,
// then we can't use it either.
if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
return false;
// See if this is an aligned allocation/deallocation function that is
// unavailable.
if (TreatUnavailableAsInvalid &&
isUnavailableAlignedAllocationFunction(*FD))
return false;
}
// See if this function is unavailable.
if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
return false;
return true;
}
static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
// Warn if this is used but marked unused.
if (const auto *A = D->getAttr<UnusedAttr>()) {
// [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
// should diagnose them.
if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
if (DC && !DC->hasAttr<UnusedAttr>())
S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
}
}
}
/// Emit a note explaining that this function is deleted.
void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
assert(Decl && Decl->isDeleted());
if (Decl->isDefaulted()) {
// If the method was explicitly defaulted, point at that declaration.
if (!Decl->isImplicit())
Diag(Decl->getLocation(), diag::note_implicitly_deleted);
// Try to diagnose why this special member function was implicitly
// deleted. This might fail, if that reason no longer applies.
DiagnoseDeletedDefaultedFunction(Decl);
return;
}
auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
if (Ctor && Ctor->isInheritingConstructor())
return NoteDeletedInheritingConstructor(Ctor);
Diag(Decl->getLocation(), diag::note_availability_specified_here)
<< Decl << 1;
}
/// Determine whether a FunctionDecl was ever declared with an
/// explicit storage class.
static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
for (auto I : D->redecls()) {
if (I->getStorageClass() != SC_None)
return true;
}
return false;
}
/// Check whether we're in an extern inline function and referring to a
/// variable or function with internal linkage (C11 6.7.4p3).
///
/// This is only a warning because we used to silently accept this code, but
/// in many cases it will not behave correctly. This is not enabled in C++ mode
/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
/// and so while there may still be user mistakes, most of the time we can't
/// prove that there are errors.
static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
const NamedDecl *D,
SourceLocation Loc) {
// This is disabled under C++; there are too many ways for this to fire in
// contexts where the warning is a false positive, or where it is technically
// correct but benign.
if (S.getLangOpts().CPlusPlus)
return;
// Check if this is an inlined function or method.
FunctionDecl *Current = S.getCurFunctionDecl();
if (!Current)
return;
if (!Current->isInlined())
return;
if (!Current->isExternallyVisible())
return;
// Check if the decl has internal linkage.
if (D->getFormalLinkage() != InternalLinkage)
return;
// Downgrade from ExtWarn to Extension if
// (1) the supposedly external inline function is in the main file,
// and probably won't be included anywhere else.
// (2) the thing we're referencing is a pure function.
// (3) the thing we're referencing is another inline function.
// This last can give us false negatives, but it's better than warning on
// wrappers for simple C library functions.
const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
if (!DowngradeWarning && UsedFn)
DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
: diag::ext_internal_in_extern_inline)
<< /*IsVar=*/!UsedFn << D;
S.MaybeSuggestAddingStaticToDecl(Current);
S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
<< D;
}
void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
const FunctionDecl *First = Cur->getFirstDecl();
// Suggest "static" on the function, if possible.
if (!hasAnyExplicitStorageClass(First)) {
SourceLocation DeclBegin = First->getSourceRange().getBegin();
Diag(DeclBegin, diag::note_convert_inline_to_static)
<< Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
}
}
/// Determine whether the use of this declaration is valid, and
/// emit any corresponding diagnostics.
///
/// This routine diagnoses various problems with referencing
/// declarations that can occur when using a declaration. For example,
/// it might warn if a deprecated or unavailable declaration is being
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
///
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
const ObjCInterfaceDecl *UnknownObjCClass,
bool ObjCPropertyAccess,
bool AvoidPartialAvailabilityChecks,
ObjCInterfaceDecl *ClassReceiver) {
SourceLocation Loc = Locs.front();
if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
// If there were any diagnostics suppressed by template argument deduction,
// emit them now.
auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
if (Pos != SuppressedDiagnostics.end()) {
for (const PartialDiagnosticAt &Suppressed : Pos->second)
Diag(Suppressed.first, Suppressed.second);
// Clear out the list of suppressed diagnostics, so that we don't emit
// them again for this specialization. However, we don't obsolete this
// entry from the table, because we want to avoid ever emitting these
// diagnostics again.
Pos->second.clear();
}
// C++ [basic.start.main]p3:
// The function 'main' shall not be used within a program.
if (cast<FunctionDecl>(D)->isMain())
Diag(Loc, diag::ext_main_used);
diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
}
// See if this is an auto-typed variable whose initializer we are parsing.
if (ParsingInitForAutoVars.count(D)) {
if (isa<BindingDecl>(D)) {
Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
<< D->getDeclName();
} else {
Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
<< D->getDeclName() << cast<VarDecl>(D)->getType();
}
return true;
}
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// See if this is a deleted function.
if (FD->isDeleted()) {
auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
if (Ctor && Ctor->isInheritingConstructor())
Diag(Loc, diag::err_deleted_inherited_ctor_use)
<< Ctor->getParent()
<< Ctor->getInheritedConstructor().getConstructor()->getParent();
else
Diag(Loc, diag::err_deleted_function_use);
NoteDeletedFunction(FD);
return true;
}
// [expr.prim.id]p4
// A program that refers explicitly or implicitly to a function with a
// trailing requires-clause whose constraint-expression is not satisfied,
// other than to declare it, is ill-formed. [...]
//
// See if this is a function with constraints that need to be satisfied.
// Check this before deducing the return type, as it might instantiate the
// definition.
if (FD->getTrailingRequiresClause()) {
ConstraintSatisfaction Satisfaction;
if (CheckFunctionConstraints(FD, Satisfaction, Loc))
// A diagnostic will have already been generated (non-constant
// constraint expression, for example)
return true;
if (!Satisfaction.IsSatisfied) {
Diag(Loc,
diag::err_reference_to_function_with_unsatisfied_constraints)
<< D;
DiagnoseUnsatisfiedConstraint(Satisfaction);
return true;
}
}
// If the function has a deduced return type, and we can't deduce it,
// then we can't use it either.
if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
DeduceReturnType(FD, Loc))
return true;
if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
return true;
if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
return true;
}
if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
// Lambdas are only default-constructible or assignable in C++2a onwards.
if (MD->getParent()->isLambda() &&
((isa<CXXConstructorDecl>(MD) &&
cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
<< !isa<CXXConstructorDecl>(MD);
}
}
auto getReferencedObjCProp = [](const NamedDecl *D) ->
const ObjCPropertyDecl * {
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->findPropertyDecl();
return nullptr;
};
if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
return true;
} else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
return true;
}
// [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
// Only the variables omp_in and omp_out are allowed in the combiner.
// Only the variables omp_priv and omp_orig are allowed in the
// initializer-clause.
auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
isa<VarDecl>(D)) {
Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
<< getCurFunction()->HasOMPDeclareReductionCombiner;
Diag(D->getLocation(), diag::note_entity_declared_at) << D;
return true;
}
// [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
// List-items in map clauses on this construct may only refer to the declared
// variable var and entities that could be referenced by a procedure defined
// at the same location
if (LangOpts.OpenMP && isa<VarDecl>(D) &&
!isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
<< getOpenMPDeclareMapperVarName();
Diag(D->getLocation(), diag::note_entity_declared_at) << D;
return true;
}
DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
AvoidPartialAvailabilityChecks, ClassReceiver);
DiagnoseUnusedOfDecl(*this, D, Loc);
diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
if (const auto *VD = dyn_cast<ValueDecl>(D))
checkDeviceDecl(VD, Loc);
if (!Context.getTargetInfo().isTLSSupported())
if (const auto *VD = dyn_cast<VarDecl>(D))
if (VD->getTLSKind() != VarDecl::TLS_None)
targetDiag(*Locs.begin(), diag::err_thread_unsupported);
}
if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
!isUnevaluatedContext()) {
// C++ [expr.prim.req.nested] p3
// A local parameter shall only appear as an unevaluated operand
// (Clause 8) within the constraint-expression.
Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
<< D;
Diag(D->getLocation(), diag::note_entity_declared_at) << D;
return true;
}
return false;
}
/// DiagnoseSentinelCalls - This routine checks whether a call or
/// message-send is to a declaration with the sentinel attribute, and
/// if so, it checks that the requirements of the sentinel are
/// satisfied.
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
ArrayRef<Expr *> Args) {
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
if (!attr)
return;
// The number of formal parameters of the declaration.
unsigned numFormalParams;
// The kind of declaration. This is also an index into a %select in
// the diagnostic.
enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
numFormalParams = MD->param_size();
calleeType = CT_Method;
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
numFormalParams = FD->param_size();
calleeType = CT_Function;
} else if (isa<VarDecl>(D)) {
QualType type = cast<ValueDecl>(D)->getType();
const FunctionType *fn = nullptr;
if (const PointerType *ptr = type->getAs<PointerType>()) {
fn = ptr->getPointeeType()->getAs<FunctionType>();
if (!fn) return;
calleeType = CT_Function;
} else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
fn = ptr->getPointeeType()->castAs<FunctionType>();
calleeType = CT_Block;
} else {
return;
}
if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
numFormalParams = proto->getNumParams();
} else {
numFormalParams = 0;
}
} else {
return;
}
// "nullPos" is the number of formal parameters at the end which
// effectively count as part of the variadic arguments. This is
// useful if you would prefer to not have *any* formal parameters,
// but the language forces you to have at least one.
unsigned nullPos = attr->getNullPos();
assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
// The number of arguments which should follow the sentinel.
unsigned numArgsAfterSentinel = attr->getSentinel();
// If there aren't enough arguments for all the formal parameters,
// the sentinel, and the args after the sentinel, complain.
if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
return;
}
// Otherwise, find the sentinel expression.
Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
if (!sentinelExpr) return;
if (sentinelExpr->isValueDependent()) return;
if (Context.isSentinelNullExpr(sentinelExpr)) return;
// Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
// or 'NULL' if those are actually defined in the context. Only use
// 'nil' for ObjC methods, where it's much more likely that the
// variadic arguments form a list of object pointers.
SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
std::string NullValue;
if (calleeType == CT_Method && PP.isMacroDefined("nil"))
NullValue = "nil";
else if (getLangOpts().CPlusPlus11)
NullValue = "nullptr";
else if (PP.isMacroDefined("NULL"))
NullValue = "NULL";
else
NullValue = "(void*) 0";
if (MissingNilLoc.isInvalid())
Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
else
Diag(MissingNilLoc, diag::warn_missing_sentinel)
<< int(calleeType)
<< FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
}
SourceRange Sema::getExprRange(Expr *E) const {
return E ? E->getSourceRange() : SourceRange();
}
//===----------------------------------------------------------------------===//
// Standard Promotions and Conversions
//===----------------------------------------------------------------------===//
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
// Handle any placeholder expressions which made it here.
if (E->getType()->isPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(E);
if (result.isInvalid()) return ExprError();
E = result.get();
}
QualType Ty = E->getType();
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
if (Ty->isFunctionType()) {
if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
return ExprError();
E = ImpCastExprToType(E, Context.getPointerType(Ty),
CK_FunctionToPointerDecay).get();
} else if (Ty->isArrayType()) {
// In C90 mode, arrays only promote to pointers if the array expression is
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
// type 'array of type' is converted to an expression that has type 'pointer
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
// that has type 'array of type' ...". The relevant change is "an lvalue"
// (C90) to "an expression" (C99).
//
// C++ 4.2p1:
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
// T" can be converted to an rvalue of type "pointer to T".
//
if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
CK_ArrayToPointerDecay).get();
}
return E;
}
static void CheckForNullPointerDereference(Sema &S, Expr *E) {
// Check to see if we are dereferencing a null pointer. If so,
// and if not volatile-qualified, this is undefined behavior that the
// optimizer will delete, so warn about it. People sometimes try to use this
// to get a deterministic trap and are surprised by clang's behavior. This
// only handles the pattern "*null", which is a very syntactic check.
const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
if (UO && UO->getOpcode() == UO_Deref &&
UO->getSubExpr()->getType()->isPointerType()) {
const LangAS AS =
UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
if ((!isTargetAddressSpace(AS) ||
(isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
S.Context, Expr::NPC_ValueDependentIsNotNull) &&
!UO->getType().isVolatileQualified()) {
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
S.PDiag(diag::warn_indirection_through_null)
<< UO->getSubExpr()->getSourceRange());
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
S.PDiag(diag::note_indirection_through_null));
}
}
}
static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
SourceLocation AssignLoc,
const Expr* RHS) {
const ObjCIvarDecl *IV = OIRE->getDecl();
if (!IV)
return;
DeclarationName MemberName = IV->getDeclName();
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
if (!Member || !Member->isStr("isa"))
return;
const Expr *Base = OIRE->getBase();
QualType BaseType = Base->getType();
if (OIRE->isArrow())
BaseType = BaseType->getPointeeType();
if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
ObjCInterfaceDecl *ClassDeclared = nullptr;
ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
if (!ClassDeclared->getSuperClass()
&& (*ClassDeclared->ivar_begin()) == IV) {
if (RHS) {
NamedDecl *ObjectSetClass =
S.LookupSingleName(S.TUScope,
&S.Context.Idents.get("object_setClass"),
SourceLocation(), S.LookupOrdinaryName);
if (ObjectSetClass) {
SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
<< FixItHint::CreateInsertion(OIRE->getBeginLoc(),
"object_setClass(")
<< FixItHint::CreateReplacement(
SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
<< FixItHint::CreateInsertion(RHSLocEnd, ")");
}
else
S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
} else {
NamedDecl *ObjectGetClass =
S.LookupSingleName(S.TUScope,
&S.Context.Idents.get("object_getClass"),
SourceLocation(), S.LookupOrdinaryName);
if (ObjectGetClass)
S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
<< FixItHint::CreateInsertion(OIRE->getBeginLoc(),
"object_getClass(")
<< FixItHint::CreateReplacement(
SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
else
S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
}
S.Diag(IV->getLocation(), diag::note_ivar_decl);
}
}
}
ExprResult Sema::DefaultLvalueConversion(Expr *E) {
// Handle any placeholder expressions which made it here.
if (E->getType()->isPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(E);
if (result.isInvalid()) return ExprError();
E = result.get();
}
// C++ [conv.lval]p1:
// A glvalue of a non-function, non-array type T can be
// converted to a prvalue.
if (!E->isGLValue()) return E;
QualType T = E->getType();
assert(!T.isNull() && "r-value conversion on typeless expression?");
// lvalue-to-rvalue conversion cannot be applied to function or array types.
if (T->isFunctionType() || T->isArrayType())
return E;
// We don't want to throw lvalue-to-rvalue casts on top of
// expressions of certain types in C++.
if (getLangOpts().CPlusPlus &&
(E->getType() == Context.OverloadTy ||
T->isDependentType() ||
T->isRecordType()))
return E;
// The C standard is actually really unclear on this point, and
// DR106 tells us what the result should be but not why. It's
// generally best to say that void types just doesn't undergo
// lvalue-to-rvalue at all. Note that expressions of unqualified
// 'void' type are never l-values, but qualified void can be.
if (T->isVoidType())
return E;
// OpenCL usually rejects direct accesses to values of 'half' type.
if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
T->isHalfType()) {
Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
<< 0 << T;
return ExprError();
}
CheckForNullPointerDereference(*this, E);
if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
&Context.Idents.get("object_getClass"),
SourceLocation(), LookupOrdinaryName);
if (ObjectGetClass)
Diag(E->getExprLoc(), diag::warn_objc_isa_use)
<< FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
<< FixItHint::CreateReplacement(
SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
else
Diag(E->getExprLoc(), diag::warn_objc_isa_use);
}
else if (const ObjCIvarRefExpr *OIRE =
dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
// C++ [conv.lval]p1:
// [...] If T is a non-class type, the type of the prvalue is the
// cv-unqualified version of T. Otherwise, the type of the
// rvalue is T.
//
// C99 6.3.2.1p2:
// If the lvalue has qualified type, the value has the unqualified
// version of the type of the lvalue; otherwise, the value has the
// type of the lvalue.
if (T.hasQualifiers())
T = T.getUnqualifiedType();
// Under the MS ABI, lock down the inheritance model now.
if (T->isMemberPointerType() &&
Context.getTargetInfo().getCXXABI().isMicrosoft())
(void)isCompleteType(E->getExprLoc(), T);
ExprResult Res = CheckLValueToRValueConversionOperand(E);
if (Res.isInvalid())
return Res;
E = Res.get();
// Loading a __weak object implicitly retains the value, so we need a cleanup to
// balance that.
if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
Cleanup.setExprNeedsCleanups(true);
if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
Cleanup.setExprNeedsCleanups(true);
// C++ [conv.lval]p3:
// If T is cv std::nullptr_t, the result is a null pointer constant.
CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue,
FPOptionsOverride());
// C11 6.3.2.1p2:
// ... if the lvalue has atomic type, the value has the non-atomic version
// of the type of the lvalue ...
if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
T = Atomic->getValueType().getUnqualifiedType();
Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
nullptr, VK_RValue, FPOptionsOverride());
}
return Res;
}
ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
if (Res.isInvalid())
return ExprError();
Res = DefaultLvalueConversion(Res.get());
if (Res.isInvalid())
return ExprError();
return Res;
}
/// CallExprUnaryConversions - a special case of an unary conversion
/// performed on a function designator of a call expression.
ExprResult Sema::CallExprUnaryConversions(Expr *E) {
QualType Ty = E->getType();
ExprResult Res = E;
// Only do implicit cast for a function type, but not for a pointer
// to function type.
if (Ty->isFunctionType()) {
Res = ImpCastExprToType(E, Context.getPointerType(Ty),
CK_FunctionToPointerDecay);
if (Res.isInvalid())
return ExprError();
}
Res = DefaultLvalueConversion(Res.get());
if (Res.isInvalid())
return ExprError();
return Res.get();
}
/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are
/// sometimes suppressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
ExprResult Sema::UsualUnaryConversions(Expr *E) {
// First, convert to an r-value.
ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
if (Res.isInvalid())
return ExprError();
E = Res.get();
QualType Ty = E->getType();
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
// Half FP have to be promoted to float unless it is natively supported
if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
// Try to perform integral promotions if the object has a theoretically
// promotable type.
if (Ty->isIntegralOrUnscopedEnumerationType()) {
// C99 6.3.1.1p2:
//
// The following may be used in an expression wherever an int or
// unsigned int may be used:
// - an object or expression with an integer type whose integer
// conversion rank is less than or equal to the rank of int
// and unsigned int.
// - A bit-field of type _Bool, int, signed int, or unsigned int.
//
// If an int can represent all values of the original type, the
// value is converted to an int; otherwise, it is converted to an
// unsigned int. These are called the integer promotions. All
// other types are unchanged by the integer promotions.
QualType PTy = Context.isPromotableBitField(E);
if (!PTy.isNull()) {
E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
return E;
}
if (Ty->isPromotableIntegerType()) {
QualType PT = Context.getPromotedIntegerType(Ty);
E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
return E;
}
}
return E;
}
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float or __fp16
/// are promoted to double. All other argument types are converted by
/// UsualUnaryConversions().
ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
QualType Ty = E->getType();
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
ExprResult Res = UsualUnaryConversions(E);
if (Res.isInvalid())
return ExprError();
E = Res.get();
// If this is a 'float' or '__fp16' (CVR qualified or typedef)
// promote to double.
// Note that default argument promotion applies only to float (and
// half/fp16); it does not apply to _Float16.
const BuiltinType *BTy = Ty->getAs<BuiltinType>();
if (BTy && (BTy->getKind() == BuiltinType::Half ||
BTy->getKind() == BuiltinType::Float)) {
if (getLangOpts().OpenCL &&
!getOpenCLOptions().isEnabled("cl_khr_fp64")) {
if (BTy->getKind() == BuiltinType::Half) {
E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
}
} else {
E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
}
}
// C++ performs lvalue-to-rvalue conversion as a default argument
// promotion, even on class types, but note:
// C++11 [conv.lval]p2:
// When an lvalue-to-rvalue conversion occurs in an unevaluated
// operand or a subexpression thereof the value contained in the
// referenced object is not accessed. Otherwise, if the glvalue
// has a class type, the conversion copy-initializes a temporary
// of type T from the glvalue and the result of the conversion
// is a prvalue for the temporary.
// FIXME: add some way to gate this entire thing for correctness in
// potentially potentially evaluated contexts.
if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
ExprResult Temp = PerformCopyInitialization(
InitializedEntity::InitializeTemporary(E->getType()),
E->getExprLoc(), E);
if (Temp.isInvalid())
return ExprError();
E = Temp.get();
}
return E;
}
/// Determine the degree of POD-ness for an expression.
/// Incomplete types are considered POD, since this check can be performed
/// when we're in an unevaluated context.
Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
if (Ty->isIncompleteType()) {
// C++11 [expr.call]p7:
// After these conversions, if the argument does not have arithmetic,
// enumeration, pointer, pointer to member, or class type, the program
// is ill-formed.
//
// Since we've already performed array-to-pointer and function-to-pointer
// decay, the only such type in C++ is cv void. This also handles
// initializer lists as variadic arguments.
if (Ty->isVoidType())
return VAK_Invalid;
if (Ty->isObjCObjectType())
return VAK_Invalid;
return VAK_Valid;
}
if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
return VAK_Invalid;
if (Ty.isCXX98PODType(Context))
return VAK_Valid;
// C++11 [expr.call]p7:
// Passing a potentially-evaluated argument of class type (Clause 9)
// having a non-trivial copy constructor, a non-trivial move constructor,
// or a non-trivial destructor, with no corresponding parameter,
// is conditionally-supported with implementation-defined semantics.
if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
if (!Record->hasNonTrivialCopyConstructor() &&
!Record->hasNonTrivialMoveConstructor() &&
!Record->hasNonTrivialDestructor())
return VAK_ValidInCXX11;
if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
return VAK_Valid;
if (Ty->isObjCObjectType())
return VAK_Invalid;
if (getLangOpts().MSVCCompat)
return VAK_MSVCUndefined;
// FIXME: In C++11, these cases are conditionally-supported, meaning we're
// permitted to reject them. We should consider doing so.
return VAK_Undefined;
}
void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
// Don't allow one to pass an Objective-C interface to a vararg.
const QualType &Ty = E->getType();
VarArgKind VAK = isValidVarArgType(Ty);
// Complain about passing non-POD types through varargs.
switch (VAK) {
case VAK_ValidInCXX11:
DiagRuntimeBehavior(
E->getBeginLoc(), nullptr,
PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
LLVM_FALLTHROUGH;
case VAK_Valid:
if (Ty->isRecordType()) {
// This is unlikely to be what the user intended. If the class has a
// 'c_str' member function, the user probably meant to call that.
DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
PDiag(diag::warn_pass_class_arg_to_vararg)
<< Ty << CT << hasCStrMethod(E) << ".c_str()");
}
break;
case VAK_Undefined:
case VAK_MSVCUndefined:
DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
<< getLangOpts().CPlusPlus11 << Ty << CT);
break;
case VAK_Invalid:
if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
Diag(E->getBeginLoc(),
diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
<< Ty << CT;
else if (Ty->isObjCObjectType())
DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
<< Ty << CT);
else
Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
<< isa<InitListExpr>(E) << Ty << CT;
break;
}
}
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
/// will create a trap if the resulting type is not a POD type.
ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
FunctionDecl *FDecl) {
if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
// Strip the unbridged-cast placeholder expression off, if applicable.
if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
(CT == VariadicMethod ||
(FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
E = stripARCUnbridgedCast(E);
// Otherwise, do normal placeholder checking.
} else {
ExprResult ExprRes = CheckPlaceholderExpr(E);
if (ExprRes.isInvalid())
return ExprError();
E = ExprRes.get();
}
}
ExprResult ExprRes = DefaultArgumentPromotion(E);
if (ExprRes.isInvalid())
return ExprError();
// Copy blocks to the heap.
if (ExprRes.get()->getType()->isBlockPointerType())
maybeExtendBlockObject(ExprRes);
E = ExprRes.get();
// Diagnostics regarding non-POD argument types are
// emitted along with format string checking in Sema::CheckFunctionCall().
if (isValidVarArgType(E->getType()) == VAK_Undefined) {
// Turn this into a trap.
CXXScopeSpec SS;
SourceLocation TemplateKWLoc;
UnqualifiedId Name;
Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
E->getBeginLoc());
ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
/*HasTrailingLParen=*/true,
/*IsAddressOfOperand=*/false);
if (TrapFn.isInvalid())
return ExprError();
ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
None, E->getEndLoc());
if (Call.isInvalid())
return ExprError();
ExprResult Comma =
ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
if (Comma.isInvalid())
return ExprError();
return Comma.get();
}
if (!getLangOpts().CPlusPlus &&
RequireCompleteType(E->getExprLoc(), E->getType(),
diag::err_call_incomplete_argument))
return ExprError();
return E;
}
/// Converts an integer to complex float type. Helper function of
/// UsualArithmeticConversions()
///
/// \return false if the integer expression is an integer type and is
/// successfully converted to the complex type.
static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
ExprResult &ComplexExpr,
QualType IntTy,
QualType ComplexTy,
bool SkipCast) {
if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
if (SkipCast) return false;
if (IntTy->isIntegerType()) {
QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
CK_FloatingRealToComplex);
} else {
assert(IntTy->isComplexIntegerType());
IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
CK_IntegralComplexToFloatingComplex);
}
return false;
}
/// Handle arithmetic conversion with complex types. Helper function of
/// UsualArithmeticConversions()
static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
ExprResult &RHS, QualType LHSType,
QualType RHSType,
bool IsCompAssign) {
// if we have an integer operand, the result is the complex type.
if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
/*skipCast*/false))
return LHSType;
if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
/*skipCast*/IsCompAssign))
return RHSType;
// This handles complex/complex, complex/float, or float/complex.
// When both operands are complex, the shorter operand is converted to the
// type of the longer, and that is the type of the result. This corresponds
// to what is done when combining two real floating-point operands.
// The fun begins when size promotion occur across type domains.
// From H&S 6.3.4: When one operand is complex and the other is a real
// floating-point type, the less precise type is converted, within it's
// real or complex domain, to the precision of the other type. For example,
// when combining a "long double" with a "double _Complex", the
// "double _Complex" is promoted to "long double _Complex".
// Compute the rank of the two types, regardless of whether they are complex.
int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
QualType LHSElementType =
LHSComplexType ? LHSComplexType->getElementType() : LHSType;
QualType RHSElementType =
RHSComplexType ? RHSComplexType->getElementType() : RHSType;
QualType ResultType = S.Context.getComplexType(LHSElementType);
if (Order < 0) {
// Promote the precision of the LHS if not an assignment.
ResultType = S.Context.getComplexType(RHSElementType);
if (!IsCompAssign) {
if (LHSComplexType)
LHS =
S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
else
LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
}
} else if (Order > 0) {
// Promote the precision of the RHS.
if (RHSComplexType)
RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
else
RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
}
return ResultType;
}
/// Handle arithmetic conversion from integer to float. Helper function
/// of UsualArithmeticConversions()
static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
ExprResult &IntExpr,
QualType FloatTy, QualType IntTy,
bool ConvertFloat, bool ConvertInt) {
if (IntTy->isIntegerType()) {
if (ConvertInt)
// Convert intExpr to the lhs floating point type.
IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
CK_IntegralToFloating);
return FloatTy;
}
// Convert both sides to the appropriate complex float.
assert(IntTy->isComplexIntegerType());
QualType result = S.Context.getComplexType(FloatTy);
// _Complex int -> _Complex float
if (ConvertInt)
IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
CK_IntegralComplexToFloatingComplex);
// float -> _Complex float
if (ConvertFloat)
FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
CK_FloatingRealToComplex);
return result;
}
/// Handle arithmethic conversion with floating point types. Helper
/// function of UsualArithmeticConversions()
static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
ExprResult &RHS, QualType LHSType,
QualType RHSType, bool IsCompAssign) {
bool LHSFloat = LHSType->isRealFloatingType();
bool RHSFloat = RHSType->isRealFloatingType();
// FIXME: Implement floating to fixed point conversion.(Bug 46268)
// Reference N1169 4.1.4 (Type conversion, usual arithmetic conversions).
if ((LHSType->isFixedPointType() && RHSFloat) ||
(LHSFloat && RHSType->isFixedPointType()))
return QualType();
// If we have two real floating types, convert the smaller operand
// to the bigger result.
if (LHSFloat && RHSFloat) {
int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
if (order > 0) {
RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
return LHSType;
}
assert(order < 0 && "illegal float comparison");
if (!IsCompAssign)
LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
return RHSType;
}
if (LHSFloat) {
// Half FP has to be promoted to float unless it is natively supported
if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
LHSType = S.Context.FloatTy;
return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
/*ConvertFloat=*/!IsCompAssign,
/*ConvertInt=*/ true);
}
assert(RHSFloat);
return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
/*ConvertFloat=*/ true,
/*ConvertInt=*/!IsCompAssign);
}
/// Diagnose attempts to convert between __float128 and long double if
/// there is no support for such conversion. Helper function of
/// UsualArithmeticConversions().
static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
QualType RHSType) {
/* No issue converting if at least one of the types is not a floating point
type or the two types have the same rank.
*/
if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
return false;
assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
"The remaining types must be floating point types.");
auto *LHSComplex = LHSType->getAs<ComplexType>();
auto *RHSComplex = RHSType->getAs<ComplexType>();
QualType LHSElemType = LHSComplex ?
LHSComplex->getElementType() : LHSType;
QualType RHSElemType = RHSComplex ?
RHSComplex->getElementType() : RHSType;
// No issue if the two types have the same representation
if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
&S.Context.getFloatTypeSemantics(RHSElemType))
return false;
bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
RHSElemType == S.Context.LongDoubleTy);
Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
RHSElemType == S.Context.Float128Ty);
// We've handled the situation where __float128 and long double have the same
// representation. We allow all conversions for all possible long double types
// except PPC's double double.
return Float128AndLongDouble &&
(&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
&llvm::APFloat::PPCDoubleDouble());
}
typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
namespace {
/// These helper callbacks are placed in an anonymous namespace to
/// permit their use as function template parameters.
ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
return S.ImpCastExprToType(op, toType, CK_IntegralCast);
}
ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
CK_IntegralComplexCast);
}
}
/// Handle integer arithmetic conversions. Helper function of
/// UsualArithmeticConversions()
template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
ExprResult &RHS, QualType LHSType,
QualType RHSType, bool IsCompAssign) {
// The rules for this case are in C99 6.3.1.8
int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
if (LHSSigned == RHSSigned) {
// Same signedness; use the higher-ranked type
if (order >= 0) {
RHS = (*doRHSCast)(S, RHS.get(), LHSType);
return LHSType;
} else if (!IsCompAssign)
LHS = (*doLHSCast)(S, LHS.get(), RHSType);
return RHSType;
} else if (order != (LHSSigned ? 1 : -1)) {
// The unsigned type has greater than or equal rank to the
// signed type, so use the unsigned type
if (RHSSigned) {
RHS = (*doRHSCast)(S, RHS.get(), LHSType);
return LHSType;
} else if (!IsCompAssign)
LHS = (*doLHSCast)(S, LHS.get(), RHSType);
return RHSType;
} else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
// The two types are different widths; if we are here, that
// means the signed type is larger than the unsigned type, so
// use the signed type.
if (LHSSigned) {
RHS = (*doRHSCast)(S, RHS.get(), LHSType);
return LHSType;
} else if (!IsCompAssign)
LHS = (*doLHSCast)(S, LHS.get(), RHSType);
return RHSType;
} else {
// The signed type is higher-ranked than the unsigned type,
// but isn't actually any bigger (like unsigned int and long
// on most 32-bit systems). Use the unsigned type corresponding
// to the signed type.
QualType result =
S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
RHS = (*doRHSCast)(S, RHS.get(), result);
if (!IsCompAssign)
LHS = (*doLHSCast)(S, LHS.get(), result);
return result;
}
}
/// Handle conversions with GCC complex int extension. Helper function
/// of UsualArithmeticConversions()
static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
ExprResult &RHS, QualType LHSType,
QualType RHSType,
bool IsCompAssign) {
const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
if (LHSComplexInt && RHSComplexInt) {
QualType LHSEltType = LHSComplexInt->getElementType();
QualType RHSEltType = RHSComplexInt->getElementType();
QualType ScalarType =
handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
(S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
return S.Context.getComplexType(ScalarType);
}
if (LHSComplexInt) {
QualType LHSEltType = LHSComplexInt->getElementType();
QualType ScalarType =
handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
(S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
QualType ComplexType = S.Context.getComplexType(ScalarType);
RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
CK_IntegralRealToComplex);
return ComplexType;
}
assert(RHSComplexInt);
QualType RHSEltType = RHSComplexInt->getElementType();
QualType ScalarType =
handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
(S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
QualType ComplexType = S.Context.getComplexType(ScalarType);
if (!IsCompAssign)
LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
CK_IntegralRealToComplex);
return ComplexType;
}
/// Return the rank of a given fixed point or integer type. The value itself
/// doesn't matter, but the values must be increasing with proper increasing
/// rank as described in N1169 4.1.1.
static unsigned GetFixedPointRank(QualType Ty) {
const auto *BTy = Ty->getAs<BuiltinType>();
assert(BTy && "Expected a builtin type.");
switch (BTy->getKind()) {
case BuiltinType::ShortFract:
case BuiltinType::UShortFract:
case BuiltinType::SatShortFract:
case BuiltinType::SatUShortFract:
return 1;
case BuiltinType::Fract:
case BuiltinType::UFract:
case BuiltinType::SatFract:
case BuiltinType::SatUFract:
return 2;
case BuiltinType::LongFract:
case BuiltinType::ULongFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatULongFract:
return 3;
case BuiltinType::ShortAccum:
case BuiltinType::UShortAccum:
case BuiltinType::SatShortAccum:
case BuiltinType::SatUShortAccum:
return 4;
case BuiltinType::Accum:
case BuiltinType::UAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatUAccum:
return 5;
case BuiltinType::LongAccum:
case BuiltinType::ULongAccum:
case BuiltinType::SatLongAccum:
case BuiltinType::SatULongAccum:
return 6;
default:
if (BTy->isInteger())
return 0;
llvm_unreachable("Unexpected fixed point or integer type");
}
}
/// handleFixedPointConversion - Fixed point operations between fixed
/// point types and integers or other fixed point types do not fall under
/// usual arithmetic conversion since these conversions could result in loss
/// of precsision (N1169 4.1.4). These operations should be calculated with
/// the full precision of their result type (N1169 4.1.6.2.1).
static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
QualType RHSTy) {
assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
"Expected at least one of the operands to be a fixed point type");
assert((LHSTy->isFixedPointOrIntegerType() ||
RHSTy->isFixedPointOrIntegerType()) &&
"Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types");
// If one operand has signed fixed-point type and the other operand has
// unsigned fixed-point type, then the unsigned fixed-point operand is
// converted to its corresponding signed fixed-point type and the resulting
// type is the type of the converted operand.
if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
// The result type is the type with the highest rank, whereby a fixed-point
// conversion rank is always greater than an integer conversion rank; if the
// type of either of the operands is a saturating fixedpoint type, the result
// type shall be the saturating fixed-point type corresponding to the type
// with the highest rank; the resulting value is converted (taking into
// account rounding and overflow) to the precision of the resulting type.
// Same ranks between signed and unsigned types are resolved earlier, so both
// types are either signed or both unsigned at this point.
unsigned LHSTyRank = GetFixedPointRank(LHSTy);
unsigned RHSTyRank = GetFixedPointRank(RHSTy);
QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
return ResultTy;
}
/// Check that the usual arithmetic conversions can be performed on this pair of
/// expressions that might be of enumeration type.
static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
SourceLocation Loc,
Sema::ArithConvKind ACK) {
// C++2a [expr.arith.conv]p1:
// If one operand is of enumeration type and the other operand is of a
// different enumeration type or a floating-point type, this behavior is
// deprecated ([depr.arith.conv.enum]).
//
// Warn on this in all language modes. Produce a deprecation warning in C++20.
// Eventually we will presumably reject these cases (in C++23 onwards?).
QualType L = LHS->getType(), R = RHS->getType();
bool LEnum = L->isUnscopedEnumerationType(),
REnum = R->isUnscopedEnumerationType();
bool IsCompAssign = ACK == Sema::ACK_CompAssign;
if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
(REnum && L->isFloatingType())) {
S.Diag(Loc, S.getLangOpts().CPlusPlus20
? diag::warn_arith_conv_enum_float_cxx20
: diag::warn_arith_conv_enum_float)
<< LHS->getSourceRange() << RHS->getSourceRange()
<< (int)ACK << LEnum << L << R;
} else if (!IsCompAssign && LEnum && REnum &&
!S.Context.hasSameUnqualifiedType(L, R)) {
unsigned DiagID;
if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
!R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
// If either enumeration type is unnamed, it's less likely that the
// user cares about this, but this situation is still deprecated in
// C++2a. Use a different warning group.
DiagID = S.getLangOpts().CPlusPlus20
? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
: diag::warn_arith_conv_mixed_anon_enum_types;
} else if (ACK == Sema::ACK_Conditional) {
// Conditional expressions are separated out because they have
// historically had a different warning flag.
DiagID = S.getLangOpts().CPlusPlus20
? diag::warn_conditional_mixed_enum_types_cxx20
: diag::warn_conditional_mixed_enum_types;
} else if (ACK == Sema::ACK_Comparison) {
// Comparison expressions are separated out because they have
// historically had a different warning flag.
DiagID = S.getLangOpts().CPlusPlus20
? diag::warn_comparison_mixed_enum_types_cxx20
: diag::warn_comparison_mixed_enum_types;
} else {
DiagID = S.getLangOpts().CPlusPlus20
? diag::warn_arith_conv_mixed_enum_types_cxx20
: diag::warn_arith_conv_mixed_enum_types;
}
S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
<< (int)ACK << L << R;
}
}
/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
/// responsible for emitting appropriate error diagnostics.
QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
ArithConvKind ACK) {
checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
if (ACK != ACK_CompAssign) {
LHS = UsualUnaryConversions(LHS.get());
if (LHS.isInvalid())
return QualType();
}
RHS = UsualUnaryConversions(RHS.get());
if (RHS.isInvalid())
return QualType();
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType LHSType =
Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
QualType RHSType =
Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
// For conversion purposes, we ignore any atomic qualifier on the LHS.
if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
LHSType = AtomicLHS->getValueType();
// If both types are identical, no conversion is needed.
if (LHSType == RHSType)
return LHSType;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
return QualType();
// Apply unary and bitfield promotions to the LHS's type.
QualType LHSUnpromotedType = LHSType;
if (LHSType->isPromotableIntegerType())
LHSType = Context.getPromotedIntegerType(LHSType);
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
if (!LHSBitfieldPromoteTy.isNull())
LHSType = LHSBitfieldPromoteTy;
if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
// If both types are identical, no conversion is needed.
if (LHSType == RHSType)
return LHSType;
// ExtInt types aren't subject to conversions between them or normal integers,
// so this fails.
if(LHSType->isExtIntType() || RHSType->isExtIntType())
return QualType();
// At this point, we have two different arithmetic types.
// Diagnose attempts to convert between __float128 and long double where
// such conversions currently can't be handled.
if (unsupportedTypeConversion(*this, LHSType, RHSType))
return QualType();
// Handle complex types first (C99 6.3.1.8p1).
if (LHSType->isComplexType() || RHSType->isComplexType())
return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
ACK == ACK_CompAssign);
// Now handle "real" floating types (i.e. float, double, long double).
if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
ACK == ACK_CompAssign);
// Handle GCC complex int extension.
if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
ACK == ACK_CompAssign);
if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
return handleFixedPointConversion(*this, LHSType, RHSType);
// Finally, we have two differing integer types.
return handleIntegerConversion<doIntegralCast, doIntegralCast>
(*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
}
//===----------------------------------------------------------------------===//
// Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//
ExprResult
Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
ArrayRef<ParsedType> ArgTypes,
ArrayRef<Expr *> ArgExprs) {
unsigned NumAssocs = ArgTypes.size();
assert(NumAssocs == ArgExprs.size());
TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
for (unsigned i = 0; i < NumAssocs; ++i) {
if (ArgTypes[i])
(void) GetTypeFromParser(ArgTypes[i], &Types[i]);
else
Types[i] = nullptr;
}
ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
ControllingExpr,
llvm::makeArrayRef(Types, NumAssocs),
ArgExprs);
delete [] Types;
return ER;
}
ExprResult
Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
Expr *ControllingExpr,
ArrayRef<TypeSourceInfo *> Types,
ArrayRef<Expr *> Exprs) {
unsigned NumAssocs = Types.size();
assert(NumAssocs == Exprs.size());
// Decay and strip qualifiers for the controlling expression type, and handle
// placeholder type replacement. See committee discussion from WG14 DR423.
{
EnterExpressionEvaluationContext Unevaluated(
*this, Sema::ExpressionEvaluationContext::Unevaluated);
ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
if (R.isInvalid())
return ExprError();
ControllingExpr = R.get();
}
// The controlling expression is an unevaluated operand, so side effects are
// likely unintended.
if (!inTemplateInstantiation() &&
ControllingExpr->HasSideEffects(Context, false))
Diag(ControllingExpr->getExprLoc(),
diag::warn_side_effects_unevaluated_context);
bool TypeErrorFound = false,
IsResultDependent = ControllingExpr->isTypeDependent(),
ContainsUnexpandedParameterPack
= ControllingExpr->containsUnexpandedParameterPack();
for (unsigned i = 0; i < NumAssocs; ++i) {
if (Exprs[i]->containsUnexpandedParameterPack())
ContainsUnexpandedParameterPack = true;
if (Types[i]) {
if (Types[i]->getType()->containsUnexpandedParameterPack())
ContainsUnexpandedParameterPack = true;
if (Types[i]->getType()->isDependentType()) {
IsResultDependent = true;
} else {
// C11 6.5.1.1p2 "The type name in a generic association shall specify a
// complete object type other than a variably modified type."
unsigned D = 0;
if (Types[i]->getType()->isIncompleteType())
D = diag::err_assoc_type_incomplete;
else if (!Types[i]->getType()->isObjectType())
D = diag::err_assoc_type_nonobject;
else if (Types[i]->getType()->isVariablyModifiedType())
D = diag::err_assoc_type_variably_modified;
if (D != 0) {
Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
<< Types[i]->getTypeLoc().getSourceRange()
<< Types[i]->getType();
TypeErrorFound = true;
}
// C11 6.5.1.1p2 "No two generic associations in the same generic
// selection shall specify compatible types."
for (unsigned j = i+1; j < NumAssocs; ++j)
if (Types[j] && !Types[j]->getType()->isDependentType() &&
Context.typesAreCompatible(Types[i]->getType(),
Types[j]->getType())) {
Diag(Types[j]->getTypeLoc().getBeginLoc(),
diag::err_assoc_compatible_types)
<< Types[j]->getTypeLoc().getSourceRange()
<< Types[j]->getType()
<< Types[i]->getType();
Diag(Types[i]->getTypeLoc().getBeginLoc(),
diag::note_compat_assoc)
<< Types[i]->getTypeLoc().getSourceRange()
<< Types[i]->getType();
TypeErrorFound = true;
}
}
}
}
if (TypeErrorFound)
return ExprError();
// If we determined that the generic selection is result-dependent, don't
// try to compute the result expression.
if (IsResultDependent)
return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
Exprs, DefaultLoc, RParenLoc,
ContainsUnexpandedParameterPack);
SmallVector<unsigned, 1> CompatIndices;
unsigned DefaultIndex = -1U;
for (unsigned i = 0; i < NumAssocs; ++i) {
if (!Types[i])
DefaultIndex = i;
else if (Context.typesAreCompatible(ControllingExpr->getType(),
Types[i]->getType()))
CompatIndices.push_back(i);
}
// C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
// type compatible with at most one of the types named in its generic
// association list."
if (CompatIndices.size() > 1) {
// We strip parens here because the controlling expression is typically
// parenthesized in macro definitions.
ControllingExpr = ControllingExpr->IgnoreParens();
Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
<< ControllingExpr->getSourceRange() << ControllingExpr->getType()
<< (unsigned)CompatIndices.size();
for (unsigned I : CompatIndices) {
Diag(Types[I]->getTypeLoc().getBeginLoc(),
diag::note_compat_assoc)
<< Types[I]->getTypeLoc().getSourceRange()
<< Types[I]->getType();
}
return ExprError();
}
// C11 6.5.1.1p2 "If a generic selection has no default generic association,
// its controlling expression shall have type compatible with exactly one of
// the types named in its generic association list."
if (DefaultIndex == -1U && CompatIndices.size() == 0) {
// We strip parens here because the controlling expression is typically
// parenthesized in macro definitions.
ControllingExpr = ControllingExpr->IgnoreParens();
Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
<< ControllingExpr->getSourceRange() << ControllingExpr->getType();
return ExprError();
}
// C11 6.5.1.1p3 "If a generic selection has a generic association with a
// type name that is compatible with the type of the controlling expression,
// then the result expression of the generic selection is the expression
// in that generic association. Otherwise, the result expression of the
// generic selection is the expression in the default generic association."
unsigned ResultIndex =
CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
return GenericSelectionExpr::Create(
Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
ContainsUnexpandedParameterPack, ResultIndex);
}
/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
/// location of the token and the offset of the ud-suffix within it.
static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
unsigned Offset) {
return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
S.getLangOpts());
}
/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
/// the corresponding cooked (non-raw) literal operator, and build a call to it.
static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
IdentifierInfo *UDSuffix,
SourceLocation UDSuffixLoc,
ArrayRef<Expr*> Args,
SourceLocation LitEndLoc) {
assert(Args.size() <= 2 && "too many arguments for literal operator");
QualType ArgTy[2];
for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
ArgTy[ArgIdx] = Args[ArgIdx]->getType();
if (ArgTy[ArgIdx]->isArrayType())
ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
}
DeclarationName OpName =
S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
/*AllowRaw*/ false, /*AllowTemplate*/ false,
/*AllowStringTemplate*/ false,
/*DiagnoseMissing*/ true) == Sema::LOLR_Error)
return ExprError();
return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
}
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens. However, the common case is that StringToks points to one
/// string.
///
ExprResult
Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
assert(!StringToks.empty() && "Must have at least one string!");
StringLiteralParser Literal(StringToks, PP);
if (Literal.hadError)
return ExprError();
SmallVector<SourceLocation, 4> StringTokLocs;
for (const Token &Tok : StringToks)
StringTokLocs.push_back(Tok.getLocation());
QualType CharTy = Context.CharTy;
StringLiteral::StringKind Kind = StringLiteral::Ascii;
if (Literal.isWide()) {
CharTy = Context.getWideCharType();
Kind = StringLiteral::Wide;
} else if (Literal.isUTF8()) {
if (getLangOpts().Char8)
CharTy = Context.Char8Ty;
Kind = StringLiteral::UTF8;
} else if (Literal.isUTF16()) {
CharTy = Context.Char16Ty;
Kind = StringLiteral::UTF16;
} else if (Literal.isUTF32()) {
CharTy = Context.Char32Ty;
Kind = StringLiteral::UTF32;
} else if (Literal.isPascal()) {
CharTy = Context.UnsignedCharTy;
}
// Warn on initializing an array of char from a u8 string literal; this
// becomes ill-formed in C++2a.
if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
!getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
// Create removals for all 'u8' prefixes in the string literal(s). This
// ensures C++2a compatibility (but may change the program behavior when
// built by non-Clang compilers for which the execution character set is
// not always UTF-8).
auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
SourceLocation RemovalDiagLoc;
for (const Token &Tok : StringToks) {
if (Tok.getKind() == tok::utf8_string_literal) {
if (RemovalDiagLoc.isInvalid())
RemovalDiagLoc = Tok.getLocation();
RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
Tok.getLocation(),
Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
getSourceManager(), getLangOpts())));
}
}
Diag(RemovalDiagLoc, RemovalDiag);
}
QualType StrTy =
Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
Kind, Literal.Pascal, StrTy,
&StringTokLocs[0],
StringTokLocs.size());
if (Literal.getUDSuffix().empty())
return Lit;
// We're building a user-defined literal.
IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
SourceLocation UDSuffixLoc =
getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
Literal.getUDSuffixOffset());
// Make sure we're allowed user-defined literals here.
if (!UDLScope)
return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
// C++11 [lex.ext]p5: The literal L is treated as a call of the form
// operator "" X (str, len)
QualType SizeType = Context.getSizeType();
DeclarationName OpName =
Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
QualType ArgTy[] = {
Context.getArrayDecayedType(StrTy), SizeType
};
LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
switch (LookupLiteralOperator(UDLScope, R, ArgTy,
/*AllowRaw*/ false, /*AllowTemplate*/ false,
/*AllowStringTemplate*/ true,
/*DiagnoseMissing*/ true)) {
case LOLR_Cooked: {
llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
StringTokLocs[0]);
Expr *Args[] = { Lit, LenArg };
return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
}
case LOLR_StringTemplate: {
TemplateArgumentListInfo ExplicitArgs;
unsigned CharBits = Context.getIntWidth(CharTy);
bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
llvm::APSInt Value(CharBits, CharIsUnsigned);
TemplateArgument TypeArg(CharTy);
TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
Value = Lit->getCodeUnit(I);
TemplateArgument Arg(Context, Value, CharTy);
TemplateArgumentLocInfo ArgInfo;
ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
}
return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
&ExplicitArgs);
}
case LOLR_Raw:
case LOLR_Template:
case LOLR_ErrorNoDiagnostic:
llvm_unreachable("unexpected literal operator lookup result");
case LOLR_Error:
return ExprError();
}
llvm_unreachable("unexpected literal operator lookup result");
}
DeclRefExpr *
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
SourceLocation Loc,
const CXXScopeSpec *SS) {
DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
}
DeclRefExpr *
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
const CXXScopeSpec *SS, NamedDecl *FoundD,
SourceLocation TemplateKWLoc,
const TemplateArgumentListInfo *TemplateArgs) {
NestedNameSpecifierLoc NNS =
SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
TemplateArgs);
}
NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
// A declaration named in an unevaluated operand never constitutes an odr-use.
if (isUnevaluatedContext())
return NOUR_Unevaluated;
// C++2a [basic.def.odr]p4:
// A variable x whose name appears as a potentially-evaluated expression e
// is odr-used by e unless [...] x is a reference that is usable in
// constant expressions.
if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->getType()->isReferenceType() &&
!(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
VD->isUsableInConstantExpressions(Context))
return NOUR_Constant;
}
// All remaining non-variable cases constitute an odr-use. For variables, we
// need to wait and see how the expression is used.
return NOUR_None;
}
/// BuildDeclRefExpr - Build an expression that references a
/// declaration that does not require a closure capture.
DeclRefExpr *
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
SourceLocation TemplateKWLoc,
const TemplateArgumentListInfo *TemplateArgs) {
bool RefersToCapturedVariable =
isa<VarDecl>(D) &&
NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
DeclRefExpr *E = DeclRefExpr::Create(
Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
MarkDeclRefReferenced(E);
// C++ [except.spec]p17:
// An exception-specification is considered to be needed when:
// - in an expression, the function is the unique lookup result or
// the selected member of a set of overloaded functions.
//
// We delay doing this until after we've built the function reference and
// marked it as used so that:
// a) if the function is defaulted, we get errors from defining it before /
// instead of errors from computing its exception specification, and
// b) if the function is a defaulted comparison, we can use the body we
// build when defining it as input to the exception specification
// computation rather than computing a new body.
if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
}
}
if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
getCurFunction()->recordUseOfWeak(E);
FieldDecl *FD = dyn_cast<FieldDecl>(D);
if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
FD = IFD->getAnonField();
if (FD) {
UnusedPrivateFields.remove(FD);
// Just in case we're building an illegal pointer-to-member.
if (FD->isBitField())
E->setObjectKind(OK_BitField);
}
// C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
// designates a bit-field.
if (auto *BD = dyn_cast<BindingDecl>(D))
if (auto *BE = BD->getBinding())
E->setObjectKind(BE->getObjectKind());
return E;
}
/// Decomposes the given name into a DeclarationNameInfo, its location, and
/// possibly a list of template arguments.
///
/// If this produces template arguments, it is permitted to call
/// DecomposeTemplateName.
///
/// This actually loses a lot of source location information for
/// non-standard name kinds; we should consider preserving that in
/// some way.
void
Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
TemplateArgumentListInfo &Buffer,
DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *&TemplateArgs) {
if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
Id.TemplateId->NumArgs);
translateTemplateArguments(TemplateArgsPtr, Buffer);
TemplateName TName = Id.TemplateId->Template.get();
SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
NameInfo = Context.getNameForTemplate(TName, TNameLoc);
TemplateArgs = &Buffer;
} else {
NameInfo = GetNameFromUnqualifiedId(Id);
TemplateArgs = nullptr;
}
}
static void emitEmptyLookupTypoDiagnostic(
const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
DeclContext *Ctx =
SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
if (!TC) {
// Emit a special diagnostic for failed member lookups.
// FIXME: computing the declaration context might fail here (?)
if (Ctx)
SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
<< SS.getRange();
else
SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
return;
}
std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
bool DroppedSpecifier =
TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
? diag::note_implicit_param_decl
: diag::note_previous_decl;
if (!Ctx)
SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
SemaRef.PDiag(NoteID));
else
SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
<< Typo << Ctx << DroppedSpecifier
<< SS.getRange(),
SemaRef.PDiag(NoteID));
}
/// Diagnose an empty lookup.
///
/// \return false if new lookup candidates were found
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
CorrectionCandidateCallback &CCC,
TemplateArgumentListInfo *ExplicitTemplateArgs,
ArrayRef<Expr *> Args, TypoExpr **Out) {
DeclarationName Name = R.getLookupName();
unsigned diagnostic = diag::err_undeclared_var_use;
unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
diagnostic = diag::err_undeclared_use;
diagnostic_suggest = diag::err_undeclared_use_suggest;
}
// If the original lookup was an unqualified lookup, fake an
// unqualified lookup. This is useful when (for example) the
// original lookup would not have found something because it was a
// dependent name.
DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
while (DC) {
if (isa<CXXRecordDecl>(DC)) {
LookupQualifiedName(R, DC);
if (!R.empty()) {
// Don't give errors about ambiguities in this lookup.
R.suppressDiagnostics();
// During a default argument instantiation the CurContext points
// to a CXXMethodDecl; but we can't apply a this-> fixit inside a
// function parameter list, hence add an explicit check.
bool isDefaultArgument =
!CodeSynthesisContexts.empty() &&
CodeSynthesisContexts.back().Kind ==
CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
bool isInstance = CurMethod &&
CurMethod->isInstance() &&
DC == CurMethod->getParent() && !isDefaultArgument;
// Give a code modification hint to insert 'this->'.
// TODO: fixit for inserting 'Base<T>::' in the other cases.
// Actually quite difficult!
if (getLangOpts().MSVCCompat)
diagnostic = diag::ext_found_via_dependent_bases_lookup;
if (isInstance) {
Diag(R.getNameLoc(), diagnostic) << Name
<< FixItHint::CreateInsertion(R.getNameLoc(), "this->");
CheckCXXThisCapture(R.getNameLoc());
} else {
Diag(R.getNameLoc(), diagnostic) << Name;
}
// Do we really want to note all of these?
for (NamedDecl *D : R)
Diag(D->getLocation(), diag::note_dependent_var_use);
// Return true if we are inside a default argument instantiation
// and the found name refers to an instance member function, otherwise
// the function calling DiagnoseEmptyLookup will try to create an
// implicit member call and this is wrong for default argument.
if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
Diag(R.getNameLoc(), diag::err_member_call_without_object);
return true;
}
// Tell the callee to try to recover.
return false;
}
R.clear();
}
DC = DC->getLookupParent();
}
// We didn't find anything, so try to correct for a typo.
TypoCorrection Corrected;
if (S && Out) {
SourceLocation TypoLoc = R.getNameLoc();
assert(!ExplicitTemplateArgs &&
"Diagnosing an empty lookup with explicit template args!");
*Out = CorrectTypoDelayed(
R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
[=](const TypoCorrection &TC) {
emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
diagnostic, diagnostic_suggest);
},
nullptr, CTK_ErrorRecovery);
if (*Out)
return true;
} else if (S &&
(Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
S, &SS, CCC, CTK_ErrorRecovery))) {
std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
bool DroppedSpecifier =
Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
R.setLookupName(Corrected.getCorrection());
bool AcceptableWithRecovery = false;
bool AcceptableWithoutRecovery = false;
NamedDecl *ND = Corrected.getFoundDecl();
if (ND) {
if (Corrected.isOverloaded()) {
OverloadCandidateSet OCS(R.getNameLoc(),
OverloadCandidateSet::CSK_Normal);
OverloadCandidateSet::iterator Best;
for (NamedDecl *CD : Corrected) {
if (FunctionTemplateDecl *FTD =
dyn_cast<FunctionTemplateDecl>(CD))
AddTemplateOverloadCandidate(
FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
Args, OCS);
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
Args, OCS);
}
switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
case OR_Success:
ND = Best->FoundDecl;
Corrected.setCorrectionDecl(ND);
break;
default:
// FIXME: Arbitrarily pick the first declaration for the note.
Corrected.setCorrectionDecl(ND);
break;
}
}
R.addDecl(ND);
if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
CXXRecordDecl *Record = nullptr;
if (Corrected.getCorrectionSpecifier()) {
const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
Record = Ty->getAsCXXRecordDecl();
}
if (!Record)
Record = cast<CXXRecordDecl>(
ND->getDeclContext()->getRedeclContext());
R.setNamingClass(Record);
}
auto *UnderlyingND = ND->getUnderlyingDecl();
AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
isa<FunctionTemplateDecl>(UnderlyingND);
// FIXME: If we ended up with a typo for a type name or
// Objective-C class name, we're in trouble because the parser
// is in the wrong place to recover. Suggest the typo
// correction, but don't make it a fix-it since we're not going
// to recover well anyway.
AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
getAsTypeTemplateDecl(UnderlyingND) ||
isa<ObjCInterfaceDecl>(UnderlyingND);
} else {
// FIXME: We found a keyword. Suggest it, but don't provide a fix-it
// because we aren't able to recover.
AcceptableWithoutRecovery = true;
}
if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
? diag::note_implicit_param_decl
: diag::note_previous_decl;
if (SS.isEmpty())
diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
PDiag(NoteID), AcceptableWithRecovery);
else
diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
<< Name << computeDeclContext(SS, false)
<< DroppedSpecifier << SS.getRange(),
PDiag(NoteID), AcceptableWithRecovery);
// Tell the callee whether to try to recover.
return !AcceptableWithRecovery;
}
}
R.clear();
// Emit a special diagnostic for failed member lookups.
// FIXME: computing the declaration context might fail here (?)
if (!SS.isEmpty()) {
Diag(R.getNameLoc(), diag::err_no_member)
<< Name << computeDeclContext(SS, false)
<< SS.getRange();
return true;
}
// Give up, we can't recover.
Diag(R.getNameLoc(), diagnostic) << Name;
return true;
}
/// In Microsoft mode, if we are inside a template class whose parent class has
/// dependent base classes, and we can't resolve an unqualified identifier, then
/// assume the identifier is a member of a dependent base class. We can only
/// recover successfully in static methods, instance methods, and other contexts
/// where 'this' is available. This doesn't precisely match MSVC's
/// instantiation model, but it's close enough.
static Expr *
recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
DeclarationNameInfo &NameInfo,
SourceLocation TemplateKWLoc,
const TemplateArgumentListInfo *TemplateArgs) {
// Only try to recover from lookup into dependent bases in static methods or
// contexts where 'this' is available.
QualType ThisType = S.getCurrentThisType();
const CXXRecordDecl *RD = nullptr;
if (!ThisType.isNull())
RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
RD = MD->getParent();
if (!RD || !RD->hasAnyDependentBases())
return nullptr;
// Diagnose this as unqualified lookup into a dependent base class. If 'this'
// is available, suggest inserting 'this->' as a fixit.
SourceLocation Loc = NameInfo.getLoc();
auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
DB << NameInfo.getName() << RD;
if (!ThisType.isNull()) {
DB << FixItHint::CreateInsertion(Loc, "this->");
return CXXDependentScopeMemberExpr::Create(
Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
/*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
/*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
}
// Synthesize a fake NNS that points to the derived class. This will
// perform name lookup during template instantiation.
CXXScopeSpec SS;
auto *NNS =
NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
return DependentScopeDeclRefExpr::Create(
Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
TemplateArgs);
}
ExprResult
Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
SourceLocation TemplateKWLoc, UnqualifiedId &Id,
bool HasTrailingLParen, bool IsAddressOfOperand,
CorrectionCandidateCallback *CCC,
bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
assert(!(IsAddressOfOperand && HasTrailingLParen) &&
"cannot be direct & operand and have a trailing lparen");
if (SS.isInvalid())
return ExprError();
TemplateArgumentListInfo TemplateArgsBuffer;
// Decompose the UnqualifiedId into the following data.
DeclarationNameInfo NameInfo;
const TemplateArgumentListInfo *TemplateArgs;
DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
DeclarationName Name = NameInfo.getName();
IdentifierInfo *II = Name.getAsIdentifierInfo();
SourceLocation NameLoc = NameInfo.getLoc();
if (II && II->isEditorPlaceholder()) {
// FIXME: When typed placeholders are supported we can create a typed
// placeholder expression node.
return ExprError();
}
// C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
// -- an identifier that was declared with a dependent type,
// (note: handled after lookup)
// -- a template-id that is dependent,
// (note: handled in BuildTemplateIdExpr)
// -- a conversion-function-id that specifies a dependent type,
// -- a nested-name-specifier that contains a class-name that
// names a dependent type.
// Determine whether this is a member of an unknown specialization;
// we need to handle these differently.
bool DependentID = false;
if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
Name.getCXXNameType()->isDependentType()) {
DependentID = true;
} else if (SS.isSet()) {
if (DeclContext *DC = computeDeclContext(SS, false)) {
if (RequireCompleteDeclContext(SS, DC))
return ExprError();
} else {
DependentID = true;
}
}
if (DependentID)
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
IsAddressOfOperand, TemplateArgs);
// Perform the required lookup.
LookupResult R(*this, NameInfo,
(Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
? LookupObjCImplicitSelfParam
: LookupOrdinaryName);
if (TemplateKWLoc.isValid() || TemplateArgs) {
// Lookup the template name again to correctly establish the context in
// which it was found. This is really unfortunate as we already did the
// lookup to determine that it was a template name in the first place. If
// this becomes a performance hit, we can work harder to preserve those
// results until we get here but it's likely not worth it.
bool MemberOfUnknownSpecialization;
AssumedTemplateKind AssumedTemplate;
if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
MemberOfUnknownSpecialization, TemplateKWLoc,
&AssumedTemplate))
return ExprError();
if (MemberOfUnknownSpecialization ||
(R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
IsAddressOfOperand, TemplateArgs);
} else {
bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
// If the result might be in a dependent base class, this is a dependent
// id-expression.
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
IsAddressOfOperand, TemplateArgs);
// If this reference is in an Objective-C method, then we need to do
// some special Objective-C lookup, too.
if (IvarLookupFollowUp) {
ExprResult E(LookupInObjCMethod(R, S, II, true));
if (E.isInvalid())
return ExprError();
if (Expr *Ex = E.getAs<Expr>())
return Ex;
}
}
if (R.isAmbiguous())
return ExprError();
// This could be an implicitly declared function reference (legal in C90,
// extension in C99, forbidden in C++).
if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
if (D) R.addDecl(D);
}
// Determine whether this name might be a candidate for
// argument-dependent lookup.
bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
if (R.empty() && !ADL) {
if (SS.isEmpty() && getLangOpts().MSVCCompat) {
if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
TemplateKWLoc, TemplateArgs))
return E;
}
// Don't diagnose an empty lookup for inline assembly.
if (IsInlineAsmIdentifier)
return ExprError();
// If this name wasn't predeclared and if this is not a function
// call, diagnose the problem.
TypoExpr *TE = nullptr;
DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
: nullptr);
DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
"Typo correction callback misconfigured");
if (CCC) {
// Make sure the callback knows what the typo being diagnosed is.
CCC->setTypoName(II);
if (SS.isValid())
CCC->setTypoNNS(SS.getScopeRep());
}
// FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
// a template name, but we happen to have always already looked up the name
// before we get here if it must be a template name.
if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
None, &TE)) {
if (TE && KeywordReplacement) {
auto &State = getTypoExprState(TE);
auto BestTC = State.Consumer->getNextCorrection();
if (BestTC.isKeyword()) {
auto *II = BestTC.getCorrectionAsIdentifierInfo();
if (State.DiagHandler)
State.DiagHandler(BestTC);
KeywordReplacement->startToken();
KeywordReplacement->setKind(II->getTokenID());
KeywordReplacement->setIdentifierInfo(II);
KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
// Clean up the state associated with the TypoExpr, since it has
// now been diagnosed (without a call to CorrectDelayedTyposInExpr).
clearDelayedTypo(TE);
// Signal that a correction to a keyword was performed by returning a
// valid-but-null ExprResult.
return (Expr*)nullptr;
}
State.Consumer->resetCorrectionStream();
}
return TE ? TE : ExprError();
}
assert(!R.empty() &&
"DiagnoseEmptyLookup returned false but added no results");
// If we found an Objective-C instance variable, let
// LookupInObjCMethod build the appropriate expression to
// reference the ivar.
if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
R.clear();
ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
// In a hopelessly buggy code, Objective-C instance variable
// lookup fails and no expression will be built to reference it.
if (!E.isInvalid() && !E.get())
return ExprError();
return E;
}
}
// This is guaranteed from this point on.
assert(!R.empty() || ADL);
// Check whether this might be a C++ implicit instance member access.
// C++ [class.mfct.non-static]p3:
// When an id-expression that is not part of a class member access
// syntax and not used to form a pointer to member is used in the
// body of a non-static member function of class X, if name lookup
// resolves the name in the id-expression to a non-static non-type
// member of some class C, the id-expression is transformed into a
// class member access expression using (*this) as the
// postfix-expression to the left of the . operator.
//
// But we don't actually need to do this for '&' operands if R
// resolved to a function or overloaded function set, because the
// expression is ill-formed if it actually works out to be a
// non-static member function:
//
// C++ [expr.ref]p4:
// Otherwise, if E1.E2 refers to a non-static member function. . .
// [t]he expression can be used only as the left-hand operand of a
// member function call.
//
// There are other safeguards against such uses, but it's important
// to get this right here so that we don't end up making a
// spuriously dependent expression if we're inside a dependent
// instance method.
if (!R.empty() && (*R.begin())->isCXXClassMember()) {
bool MightBeImplicitMember;
if (!IsAddressOfOperand)
MightBeImplicitMember = true;
else if (!SS.isEmpty())
MightBeImplicitMember = false;
else if (R.isOverloadedResult())
MightBeImplicitMember = false;
else if (R.isUnresolvableResult())
MightBeImplicitMember = true;
else
MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
isa<IndirectFieldDecl>(R.getFoundDecl()) ||
isa<MSPropertyDecl>(R.getFoundDecl());
if (MightBeImplicitMember)
return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
R, TemplateArgs, S);
}
if (TemplateArgs || TemplateKWLoc.isValid()) {
// In C++1y, if this is a variable template id, then check it
// in BuildTemplateIdExpr().
// The single lookup result must be a variable template declaration.
if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
Id.TemplateId->Kind == TNK_Var_template) {
assert(R.getAsSingle<VarTemplateDecl>() &&
"There should only be one declaration found.");
}
return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
}
return BuildDeclarationNameExpr(SS, R, ADL);
}
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
/// declaration name, generally during template instantiation.
/// There's a large number of things which don't need to be done along
/// this path.
ExprResult Sema::BuildQualifiedDeclarationNameExpr(
CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
DeclContext *DC = computeDeclContext(SS, false);
if (!DC)
return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
NameInfo, /*TemplateArgs=*/nullptr);
if (RequireCompleteDeclContext(SS, DC))
return ExprError();
LookupResult R(*this, NameInfo, LookupOrdinaryName);
LookupQualifiedName(R, DC);
if (R.isAmbiguous())
return ExprError();
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
NameInfo, /*TemplateArgs=*/nullptr);
if (R.empty()) {
// Don't diagnose problems with invalid record decl, the secondary no_member
// diagnostic during template instantiation is likely bogus, e.g. if a class
// is invalid because it's derived from an invalid base class, then missing
// members were likely supposed to be inherited.
if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
if (CD->isInvalidDecl())
return ExprError();
Diag(NameInfo.getLoc(), diag::err_no_member)
<< NameInfo.getName() << DC << SS.getRange();
return ExprError();
}
if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
// Diagnose a missing typename if this resolved unambiguously to a type in
// a dependent context. If we can recover with a type, downgrade this to
// a warning in Microsoft compatibility mode.
unsigned DiagID = diag::err_typename_missing;
if (RecoveryTSI && getLangOpts().MSVCCompat)
DiagID = diag::ext_typename_missing;
SourceLocation Loc = SS.getBeginLoc();
auto D = Diag(Loc, DiagID);
D << SS.getScopeRep() << NameInfo.getName().getAsString()
<< SourceRange(Loc, NameInfo.getEndLoc());
// Don't recover if the caller isn't expecting us to or if we're in a SFINAE
// context.
if (!RecoveryTSI)
return ExprError();
// Only issue the fixit if we're prepared to recover.
D << FixItHint::CreateInsertion(Loc, "typename ");
// Recover by pretending this was an elaborated type.
QualType Ty = Context.getTypeDeclType(TD);
TypeLocBuilder TLB;
TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
QualType ET = getElaboratedType(ETK_None, SS, Ty);
ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
QTL.setElaboratedKeywordLoc(SourceLocation());
QTL.setQualifierLoc(SS.getWithLocInContext(Context));
*RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
return ExprEmpty();
}
// Defend against this resolving to an implicit member access. We usually
// won't get here if this might be a legitimate a class member (we end up in
// BuildMemberReferenceExpr instead), but this can be valid if we're forming
// a pointer-to-member or in an unevaluated context in C++11.
if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
return BuildPossibleImplicitMemberExpr(SS,
/*TemplateKWLoc=*/SourceLocation(),
R, /*TemplateArgs=*/nullptr, S);
return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
}
/// The parser has read a name in, and Sema has detected that we're currently
/// inside an ObjC method. Perform some additional checks and determine if we
/// should form a reference to an ivar.
///
/// Ideally, most of this would be done by lookup, but there's
/// actually quite a lot of extra work involved.
DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
IdentifierInfo *II) {
SourceLocation Loc = Lookup.getNameLoc();
ObjCMethodDecl *CurMethod = getCurMethodDecl();
// Check for error condition which is already reported.
if (!CurMethod)
return DeclResult(true);
// There are two cases to handle here. 1) scoped lookup could have failed,
// in which case we should look for an ivar. 2) scoped lookup could have
// found a decl, but that decl is outside the current instance method (i.e.
// a global variable). In these two cases, we do a lookup for an ivar with
// this name, if the lookup sucedes, we replace it our current decl.
// If we're in a class method, we don't normally want to look for
// ivars. But if we don't find anything else, and there's an
// ivar, that's an error.
bool IsClassMethod = CurMethod->isClassMethod();
bool LookForIvars;
if (Lookup.empty())
LookForIvars = true;
else if (IsClassMethod)
LookForIvars = false;
else
LookForIvars = (Lookup.isSingleResult() &&
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
ObjCInterfaceDecl *IFace = nullptr;
if (LookForIvars) {
IFace = CurMethod->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
ObjCIvarDecl *IV = nullptr;
if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
// Diagnose using an ivar in a class method.
if (IsClassMethod) {
Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
return DeclResult(true);
}
// Diagnose the use of an ivar outside of the declaring class.
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
!declaresSameEntity(ClassDeclared, IFace) &&
!getLangOpts().DebuggerSupport)
Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
// Success.
return IV;
}
} else if (CurMethod->isInstanceMethod()) {
// We should warn if a local variable hides an ivar.
if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
declaresSameEntity(IFace, ClassDeclared))
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
}
}
} else if (Lookup.isSingleResult() &&
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
// If accessing a stand-alone ivar in a class method, this is an error.
if (const ObjCIvarDecl *IV =
dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
return DeclResult(true);
}
}
// Didn't encounter an error, didn't find an ivar.
return DeclResult(false);
}
ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
ObjCIvarDecl *IV) {
ObjCMethodDecl *CurMethod = getCurMethodDecl();
assert(CurMethod && CurMethod->isInstanceMethod() &&
"should not reference ivar from this context");
ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
assert(IFace && "should not reference ivar from this context");
// If we're referencing an invalid decl, just return this as a silent
// error node. The error diagnostic was already emitted on the decl.
if (IV->isInvalidDecl())
return ExprError();
// Check if referencing a field with __attribute__((deprecated)).
if (DiagnoseUseOfDecl(IV, Loc))
return ExprError();
// FIXME: This should use a new expr for a direct reference, don't
// turn this into Self->ivar, just return a BareIVarExpr or something.
IdentifierInfo &II = Context.Idents.get("self");
UnqualifiedId SelfName;
SelfName.setIdentifier(&II, SourceLocation());
SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
CXXScopeSpec SelfScopeSpec;
SourceLocation TemplateKWLoc;
ExprResult SelfExpr =
ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
/*HasTrailingLParen=*/false,
/*IsAddressOfOperand=*/false);
if (SelfExpr.isInvalid())
return ExprError();
SelfExpr = DefaultLvalueConversion(SelfExpr.get());
if (SelfExpr.isInvalid())
return ExprError();
MarkAnyDeclReferenced(Loc, IV, true);
ObjCMethodFamily MF = CurMethod->getMethodFamily();
if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
!IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
ObjCIvarRefExpr *Result = new (Context)
ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
IV->getLocation(), SelfExpr.get(), true, true);
if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
if (!isUnevaluatedContext() &&
!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
getCurFunction()->recordUseOfWeak(Result);
}
if (getLangOpts().ObjCAutoRefCount)
if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
return Result;
}
/// The parser has read a name in, and Sema has detected that we're currently
/// inside an ObjC method. Perform some additional checks and determine if we
/// should form a reference to an ivar. If so, build an expression referencing
/// that ivar.
ExprResult
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
IdentifierInfo *II, bool AllowBuiltinCreation) {
// FIXME: Integrate this lookup step into LookupParsedName.
DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
if (Ivar.isInvalid())
return ExprError();
if (Ivar.isUsable())
return BuildIvarRefExpr(S, Lookup.getNameLoc(),
cast<ObjCIvarDecl>(Ivar.get()));
if (Lookup.empty() && II && AllowBuiltinCreation)
LookupBuiltin(Lookup);
// Sentinel value saying that we didn't do anything special.
return ExprResult(false);
}
/// Cast a base object to a member's actual type.
///
/// Logically this happens in three phases:
///
/// * First we cast from the base type to the naming class.
/// The naming class is the class into which we were looking
/// when we found the member; it's the qualifier type if a
/// qualifier was provided, and otherwise it's the base type.
///
/// * Next we cast from the naming class to the declaring class.
/// If the member we found was brought into a class's scope by
/// a using declaration, this is that class; otherwise it's
/// the class declaring the member.
///
/// * Finally we cast from the declaring class to the "true"
/// declaring class of the member. This conversion does not
/// obey access control.
ExprResult
Sema::PerformObjectMemberConversion(Expr *From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
NamedDecl *Member) {
CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
if (!RD)
return From;
QualType DestRecordType;
QualType DestType;
QualType FromRecordType;
QualType FromType = From->getType();
bool PointerConversions = false;
if (isa<FieldDecl>(Member)) {
DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
auto FromPtrType = FromType->getAs<PointerType>();
DestRecordType = Context.getAddrSpaceQualType(
DestRecordType, FromPtrType
? FromType->getPointeeType().getAddressSpace()
: FromType.getAddressSpace());
if (FromPtrType) {
DestType = Context.getPointerType(DestRecordType);
FromRecordType = FromPtrType->getPointeeType();
PointerConversions = true;
} else {
DestType = DestRecordType;
FromRecordType = FromType;
}
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
if (Method->isStatic())
return From;
DestType = Method->getThisType();
DestRecordType = DestType->getPointeeType();
if (FromType->getAs<PointerType>()) {
FromRecordType = FromType->getPointeeType();
PointerConversions = true;
} else {
FromRecordType = FromType;
DestType = DestRecordType;
}
LangAS FromAS = FromRecordType.getAddressSpace();
LangAS DestAS = DestRecordType.getAddressSpace();
if (FromAS != DestAS) {
QualType FromRecordTypeWithoutAS =
Context.removeAddrSpaceQualType(FromRecordType);
QualType FromTypeWithDestAS =
Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
if (PointerConversions)
FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
From = ImpCastExprToType(From, FromTypeWithDestAS,
CK_AddressSpaceConversion, From->getValueKind())
.get();
}
} else {
// No conversion necessary.
return From;
}
if (DestType->isDependentType() || FromType->isDependentType())
return From;
// If the unqualified types are the same, no conversion is necessary.
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
return From;
SourceRange FromRange = From->getSourceRange();
SourceLocation FromLoc = FromRange.getBegin();
ExprValueKind VK = From->getValueKind();
// C++ [class.member.lookup]p8:
// [...] Ambiguities can often be resolved by qualifying a name with its
// class name.
//
// If the member was a qualified name and the qualified referred to a
// specific base subobject type, we'll cast to that intermediate type
// first and then to the object in which the member is declared. That allows
// one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
//
// class Base { public: int x; };
// class Derived1 : public Base { };
// class Derived2 : public Base { };
// class VeryDerived : public Derived1, public Derived2 { void f(); };
//
// void VeryDerived::f() {
// x = 17; // error: ambiguous base subobjects
// Derived1::x = 17; // okay, pick the Base subobject of Derived1
// }
if (Qualifier && Qualifier->getAsType()) {
QualType QType = QualType(Qualifier->getAsType(), 0);
assert(QType->isRecordType() && "lookup done with non-record type");
QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
// In C++98, the qualifier type doesn't actually have to be a base
// type of the object type, in which case we just ignore it.
// Otherwise build the appropriate casts.
if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
FromLoc, FromRange, &BasePath))
return ExprError();
if (PointerConversions)
QType = Context.getPointerType(QType);
From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
VK, &BasePath).get();
FromType = QType;
FromRecordType = QRecordType;
// If the qualifier type was the same as the destination type,
// we're done.
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
return From;
}
}
bool IgnoreAccess = false;
// If we actually found the member through a using declaration, cast
// down to the using declaration's type.
//
// Pointer equality is fine here because only one declaration of a
// class ever has member declarations.
if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
assert(isa<UsingShadowDecl>(FoundDecl));
QualType URecordType = Context.getTypeDeclType(
cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
// We only need to do this if the naming-class to declaring-class
// conversion is non-trivial.
if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
FromLoc, FromRange, &BasePath))
return ExprError();
QualType UType = URecordType;
if (PointerConversions)
UType = Context.getPointerType(UType);
From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
VK, &BasePath).get();
FromType = UType;
FromRecordType = URecordType;
}
// We don't do access control for the conversion from the
// declaring class to the true declaring class.
IgnoreAccess = true;
}
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
FromLoc, FromRange, &BasePath,
IgnoreAccess))
return ExprError();
return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
VK, &BasePath);
}
bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
const LookupResult &R,
bool HasTrailingLParen) {
// Only when used directly as the postfix-expression of a call.
if (!HasTrailingLParen)
return false;
// Never if a scope specifier was provided.
if (SS.isSet())
return false;
// Only in C++ or ObjC++.
if (!getLangOpts().CPlusPlus)
return false;
// Turn off ADL when we find certain kinds of declarations during
// normal lookup:
for (NamedDecl *D : R) {
// C++0x [basic.lookup.argdep]p3:
// -- a declaration of a class member
// Since using decls preserve this property, we check this on the
// original decl.
if (D->isCXXClassMember())
return false;
// C++0x [basic.lookup.argdep]p3:
// -- a block-scope function declaration that is not a
// using-declaration
// NOTE: we also trigger this for function templates (in fact, we
// don't check the decl type at all, since all other decl types
// turn off ADL anyway).
if (isa<UsingShadowDecl>(D))
D = cast<UsingShadowDecl>(D)->getTargetDecl();
else if (D->getLexicalDeclContext()->isFunctionOrMethod())
return false;
// C++0x [basic.lookup.argdep]p3:
// -- a declaration that is neither a function or a function
// template
// And also for builtin functions.
if (isa<FunctionDecl>(D)) {
FunctionDecl *FDecl = cast<FunctionDecl>(D);
// But also builtin functions.
if (FDecl->getBuiltinID() && FDecl->isImplicit())
return false;
} else if (!isa<FunctionTemplateDecl>(D))
return false;
}
return true;
}
/// Diagnoses obvious problems with the use of the given declaration
/// as an expression. This is only actually called for lookups that
/// were not overloaded, and it doesn't promise that the declaration
/// will in fact be used.
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
if (D->isInvalidDecl())
return true;
if (isa<TypedefNameDecl>(D)) {
S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
return true;
}
if (isa<ObjCInterfaceDecl>(D)) {
S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
return true;
}
if (isa<NamespaceDecl>(D)) {
S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
return true;
}
return false;
}
// Certain multiversion types should be treated as overloaded even when there is
// only one result.
static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
assert(R.isSingleResult() && "Expected only a single result");
const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
return FD &&
(FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
}
ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
LookupResult &R, bool NeedsADL,
bool AcceptInvalidDecl) {
// If this is a single, fully-resolved result and we don't need ADL,
// just build an ordinary singleton decl ref.
if (!NeedsADL && R.isSingleResult() &&
!R.getAsSingle<FunctionTemplateDecl>() &&
!ShouldLookupResultBeMultiVersionOverload(R))
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
R.getRepresentativeDecl(), nullptr,
AcceptInvalidDecl);
// We only need to check the declaration if there's exactly one
// result, because in the overloaded case the results can only be
// functions and function templates.
if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
return ExprError();
// Otherwise, just build an unresolved lookup expression. Suppress
// any lookup-related diagnostics; we'll hash these out later, when
// we've picked a target.
R.suppressDiagnostics();
UnresolvedLookupExpr *ULE
= UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
SS.getWithLocInContext(Context),
R.getLookupNameInfo(),
NeedsADL, R.isOverloadedResult(),
R.begin(), R.end());
return ULE;
}
static void
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
ValueDecl *var, DeclContext *DC);
/// Complete semantic analysis for a reference to the given declaration.
ExprResult Sema::BuildDeclarationNameExpr(
const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
bool AcceptInvalidDecl) {
assert(D && "Cannot refer to a NULL declaration");
assert(!isa<FunctionTemplateDecl>(D) &&
"Cannot refer unambiguously to a function template");
SourceLocation Loc = NameInfo.getLoc();
if (CheckDeclInExpr(*this, Loc, D))
return ExprError();
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
// Specifically diagnose references to class templates that are missing
// a template argument list.
diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
return ExprError();
}
// Make sure that we're referring to a value.
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (!VD) {
Diag(Loc, diag::err_ref_non_value)
<< D << SS.getRange();
Diag(D->getLocation(), diag::note_declared_at);
return ExprError();
}
// Check whether this declaration can be used. Note that we suppress
// this check when we're going to perform argument-dependent lookup
// on this function name, because this might not be the function
// that overload resolution actually selects.
if (DiagnoseUseOfDecl(VD, Loc))
return ExprError();
// Only create DeclRefExpr's for valid Decl's.
if (VD->isInvalidDecl() && !AcceptInvalidDecl)
return ExprError();
// Handle members of anonymous structs and unions. If we got here,
// and the reference is to a class member indirect field, then this
// must be the subject of a pointer-to-member expression.
if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
if (!indirectField->isCXXClassMember())
return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
indirectField);
{
QualType type = VD->getType();
if (type.isNull())
return ExprError();
ExprValueKind valueKind = VK_RValue;
// In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
// a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
// is expanded by some outer '...' in the context of the use.
type = type.getNonPackExpansionType();
switch (D->getKind()) {
// Ignore all the non-ValueDecl kinds.
#define ABSTRACT_DECL(kind)
#define VALUE(type, base)
#define DECL(type, base) \
case Decl::type:
#include "clang/AST/DeclNodes.inc"
llvm_unreachable("invalid value decl kind");
// These shouldn't make it here.
case Decl::ObjCAtDefsField:
llvm_unreachable("forming non-member reference to ivar?");
// Enum constants are always r-values and never references.
// Unresolved using declarations are dependent.
case Decl::EnumConstant:
case Decl::UnresolvedUsingValue:
case Decl::OMPDeclareReduction:
case Decl::OMPDeclareMapper:
valueKind = VK_RValue;
break;
// Fields and indirect fields that got here must be for
// pointer-to-member expressions; we just call them l-values for
// internal consistency, because this subexpression doesn't really
// exist in the high-level semantics.
case Decl::Field:
case Decl::IndirectField:
case Decl::ObjCIvar:
assert(getLangOpts().CPlusPlus &&
"building reference to field in C?");
// These can't have reference type in well-formed programs, but
// for internal consistency we do this anyway.
type = type.getNonReferenceType();
valueKind = VK_LValue;
break;
// Non-type template parameters are either l-values or r-values
// depending on the type.
case Decl::NonTypeTemplateParm: {
if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
type = reftype->getPointeeType();
valueKind = VK_LValue; // even if the parameter is an r-value reference
break;
}
// For non-references, we need to strip qualifiers just in case
// the template parameter was declared as 'const int' or whatever.
valueKind = VK_RValue;
type = type.getUnqualifiedType();
break;
}
case Decl::Var:
case Decl::VarTemplateSpecialization:
case Decl::VarTemplatePartialSpecialization:
case Decl::Decomposition:
case Decl::OMPCapturedExpr:
// In C, "extern void blah;" is valid and is an r-value.
if (!getLangOpts().CPlusPlus &&
!type.hasQualifiers() &&
type->isVoidType()) {
valueKind = VK_RValue;
break;
}
LLVM_FALLTHROUGH;
case Decl::ImplicitParam:
case Decl::ParmVar: {
// These are always l-values.
valueKind = VK_LValue;
type = type.getNonReferenceType();
// FIXME: Does the addition of const really only apply in
// potentially-evaluated contexts? Since the variable isn't actually
// captured in an unevaluated context, it seems that the answer is no.
if (!isUnevaluatedContext()) {
QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
if (!CapturedType.isNull())
type = CapturedType;
}
break;
}
case Decl::Binding: {
// These are always lvalues.
valueKind = VK_LValue;
type = type.getNonReferenceType();
// FIXME: Support lambda-capture of BindingDecls, once CWG actually
// decides how that's supposed to work.
auto *BD = cast<BindingDecl>(VD);
if (BD->getDeclContext() != CurContext) {
auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
if (DD && DD->hasLocalStorage())
diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
}
break;
}
case Decl::Function: {
if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
type = Context.BuiltinFnTy;
valueKind = VK_RValue;
break;
}
}
const FunctionType *fty = type->castAs<FunctionType>();
// If we're referring to a function with an __unknown_anytype
// result type, make the entire expression __unknown_anytype.
if (fty->getReturnType() == Context.UnknownAnyTy) {
type = Context.UnknownAnyTy;
valueKind = VK_RValue;
break;
}
// Functions are l-values in C++.
if (getLangOpts().CPlusPlus) {
valueKind = VK_LValue;
break;
}
// C99 DR 316 says that, if a function type comes from a
// function definition (without a prototype), that type is only
// used for checking compatibility. Therefore, when referencing
// the function, we pretend that we don't have the full function
// type.
if (!cast<FunctionDecl>(VD)->hasPrototype() &&
isa<FunctionProtoType>(fty))
type = Context.getFunctionNoProtoType(fty->getReturnType(),
fty->getExtInfo());
// Functions are r-values in C.
valueKind = VK_RValue;
break;
}
case Decl::CXXDeductionGuide:
llvm_unreachable("building reference to deduction guide");
case Decl::MSProperty:
case Decl::MSGuid:
// FIXME: Should MSGuidDecl be subject to capture in OpenMP,
// or duplicated between host and device?
valueKind = VK_LValue;
break;
case Decl::CXXMethod:
// If we're referring to a method with an __unknown_anytype
// result type, make the entire expression __unknown_anytype.
// This should only be possible with a type written directly.
if (const FunctionProtoType *proto
= dyn_cast<FunctionProtoType>(VD->getType()))
if (proto->getReturnType() == Context.UnknownAnyTy) {
type = Context.UnknownAnyTy;
valueKind = VK_RValue;
break;
}
// C++ methods are l-values if static, r-values if non-static.
if (cast<CXXMethodDecl>(VD)->isStatic()) {
valueKind = VK_LValue;
break;
}
LLVM_FALLTHROUGH;
case Decl::CXXConversion:
case Decl::CXXDestructor:
case Decl::CXXConstructor:
valueKind = VK_RValue;
break;
}
return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
/*FIXME: TemplateKWLoc*/ SourceLocation(),
TemplateArgs);
}
}
static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
SmallString<32> &Target) {
Target.resize(CharByteWidth * (Source.size() + 1));
char *ResultPtr = &Target[0];
const llvm::UTF8 *ErrorPtr;
bool success =
llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
(void)success;
assert(success);
Target.resize(ResultPtr - &Target[0]);
}
ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
PredefinedExpr::IdentKind IK) {
// Pick the current block, lambda, captured statement or function.
Decl *currentDecl = nullptr;
if (const BlockScopeInfo *BSI = getCurBlock())
currentDecl = BSI->TheDecl;
else if (const LambdaScopeInfo *LSI = getCurLambda())
currentDecl = LSI->CallOperator;
else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
currentDecl = CSI->TheCapturedDecl;
else
currentDecl = getCurFunctionOrMethodDecl();
if (!currentDecl) {
Diag(Loc, diag::ext_predef_outside_function);
currentDecl = Context.getTranslationUnitDecl();
}
QualType ResTy;
StringLiteral *SL = nullptr;
if (cast<DeclContext>(currentDecl)->isDependentContext())
ResTy = Context.DependentTy;
else {
// Pre-defined identifiers are of type char[x], where x is the length of
// the string.
auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
unsigned Length = Str.length();
llvm::APInt LengthI(32, Length + 1);
if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
ResTy =
Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
SmallString<32> RawChars;
ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
Str, RawChars);
ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
ArrayType::Normal,
/*IndexTypeQuals*/ 0);
SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
/*Pascal*/ false, ResTy, Loc);
} else {
ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
ArrayType::Normal,
/*IndexTypeQuals*/ 0);
SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
/*Pascal*/ false, ResTy, Loc);
}
}
return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
}
static std::pair<QualType, StringLiteral *>
GetUniqueStableNameInfo(ASTContext &Context, QualType OpType,
SourceLocation OpLoc, PredefinedExpr::IdentKind K) {
std::pair<QualType, StringLiteral*> Result{{}, nullptr};
if (OpType->isDependentType()) {
Result.first = Context.DependentTy;
return Result;
}
std::string Str = PredefinedExpr::ComputeName(Context, K, OpType);
llvm::APInt Length(32, Str.length() + 1);
Result.first =
Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
Result.first = Context.getConstantArrayType(
Result.first, Length, nullptr, ArrayType::Normal, /*IndexTypeQuals*/ 0);
Result.second = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
/*Pascal*/ false, Result.first, OpLoc);
return Result;
}
ExprResult Sema::BuildUniqueStableName(SourceLocation OpLoc,
TypeSourceInfo *Operand) {
QualType ResultTy;
StringLiteral *SL;
std::tie(ResultTy, SL) = GetUniqueStableNameInfo(
Context, Operand->getType(), OpLoc, PredefinedExpr::UniqueStableNameType);
return PredefinedExpr::Create(Context, OpLoc, ResultTy,
PredefinedExpr::UniqueStableNameType, SL,
Operand);
}
ExprResult Sema::BuildUniqueStableName(SourceLocation OpLoc,
Expr *E) {
QualType ResultTy;
StringLiteral *SL;
std::tie(ResultTy, SL) = GetUniqueStableNameInfo(
Context, E->getType(), OpLoc, PredefinedExpr::UniqueStableNameExpr);
return PredefinedExpr::Create(Context, OpLoc, ResultTy,
PredefinedExpr::UniqueStableNameExpr, SL, E);
}
ExprResult Sema::ActOnUniqueStableNameExpr(SourceLocation OpLoc,
SourceLocation L, SourceLocation R,
ParsedType Ty) {
TypeSourceInfo *TInfo = nullptr;
QualType T = GetTypeFromParser(Ty, &TInfo);
if (T.isNull())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
return BuildUniqueStableName(OpLoc, TInfo);
}
ExprResult Sema::ActOnUniqueStableNameExpr(SourceLocation OpLoc,
SourceLocation L, SourceLocation R,
Expr *E) {
return BuildUniqueStableName(OpLoc, E);
}
ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
PredefinedExpr::IdentKind IK;
switch (Kind) {
default: llvm_unreachable("Unknown simple primary expr!");
case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
}
return BuildPredefinedExpr(Loc, IK);
}
ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
SmallString<16> CharBuffer;
bool Invalid = false;
StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
if (Invalid)
return ExprError();
CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
PP, Tok.getKind());
if (Literal.hadError())
return ExprError();
QualType Ty;
if (Literal.isWide())
Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
else if (Literal.isUTF8() && getLangOpts().Char8)
Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
else if (Literal.isUTF16())
Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
else if (Literal.isUTF32())
Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
else
Ty = Context.CharTy; // 'x' -> char in C++
CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
if (Literal.isWide())
Kind = CharacterLiteral::Wide;
else if (Literal.isUTF16())
Kind = CharacterLiteral::UTF16;
else if (Literal.isUTF32())
Kind = CharacterLiteral::UTF32;
else if (Literal.isUTF8())
Kind = CharacterLiteral::UTF8;
Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
Tok.getLocation());
if (Literal.getUDSuffix().empty())
return Lit;
// We're building a user-defined literal.
IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
SourceLocation UDSuffixLoc =
getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
// Make sure we're allowed user-defined literals here.
if (!UDLScope)
return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
// C++11 [lex.ext]p6: The literal L is treated as a call of the form
// operator "" X (ch)
return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
Lit, Tok.getLocation());
}
ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
unsigned IntSize = Context.getTargetInfo().getIntWidth();
return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
Context.IntTy, Loc);
}
static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
QualType Ty, SourceLocation Loc) {
const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
using llvm::APFloat;
APFloat Val(Format);
APFloat::opStatus result = Literal.GetFloatValue(Val);
// Overflow is always an error, but underflow is only an error if
// we underflowed to zero (APFloat reports denormals as underflow).
if ((result & APFloat::opOverflow) ||
((result & APFloat::opUnderflow) && Val.isZero())) {
unsigned diagnostic;
SmallString<20> buffer;
if (result & APFloat::opOverflow) {
diagnostic = diag::warn_float_overflow;
APFloat::getLargest(Format).toString(buffer);
} else {
diagnostic = diag::warn_float_underflow;
APFloat::getSmallest(Format).toString(buffer);
}
S.Diag(Loc, diagnostic)
<< Ty
<< StringRef(buffer.data(), buffer.size());
}
bool isExact = (result == APFloat::opOK);
return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
}
bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
assert(E && "Invalid expression");
if (E->isValueDependent())
return false;
QualType QT = E->getType();
if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
return true;
}
llvm::APSInt ValueAPS;
ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
if (R.isInvalid())
return true;
bool ValueIsPositive = ValueAPS.isStrictlyPositive();
if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
<< ValueAPS.toString(10) << ValueIsPositive;
return true;
}
return false;
}
ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
// Fast path for a single digit (which is quite common). A single digit
// cannot have a trigraph, escaped newline, radix prefix, or suffix.
if (Tok.getLength() == 1) {
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
}
SmallString<128> SpellingBuffer;
// NumericLiteralParser wants to overread by one character. Add padding to
// the buffer in case the token is copied to the buffer. If getSpelling()
// returns a StringRef to the memory buffer, it should have a null char at
// the EOF, so it is also safe.
SpellingBuffer.resize(Tok.getLength() + 1);
// Get the spelling of the token, which eliminates trigraphs, etc.
bool Invalid = false;
StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
if (Invalid)
return ExprError();
NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
PP.getSourceManager(), PP.getLangOpts(),
PP.getTargetInfo(), PP.getDiagnostics());
if (Literal.hadError)
return ExprError();
if (Literal.hasUDSuffix()) {
// We're building a user-defined literal.
IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
SourceLocation UDSuffixLoc =
getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
// Make sure we're allowed user-defined literals here.
if (!UDLScope)
return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
QualType CookedTy;
if (Literal.isFloatingLiteral()) {
// C++11 [lex.ext]p4: If S contains a literal operator with parameter type
// long double, the literal is treated as a call of the form
// operator "" X (f L)
CookedTy = Context.LongDoubleTy;
} else {
// C++11 [lex.ext]p3: If S contains a literal operator with parameter type
// unsigned long long, the literal is treated as a call of the form
// operator "" X (n ULL)
CookedTy = Context.UnsignedLongLongTy;
}
DeclarationName OpName =
Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
SourceLocation TokLoc = Tok.getLocation();
// Perform literal operator lookup to determine if we're building a raw
// literal or a cooked one.
LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
switch (LookupLiteralOperator(UDLScope, R, CookedTy,
/*AllowRaw*/ true, /*AllowTemplate*/ true,
/*AllowStringTemplate*/ false,
/*DiagnoseMissing*/ !Literal.isImaginary)) {
case LOLR_ErrorNoDiagnostic:
// Lookup failure for imaginary constants isn't fatal, there's still the
// GNU extension producing _Complex types.
break;
case LOLR_Error:
return ExprError();
case LOLR_Cooked: {
Expr *Lit;
if (Literal.isFloatingLiteral()) {
Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
} else {
llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
if (Literal.GetIntegerValue(ResultVal))
Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
<< /* Unsigned */ 1;
Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
Tok.getLocation());
}
return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
}
case LOLR_Raw: {
// C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
// literal is treated as a call of the form
// operator "" X ("n")
unsigned Length = Literal.getUDSuffixOffset();
QualType StrTy = Context.getConstantArrayType(
Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
Expr *Lit = StringLiteral::Create(
Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
/*Pascal*/false, StrTy, &TokLoc, 1);
return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
}
case LOLR_Template: {
// C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
// template), L is treated as a call fo the form
// operator "" X <'c1', 'c2', ... 'ck'>()
// where n is the source character sequence c1 c2 ... ck.
TemplateArgumentListInfo ExplicitArgs;
unsigned CharBits = Context.getIntWidth(Context.CharTy);
bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
llvm::APSInt Value(CharBits, CharIsUnsigned);
for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
Value = TokSpelling[I];
TemplateArgument Arg(Context, Value, Context.CharTy);
TemplateArgumentLocInfo ArgInfo;
ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
}
return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
&ExplicitArgs);
}
case LOLR_StringTemplate:
llvm_unreachable("unexpected literal operator lookup result");
}
}
Expr *Res;
if (Literal.isFixedPointLiteral()) {
QualType Ty;
if (Literal.isAccum) {
if (Literal.isHalf) {
Ty = Context.ShortAccumTy;
} else if (Literal.isLong) {
Ty = Context.LongAccumTy;
} else {
Ty = Context.AccumTy;
}
} else if (Literal.isFract) {
if (Literal.isHalf) {
Ty = Context.ShortFractTy;
} else if (Literal.isLong) {
Ty = Context.LongFractTy;
} else {
Ty = Context.FractTy;
}
}
if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
bool isSigned = !Literal.isUnsigned;
unsigned scale = Context.getFixedPointScale(Ty);
unsigned bit_width = Context.getTypeInfo(Ty).Width;
llvm::APInt Val(bit_width, 0, isSigned);
bool Overflowed = Literal.GetFixedPointValue(Val, scale);
bool ValIsZero = Val.isNullValue() && !Overflowed;
auto MaxVal = Context.getFixedPointMax(Ty).getValue();
if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
// Clause 6.4.4 - The value of a constant shall be in the range of
// representable values for its type, with exception for constants of a
// fract type with a value of exactly 1; such a constant shall denote
// the maximal value for the type.
--Val;
else if (Val.ugt(MaxVal) || Overflowed)
Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
Tok.getLocation(), scale);
} else if (Literal.isFloatingLiteral()) {
QualType Ty;
if (Literal.isHalf){
if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
Ty = Context.HalfTy;
else {
Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
return ExprError();
}
} else if (Literal.isFloat)
Ty = Context.FloatTy;
else if (Literal.isLong)
Ty = Context.LongDoubleTy;
else if (Literal.isFloat16)
Ty = Context.Float16Ty;
else if (Literal.isFloat128)
Ty = Context.Float128Ty;
else
Ty = Context.DoubleTy;
Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
if (Ty == Context.DoubleTy) {
if (getLangOpts().SinglePrecisionConstants) {
const BuiltinType *BTy = Ty->getAs<BuiltinType>();
if (BTy->getKind() != BuiltinType::Float) {
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
}
} else if (getLangOpts().OpenCL &&
!getOpenCLOptions().isEnabled("cl_khr_fp64")) {
// Impose single-precision float type when cl_khr_fp64 is not enabled.
Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
}
}
} else if (!Literal.isIntegerLiteral()) {
return ExprError();
} else {
QualType Ty;
// 'long long' is a C99 or C++11 feature.
if (!getLangOpts().C99 && Literal.isLongLong) {
if (getLangOpts().CPlusPlus)
Diag(Tok.getLocation(),
getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
Diag(Tok.getLocation(), diag::ext_c99_longlong);
}
// Get the value in the widest-possible width.
unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
llvm::APInt ResultVal(MaxWidth, 0);
if (Literal.GetIntegerValue(ResultVal)) {
// If this value didn't fit into uintmax_t, error and force to ull.
Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
<< /* Unsigned */ 1;
Ty = Context.UnsignedLongLongTy;
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?");
} else {
// If this value fits into a ULL, try to figure out what else it fits into
// according to the rules of C99 6.4.4.1p5.
// Octal, Hexadecimal, and integers with a U suffix are allowed to
// be an unsigned int.
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
// Check from smallest to largest, picking the smallest type we can.
unsigned Width = 0;
// Microsoft specific integer suffixes are explicitly sized.
if (Literal.MicrosoftInteger) {
if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
Width = 8;
Ty = Context.CharTy;
} else {
Width = Literal.MicrosoftInteger;
Ty = Context.getIntTypeForBitwidth(Width,
/*Signed=*/!Literal.isUnsigned);
}
}
if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
// Are int/unsigned possibilities?
unsigned IntSize = Context.getTargetInfo().getIntWidth();
// Does it fit in a unsigned int?
if (ResultVal.isIntN(IntSize)) {
// Does it fit in a signed int?
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
Ty = Context.IntTy;
else if (AllowUnsigned)
Ty = Context.UnsignedIntTy;
Width = IntSize;
}
}
// Are long/unsigned long possibilities?
if (Ty.isNull() && !Literal.isLongLong) {
unsigned LongSize = Context.getTargetInfo().getLongWidth();
// Does it fit in a unsigned long?
if (ResultVal.isIntN(LongSize)) {
// Does it fit in a signed long?
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
Ty = Context.LongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongTy;
// Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
// is compatible.
else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
const unsigned LongLongSize =
Context.getTargetInfo().getLongLongWidth();
Diag(Tok.getLocation(),
getLangOpts().CPlusPlus
? Literal.isLong
? diag::warn_old_implicitly_unsigned_long_cxx
: /*C++98 UB*/ diag::
ext_old_implicitly_unsigned_long_cxx
: diag::warn_old_implicitly_unsigned_long)
<< (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
: /*will be ill-formed*/ 1);
Ty = Context.UnsignedLongTy;
}
Width = LongSize;
}
}
// Check long long if needed.
if (Ty.isNull()) {
unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
// Does it fit in a unsigned long long?
if (ResultVal.isIntN(LongLongSize)) {
// Does it fit in a signed long long?
// To be compatible with MSVC, hex integer literals ending with the
// LL or i64 suffix are always signed in Microsoft mode.
if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
(getLangOpts().MSVCCompat && Literal.isLongLong)))
Ty = Context.LongLongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongLongTy;
Width = LongLongSize;
}
}
// If we still couldn't decide a type, we probably have something that
// does not fit in a signed long long, but has no U suffix.
if (Ty.isNull()) {
Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
Ty = Context.UnsignedLongLongTy;
Width = Context.getTargetInfo().getLongLongWidth();
}
if (ResultVal.getBitWidth() != Width)
ResultVal = ResultVal.trunc(Width);
}
Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
}
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
if (Literal.isImaginary) {
Res = new (Context) ImaginaryLiteral(Res,
Context.getComplexType(Res->getType()));
Diag(Tok.getLocation(), diag::ext_imaginary_constant);
}
return Res;
}
ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
assert(E && "ActOnParenExpr() missing expr");
return new (Context) ParenExpr(L, R, E);
}
static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
SourceLocation Loc,
SourceRange ArgRange) {
// [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
// scalar or vector data type argument..."
// Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
// type (C99 6.2.5p18) or void.
if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
<< T << ArgRange;
return true;
}
assert((T->isVoidType() || !T->isIncompleteType()) &&
"Scalar types should always be complete");
return false;
}
static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
SourceLocation Loc,
SourceRange ArgRange,
UnaryExprOrTypeTrait TraitKind) {
// Invalid types must be hard errors for SFINAE in C++.
if (S.LangOpts.CPlusPlus)
return true;
// C99 6.5.3.4p1:
if (T->isFunctionType() &&
(TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
TraitKind == UETT_PreferredAlignOf)) {
// sizeof(function)/alignof(function) is allowed as an extension.
S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
<< getTraitSpelling(TraitKind) << ArgRange;
return false;
}
// Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
// this is an error (OpenCL v1.1 s6.3.k)
if (T->isVoidType()) {
unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
: diag::ext_sizeof_alignof_void_type;
S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
return false;
}
return true;
}
static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
SourceLocation Loc,
SourceRange ArgRange,
UnaryExprOrTypeTrait TraitKind) {
// Reject sizeof(interface) and sizeof(interface<proto>) if the
// runtime doesn't allow it.
if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
<< T << (TraitKind == UETT_SizeOf)
<< ArgRange;
return true;
}
return false;
}
/// Check whether E is a pointer from a decayed array type (the decayed
/// pointer type is equal to T) and emit a warning if it is.
static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
Expr *E) {
// Don't warn if the operation changed the type.
if (T != E->getType())
return;
// Now look for array decays.
ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
return;
S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
<< ICE->getType()
<< ICE->getSubExpr()->getType();
}
/// Check the constraints on expression operands to unary type expression
/// and type traits.
///
/// Completes any types necessary and validates the constraints on the operand
/// expression. The logic mostly mirrors the type-based overload, but may modify
/// the expression as it completes the type for that expression through template
/// instantiation, etc.
bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
UnaryExprOrTypeTrait ExprKind) {
QualType ExprTy = E->getType();
assert(!ExprTy->isReferenceType());
bool IsUnevaluatedOperand =
(ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
ExprKind == UETT_PreferredAlignOf);
if (IsUnevaluatedOperand) {
ExprResult Result = CheckUnevaluatedOperand(E);
if (Result.isInvalid())
return true;
E = Result.get();
}
if (ExprKind == UETT_VecStep)
return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
E->getSourceRange());
// Explicitly list some types as extensions.
if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
E->getSourceRange(), ExprKind))
return false;
// 'alignof' applied to an expression only requires the base element type of
// the expression to be complete. 'sizeof' requires the expression's type to
// be complete (and will attempt to complete it if it's an array of unknown
// bound).
if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
if (RequireCompleteSizedType(
E->getExprLoc(), Context.getBaseElementType(E->getType()),
diag::err_sizeof_alignof_incomplete_or_sizeless_type,
getTraitSpelling(ExprKind), E->getSourceRange()))
return true;
} else {
if (RequireCompleteSizedExprType(
E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
getTraitSpelling(ExprKind), E->getSourceRange()))
return true;
}
// Completing the expression's type may have changed it.
ExprTy = E->getType();
assert(!ExprTy->isReferenceType());
if (ExprTy->isFunctionType()) {
Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
<< getTraitSpelling(ExprKind) << E->getSourceRange();
return true;
}
// The operand for sizeof and alignof is in an unevaluated expression context,
// so side effects could result in unintended consequences.
if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
E->HasSideEffects(Context, false))
Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
E->getSourceRange(), ExprKind))
return true;
if (ExprKind == UETT_SizeOf) {
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
QualType OType = PVD->getOriginalType();
QualType Type = PVD->getType();
if (Type->isPointerType() && OType->isArrayType()) {
Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
<< Type << OType;
Diag(PVD->getLocation(), diag::note_declared_at);
}
}
}
// Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
// decays into a pointer and returns an unintended result. This is most
// likely a typo for "sizeof(array) op x".
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
BO->getLHS());
warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
BO->getRHS());
}
}
return false;
}
/// Check the constraints on operands to unary expression and type
/// traits.
///
/// This will complete any types necessary, and validate the various constraints
/// on those operands.
///
/// The UsualUnaryConversions() function is *not* called by this routine.
/// C99 6.3.2.1p[2-4] all state:
/// Except when it is the operand of the sizeof operator ...
///
/// C++ [expr.sizeof]p4
/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
/// standard conversions are not applied to the operand of sizeof.
///
/// This policy is followed for all of the unary trait expressions.
bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
SourceLocation OpLoc,
SourceRange ExprRange,
UnaryExprOrTypeTrait ExprKind) {
if (ExprType->isDependentType())
return false;
// C++ [expr.sizeof]p2:
// When applied to a reference or a reference type, the result
// is the size of the referenced type.
// C++11 [expr.alignof]p3:
// When alignof is applied to a reference type, the result
// shall be the alignment of the referenced type.
if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
ExprType = Ref->getPointeeType();
// C11 6.5.3.4/3, C++11 [expr.alignof]p3:
// When alignof or _Alignof is applied to an array type, the result
// is the alignment of the element type.
if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
ExprKind == UETT_OpenMPRequiredSimdAlign)
ExprType = Context.getBaseElementType(ExprType);
if (ExprKind == UETT_VecStep)
return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
// Explicitly list some types as extensions.
if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
ExprKind))
return false;
if (RequireCompleteSizedType(
OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
getTraitSpelling(ExprKind), ExprRange))
return true;
if (ExprType->isFunctionType()) {
Diag(OpLoc, diag::err_sizeof_alignof_function_type)
<< getTraitSpelling(ExprKind) << ExprRange;
return true;
}
if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
ExprKind))
return true;
return false;
}
static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
// Cannot know anything else if the expression is dependent.
if (E->isTypeDependent())
return false;
if (E->getObjectKind() == OK_BitField) {
S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
<< 1 << E->getSourceRange();
return true;
}
ValueDecl *D = nullptr;
Expr *Inner = E->IgnoreParens();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
D = DRE->getDecl();
} else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
D = ME->getMemberDecl();
}
// If it's a field, require the containing struct to have a
// complete definition so that we can compute the layout.
//
// This can happen in C++11 onwards, either by naming the member
// in a way that is not transformed into a member access expression
// (in an unevaluated operand, for instance), or by naming the member
// in a trailing-return-type.
//
// For the record, since __alignof__ on expressions is a GCC
// extension, GCC seems to permit this but always gives the
// nonsensical answer 0.
//
// We don't really need the layout here --- we could instead just
// directly check for all the appropriate alignment-lowing
// attributes --- but that would require duplicating a lot of
// logic that just isn't worth duplicating for such a marginal
// use-case.
if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
// Fast path this check, since we at least know the record has a
// definition if we can find a member of it.
if (!FD->getParent()->isCompleteDefinition()) {
S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
<< E->getSourceRange();
return true;
}
// Otherwise, if it's a field, and the field doesn't have
// reference type, then it must have a complete type (or be a
// flexible array member, which we explicitly want to
// white-list anyway), which makes the following checks trivial.
if (!FD->getType()->isReferenceType())
return false;
}
return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
}
bool Sema::CheckVecStepExpr(Expr *E) {
E = E->IgnoreParens();
// Cannot know anything else if the expression is dependent.
if (E->isTypeDependent())
return false;
return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
}
static void captureVariablyModifiedType(ASTContext &Context, QualType T,
CapturingScopeInfo *CSI) {
assert(T->isVariablyModifiedType());
assert(CSI != nullptr);
// We're going to walk down into the type and look for VLA expressions.
do {
const Type *Ty = T.getTypePtr();
switch (Ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.inc"
T = QualType();
break;
// These types are never variably-modified.
case Type::Builtin:
case Type::Complex:
case Type::Vector:
case Type::ExtVector:
case Type::ConstantMatrix:
case Type::Record:
case Type::Enum:
case Type::Elaborated:
case Type::TemplateSpecialization:
case Type::ObjCObject:
case Type::ObjCInterface:
case Type::ObjCObjectPointer:
case Type::ObjCTypeParam:
case Type::Pipe:
case Type::ExtInt:
llvm_unreachable("type class is never variably-modified!");
case Type::Adjusted:
T = cast<AdjustedType>(Ty)->getOriginalType();
break;
case Type::Decayed:
T = cast<DecayedType>(Ty)->getPointeeType();
break;
case Type::Pointer:
T = cast<PointerType>(Ty)->getPointeeType();
break;
case Type::BlockPointer:
T = cast<BlockPointerType>(Ty)->getPointeeType();
break;
case Type::LValueReference:
case Type::RValueReference:
T = cast<ReferenceType>(Ty)->getPointeeType();
break;
case Type::MemberPointer:
T = cast<MemberPointerType>(Ty)->getPointeeType();
break;
case Type::ConstantArray:
case Type::IncompleteArray:
// Losing element qualification here is fine.
T = cast<ArrayType>(Ty)->getElementType();
break;
case Type::VariableArray: {
// Losing element qualification here is fine.
const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
// Unknown size indication requires no size computation.
// Otherwise, evaluate and record it.
auto Size = VAT->getSizeExpr();
if (Size && !CSI->isVLATypeCaptured(VAT) &&
(isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
T = VAT->getElementType();
break;
}
case Type::FunctionProto:
case Type::FunctionNoProto:
T = cast<FunctionType>(Ty)->getReturnType();
break;
case Type::Paren:
case Type::TypeOf:
case Type::UnaryTransform:
case Type::Attributed:
case Type::SubstTemplateTypeParm:
case Type::MacroQualified:
// Keep walking after single level desugaring.
T = T.getSingleStepDesugaredType(Context);
break;
case Type::Typedef:
T = cast<TypedefType>(Ty)->desugar();
break;
case Type::Decltype:
T = cast<DecltypeType>(Ty)->desugar();
break;
case Type::Auto:
case Type::DeducedTemplateSpecialization:
T = cast<DeducedType>(Ty)->getDeducedType();
break;
case Type::TypeOfExpr:
T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
break;
case Type::Atomic:
T = cast<AtomicType>(Ty)->getValueType();
break;
}
} while (!T.isNull() && T->isVariablyModifiedType());
}
/// Build a sizeof or alignof expression given a type operand.
ExprResult
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind,
SourceRange R) {
if (!TInfo)
return ExprError();
QualType T = TInfo->getType();
if (!T->isDependentType() &&
CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
return ExprError();
if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
if (auto *TT = T->getAs<TypedefType>()) {
for (auto I = FunctionScopes.rbegin(),
E = std::prev(FunctionScopes.rend());
I != E; ++I) {
auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
if (CSI == nullptr)
break;
DeclContext *DC = nullptr;
if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
DC = LSI->CallOperator;
else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
DC = CRSI->TheCapturedDecl;
else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
DC = BSI->TheDecl;
if (DC) {
if (DC->containsDecl(TT->getDecl()))
break;
captureVariablyModifiedType(Context, T, CSI);
}
}
}
}
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return new (Context) UnaryExprOrTypeTraitExpr(
ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
}
/// Build a sizeof or alignof expression given an expression
/// operand.
ExprResult
Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind) {
ExprResult PE = CheckPlaceholderExpr(E);
if (PE.isInvalid())
return ExprError();
E = PE.get();
// Verify that the operand is valid.
bool isInvalid = false;
if (E->isTypeDependent()) {
// Delay type-checking for type-dependent expressions.
} else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
} else if (ExprKind == UETT_VecStep) {
isInvalid = CheckVecStepExpr(E);
} else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
isInvalid = true;
} else if (E->refersToBitField()) { // C99 6.5.3.4p1.
Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
isInvalid = true;
} else {
isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
}
if (isInvalid)
return ExprError();
if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
PE = TransformToPotentiallyEvaluated(E);
if (PE.isInvalid()) return ExprError();
E = PE.get();
}
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return new (Context) UnaryExprOrTypeTraitExpr(
ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
}
/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
/// expr and the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
ExprResult
Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
UnaryExprOrTypeTrait ExprKind, bool IsType,
void *TyOrEx, SourceRange ArgRange) {
// If error parsing type, ignore.
if (!TyOrEx) return ExprError();
if (IsType) {
TypeSourceInfo *TInfo;
(void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
}
Expr *ArgEx = (Expr *)TyOrEx;
ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
return Result;
}
static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
bool IsReal) {
if (V.get()->isTypeDependent())
return S.Context.DependentTy;
// _Real and _Imag are only l-values for normal l-values.
if (V.get()->getObjectKind() != OK_Ordinary) {
V = S.DefaultLvalueConversion(V.get());
if (V.isInvalid())
return QualType();
}
// These operators return the element type of a complex type.
if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
return CT->getElementType();
// Otherwise they pass through real integer and floating point types here.
if (V.get()->getType()->isArithmeticType())
return V.get()->getType();
// Test for placeholders.
ExprResult PR = S.CheckPlaceholderExpr(V.get());
if (PR.isInvalid()) return QualType();
if (PR.get() != V.get()) {
V = PR;
return CheckRealImagOperand(S, V, Loc, IsReal);
}
// Reject anything else.
S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
<< (IsReal ? "__real" : "__imag");
return QualType();
}
ExprResult
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, Expr *Input) {
UnaryOperatorKind Opc;
switch (Kind) {
default: llvm_unreachable("Unknown unary op!");
case tok::plusplus: Opc = UO_PostInc; break;
case tok::minusminus: Opc = UO_PostDec; break;
}
// Since this might is a postfix expression, get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
if (Result.isInvalid()) return ExprError();
Input = Result.get();
return BuildUnaryOp(S, OpLoc, Opc, Input);
}
/// Diagnose if arithmetic on the given ObjC pointer is illegal.
///
/// \return true on error
static bool checkArithmeticOnObjCPointer(Sema &S,
SourceLocation opLoc,
Expr *op) {
assert(op->getType()->isObjCObjectPointerType());
if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
!S.LangOpts.ObjCSubscriptingLegacyRuntime)
return false;
S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
<< op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
<< op->getSourceRange();
return true;
}
static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
auto *BaseNoParens = Base->IgnoreParens();
if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
return MSProp->getPropertyDecl()->getType()->isArrayType();
return isa<MSPropertySubscriptExpr>(BaseNoParens);
}
ExprResult
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
Expr *idx, SourceLocation rbLoc) {
if (base && !base->getType().isNull() &&
base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
SourceLocation(), /*Length*/ nullptr,
/*Stride=*/nullptr, rbLoc);
// Since this might be a postfix expression, get rid of ParenListExprs.
if (isa<ParenListExpr>(base)) {
ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
if (result.isInvalid()) return ExprError();
base = result.get();
}
// Check if base and idx form a MatrixSubscriptExpr.
//
// Helper to check for comma expressions, which are not allowed as indices for
// matrix subscript expressions.
auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
<< SourceRange(base->getBeginLoc(), rbLoc);
return true;
}
return false;
};
// The matrix subscript operator ([][])is considered a single operator.
// Separating the index expressions by parenthesis is not allowed.
if (base->getType()->isSpecificPlaceholderType(
BuiltinType::IncompleteMatrixIdx) &&
!isa<MatrixSubscriptExpr>(base)) {
Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
<< SourceRange(base->getBeginLoc(), rbLoc);
return ExprError();
}
// If the base is a MatrixSubscriptExpr, try to create a new
// MatrixSubscriptExpr.
auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
if (matSubscriptE) {
if (CheckAndReportCommaError(idx))
return ExprError();
assert(matSubscriptE->isIncomplete() &&
"base has to be an incomplete matrix subscript");
return CreateBuiltinMatrixSubscriptExpr(
matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc);
}
// Handle any non-overload placeholder types in the base and index
// expressions. We can't handle overloads here because the other
// operand might be an overloadable type, in which case the overload
// resolution for the operator overload should get the first crack
// at the overload.
bool IsMSPropertySubscript = false;
if (base->getType()->isNonOverloadPlaceholderType()) {
IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
if (!IsMSPropertySubscript) {
ExprResult result = CheckPlaceholderExpr(base);
if (result.isInvalid())
return ExprError();
base = result.get();
}
}
// If the base is a matrix type, try to create a new MatrixSubscriptExpr.
if (base->getType()->isMatrixType()) {
if (CheckAndReportCommaError(idx))
return ExprError();
return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc);
}
// A comma-expression as the index is deprecated in C++2a onwards.
if (getLangOpts().CPlusPlus20 &&
((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
(isa<CXXOperatorCallExpr>(idx) &&
cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
<< SourceRange(base->getBeginLoc(), rbLoc);
}
if (idx->getType()->isNonOverloadPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(idx);
if (result.isInvalid()) return ExprError();
idx = result.get();
}
// Build an unanalyzed expression if either operand is type-dependent.
if (getLangOpts().CPlusPlus &&
(base->isTypeDependent() || idx->isTypeDependent())) {
return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
VK_LValue, OK_Ordinary, rbLoc);
}
// MSDN, property (C++)
// https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
// This attribute can also be used in the declaration of an empty array in a
// class or structure definition. For example:
// __declspec(property(get=GetX, put=PutX)) int x[];
// The above statement indicates that x[] can be used with one or more array
// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
// and p->x[a][b] = i will be turned into p->PutX(a, b, i);
if (IsMSPropertySubscript) {
// Build MS property subscript expression if base is MS property reference
// or MS property subscript.
return new (Context) MSPropertySubscriptExpr(
base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
}
// Use C++ overloaded-operator rules if either operand has record
// type. The spec says to do this if either type is *overloadable*,
// but enum types can't declare subscript operators or conversion
// operators, so there's nothing interesting for overload resolution
// to do if there aren't any record types involved.
//
// ObjC pointers have their own subscripting logic that is not tied
// to overload resolution and so should not take this path.
if (getLangOpts().CPlusPlus &&
(base->getType()->isRecordType() ||
(!base->getType()->isObjCObjectPointerType() &&
idx->getType()->isRecordType()))) {
return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
}
ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
return Res;
}
ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
InitializationKind Kind =
InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
InitializationSequence InitSeq(*this, Entity, Kind, E);
return InitSeq.Perform(*this, Entity, Kind, E);
}
ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
Expr *ColumnIdx,
SourceLocation RBLoc) {
ExprResult BaseR = CheckPlaceholderExpr(Base);
if (BaseR.isInvalid())
return BaseR;
Base = BaseR.get();
ExprResult RowR = CheckPlaceholderExpr(RowIdx);
if (RowR.isInvalid())
return RowR;
RowIdx = RowR.get();
if (!ColumnIdx)
return new (Context) MatrixSubscriptExpr(
Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
// Build an unanalyzed expression if any of the operands is type-dependent.
if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
ColumnIdx->isTypeDependent())
return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
Context.DependentTy, RBLoc);
ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
if (ColumnR.isInvalid())
return ColumnR;
ColumnIdx = ColumnR.get();
// Check that IndexExpr is an integer expression. If it is a constant
// expression, check that it is less than Dim (= the number of elements in the
// corresponding dimension).
auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
bool IsColumnIdx) -> Expr * {
if (!IndexExpr->getType()->isIntegerType() &&
!IndexExpr->isTypeDependent()) {
Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
<< IsColumnIdx;
return nullptr;
}
if (Optional<llvm::APSInt> Idx =
IndexExpr->getIntegerConstantExpr(Context)) {
if ((*Idx < 0 || *Idx >= Dim)) {
Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
<< IsColumnIdx << Dim;
return nullptr;
}
}
ExprResult ConvExpr =
tryConvertExprToType(IndexExpr, Context.getSizeType());
assert(!ConvExpr.isInvalid() &&
"should be able to convert any integer type to size type");
return ConvExpr.get();
};
auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
if (!RowIdx || !ColumnIdx)
return ExprError();
return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
MTy->getElementType(), RBLoc);
}
void Sema::CheckAddressOfNoDeref(const Expr *E) {
ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
const Expr *StrippedExpr = E->IgnoreParenImpCasts();
// For expressions like `&(*s).b`, the base is recorded and what should be
// checked.
const MemberExpr *Member = nullptr;
while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
LastRecord.PossibleDerefs.erase(StrippedExpr);
}
void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
QualType ResultTy = E->getType();
ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
// Bail if the element is an array since it is not memory access.
if (isa<ArrayType>(ResultTy))
return;
if (ResultTy->hasAttr(attr::NoDeref)) {
LastRecord.PossibleDerefs.insert(E);
return;
}
// Check if the base type is a pointer to a member access of a struct
// marked with noderef.
const Expr *Base = E->getBase();
QualType BaseTy = Base->getType();
if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
// Not a pointer access
return;
const MemberExpr *Member = nullptr;
while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
Member->isArrow())
Base = Member->getBase();
if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
LastRecord.PossibleDerefs.insert(E);
}
}
ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound,
SourceLocation ColonLocFirst,
SourceLocation ColonLocSecond,
Expr *Length, Expr *Stride,
SourceLocation RBLoc) {
if (Base->getType()->isPlaceholderType() &&
!Base->getType()->isSpecificPlaceholderType(
BuiltinType::OMPArraySection)) {
ExprResult Result = CheckPlaceholderExpr(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(LowerBound);
if (Result.isInvalid())
return ExprError();
Result = DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
LowerBound = Result.get();
}
if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(Length);
if (Result.isInvalid())
return ExprError();
Result = DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Length = Result.get();
}
if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(Stride);
if (Result.isInvalid())
return ExprError();
Result = DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Stride = Result.get();
}
// Build an unanalyzed expression if either operand is type-dependent.
if (Base->isTypeDependent() ||
(LowerBound &&
(LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
(Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
(Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
return new (Context) OMPArraySectionExpr(
Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
}
// Perform default conversions.
QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
QualType ResultTy;
if (OriginalTy->isAnyPointerType()) {
ResultTy = OriginalTy->getPointeeType();
} else if (OriginalTy->isArrayType()) {
ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
} else {
return ExprError(
Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
<< Base->getSourceRange());
}
// C99 6.5.2.1p1
if (LowerBound) {
auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
LowerBound);
if (Res.isInvalid())
return ExprError(Diag(LowerBound->getExprLoc(),
diag::err_omp_typecheck_section_not_integer)
<< 0 << LowerBound->getSourceRange());
LowerBound = Res.get();
if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
<< 0 << LowerBound->getSourceRange();
}
if (Length) {
auto Res =
PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
if (Res.isInvalid())
return ExprError(Diag(Length->getExprLoc(),
diag::err_omp_typecheck_section_not_integer)
<< 1 << Length->getSourceRange());
Length = Res.get();
if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
<< 1 << Length->getSourceRange();
}
if (Stride) {
ExprResult Res =
PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
if (Res.isInvalid())
return ExprError(Diag(Stride->getExprLoc(),
diag::err_omp_typecheck_section_not_integer)
<< 1 << Stride->getSourceRange());
Stride = Res.get();
if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
<< 1 << Stride->getSourceRange();
}
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
// type. Note that functions are not objects, and that (in C99 parlance)
// incomplete types are not object types.
if (ResultTy->isFunctionType()) {
Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
<< ResultTy << Base->getSourceRange();
return ExprError();
}
if (RequireCompleteType(Base->getExprLoc(), ResultTy,
diag::err_omp_section_incomplete_type, Base))
return ExprError();
if (LowerBound && !OriginalTy->isAnyPointerType()) {
Expr::EvalResult Result;
if (LowerBound->EvaluateAsInt(Result, Context)) {
// OpenMP 5.0, [2.1.5 Array Sections]
// The array section must be a subset of the original array.
llvm::APSInt LowerBoundValue = Result.Val.getInt();
if (LowerBoundValue.isNegative()) {
Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
<< LowerBound->getSourceRange();
return ExprError();
}
}
}
if (Length) {
Expr::EvalResult Result;
if (Length->EvaluateAsInt(Result, Context)) {
// OpenMP 5.0, [2.1.5 Array Sections]
// The length must evaluate to non-negative integers.
llvm::APSInt LengthValue = Result.Val.getInt();
if (LengthValue.isNegative()) {
Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
<< LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
<< Length->getSourceRange();
return ExprError();
}
}
} else if (ColonLocFirst.isValid() &&
(OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
!OriginalTy->isVariableArrayType()))) {
// OpenMP 5.0, [2.1.5 Array Sections]
// When the size of the array dimension is not known, the length must be
// specified explicitly.
Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
<< (!OriginalTy.isNull() && OriginalTy->isArrayType());
return ExprError();
}
if (Stride) {
Expr::EvalResult Result;
if (Stride->EvaluateAsInt(Result, Context)) {
// OpenMP 5.0, [2.1.5 Array Sections]
// The stride must evaluate to a positive integer.
llvm::APSInt StrideValue = Result.Val.getInt();
if (!StrideValue.isStrictlyPositive()) {
Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
<< StrideValue.toString(/*Radix=*/10, /*Signed=*/true)
<< Stride->getSourceRange();
return ExprError();
}
}
}
if (!Base->getType()->isSpecificPlaceholderType(
BuiltinType::OMPArraySection)) {
ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
return new (Context) OMPArraySectionExpr(
Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
}
ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
SourceLocation RParenLoc,
ArrayRef<Expr *> Dims,
ArrayRef<SourceRange> Brackets) {
if (Base->getType()->isPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(Base);
if (Result.isInvalid())
return ExprError();
Result = DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
QualType BaseTy = Base->getType();
// Delay analysis of the types/expressions if instantiation/specialization is
// required.
if (!BaseTy->isPointerType() && Base->isTypeDependent())
return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
LParenLoc, RParenLoc, Dims, Brackets);
if (!BaseTy->isPointerType() ||
(!Base->isTypeDependent() &&
BaseTy->getPointeeType()->isIncompleteType()))
return ExprError(Diag(Base->getExprLoc(),
diag::err_omp_non_pointer_type_array_shaping_base)
<< Base->getSourceRange());
SmallVector<Expr *, 4> NewDims;
bool ErrorFound = false;
for (Expr *Dim : Dims) {
if (Dim->getType()->isPlaceholderType()) {
ExprResult Result = CheckPlaceholderExpr(Dim);
if (Result.isInvalid()) {
ErrorFound = true;
continue;
}
Result = DefaultLvalueConversion(Result.get());
if (Result.isInvalid()) {
ErrorFound = true;
continue;
}
Dim = Result.get();
}
if (!Dim->isTypeDependent()) {
ExprResult Result =
PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
if (Result.isInvalid()) {
ErrorFound = true;
Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
<< Dim->getSourceRange();
continue;
}
Dim = Result.get();
Expr::EvalResult EvResult;
if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
// OpenMP 5.0, [2.1.4 Array Shaping]
// Each si is an integral type expression that must evaluate to a
// positive integer.
llvm::APSInt Value = EvResult.Val.getInt();
if (!Value.isStrictlyPositive()) {
Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
<< Value.toString(/*Radix=*/10, /*Signed=*/true)
<< Dim->getSourceRange();
ErrorFound = true;
continue;
}
}
}
NewDims.push_back(Dim);
}
if (ErrorFound)
return ExprError();
return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
LParenLoc, RParenLoc, NewDims, Brackets);
}
ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
SourceLocation LLoc, SourceLocation RLoc,
ArrayRef<OMPIteratorData> Data) {
SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
bool IsCorrect = true;
for (const OMPIteratorData &D : Data) {
TypeSourceInfo *TInfo = nullptr;
SourceLocation StartLoc;
QualType DeclTy;
if (!D.Type.getAsOpaquePtr()) {
// OpenMP 5.0, 2.1.6 Iterators
// In an iterator-specifier, if the iterator-type is not specified then
// the type of that iterator is of int type.
DeclTy = Context.IntTy;
StartLoc = D.DeclIdentLoc;
} else {
DeclTy = GetTypeFromParser(D.Type, &TInfo);
StartLoc = TInfo->getTypeLoc().getBeginLoc();
}
bool IsDeclTyDependent = DeclTy->isDependentType() ||
DeclTy->containsUnexpandedParameterPack() ||
DeclTy->isInstantiationDependentType();
if (!IsDeclTyDependent) {
if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
// OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
// The iterator-type must be an integral or pointer type.
Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
<< DeclTy;
IsCorrect = false;
continue;
}
if (DeclTy.isConstant(Context)) {
// OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
// The iterator-type must not be const qualified.
Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
<< DeclTy;
IsCorrect = false;
continue;
}
}
// Iterator declaration.
assert(D.DeclIdent && "Identifier expected.");
// Always try to create iterator declarator to avoid extra error messages
// about unknown declarations use.
auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
D.DeclIdent, DeclTy, TInfo, SC_None);
VD->setImplicit();
if (S) {
// Check for conflicting previous declaration.
DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
ForVisibleRedeclaration);
Previous.suppressDiagnostics();
LookupName(Previous, S);
FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
/*AllowInlineNamespace=*/false);
if (!Previous.empty()) {
NamedDecl *Old = Previous.getRepresentativeDecl();
Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
Diag(Old->getLocation(), diag::note_previous_definition);
} else {
PushOnScopeChains(VD, S);
}
} else {
CurContext->addDecl(VD);
}
Expr *Begin = D.Range.Begin;
if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
ExprResult BeginRes =
PerformImplicitConversion(Begin, DeclTy, AA_Converting);
Begin = BeginRes.get();
}
Expr *End = D.Range.End;
if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
End = EndRes.get();
}
Expr *Step = D.Range.Step;
if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
if (!Step->getType()->isIntegralType(Context)) {
Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
<< Step << Step->getSourceRange();
IsCorrect = false;
continue;
}
Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
// OpenMP 5.0, 2.1.6 Iterators, Restrictions
// If the step expression of a range-specification equals zero, the
// behavior is unspecified.
if (Result && Result->isNullValue()) {
Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
<< Step << Step->getSourceRange();
IsCorrect = false;
continue;
}
}
if (!Begin || !End || !IsCorrect) {
IsCorrect = false;
continue;
}
OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
IDElem.IteratorDecl = VD;
IDElem.AssignmentLoc = D.AssignLoc;
IDElem.Range.Begin = Begin;
IDElem.Range.End = End;
IDElem.Range.Step = Step;
IDElem.ColonLoc = D.ColonLoc;
IDElem.SecondColonLoc = D.SecColonLoc;
}
if (!IsCorrect) {
// Invalidate all created iterator declarations if error is found.
for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
if (Decl *ID = D.IteratorDecl)
ID->setInvalidDecl();
}
return ExprError();
}
SmallVector<OMPIteratorHelperData, 4> Helpers;
if (!CurContext->isDependentContext()) {
// Build number of ityeration for each iteration range.
// Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
// ((Begini-Stepi-1-Endi) / -Stepi);
for (OMPIteratorExpr::IteratorDefinition &D : ID) {
// (Endi - Begini)
ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
D.Range.Begin);
if(!Res.isUsable()) {
IsCorrect = false;
continue;
}
ExprResult St, St1;
if (D.Range.Step) {
St = D.Range.Step;
// (Endi - Begini) + Stepi
Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
if (!Res.isUsable()) {
IsCorrect = false;
continue;
}
// (Endi - Begini) + Stepi - 1
Res =
CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
ActOnIntegerConstant(D.AssignmentLoc, 1).get());
if (!Res.isUsable()) {
IsCorrect = false;
continue;
}
// ((Endi - Begini) + Stepi - 1) / Stepi
Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
if (!Res.isUsable()) {
IsCorrect = false;
continue;
}
St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
// (Begini - Endi)
ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
D.Range.Begin, D.Range.End);
if (!Res1.isUsable()) {
IsCorrect = false;
continue;
}
// (Begini - Endi) - Stepi
Res1 =
CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
if (!Res1.isUsable()) {
IsCorrect = false;
continue;
}
// (Begini - Endi) - Stepi - 1
Res1 =
CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
ActOnIntegerConstant(D.AssignmentLoc, 1).get());
if (!Res1.isUsable()) {
IsCorrect = false;
continue;
}
// ((Begini - Endi) - Stepi - 1) / (-Stepi)
Res1 =
CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
if (!Res1.isUsable()) {
IsCorrect = false;
continue;
}
// Stepi > 0.
ExprResult CmpRes =
CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
ActOnIntegerConstant(D.AssignmentLoc, 0).get());
if (!CmpRes.isUsable()) {
IsCorrect = false;
continue;
}
Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
Res.get(), Res1.get());
if (!Res.isUsable()) {
IsCorrect = false;
continue;
}
}
Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
if (!Res.isUsable()) {
IsCorrect = false;
continue;
}
// Build counter update.
// Build counter.
auto *CounterVD =
VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
D.IteratorDecl->getBeginLoc(), nullptr,
Res.get()->getType(), nullptr, SC_None);
CounterVD->setImplicit();
ExprResult RefRes =
BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
D.IteratorDecl->getBeginLoc());
// Build counter update.
// I = Begini + counter * Stepi;
ExprResult UpdateRes;
if (D.Range.Step) {
UpdateRes = CreateBuiltinBinOp(
D.AssignmentLoc, BO_Mul,
DefaultLvalueConversion(RefRes.get()).get(), St.get());
} else {
UpdateRes = DefaultLvalueConversion(RefRes.get());
}
if (!UpdateRes.isUsable()) {
IsCorrect = false;
continue;
}
UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
UpdateRes.get());
if (!UpdateRes.isUsable()) {
IsCorrect = false;
continue;
}
ExprResult VDRes =
BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
D.IteratorDecl->getBeginLoc());
UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
UpdateRes.get());
if (!UpdateRes.isUsable()) {
IsCorrect = false;
continue;
}
UpdateRes =
ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
if (!UpdateRes.isUsable()) {
IsCorrect = false;
continue;
}
ExprResult CounterUpdateRes =
CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
if (!CounterUpdateRes.isUsable()) {
IsCorrect = false;
continue;
}
CounterUpdateRes =
ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
if (!CounterUpdateRes.isUsable()) {
IsCorrect = false;
continue;
}
OMPIteratorHelperData &HD = Helpers.emplace_back();
HD.CounterVD = CounterVD;
HD.Upper = Res.get();
HD.Update = UpdateRes.get();
HD.CounterUpdate = CounterUpdateRes.get();
}
} else {
Helpers.assign(ID.size(), {});
}
if (!IsCorrect) {
// Invalidate all created iterator declarations if error is found.
for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
if (Decl *ID = D.IteratorDecl)
ID->setInvalidDecl();
}
return ExprError();
}
return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
LLoc, RLoc, ID, Helpers);
}
ExprResult
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc) {
Expr *LHSExp = Base;
Expr *RHSExp = Idx;
ExprValueKind VK = VK_LValue;
ExprObjectKind OK = OK_Ordinary;
// Per C++ core issue 1213, the result is an xvalue if either operand is
// a non-lvalue array, and an lvalue otherwise.
if (getLangOpts().CPlusPlus11) {
for (auto *Op : {LHSExp, RHSExp}) {
Op = Op->IgnoreImplicit();
if (Op->getType()->isArrayType() && !Op->isLValue())
VK = VK_XValue;
}
}
// Perform default conversions.
if (!LHSExp->getType()->getAs<VectorType>()) {
ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
if (Result.isInvalid())
return ExprError();
LHSExp = Result.get();
}
ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
if (Result.isInvalid())
return ExprError();
RHSExp = Result.get();
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
// in the subscript position. As a result, we need to derive the array base
// and index from the expression types.
Expr *BaseExpr, *IndexExpr;
QualType ResultType;
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = Context.DependentTy;
} else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
LHSTy->getAs<ObjCObjectPointerType>()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
// Use custom logic if this should be the pseudo-object subscript
// expression.
if (!LangOpts.isSubscriptPointerArithmetic())
return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
nullptr);
ResultType = PTy->getPointeeType();
} else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
RHSTy->getAs<ObjCObjectPointerType>()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
if (!LangOpts.isSubscriptPointerArithmetic()) {
Diag(LLoc, diag::err_subscript_nonfragile_interface)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
BaseExpr = LHSExp; // vectors: V[123]
IndexExpr = RHSExp;
// We apply C++ DR1213 to vector subscripting too.
if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
if (Materialized.isInvalid())
return ExprError();
LHSExp = Materialized.get();
}
VK = LHSExp->getValueKind();
if (VK != VK_RValue)
OK = OK_VectorComponent;
ResultType = VTy->getElementType();
QualType BaseType = BaseExpr->getType();
Qualifiers BaseQuals = BaseType.getQualifiers();
Qualifiers MemberQuals = ResultType.getQualifiers();
Qualifiers Combined = BaseQuals + MemberQuals;
if (Combined != MemberQuals)
ResultType = Context.getQualifiedType(ResultType, Combined);
} else if (LHSTy->isArrayType()) {
// If we see an array that wasn't promoted by
// DefaultFunctionArrayLvalueConversion, it must be an array that
// wasn't promoted because of the C90 rule that doesn't
// allow promoting non-lvalue arrays. Warn, then
// force the promotion here.
Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
<< LHSExp->getSourceRange();
LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
CK_ArrayToPointerDecay).get();
LHSTy = LHSExp->getType();
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
} else if (RHSTy->isArrayType()) {
// Same as previous, except for 123[f().a] case
Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
<< RHSExp->getSourceRange();
RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
CK_ArrayToPointerDecay).get();
RHSTy = RHSExp->getType();
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
} else {
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
}
// C99 6.5.2.1p1
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
<< IndexExpr->getSourceRange());
if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
&& !IndexExpr->isTypeDependent())
Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
// type. Note that Functions are not objects, and that (in C99 parlance)
// incomplete types are not object types.
if (ResultType->isFunctionType()) {
Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
// GNU extension: subscripting on pointer to void
Diag(LLoc, diag::ext_gnu_subscript_void_type)
<< BaseExpr->getSourceRange();
// C forbids expressions of unqualified void type from being l-values.
// See IsCForbiddenLValueType.
if (!ResultType.hasQualifiers()) VK = VK_RValue;
} else if (!ResultType->isDependentType() &&
RequireCompleteSizedType(
LLoc, ResultType,
diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
return ExprError();
assert(VK == VK_RValue || LangOpts.CPlusPlus ||
!ResultType.isCForbiddenLValueType());
if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
FunctionScopes.size() > 1) {
if (auto *TT =
LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
for (auto I = FunctionScopes.rbegin(),
E = std::prev(FunctionScopes.rend());
I != E; ++I) {
auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
if (CSI == nullptr)
break;
DeclContext *DC = nullptr;
if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
DC = LSI->CallOperator;
else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
DC = CRSI->TheCapturedDecl;
else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
DC = BSI->TheDecl;
if (DC) {
if (DC->containsDecl(TT->getDecl()))
break;
captureVariablyModifiedType(
Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
}
}
}
}
return new (Context)
ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
}
bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
ParmVarDecl *Param) {
if (Param->hasUnparsedDefaultArg()) {
// If we've already cleared out the location for the default argument,
// that means we're parsing it right now.
if (!UnparsedDefaultArgLocs.count(Param)) {
Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
Diag(CallLoc, diag::note_recursive_default_argument_used_here);
Param->setInvalidDecl();
return true;
}
Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
<< FD << cast<CXXRecordDecl>(FD->getDeclContext());
Diag(UnparsedDefaultArgLocs[Param],
diag::note_default_argument_declared_here);
return true;
}
if (Param->hasUninstantiatedDefaultArg() &&
InstantiateDefaultArgument(CallLoc, FD, Param))
return true;
assert(Param->hasInit() && "default argument but no initializer?");
// If the default expression creates temporaries, we need to
// push them to the current stack of expression temporaries so they'll
// be properly destroyed.
// FIXME: We should really be rebuilding the default argument with new
// bound temporaries; see the comment in PR5810.
// We don't need to do that with block decls, though, because
// blocks in default argument expression can never capture anything.
if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
// Set the "needs cleanups" bit regardless of whether there are
// any explicit objects.
Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
// Append all the objects to the cleanup list. Right now, this
// should always be a no-op, because blocks in default argument
// expressions should never be able to capture anything.
assert(!Init->getNumObjects() &&
"default argument expression has capturing blocks?");
}
// We already type-checked the argument, so we know it works.
// Just mark all of the declarations in this potentially-evaluated expression
// as being "referenced".
EnterExpressionEvaluationContext EvalContext(
*this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
/*SkipLocalVariables=*/true);
return false;
}
ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
FunctionDecl *FD, ParmVarDecl *Param) {
assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
return ExprError();
return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
}
Sema::VariadicCallType
Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
Expr *Fn) {
if (Proto && Proto->isVariadic()) {
if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
return VariadicConstructor;
else if (Fn && Fn->getType()->isBlockPointerType())
return VariadicBlock;
else if (FDecl) {
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
if (Method->isInstance())
return VariadicMethod;
} else if (Fn && Fn->getType() == Context.BoundMemberTy)
return VariadicMethod;
return VariadicFunction;
}
return VariadicDoesNotApply;
}
namespace {
class FunctionCallCCC final : public FunctionCallFilterCCC {
public:
FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
unsigned NumArgs, MemberExpr *ME)
: FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
FunctionName(FuncName) {}
bool ValidateCandidate(const TypoCorrection &candidate) override {
if (!candidate.getCorrectionSpecifier() ||
candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
return false;
}
return FunctionCallFilterCCC::ValidateCandidate(candidate);
}
std::unique_ptr<CorrectionCandidateCallback> clone() override {
return std::make_unique<FunctionCallCCC>(*this);
}
private:
const IdentifierInfo *const FunctionName;
};
}
static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
FunctionDecl *FDecl,
ArrayRef<Expr *> Args) {
MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
DeclarationName FuncName = FDecl->getDeclName();
SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
if (TypoCorrection Corrected = S.CorrectTypo(
DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
S.getScopeForContext(S.CurContext), nullptr, CCC,
Sema::CTK_ErrorRecovery)) {
if (NamedDecl *ND = Corrected.getFoundDecl()) {
if (Corrected.isOverloaded()) {
OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
OverloadCandidateSet::iterator Best;
for (NamedDecl *CD : Corrected) {
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
OCS);
}
switch (OCS.BestViableFunction(S, NameLoc, Best)) {
case OR_Success:
ND = Best->FoundDecl;
Corrected.setCorrectionDecl(ND);
break;
default:
break;
}
}
ND = ND->getUnderlyingDecl();
if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
return Corrected;
}
}
return TypoCorrection();
}
/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
/// Fn is the function expression. For a C++ member function, this
/// routine does not attempt to convert the object argument. Returns
/// true if the call is ill-formed.
bool
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
ArrayRef<Expr *> Args,
SourceLocation RParenLoc,
bool IsExecConfig) {
// Bail out early if calling a builtin with custom typechecking.
if (FDecl)
if (unsigned ID = FDecl->getBuiltinID())
if (Context.BuiltinInfo.hasCustomTypechecking(ID))
return false;
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
// assignment, to the types of the corresponding parameter, ...
unsigned NumParams = Proto->getNumParams();
bool Invalid = false;
unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
unsigned FnKind = Fn->getType()->isBlockPointerType()
? 1 /* block */
: (IsExecConfig ? 3 /* kernel function (exec config) */
: 0 /* function */);
// If too few arguments are available (and we don't have default
// arguments for the remaining parameters), don't make the call.
if (Args.size() < NumParams) {
if (Args.size() < MinArgs) {
TypoCorrection TC;
if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
unsigned diag_id =
MinArgs == NumParams && !Proto->isVariadic()
? diag::err_typecheck_call_too_few_args_suggest
: diag::err_typecheck_call_too_few_args_at_least_suggest;
diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
<< static_cast<unsigned>(Args.size())
<< TC.getCorrectionRange());
} else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
Diag(RParenLoc,
MinArgs == NumParams && !Proto->isVariadic()
? diag::err_typecheck_call_too_few_args_one
: diag::err_typecheck_call_too_few_args_at_least_one)
<< FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
else
Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
? diag::err_typecheck_call_too_few_args
: diag::err_typecheck_call_too_few_args_at_least)
<< FnKind << MinArgs << static_cast<unsigned>(Args.size())
<< Fn->getSourceRange();
// Emit the location of the prototype.
if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
return true;
}
// We reserve space for the default arguments when we create
// the call expression, before calling ConvertArgumentsForCall.
assert((Call->getNumArgs() == NumParams) &&
"We should have reserved space for the default arguments before!");
}
// If too many are passed and not variadic, error on the extras and drop
// them.
if (Args.size() > NumParams) {
if (!Proto->isVariadic()) {
TypoCorrection TC;
if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
unsigned diag_id =
MinArgs == NumParams && !Proto->isVariadic()
? diag::err_typecheck_call_too_many_args_suggest
: diag::err_typecheck_call_too_many_args_at_most_suggest;
diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
<< static_cast<unsigned>(Args.size())
<< TC.getCorrectionRange());
} else if (NumParams == 1 && FDecl &&
FDecl->getParamDecl(0)->getDeclName())
Diag(Args[NumParams]->getBeginLoc(),
MinArgs == NumParams
? diag::err_typecheck_call_too_many_args_one
: diag::err_typecheck_call_too_many_args_at_most_one)
<< FnKind << FDecl->getParamDecl(0)
<< static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
<< SourceRange(Args[NumParams]->getBeginLoc(),
Args.back()->getEndLoc());
else
Diag(Args[NumParams]->getBeginLoc(),
MinArgs == NumParams
? diag::err_typecheck_call_too_many_args
: diag::err_typecheck_call_too_many_args_at_most)
<< FnKind << NumParams << static_cast<unsigned>(Args.size())
<< Fn->getSourceRange()
<< SourceRange(Args[NumParams]->getBeginLoc(),
Args.back()->getEndLoc());
// Emit the location of the prototype.
if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
// This deletes the extra arguments.
Call->shrinkNumArgs(NumParams);
return true;
}
}
SmallVector<Expr *, 8> AllArgs;
VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
AllArgs, CallType);
if (Invalid)
return true;
unsigned TotalNumArgs = AllArgs.size();
for (unsigned i = 0; i < TotalNumArgs; ++i)
Call->setArg(i, AllArgs[i]);
return false;
}
bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
const FunctionProtoType *Proto,
unsigned FirstParam, ArrayRef<Expr *> Args,
SmallVectorImpl<Expr *> &AllArgs,
VariadicCallType CallType, bool AllowExplicit,
bool IsListInitialization) {
unsigned NumParams = Proto->getNumParams();
bool Invalid = false;
size_t ArgIx = 0;
// Continue to check argument types (even if we have too few/many args).
for (unsigned i = FirstParam; i < NumParams; i++) {
QualType ProtoArgType = Proto->getParamType(i);
Expr *Arg;
ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
if (ArgIx < Args.size()) {
Arg = Args[ArgIx++];
if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
diag::err_call_incomplete_argument, Arg))
return true;
// Strip the unbridged-cast placeholder expression off, if applicable.
bool CFAudited = false;
if (Arg->getType() == Context.ARCUnbridgedCastTy &&
FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
(!Param || !Param->hasAttr<CFConsumedAttr>()))
Arg = stripARCUnbridgedCast(Arg);
else if (getLangOpts().ObjCAutoRefCount &&
FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
(!Param || !Param->hasAttr<CFConsumedAttr>()))
CFAudited = true;
if (Proto->getExtParameterInfo(i).isNoEscape())
if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
BE->getBlockDecl()->setDoesNotEscape();
InitializedEntity Entity =
Param ? InitializedEntity::InitializeParameter(Context, Param,
ProtoArgType)
: InitializedEntity::InitializeParameter(
Context, ProtoArgType, Proto->isParamConsumed(i));
// Remember that parameter belongs to a CF audited API.
if (CFAudited)
Entity.setParameterCFAudited();
ExprResult ArgE = PerformCopyInitialization(
Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
if (ArgE.isInvalid())
return true;
Arg = ArgE.getAs<Expr>();
} else {
assert(Param && "can't use default arguments without a known callee");
ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
if (ArgExpr.isInvalid())
return true;
Arg = ArgExpr.getAs<Expr>();
}
// Check for array bounds violations for each argument to the call. This
// check only triggers warnings when the argument isn't a more complex Expr
// with its own checking, such as a BinaryOperator.
CheckArrayAccess(Arg);
// Check for violations of C99 static array rules (C99 6.7.5.3p7).
CheckStaticArrayArgument(CallLoc, Param, Arg);
AllArgs.push_back(Arg);
}
// If this is a variadic call, handle args passed through "...".
if (CallType != VariadicDoesNotApply) {
// Assume that extern "C" functions with variadic arguments that
// return __unknown_anytype aren't *really* variadic.
if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
FDecl->isExternC()) {
for (Expr *A : Args.slice(ArgIx)) {
QualType paramType; // ignored
ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
Invalid |= arg.isInvalid();
AllArgs.push_back(arg.get());
}
// Otherwise do argument promotion, (C99 6.5.2.2p7).
} else {
for (Expr *A : Args.slice(ArgIx)) {
ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
Invalid |= Arg.isInvalid();
AllArgs.push_back(Arg.get());
}
}
// Check for array bounds violations.
for (Expr *A : Args.slice(ArgIx))
CheckArrayAccess(A);
}
return Invalid;
}
static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
TL = DTL.getOriginalLoc();
if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
S.Diag(PVD->getLocation(), diag::note_callee_static_array)
<< ATL.getLocalSourceRange();
}
/// CheckStaticArrayArgument - If the given argument corresponds to a static
/// array parameter, check that it is non-null, and that if it is formed by
/// array-to-pointer decay, the underlying array is sufficiently large.
///
/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
/// array type derivation, then for each call to the function, the value of the
/// corresponding actual argument shall provide access to the first element of
/// an array with at least as many elements as specified by the size expression.
void
Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
ParmVarDecl *Param,
const Expr *ArgExpr) {
// Static array parameters are not supported in C++.
if (!Param || getLangOpts().CPlusPlus)
return;
QualType OrigTy = Param->getOriginalType();
const ArrayType *AT = Context.getAsArrayType(OrigTy);
if (!AT || AT->getSizeModifier() != ArrayType::Static)
return;
if (ArgExpr->isNullPointerConstant(Context,
Expr::NPC_NeverValueDependent)) {
Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
DiagnoseCalleeStaticArrayParam(*this, Param);
return;
}
const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
if (!CAT)
return;
const ConstantArrayType *ArgCAT =
Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
if (!ArgCAT)
return;
if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
ArgCAT->getElementType())) {
if (ArgCAT->getSize().ult(CAT->getSize())) {
Diag(CallLoc, diag::warn_static_array_too_small)
<< ArgExpr->getSourceRange()
<< (unsigned)ArgCAT->getSize().getZExtValue()
<< (unsigned)CAT->getSize().getZExtValue() << 0;
DiagnoseCalleeStaticArrayParam(*this, Param);
}
return;
}
Optional<CharUnits> ArgSize =
getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
Diag(CallLoc, diag::warn_static_array_too_small)
<< ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
<< (unsigned)ParmSize->getQuantity() << 1;
DiagnoseCalleeStaticArrayParam(*this, Param);
}
}
/// Given a function expression of unknown-any type, try to rebuild it
/// to have a function type.
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
/// Is the given type a placeholder that we need to lower out
/// immediately during argument processing?
static bool isPlaceholderToRemoveAsArg(QualType type) {
// Placeholders are never sugared.
const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
if (!placeholder) return false;
switch (placeholder->getKind()) {
// Ignore all the non-placeholder types.
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
// In practice we'll never use this, since all SVE types are sugared
// via TypedefTypes rather than exposed directly as BuiltinTypes.
#define SVE_TYPE(Name, Id, SingletonId) \
case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
#include "clang/AST/BuiltinTypes.def"
return false;
// We cannot lower out overload sets; they might validly be resolved
// by the call machinery.
case BuiltinType::Overload:
return false;
// Unbridged casts in ARC can be handled in some call positions and
// should be left in place.
case BuiltinType::ARCUnbridgedCast:
return false;
// Pseudo-objects should be converted as soon as possible.
case BuiltinType::PseudoObject:
return true;
// The debugger mode could theoretically but currently does not try
// to resolve unknown-typed arguments based on known parameter types.
case BuiltinType::UnknownAny:
return true;
// These are always invalid as call arguments and should be reported.
case BuiltinType::BoundMember:
case BuiltinType::BuiltinFn:
case BuiltinType::IncompleteMatrixIdx:
case BuiltinType::OMPArraySection:
case BuiltinType::OMPArrayShaping:
case BuiltinType::OMPIterator:
return true;
}
llvm_unreachable("bad builtin type kind");
}
/// Check an argument list for placeholders that we won't try to
/// handle later.
static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
// Apply this processing to all the arguments at once instead of
// dying at the first failure.
bool hasInvalid = false;
for (size_t i = 0, e = args.size(); i != e; i++) {
if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
ExprResult result = S.CheckPlaceholderExpr(args[i]);
if (result.isInvalid()) hasInvalid = true;
else args[i] = result.get();
}
}
return hasInvalid;
}
/// If a builtin function has a pointer argument with no explicit address
/// space, then it should be able to accept a pointer to any address
/// space as input. In order to do this, we need to replace the
/// standard builtin declaration with one that uses the same address space
/// as the call.
///
/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
/// it does not contain any pointer arguments without
/// an address space qualifer. Otherwise the rewritten
/// FunctionDecl is returned.
/// TODO: Handle pointer return types.
static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
FunctionDecl *FDecl,
MultiExprArg ArgExprs) {
QualType DeclType = FDecl->getType();
const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
ArgExprs.size() < FT->getNumParams())
return nullptr;
bool NeedsNewDecl = false;
unsigned i = 0;
SmallVector<QualType, 8> OverloadParams;
for (QualType ParamType : FT->param_types()) {
// Convert array arguments to pointer to simplify type lookup.
ExprResult ArgRes =
Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
if (ArgRes.isInvalid())
return nullptr;
Expr *Arg = ArgRes.get();
QualType ArgType = Arg->getType();
if (!ParamType->isPointerType() ||
ParamType.hasAddressSpace() ||
!ArgType->isPointerType() ||
!ArgType->getPointeeType().hasAddressSpace()) {
OverloadParams.push_back(ParamType);
continue;
}
QualType PointeeType = ParamType->getPointeeType();
if (PointeeType.hasAddressSpace())
continue;
NeedsNewDecl = true;
LangAS AS = ArgType->getPointeeType().getAddressSpace();
PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
OverloadParams.push_back(Context.getPointerType(PointeeType));
}
if (!NeedsNewDecl)
return nullptr;
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = FT->isVariadic();
QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
OverloadParams, EPI);
DeclContext *Parent = FDecl->getParent();
FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
FDecl->getLocation(),
FDecl->getLocation(),
FDecl->getIdentifier(),
OverloadTy,
/*TInfo=*/nullptr,
SC_Extern, false,
/*hasPrototype=*/true);
SmallVector<ParmVarDecl*, 16> Params;
FT = cast<FunctionProtoType>(OverloadTy);
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
QualType ParamType = FT->getParamType(i);
ParmVarDecl *Parm =
ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
SourceLocation(), nullptr, ParamType,
/*TInfo=*/nullptr, SC_None, nullptr);
Parm->setScopeInfo(0, i);
Params.push_back(Parm);
}
OverloadDecl->setParams(Params);
Sema->mergeDeclAttributes(OverloadDecl, FDecl);
return OverloadDecl;
}
static void checkDirectCallValidity(Sema &S, const Expr *Fn,
FunctionDecl *Callee,
MultiExprArg ArgExprs) {
// `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
// similar attributes) really don't like it when functions are called with an
// invalid number of args.
if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
/*PartialOverloading=*/false) &&
!Callee->isVariadic())
return;
if (Callee->getMinRequiredArguments() > ArgExprs.size())
return;
if (const EnableIfAttr *Attr =
S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
S.Diag(Fn->getBeginLoc(),
isa<CXXMethodDecl>(Callee)
? diag::err_ovl_no_viable_member_function_in_call
: diag::err_ovl_no_viable_function_in_call)
<< Callee << Callee->getSourceRange();
S.Diag(Callee->getLocation(),
diag::note_ovl_candidate_disabled_by_function_cond_attr)
<< Attr->getCond()->getSourceRange() << Attr->getMessage();
return;
}
}
static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
const UnresolvedMemberExpr *const UME, Sema &S) {
const auto GetFunctionLevelDCIfCXXClass =
[](Sema &S) -> const CXXRecordDecl * {
const DeclContext *const DC = S.getFunctionLevelDeclContext();
if (!DC || !DC->getParent())
return nullptr;
// If the call to some member function was made from within a member
// function body 'M' return return 'M's parent.
if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
return MD->getParent()->getCanonicalDecl();
// else the call was made from within a default member initializer of a
// class, so return the class.
if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
return RD->getCanonicalDecl();
return nullptr;
};
// If our DeclContext is neither a member function nor a class (in the
// case of a lambda in a default member initializer), we can't have an
// enclosing 'this'.
const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
if (!CurParentClass)
return false;
// The naming class for implicit member functions call is the class in which
// name lookup starts.
const CXXRecordDecl *const NamingClass =
UME->getNamingClass()->getCanonicalDecl();
assert(NamingClass && "Must have naming class even for implicit access");
// If the unresolved member functions were found in a 'naming class' that is
// related (either the same or derived from) to the class that contains the
// member function that itself contained the implicit member access.
return CurParentClass == NamingClass ||
CurParentClass->isDerivedFrom(NamingClass);
}
static void
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
if (!UME)
return;
LambdaScopeInfo *const CurLSI = S.getCurLambda();
// Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
// already been captured, or if this is an implicit member function call (if
// it isn't, an attempt to capture 'this' should already have been made).
if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
!UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
return;
// Check if the naming class in which the unresolved members were found is
// related (same as or is a base of) to the enclosing class.
if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
return;
DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
// If the enclosing function is not dependent, then this lambda is
// capture ready, so if we can capture this, do so.
if (!EnclosingFunctionCtx->isDependentContext()) {
// If the current lambda and all enclosing lambdas can capture 'this' -
// then go ahead and capture 'this' (since our unresolved overload set
// contains at least one non-static member function).
if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
S.CheckCXXThisCapture(CallLoc);
} else if (S.CurContext->isDependentContext()) {
// ... since this is an implicit member reference, that might potentially
// involve a 'this' capture, mark 'this' for potential capture in
// enclosing lambdas.
if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
CurLSI->addPotentialThisCapture(CallLoc);
}
}
ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg ArgExprs, SourceLocation RParenLoc,
Expr *ExecConfig) {
ExprResult Call =
BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
if (Call.isInvalid())
return Call;
// Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
// language modes.
if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
if (ULE->hasExplicitTemplateArgs() &&
ULE->decls_begin() == ULE->decls_end()) {
Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
? diag::warn_cxx17_compat_adl_only_template_id
: diag::ext_adl_only_template_id)
<< ULE->getName();
}
}
if (LangOpts.OpenMP)
Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
ExecConfig);
return Call;
}
/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg ArgExprs, SourceLocation RParenLoc,
Expr *ExecConfig, bool IsExecConfig) {
// Since this might be a postfix expression, get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
if (Result.isInvalid()) return ExprError();
Fn = Result.get();
if (checkArgsForPlaceholders(*this, ArgExprs))
return ExprError();
if (getLangOpts().CPlusPlus) {
// If this is a pseudo-destructor expression, build the call immediately.
if (isa<CXXPseudoDestructorExpr>(Fn)) {
if (!ArgExprs.empty()) {
// Pseudo-destructor calls should not have any arguments.
Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
<< FixItHint::CreateRemoval(
SourceRange(ArgExprs.front()->getBeginLoc(),
ArgExprs.back()->getEndLoc()));
}
return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
VK_RValue, RParenLoc, CurFPFeatureOverrides());
}
if (Fn->getType() == Context.PseudoObjectTy) {
ExprResult result = CheckPlaceholderExpr(Fn);
if (result.isInvalid()) return ExprError();
Fn = result.get();
}
// Determine whether this is a dependent call inside a C++ template,
// in which case we won't do any semantic analysis now.
if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
if (ExecConfig) {
return CUDAKernelCallExpr::Create(
Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
Context.DependentTy, VK_RValue, RParenLoc, CurFPFeatureOverrides());
} else {
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
*this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
Fn->getBeginLoc());
return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
VK_RValue, RParenLoc, CurFPFeatureOverrides());
}
}
// Determine whether this is a call to an object (C++ [over.call.object]).
if (Fn->getType()->isRecordType())
return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
RParenLoc);
if (Fn->getType() == Context.UnknownAnyTy) {
ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
if (result.isInvalid()) return ExprError();
Fn = result.get();
}
if (Fn->getType() == Context.BoundMemberTy) {
return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
RParenLoc);
}
}
// Check for overloaded calls. This can happen even in C due to extensions.
if (Fn->getType() == Context.OverloadTy) {
OverloadExpr::FindResult find = OverloadExpr::find(Fn);
// We aren't supposed to apply this logic if there's an '&' involved.
if (!find.HasFormOfMemberPointer) {
if (Expr::hasAnyTypeDependentArguments(ArgExprs))
return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
VK_RValue, RParenLoc, CurFPFeatureOverrides());
OverloadExpr *ovl = find.Expression;
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
return BuildOverloadedCallExpr(
Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
/*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
RParenLoc);
}
}
// If we're directly calling a function, get the appropriate declaration.
if (Fn->getType() == Context.UnknownAnyTy) {
ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
if (result.isInvalid()) return ExprError();
Fn = result.get();
}
Expr *NakedFn = Fn->IgnoreParens();
bool CallingNDeclIndirectly = false;
NamedDecl *NDecl = nullptr;
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
if (UnOp->getOpcode() == UO_AddrOf) {
CallingNDeclIndirectly = true;
NakedFn = UnOp->getSubExpr()->IgnoreParens();
}
}
if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
NDecl = DRE->getDecl();
FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
if (FDecl && FDecl->getBuiltinID()) {
// Rewrite the function decl for this builtin by replacing parameters
// with no explicit address space with the address space of the arguments
// in ArgExprs.
if ((FDecl =
rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
NDecl = FDecl;
Fn = DeclRefExpr::Create(
Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
nullptr, DRE->isNonOdrUse());
}
}
} else if (isa<MemberExpr>(NakedFn))
NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
FD, /*Complain=*/true, Fn->getBeginLoc()))
return ExprError();
if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
return ExprError();
checkDirectCallValidity(*this, Fn, FD, ArgExprs);
}
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
ExecConfig, IsExecConfig);
}
/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
///
/// __builtin_astype( value, dst type )
///
ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc) {
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
QualType DstTy = GetTypeFromParser(ParsedDestTy);
QualType SrcTy = E->getType();
if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
return ExprError(Diag(BuiltinLoc,
diag::err_invalid_astype_of_different_size)
<< DstTy
<< SrcTy
<< E->getSourceRange());
return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
}
/// ActOnConvertVectorExpr - create a new convert-vector expression from the
/// provided arguments.
///
/// __builtin_convertvector( value, dst type )
///
ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc) {
TypeSourceInfo *TInfo;
GetTypeFromParser(ParsedDestTy, &TInfo);
return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
}
/// BuildResolvedCallExpr - Build a call to a resolved expression,
/// i.e. an expression not of \p OverloadTy. The expression should
/// unary-convert to an expression of function-pointer or
/// block-pointer type.
///
/// \param NDecl the declaration being called, if available
ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
SourceLocation LParenLoc,
ArrayRef<Expr *> Args,
SourceLocation RParenLoc, Expr *Config,
bool IsExecConfig, ADLCallKind UsesADL) {
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
// Functions with 'interrupt' attribute cannot be called directly.
if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
return ExprError();
}
// Interrupt handlers don't save off the VFP regs automatically on ARM,
// so there's some risk when calling out to non-interrupt handler functions
// that the callee might not preserve them. This is easy to diagnose here,
// but can be very challenging to debug.
if (auto *Caller = getCurFunctionDecl())
if (Caller->hasAttr<ARMInterruptAttr>()) {
bool VFP = Context.getTargetInfo().hasFeature("vfp");
if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
}
// Promote the function operand.
// We special-case function promotion here because we only allow promoting
// builtin functions to function pointers in the callee of a call.
ExprResult Result;
QualType ResultTy;
if (BuiltinID &&
Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
// Extract the return type from the (builtin) function pointer type.
// FIXME Several builtins still have setType in
// Sema::CheckBuiltinFunctionCall. One should review their definitions in
// Builtins.def to ensure they are correct before removing setType calls.
QualType FnPtrTy = Context.getPointerType(FDecl->getType());
Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
ResultTy = FDecl->getCallResultType();
} else {
Result = CallExprUnaryConversions(Fn);
ResultTy = Context.BoolTy;
}
if (Result.isInvalid())
return ExprError();
Fn = Result.get();
// Check for a valid function type, but only if it is not a builtin which
// requires custom type checking. These will be handled by
// CheckBuiltinFunctionCall below just after creation of the call expression.
const FunctionType *FuncT = nullptr;
if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
retry:
if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
// have type pointer to function".
FuncT = PT->getPointeeType()->getAs<FunctionType>();
if (!FuncT)
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
} else if (const BlockPointerType *BPT =
Fn->getType()->getAs<BlockPointerType>()) {
FuncT = BPT->getPointeeType()->castAs<FunctionType>();
} else {
// Handle calls to expressions of unknown-any type.
if (Fn->getType() == Context.UnknownAnyTy) {
ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
if (rewrite.isInvalid())
return ExprError();
Fn = rewrite.get();
goto retry;
}
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
}
}
// Get the number of parameters in the function prototype, if any.
// We will allocate space for max(Args.size(), NumParams) arguments
// in the call expression.
const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
unsigned NumParams = Proto ? Proto->getNumParams() : 0;
CallExpr *TheCall;
if (Config) {
assert(UsesADL == ADLCallKind::NotADL &&
"CUDAKernelCallExpr should not use ADL");
TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
Args, ResultTy, VK_RValue, RParenLoc,
CurFPFeatureOverrides(), NumParams);
} else {
TheCall =
CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
CurFPFeatureOverrides(), NumParams, UsesADL);
}
if (!getLangOpts().CPlusPlus) {
// Forget about the nulled arguments since typo correction
// do not handle them well.
TheCall->shrinkNumArgs(Args.size());
// C cannot always handle TypoExpr nodes in builtin calls and direct
// function calls as their argument checking don't necessarily handle
// dependent types properly, so make sure any TypoExprs have been
// dealt with.
ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
if (!Result.isUsable()) return ExprError();
CallExpr *TheOldCall = TheCall;
TheCall = dyn_cast<CallExpr>(Result.get());
bool CorrectedTypos = TheCall != TheOldCall;
if (!TheCall) return Result;
Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
// A new call expression node was created if some typos were corrected.
// However it may not have been constructed with enough storage. In this
// case, rebuild the node with enough storage. The waste of space is
// immaterial since this only happens when some typos were corrected.
if (CorrectedTypos && Args.size() < NumParams) {
if (Config)
TheCall = CUDAKernelCallExpr::Create(
Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
RParenLoc, CurFPFeatureOverrides(), NumParams);
else
TheCall =
CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
CurFPFeatureOverrides(), NumParams, UsesADL);
}
// We can now handle the nulled arguments for the default arguments.
TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
}
// Bail out early if calling a builtin with custom type checking.
if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
if (getLangOpts().CUDA) {
if (Config) {
// CUDA: Kernel calls must be to global functions
if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
<< FDecl << Fn->getSourceRange());
// CUDA: Kernel function must have 'void' return type
if (!FuncT->getReturnType()->isVoidType() &&
!FuncT->getReturnType()->getAs<AutoType>() &&
!FuncT->getReturnType()->isInstantiationDependentType())
return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
<< Fn->getType() << Fn->getSourceRange());
} else {
// CUDA: Calls to global functions must be configured
if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
<< FDecl << Fn->getSourceRange());
}
}
// Check for a valid return type
if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
FDecl))
return ExprError();
// We know the result type of the call, set it.
TheCall->setType(FuncT->getCallResultType(Context));
TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
if (Proto) {
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
IsExecConfig))
return ExprError();
} else {
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
if (FDecl) {
// Check if we have too few/too many template arguments, based
// on our knowledge of the function definition.
const FunctionDecl *Def = nullptr;
if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
Proto = Def->getType()->getAs<FunctionProtoType>();
if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
<< (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
}
// If the function we're calling isn't a function prototype, but we have
// a function prototype from a prior declaratiom, use that prototype.
if (!FDecl->hasPrototype())
Proto = FDecl->getType()->getAs<FunctionProtoType>();
}
// Promote the arguments (C99 6.5.2.2p6).
for (unsigned i = 0, e = Args.size(); i != e; i++) {
Expr *Arg = Args[i];
if (Proto && i < Proto->getNumParams()) {
InitializedEntity Entity = InitializedEntity::InitializeParameter(
Context, Proto->getParamType(i), Proto->isParamConsumed(i));
ExprResult ArgE =
PerformCopyInitialization(Entity, SourceLocation(), Arg);
if (ArgE.isInvalid())
return true;
Arg = ArgE.getAs<Expr>();
} else {
ExprResult ArgE = DefaultArgumentPromotion(Arg);
if (ArgE.isInvalid())
return true;
Arg = ArgE.getAs<Expr>();
}
if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
diag::err_call_incomplete_argument, Arg))
return ExprError();
TheCall->setArg(i, Arg);
}
}
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
if (!Method->isStatic())
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
<< Fn->getSourceRange());
// Check for sentinels
if (NDecl)
DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
// Warn for unions passing across security boundary (CMSE).
if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
for (unsigned i = 0, e = Args.size(); i != e; i++) {
if (const auto *RT =
dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
if (RT->getDecl()->isOrContainsUnion())
Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
<< 0 << i;
}
}
}
// Do special checking on direct calls to functions.
if (FDecl) {
if (CheckFunctionCall(FDecl, TheCall, Proto))
return ExprError();
checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
if (BuiltinID)
return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
} else if (NDecl) {
if (CheckPointerCall(NDecl, TheCall, Proto))
return ExprError();
} else {
if (CheckOtherCall(TheCall, Proto))
return ExprError();
}
return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
}
ExprResult
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
SourceLocation RParenLoc, Expr *InitExpr) {
assert(Ty && "ActOnCompoundLiteral(): missing type");
assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
TypeSourceInfo *TInfo;
QualType literalType = GetTypeFromParser(Ty, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(literalType);
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
}
ExprResult
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
SourceLocation RParenLoc, Expr *LiteralExpr) {
QualType literalType = TInfo->getType();
if (literalType->isArrayType()) {
if (RequireCompleteSizedType(
LParenLoc, Context.getBaseElementType(literalType),
diag::err_array_incomplete_or_sizeless_type,
SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
return ExprError();
if (literalType->isVariableArrayType())
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
<< SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
} else if (!literalType->isDependentType() &&
RequireCompleteType(LParenLoc, literalType,
diag::err_typecheck_decl_incomplete_type,
SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
return ExprError();
InitializedEntity Entity
= InitializedEntity::InitializeCompoundLiteralInit(TInfo);
InitializationKind Kind
= InitializationKind::CreateCStyleCast(LParenLoc,
SourceRange(LParenLoc, RParenLoc),
/*InitList=*/true);
InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
&literalType);
if (Result.isInvalid())
return ExprError();
LiteralExpr = Result.get();
bool isFileScope = !CurContext->isFunctionOrMethod();
// In C, compound literals are l-values for some reason.
// For GCC compatibility, in C++, file-scope array compound literals with
// constant initializers are also l-values, and compound literals are
// otherwise prvalues.
//
// (GCC also treats C++ list-initialized file-scope array prvalues with
// constant initializers as l-values, but that's non-conforming, so we don't
// follow it there.)
//
// FIXME: It would be better to handle the lvalue cases as materializing and
// lifetime-extending a temporary object, but our materialized temporaries
// representation only supports lifetime extension from a variable, not "out
// of thin air".
// FIXME: For C++, we might want to instead lifetime-extend only if a pointer
// is bound to the result of applying array-to-pointer decay to the compound
// literal.
// FIXME: GCC supports compound literals of reference type, which should
// obviously have a value kind derived from the kind of reference involved.
ExprValueKind VK =
(getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
? VK_RValue
: VK_LValue;
if (isFileScope)
if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
Expr *Init = ILE->getInit(i);
ILE->setInit(i, ConstantExpr::Create(Context, Init));
}
auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
VK, LiteralExpr, isFileScope);
if (isFileScope) {
if (!LiteralExpr->isTypeDependent() &&
!LiteralExpr->isValueDependent() &&
!literalType->isDependentType()) // C99 6.5.2.5p3
if (CheckForConstantInitializer(LiteralExpr, literalType))
return ExprError();
} else if (literalType.getAddressSpace() != LangAS::opencl_private &&
literalType.getAddressSpace() != LangAS::Default) {
// Embedded-C extensions to C99 6.5.2.5:
// "If the compound literal occurs inside the body of a function, the
// type name shall not be qualified by an address-space qualifier."
Diag(LParenLoc, diag::err_compound_literal_with_address_space)
<< SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
return ExprError();
}
if (!isFileScope && !getLangOpts().CPlusPlus) {
// Compound literals that have automatic storage duration are destroyed at
// the end of the scope in C; in C++, they're just temporaries.
// Emit diagnostics if it is or contains a C union type that is non-trivial
// to destruct.
if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
NTCUC_CompoundLiteral, NTCUK_Destruct);
// Diagnose jumps that enter or exit the lifetime of the compound literal.
if (literalType.isDestructedType()) {
Cleanup.setExprNeedsCleanups(true);
ExprCleanupObjects.push_back(E);
getCurFunction()->setHasBranchProtectedScope();
}
}
if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
E->getType().hasNonTrivialToPrimitiveCopyCUnion())
checkNonTrivialCUnionInInitializer(E->getInitializer(),
E->getInitializer()->getExprLoc());
return MaybeBindToTemporary(E);
}
ExprResult
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
SourceLocation RBraceLoc) {
// Only produce each kind of designated initialization diagnostic once.
SourceLocation FirstDesignator;
bool DiagnosedArrayDesignator = false;
bool DiagnosedNestedDesignator = false;
bool DiagnosedMixedDesignator = false;
// Check that any designated initializers are syntactically valid in the
// current language mode.
for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
if (FirstDesignator.isInvalid())
FirstDesignator = DIE->getBeginLoc();
if (!getLangOpts().CPlusPlus)
break;
if (!DiagnosedNestedDesignator && DIE->size() > 1) {
DiagnosedNestedDesignator = true;
Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
<< DIE->getDesignatorsSourceRange();
}
for (auto &Desig : DIE->designators()) {
if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
DiagnosedArrayDesignator = true;
Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
<< Desig.getSourceRange();
}
}
if (!DiagnosedMixedDesignator &&
!isa<DesignatedInitExpr>(InitArgList[0])) {
DiagnosedMixedDesignator = true;
Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
<< DIE->getSourceRange();
Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
<< InitArgList[0]->getSourceRange();
}
} else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
isa<DesignatedInitExpr>(InitArgList[0])) {
DiagnosedMixedDesignator = true;
auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
<< DIE->getSourceRange();
Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
<< InitArgList[I]->getSourceRange();
}
}
if (FirstDesignator.isValid()) {
// Only diagnose designated initiaization as a C++20 extension if we didn't
// already diagnose use of (non-C++20) C99 designator syntax.
if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
!DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
Diag(FirstDesignator, getLangOpts().CPlusPlus20
? diag::warn_cxx17_compat_designated_init
: diag::ext_cxx_designated_init);
} else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
Diag(FirstDesignator, diag::ext_designated_init);
}
}
return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
}
ExprResult
Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
SourceLocation RBraceLoc) {
// Semantic analysis for initializers is done by ActOnDeclarator() and
// CheckInitializer() - it requires knowledge of the object being initialized.
// Immediately handle non-overload placeholders. Overloads can be
// resolved contextually, but everything else here can't.
for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
// Ignore failures; dropping the entire initializer list because
// of one failure would be terrible for indexing/etc.
if (result.isInvalid()) continue;
InitArgList[I] = result.get();
}
}
InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
RBraceLoc);
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
return E;
}
/// Do an explicit extend of the given block pointer if we're in ARC.
void Sema::maybeExtendBlockObject(ExprResult &E) {
assert(E.get()->getType()->isBlockPointerType());
assert(E.get()->isRValue());
// Only do this in an r-value context.
if (!getLangOpts().ObjCAutoRefCount) return;
E = ImplicitCastExpr::Create(
Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
/*base path*/ nullptr, VK_RValue, FPOptionsOverride());
Cleanup.setExprNeedsCleanups(true);
}
/// Prepare a conversion of the given expression to an ObjC object
/// pointer type.
CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
QualType type = E.get()->getType();
if (type->isObjCObjectPointerType()) {
return CK_BitCast;
} else if (type->isBlockPointerType()) {
maybeExtendBlockObject(E);
return CK_BlockPointerToObjCPointerCast;
} else {
assert(type->isPointerType());
return CK_CPointerToObjCPointerCast;
}
}
/// Prepares for a scalar cast, performing all the necessary stages
/// except the final cast and returning the kind required.
CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
// Both Src and Dest are scalar types, i.e. arithmetic or pointer.
// Also, callers should have filtered out the invalid cases with
// pointers. Everything else should be possible.
QualType SrcTy = Src.get()->getType();
if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
return CK_NoOp;
switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
case Type::STK_CPointer:
case Type::STK_BlockPointer:
case Type::STK_ObjCObjectPointer:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_CPointer: {
LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
if (SrcAS != DestAS)
return CK_AddressSpaceConversion;
if (Context.hasCvrSimilarType(SrcTy, DestTy))
return CK_NoOp;
return CK_BitCast;
}
case Type::STK_BlockPointer:
return (SrcKind == Type::STK_BlockPointer
? CK_BitCast : CK_AnyPointerToBlockPointerCast);
case Type::STK_ObjCObjectPointer:
if (SrcKind == Type::STK_ObjCObjectPointer)
return CK_BitCast;
if (SrcKind == Type::STK_CPointer)
return CK_CPointerToObjCPointerCast;
maybeExtendBlockObject(Src);
return CK_BlockPointerToObjCPointerCast;
case Type::STK_Bool:
return CK_PointerToBoolean;
case Type::STK_Integral:
return CK_PointerToIntegral;
case Type::STK_Floating:
case Type::STK_FloatingComplex:
case Type::STK_IntegralComplex:
case Type::STK_MemberPointer:
case Type::STK_FixedPoint:
llvm_unreachable("illegal cast from pointer");
}
llvm_unreachable("Should have returned before this");
case Type::STK_FixedPoint:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_FixedPoint:
return CK_FixedPointCast;
case Type::STK_Bool:
return CK_FixedPointToBoolean;
case Type::STK_Integral:
return CK_FixedPointToIntegral;
case Type::STK_Floating:
case Type::STK_IntegralComplex:
case Type::STK_FloatingComplex:
Diag(Src.get()->getExprLoc(),
diag::err_unimplemented_conversion_with_fixed_point_type)
<< DestTy;
return CK_IntegralCast;
case Type::STK_CPointer:
case Type::STK_ObjCObjectPointer:
case Type::STK_BlockPointer:
case Type::STK_MemberPointer:
llvm_unreachable("illegal cast to pointer type");
}
llvm_unreachable("Should have returned before this");
case Type::STK_Bool: // casting from bool is like casting from an integer
case Type::STK_Integral:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_CPointer:
case Type::STK_ObjCObjectPointer:
case Type::STK_BlockPointer:
if (Src.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull))
return CK_NullToPointer;
return CK_IntegralToPointer;
case Type::STK_Bool:
return CK_IntegralToBoolean;
case Type::STK_Integral:
return CK_IntegralCast;
case Type::STK_Floating:
return CK_IntegralToFloating;
case Type::STK_IntegralComplex:
Src = ImpCastExprToType(Src.get(),
DestTy->castAs<ComplexType>()->getElementType(),
CK_IntegralCast);
return CK_IntegralRealToComplex;
case Type::STK_FloatingComplex:
Src = ImpCastExprToType(Src.get(),
DestTy->castAs<ComplexType>()->getElementType(),
CK_IntegralToFloating);
return CK_FloatingRealToComplex;
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
case Type::STK_FixedPoint:
return CK_IntegralToFixedPoint;
}
llvm_unreachable("Should have returned before this");
case Type::STK_Floating:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_Floating:
return CK_FloatingCast;
case Type::STK_Bool:
return CK_FloatingToBoolean;
case Type::STK_Integral:
return CK_FloatingToIntegral;
case Type::STK_FloatingComplex:
Src = ImpCastExprToType(Src.get(),
DestTy->castAs<ComplexType>()->getElementType(),
CK_FloatingCast);
return CK_FloatingRealToComplex;
case Type::STK_IntegralComplex:
Src = ImpCastExprToType(Src.get(),
DestTy->castAs<ComplexType>()->getElementType(),
CK_FloatingToIntegral);
return CK_IntegralRealToComplex;
case Type::STK_CPointer:
case Type::STK_ObjCObjectPointer:
case Type::STK_BlockPointer:
llvm_unreachable("valid float->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
case Type::STK_FixedPoint:
Diag(Src.get()->getExprLoc(),
diag::err_unimplemented_conversion_with_fixed_point_type)
<< SrcTy;
return CK_IntegralCast;
}
llvm_unreachable("Should have returned before this");
case Type::STK_FloatingComplex:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_FloatingComplex:
return CK_FloatingComplexCast;
case Type::STK_IntegralComplex:
return CK_FloatingComplexToIntegralComplex;
case Type::STK_Floating: {
QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
if (Context.hasSameType(ET, DestTy))
return CK_FloatingComplexToReal;
Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
return CK_FloatingCast;
}
case Type::STK_Bool:
return CK_FloatingComplexToBoolean;
case Type::STK_Integral:
Src = ImpCastExprToType(Src.get(),
SrcTy->castAs<ComplexType>()->getElementType(),
CK_FloatingComplexToReal);
return CK_FloatingToIntegral;
case Type::STK_CPointer:
case Type::STK_ObjCObjectPointer:
case Type::STK_BlockPointer:
llvm_unreachable("valid complex float->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
case Type::STK_FixedPoint:
Diag(Src.get()->getExprLoc(),
diag::err_unimplemented_conversion_with_fixed_point_type)
<< SrcTy;
return CK_IntegralCast;
}
llvm_unreachable("Should have returned before this");
case Type::STK_IntegralComplex:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_FloatingComplex:
return CK_IntegralComplexToFloatingComplex;
case Type::STK_IntegralComplex:
return CK_IntegralComplexCast;
case Type::STK_Integral: {
QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
if (Context.hasSameType(ET, DestTy))
return CK_IntegralComplexToReal;
Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
return CK_IntegralCast;
}
case Type::STK_Bool:
return CK_IntegralComplexToBoolean;
case Type::STK_Floating:
Src = ImpCastExprToType(Src.get(),
SrcTy->castAs<ComplexType>()->getElementType(),
CK_IntegralComplexToReal);
return CK_IntegralToFloating;
case Type::STK_CPointer:
case Type::STK_ObjCObjectPointer:
case Type::STK_BlockPointer:
llvm_unreachable("valid complex int->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
case Type::STK_FixedPoint:
Diag(Src.get()->getExprLoc(),
diag::err_unimplemented_conversion_with_fixed_point_type)
<< SrcTy;
return CK_IntegralCast;
}
llvm_unreachable("Should have returned before this");
}
llvm_unreachable("Unhandled scalar cast");
}
static bool breakDownVectorType(QualType type, uint64_t &len,
QualType &eltType) {
// Vectors are simple.
if (const VectorType *vecType = type->getAs<VectorType>()) {
len = vecType->getNumElements();
eltType = vecType->getElementType();
assert(eltType->isScalarType());
return true;
}
// We allow lax conversion to and from non-vector types, but only if
// they're real types (i.e. non-complex, non-pointer scalar types).
if (!type->isRealType()) return false;
len = 1;
eltType = type;
return true;
}
/// Are the two types lax-compatible vector types? That is, given
/// that one of them is a vector, do they have equal storage sizes,
/// where the storage size is the number of elements times the element
/// size?
///
/// This will also return false if either of the types is neither a
/// vector nor a real type.
bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
assert(destTy->isVectorType() || srcTy->isVectorType());
// Disallow lax conversions between scalars and ExtVectors (these
// conversions are allowed for other vector types because common headers
// depend on them). Most scalar OP ExtVector cases are handled by the
// splat path anyway, which does what we want (convert, not bitcast).
// What this rules out for ExtVectors is crazy things like char4*float.
if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
uint64_t srcLen, destLen;
QualType srcEltTy, destEltTy;
if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
// ASTContext::getTypeSize will return the size rounded up to a
// power of 2, so instead of using that, we need to use the raw
// element size multiplied by the element count.
uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
uint64_t destEltSize = Context.getTypeSize(destEltTy);
return (srcLen * srcEltSize == destLen * destEltSize);
}
/// Is this a legal conversion between two types, one of which is
/// known to be a vector type?
bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
assert(destTy->isVectorType() || srcTy->isVectorType());
switch (Context.getLangOpts().getLaxVectorConversions()) {
case LangOptions::LaxVectorConversionKind::None:
return false;
case LangOptions::LaxVectorConversionKind::Integer:
if (!srcTy->isIntegralOrEnumerationType()) {
auto *Vec = srcTy->getAs<VectorType>();
if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
return false;
}
if (!destTy->isIntegralOrEnumerationType()) {
auto *Vec = destTy->getAs<VectorType>();
if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
return false;
}
// OK, integer (vector) -> integer (vector) bitcast.
break;
case LangOptions::LaxVectorConversionKind::All:
break;
}
return areLaxCompatibleVectorTypes(srcTy, destTy);
}
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
CastKind &Kind) {
assert(VectorTy->isVectorType() && "Not a vector type!");
if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
return Diag(R.getBegin(),
Ty->isVectorType() ?
diag::err_invalid_conversion_between_vectors :
diag::err_invalid_conversion_between_vector_and_integer)
<< VectorTy << Ty << R;
} else
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar)
<< VectorTy << Ty << R;
Kind = CK_BitCast;
return false;
}
ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
if (DestElemTy == SplattedExpr->getType())
return SplattedExpr;
assert(DestElemTy->isFloatingType() ||
DestElemTy->isIntegralOrEnumerationType());
CastKind CK;
if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
// OpenCL requires that we convert `true` boolean expressions to -1, but
// only when splatting vectors.
if (DestElemTy->isFloatingType()) {
// To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
// in two steps: boolean to signed integral, then to floating.
ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
CK_BooleanToSignedIntegral);
SplattedExpr = CastExprRes.get();
CK = CK_IntegralToFloating;
} else {
CK = CK_BooleanToSignedIntegral;
}
} else {
ExprResult CastExprRes = SplattedExpr;
CK = PrepareScalarCast(CastExprRes, DestElemTy);
if (CastExprRes.isInvalid())
return ExprError();
SplattedExpr = CastExprRes.get();
}
return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
}
ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
Expr *CastExpr, CastKind &Kind) {
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
QualType SrcTy = CastExpr->getType();
// If SrcTy is a VectorType, the total size must match to explicitly cast to
// an ExtVectorType.
// In OpenCL, casts between vectors of different types are not allowed.
// (See OpenCL 6.2).
if (SrcTy->isVectorType()) {
if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
(getLangOpts().OpenCL &&
!Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
<< DestTy << SrcTy << R;
return ExprError();
}
Kind = CK_BitCast;
return CastExpr;
}
// All non-pointer scalars can be cast to ExtVector type. The appropriate
// conversion will take place first from scalar to elt type, and then
// splat from elt type to vector.
if (SrcTy->isPointerType())
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar)
<< DestTy << SrcTy << R;
Kind = CK_VectorSplat;
return prepareVectorSplat(DestTy, CastExpr);
}
ExprResult
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
Declarator &D, ParsedType &Ty,
SourceLocation RParenLoc, Expr *CastExpr) {
assert(!D.isInvalidType() && (CastExpr != nullptr) &&
"ActOnCastExpr(): missing type or expr");
TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
if (D.isInvalidType())
return ExprError();
if (getLangOpts().CPlusPlus) {
// Check that there are no default arguments (C++ only).
CheckExtraCXXDefaultArguments(D);
} else {
// Make sure any TypoExprs have been dealt with.
ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
if (!Res.isUsable())
return ExprError();
CastExpr = Res.get();
}
checkUnusedDeclAttributes(D);
QualType castType = castTInfo->getType();
Ty = CreateParsedType(castType, castTInfo);
bool isVectorLiteral = false;
// Check for an altivec or OpenCL literal,
// i.e. all the elements are integer constants.
ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
&& castType->isVectorType() && (PE || PLE)) {
if (PLE && PLE->getNumExprs() == 0) {
Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
return ExprError();
}
if (PE || PLE->getNumExprs() == 1) {
Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
if (!E->isTypeDependent() && !E->getType()->isVectorType())
isVectorLiteral = true;
}
else
isVectorLiteral = true;
}
// If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
// then handle it as such.
if (isVectorLiteral)
return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
// If the Expr being casted is a ParenListExpr, handle it specially.
// This is not an AltiVec-style cast, so turn the ParenListExpr into a
// sequence of BinOp comma operators.
if (isa<ParenListExpr>(CastExpr)) {
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
if (Result.isInvalid()) return ExprError();
CastExpr = Result.get();
}
if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
!getSourceManager().isInSystemMacro(LParenLoc))
Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
CheckTollFreeBridgeCast(castType, CastExpr);
CheckObjCBridgeRelatedCast(castType, CastExpr);
DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
}
ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
SourceLocation RParenLoc, Expr *E,
TypeSourceInfo *TInfo) {
assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
"Expected paren or paren list expression");
Expr **exprs;
unsigned numExprs;
Expr *subExpr;
SourceLocation LiteralLParenLoc, LiteralRParenLoc;
if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
LiteralLParenLoc = PE->getLParenLoc();
LiteralRParenLoc = PE->getRParenLoc();
exprs = PE->getExprs();
numExprs = PE->getNumExprs();
} else { // isa<ParenExpr> by assertion at function entrance
LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
subExpr = cast<ParenExpr>(E)->getSubExpr();
exprs = &subExpr;
numExprs = 1;
}
QualType Ty = TInfo->getType();
assert(Ty->isVectorType() && "Expected vector type");
SmallVector<Expr *, 8> initExprs;
const VectorType *VTy = Ty->castAs<VectorType>();
unsigned numElems = VTy->getNumElements();
// '(...)' form of vector initialization in AltiVec: the number of
// initializers must be one or must match the size of the vector.
// If a single value is specified in the initializer then it will be
// replicated to all the components of the vector
if (VTy->getVectorKind() == VectorType::AltiVecVector) {
// The number of initializers must be one or must match the size of the
// vector. If a single value is specified in the initializer then it will
// be replicated to all the components of the vector
if (numExprs == 1) {
QualType ElemTy = VTy->getElementType();
ExprResult Literal = DefaultLvalueConversion(exprs[0]);
if (Literal.isInvalid())
return ExprError();
Literal = ImpCastExprToType(Literal.get(), ElemTy,
PrepareScalarCast(Literal, ElemTy));
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
}
else if (numExprs < numElems) {
Diag(E->getExprLoc(),
diag::err_incorrect_number_of_vector_initializers);
return ExprError();
}
else
initExprs.append(exprs, exprs + numExprs);
}
else {
// For OpenCL, when the number of initializers is a single value,
// it will be replicated to all components of the vector.
if (getLangOpts().OpenCL &&
VTy->getVectorKind() == VectorType::GenericVector &&
numExprs == 1) {
QualType ElemTy = VTy->getElementType();
ExprResult Literal = DefaultLvalueConversion(exprs[0]);
if (Literal.isInvalid())
return ExprError();
Literal = ImpCastExprToType(Literal.get(), ElemTy,
PrepareScalarCast(Literal, ElemTy));
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
}
initExprs.append(exprs, exprs + numExprs);
}
// FIXME: This means that pretty-printing the final AST will produce curly
// braces instead of the original commas.
InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
initExprs, LiteralRParenLoc);
initE->setType(Ty);
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
}
/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
/// the ParenListExpr into a sequence of comma binary operators.
ExprResult
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
if (!E)
return OrigExpr;
ExprResult Result(E->getExpr(0));
for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
E->getExpr(i));
if (Result.isInvalid()) return ExprError();
return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
}
ExprResult Sema::ActOnParenListExpr(SourceLocation L,
SourceLocation R,
MultiExprArg Val) {
return ParenListExpr::Create(Context, L, Val, R);
}
/// Emit a specialized diagnostic when one expression is a null pointer
/// constant and the other is not a pointer. Returns true if a diagnostic is
/// emitted.
bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
SourceLocation QuestionLoc) {
Expr *NullExpr = LHSExpr;
Expr *NonPointerExpr = RHSExpr;
Expr::NullPointerConstantKind NullKind =
NullExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull);
if (NullKind == Expr::NPCK_NotNull) {
NullExpr = RHSExpr;
NonPointerExpr = LHSExpr;
NullKind =
NullExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull);
}
if (NullKind == Expr::NPCK_NotNull)
return false;
if (NullKind == Expr::NPCK_ZeroExpression)
return false;
if (NullKind == Expr::NPCK_ZeroLiteral) {
// In this case, check to make sure that we got here from a "NULL"
// string in the source code.
NullExpr = NullExpr->IgnoreParenImpCasts();
SourceLocation loc = NullExpr->getExprLoc();
if (!findMacroSpelling(loc, "NULL"))
return false;
}
int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
<< NonPointerExpr->getType() << DiagType
<< NonPointerExpr->getSourceRange();
return true;
}
/// Return false if the condition expression is valid, true otherwise.
static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
QualType CondTy = Cond->getType();
// OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
<< CondTy << Cond->getSourceRange();
return true;
}
// C99 6.5.15p2
if (CondTy->isScalarType()) return false;
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
<< CondTy << Cond->getSourceRange();
return true;
}
/// Handle when one or both operands are void type.
static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
ExprResult &RHS) {
Expr *LHSExpr = LHS.get();
Expr *RHSExpr = RHS.get();
if (!LHSExpr->getType()->isVoidType())
S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
<< RHSExpr->getSourceRange();
if (!RHSExpr->getType()->isVoidType())
S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
<< LHSExpr->getSourceRange();
LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
return S.Context.VoidTy;
}
/// Return false if the NullExpr can be promoted to PointerTy,
/// true otherwise.
static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
QualType PointerTy) {
if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
!NullExpr.get()->isNullPointerConstant(S.Context,
Expr::NPC_ValueDependentIsNull))
return true;
NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
return false;
}
/// Checks compatibility between two pointers and return the resulting
/// type.
static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
ExprResult &RHS,
SourceLocation Loc) {
QualType LHSTy = LHS.get()->getType();
QualType RHSTy = RHS.get()->getType();
if (S.Context.hasSameType(LHSTy, RHSTy)) {
// Two identical pointers types are always compatible.
return LHSTy;
}
QualType lhptee, rhptee;
// Get the pointee types.
bool IsBlockPointer = false;
if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
lhptee = LHSBTy->getPointeeType();
rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
IsBlockPointer = true;
} else {
lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
}
// C99 6.5.15p6: If both operands are pointers to compatible types or to
// differently qualified versions of compatible types, the result type is
// a pointer to an appropriately qualified version of the composite
// type.
// Only CVR-qualifiers exist in the standard, and the differently-qualified
// clause doesn't make sense for our extensions. E.g. address space 2 should
// be incompatible with address space 3: they may live on different devices or
// anything.
Qualifiers lhQual = lhptee.getQualifiers();
Qualifiers rhQual = rhptee.getQualifiers();
LangAS ResultAddrSpace = LangAS::Default;
LangAS LAddrSpace = lhQual.getAddressSpace();
LangAS RAddrSpace = rhQual.getAddressSpace();
// OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
// spaces is disallowed.
if (lhQual.isAddressSpaceSupersetOf(rhQual))
ResultAddrSpace = LAddrSpace;
else if (rhQual.isAddressSpaceSupersetOf(lhQual))
ResultAddrSpace = RAddrSpace;
else {
S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
<< LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
return QualType();
}
unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
lhQual.removeCVRQualifiers();
rhQual.removeCVRQualifiers();
// OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
// (C99 6.7.3) for address spaces. We assume that the check should behave in
// the same manner as it's defined for CVR qualifiers, so for OpenCL two
// qual types are compatible iff
// * corresponded types are compatible
// * CVR qualifiers are equal
// * address spaces are equal
// Thus for conditional operator we merge CVR and address space unqualified
// pointees and if there is a composite type we return a pointer to it with
// merged qualifiers.
LHSCastKind =
LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
RHSCastKind =
RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
lhQual.removeAddressSpace();
rhQual.removeAddressSpace();
lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
if (CompositeTy.isNull()) {
// In this situation, we assume void* type. No especially good
// reason, but this is what gcc does, and we do have to pick
// to get a consistent AST.
QualType incompatTy;
incompatTy = S.Context.getPointerType(
S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
// FIXME: For OpenCL the warning emission and cast to void* leaves a room
// for casts between types with incompatible address space qualifiers.
// For the following code the compiler produces casts between global and
// local address spaces of the corresponded innermost pointees:
// local int *global *a;
// global int *global *b;
// a = (0 ? a : b); // see C99 6.5.16.1.p1.
S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
return incompatTy;
}
// The pointer types are compatible.
// In case of OpenCL ResultTy should have the address space qualifier
// which is a superset of address spaces of both the 2nd and the 3rd
// operands of the conditional operator.
QualType ResultTy = [&, ResultAddrSpace]() {
if (S.getLangOpts().OpenCL) {
Qualifiers CompositeQuals = CompositeTy.getQualifiers();
CompositeQuals.setAddressSpace(ResultAddrSpace);
return S.Context
.getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
.withCVRQualifiers(MergedCVRQual);
}
return CompositeTy.withCVRQualifiers(MergedCVRQual);
}();
if (IsBlockPointer)
ResultTy = S.Context.getBlockPointerType(ResultTy);
else
ResultTy = S.Context.getPointerType(ResultTy);
LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
return ResultTy;
}
/// Return the resulting type when the operands are both block pointers.
static QualType checkConditionalBlockPointerCompatibility(Sema &S,
ExprResult &LHS,
ExprResult &RHS,
SourceLocation Loc) {
QualType LHSTy = LHS.get()->getType();
QualType RHSTy = RHS.get()->getType();
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
QualType destType = S.Context.getPointerType(S.Context.VoidTy);
LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
return destType;
}
S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
return QualType();
}
// We have 2 block pointer types.
return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
}
/// Return the resulting type when the operands are both pointers.
static QualType
checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
ExprResult &RHS,
SourceLocation Loc) {
// get the pointer types
QualType LHSTy = LHS.get()->getType();
QualType RHSTy = RHS.get()->getType();
// get the "pointed to" types
QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
// Figure out necessary qualifiers (C99 6.5.15p6)
QualType destPointee
= S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
QualType destType = S.Context.getPointerType(destPointee);
// Add qualifiers if necessary.
LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
// Promote to void*.
RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
return destType;
}
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
QualType destPointee
= S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
QualType destType = S.Context.getPointerType(destPointee);
// Add qualifiers if necessary.
RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
// Promote to void*.
LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
return destType;
}
return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
}
/// Return false if the first expression is not an integer and the second
/// expression is not a pointer, true otherwise.
static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
Expr* PointerExpr, SourceLocation Loc,
bool IsIntFirstExpr) {
if (!PointerExpr->getType()->isPointerType() ||
!Int.get()->getType()->isIntegerType())
return false;
Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
<< Expr1->getType() << Expr2->getType()
<< Expr1->getSourceRange() << Expr2->getSourceRange();
Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
CK_IntegralToPointer);
return true;
}
/// Simple conversion between integer and floating point types.
///
/// Used when handling the OpenCL conditional operator where the
/// condition is a vector while the other operands are scalar.
///
/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
/// types are either integer or floating type. Between the two
/// operands, the type with the higher rank is defined as the "result
/// type". The other operand needs to be promoted to the same type. No
/// other type promotion is allowed. We cannot use
/// UsualArithmeticConversions() for this purpose, since it always
/// promotes promotable types.
static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
ExprResult &RHS,
SourceLocation QuestionLoc) {
LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
if (LHS.isInvalid())
return QualType();
RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
if (RHS.isInvalid())
return QualType();
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType LHSType =
S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
QualType RHSType =
S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
<< LHSType << LHS.get()->getSourceRange();
return QualType();
}
if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
<< RHSType << RHS.get()->getSourceRange();
return QualType();
}
// If both types are identical, no conversion is needed.
if (LHSType == RHSType)
return LHSType;
// Now handle "real" floating types (i.e. float, double, long double).
if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
/*IsCompAssign = */ false);
// Finally, we have two differing integer types.
return handleIntegerConversion<doIntegralCast, doIntegralCast>
(S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
}
/// Convert scalar operands to a vector that matches the
/// condition in length.
///
/// Used when handling the OpenCL conditional operator where the
/// condition is a vector while the other operands are scalar.
///
/// We first compute the "result type" for the scalar operands
/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
/// into a vector of that type where the length matches the condition
/// vector type. s6.11.6 requires that the element types of the result
/// and the condition must have the same number of bits.
static QualType
OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
QualType CondTy, SourceLocation QuestionLoc) {
QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
if (ResTy.isNull()) return QualType();
const VectorType *CV = CondTy->getAs<VectorType>();
assert(CV);
// Determine the vector result type
unsigned NumElements = CV->getNumElements();
QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
// Ensure that all types have the same number of bits
if (S.Context.getTypeSize(CV->getElementType())
!= S.Context.getTypeSize(ResTy)) {
// Since VectorTy is created internally, it does not pretty print
// with an OpenCL name. Instead, we just print a description.
std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
SmallString<64> Str;
llvm::raw_svector_ostream OS(Str);
OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
<< CondTy << OS.str();
return QualType();
}
// Convert operands to the vector result type
LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
return VectorTy;
}
/// Return false if this is a valid OpenCL condition vector
static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
SourceLocation QuestionLoc) {
// OpenCL v1.1 s6.11.6 says the elements of the vector must be of
// integral type.
const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
assert(CondTy);
QualType EleTy = CondTy->getElementType();
if (EleTy->isIntegerType()) return false;
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
<< Cond->getType() << Cond->getSourceRange();
return true;
}
/// Return false if the vector condition type and the vector
/// result type are compatible.
///
/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
/// number of elements, and their element types have the same number
/// of bits.
static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
SourceLocation QuestionLoc) {
const VectorType *CV = CondTy->getAs<VectorType>();
const VectorType *RV = VecResTy->getAs<VectorType>();
assert(CV && RV);
if (CV->getNumElements() != RV->getNumElements()) {
S.Diag(QuestionLoc, diag::err_conditional_vector_size)
<< CondTy << VecResTy;
return true;
}
QualType CVE = CV->getElementType();
QualType RVE = RV->getElementType();
if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
<< CondTy << VecResTy;
return true;
}
return false;
}
/// Return the resulting type for the conditional operator in
/// OpenCL (aka "ternary selection operator", OpenCL v1.1
/// s6.3.i) when the condition is a vector type.
static QualType
OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
ExprResult &LHS, ExprResult &RHS,
SourceLocation QuestionLoc) {
Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
if (Cond.isInvalid())
return QualType();
QualType CondTy = Cond.get()->getType();
if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
return QualType();
// If either operand is a vector then find the vector type of the
// result as specified in OpenCL v1.1 s6.3.i.
if (LHS.get()->getType()->isVectorType() ||
RHS.get()->getType()->isVectorType()) {
QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
/*isCompAssign*/false,
/*AllowBothBool*/true,
/*AllowBoolConversions*/false);
if (VecResTy.isNull()) return QualType();
// The result type must match the condition type as specified in
// OpenCL v1.1 s6.11.6.
if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
return QualType();
return VecResTy;
}
// Both operands are scalar.
return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
}
/// Return true if the Expr is block type
static bool checkBlockType(Sema &S, const Expr *E) {
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
QualType Ty = CE->getCallee()->getType();
if (Ty->isBlockPointerType()) {
S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
return true;
}
}
return false;
}
/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, LHS = cond.
/// C99 6.5.15
QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
ExprResult &RHS, ExprValueKind &VK,
ExprObjectKind &OK,
SourceLocation QuestionLoc) {
ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
if (!LHSResult.isUsable()) return QualType();
LHS = LHSResult;
ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
if (!RHSResult.isUsable()) return QualType();
RHS = RHSResult;
// C++ is sufficiently different to merit its own checker.
if (getLangOpts().CPlusPlus)
return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
VK = VK_RValue;
OK = OK_Ordinary;
// The OpenCL operator with a vector condition is sufficiently
// different to merit its own checker.
if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
Cond.get()->getType()->isExtVectorType())
return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
// First, check the condition.
Cond = UsualUnaryConversions(Cond.get());
if (Cond.isInvalid())
return QualType();
if (checkCondition(*this, Cond.get(), QuestionLoc))
return QualType();
// Now check the two expressions.
if (LHS.get()->getType()->isVectorType() ||
RHS.get()->getType()->isVectorType())
return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
/*AllowBothBool*/true,
/*AllowBoolConversions*/false);
QualType ResTy =
UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
QualType LHSTy = LHS.get()->getType();
QualType RHSTy = RHS.get()->getType();
// Diagnose attempts to convert between __float128 and long double where
// such conversions currently can't be handled.
if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
Diag(QuestionLoc,
diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
return QualType();
}
// OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
// selection operator (?:).
if (getLangOpts().OpenCL &&
(checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
return QualType();
}
// If both operands have arithmetic type, do the usual arithmetic conversions
// to find a common type: C99 6.5.15p3,5.
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
// Disallow invalid arithmetic conversions, such as those between ExtInts of
// different sizes, or between ExtInts and other types.
if (ResTy.isNull() && (LHSTy->isExtIntType() || RHSTy->isExtIntType())) {
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
return QualType();
}
LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
return ResTy;
}
// And if they're both bfloat (which isn't arithmetic), that's fine too.
if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
return LHSTy;
}
// If both operands are the same structure or union type, the result is that
// type.
if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
if (LHSRT->getDecl() == RHSRT->getDecl())
// "If both the operands have structure or union type, the result has
// that type." This implies that CV qualifiers are dropped.
return LHSTy.getUnqualifiedType();
// FIXME: Type of conditional expression must be complete in C mode.
}
// C99 6.5.15p5: "If both operands have void type, the result has void type."
// The following || allows only one side to be void (a GCC-ism).
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
return checkConditionalVoidType(*this, LHS, RHS);
}
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
// the type of the other operand."
if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
// All objective-c pointer type analysis is done here.
QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
QuestionLoc);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
if (!compositeType.isNull())
return compositeType;
// Handle block pointer types.
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
QuestionLoc);
// Check constraints for C object pointers types (C99 6.5.15p3,6).
if (LHSTy->isPointerType() && RHSTy->isPointerType())
return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
QuestionLoc);
// GCC compatibility: soften pointer/integer mismatch. Note that
// null pointers have been filtered out by this point.
if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
/*IsIntFirstExpr=*/true))
return RHSTy;
if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
/*IsIntFirstExpr=*/false))
return LHSTy;
// Allow ?: operations in which both operands have the same
// built-in sizeless type.
if (LHSTy->isSizelessBuiltinType() && LHSTy == RHSTy)
return LHSTy;
// Emit a better diagnostic if one of the expressions is a null pointer
// constant and the other is not a pointer type. In this case, the user most
// likely forgot to take the address of the other expression.
if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
return QualType();
// Otherwise, the operands are not compatible.
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
return QualType();
}
/// FindCompositeObjCPointerType - Helper method to find composite type of
/// two objective-c pointer types of the two input expressions.
QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
SourceLocation QuestionLoc) {
QualType LHSTy = LHS.get()->getType();
QualType RHSTy = RHS.get()->getType();
// Handle things like Class and struct objc_class*. Here we case the result
// to the pseudo-builtin, because that will be implicitly cast back to the
// redefinition type if an attempt is made to access its fields.
if (LHSTy->isObjCClassType() &&
(Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
return LHSTy;
}
if (RHSTy->isObjCClassType() &&
(Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
return RHSTy;
}
// And the same for struct objc_object* / id
if (LHSTy->isObjCIdType() &&
(Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
return LHSTy;
}
if (RHSTy->isObjCIdType() &&
(Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
return RHSTy;
}
// And the same for struct objc_selector* / SEL
if (Context.isObjCSelType(LHSTy) &&
(Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
return LHSTy;
}
if (Context.isObjCSelType(RHSTy) &&
(Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
return RHSTy;
}
// Check constraints for Objective-C object pointers types.
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical object pointer types are always compatible.
return LHSTy;
}
const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
QualType compositeType = LHSTy;
// If both operands are interfaces and either operand can be
// assigned to the other, use that type as the composite
// type. This allows
// xxx ? (A*) a : (B*) b
// where B is a subclass of A.
//
// Additionally, as for assignment, if either type is 'id'
// allow silent coercion. Finally, if the types are
// incompatible then make sure to use 'id' as the composite
// type so the result is acceptable for sending messages to.
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
// It could return the composite type.
if (!(compositeType =
Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
// Nothing more to do.
} else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
} else if ((LHSOPT->isObjCQualifiedIdType() ||
RHSOPT->isObjCQualifiedIdType()) &&
Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
true)) {
// Need to handle "id<xx>" explicitly.
// GCC allows qualified id and any Objective-C type to devolve to
// id. Currently localizing to here until clear this should be
// part of ObjCQualifiedIdTypesAreCompatible.
compositeType = Context.getObjCIdType();
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
compositeType = Context.getObjCIdType();
} else {
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
QualType incompatTy = Context.getObjCIdType();
LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
return incompatTy;
}
// The object pointer types are compatible.
LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
return compositeType;
}
// Check Objective-C object pointer types and 'void *'
if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
if (getLangOpts().ObjCAutoRefCount) {
// ARC forbids the implicit conversion of object pointers to 'void *',
// so these types are not compatible.
Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
LHS = RHS = true;
return QualType();
}
QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
QualType destPointee
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
// Promote to void*.
RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
return destType;
}
if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
if (getLangOpts().ObjCAutoRefCount) {
// ARC forbids the implicit conversion of object pointers to 'void *',
// so these types are not compatible.
Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
LHS = RHS = true;
return QualType();
}
QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
QualType destPointee
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
// Promote to void*.
LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
return destType;
}
return QualType();
}
/// SuggestParentheses - Emit a note with a fixit hint that wraps
/// ParenRange in parentheses.
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
const PartialDiagnostic &Note,
SourceRange ParenRange) {
SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
EndLoc.isValid()) {
Self.Diag(Loc, Note)
<< FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
<< FixItHint::CreateInsertion(EndLoc, ")");
} else {
// We can't display the parentheses, so just show the bare note.
Self.Diag(Loc, Note) << ParenRange;
}
}
static bool IsArithmeticOp(BinaryOperatorKind Opc) {
return BinaryOperator::isAdditiveOp(Opc) ||
BinaryOperator::isMultiplicativeOp(Opc) ||
BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
// This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
// not any of the logical operators. Bitwise-xor is commonly used as a
// logical-xor because there is no logical-xor operator. The logical
// operators, including uses of xor, have a high false positive rate for
// precedence warnings.
}
/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
/// expression, either using a built-in or overloaded operator,
/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
/// expression.
static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
Expr **RHSExprs) {
// Don't strip parenthesis: we should not warn if E is in parenthesis.
E = E->IgnoreImpCasts();
E = E->IgnoreConversionOperatorSingleStep();
E = E->IgnoreImpCasts();
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
E = MTE->getSubExpr();
E = E->IgnoreImpCasts();
}
// Built-in binary operator.
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
if (IsArithmeticOp(OP->getOpcode())) {
*Opcode = OP->getOpcode();
*RHSExprs = OP->getRHS();
return true;
}
}
// Overloaded operator.
if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
if (Call->getNumArgs() != 2)
return false;
// Make sure this is really a binary operator that is safe to pass into
// BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
OverloadedOperatorKind OO = Call->getOperator();
if (OO < OO_Plus || OO > OO_Arrow ||
OO == OO_PlusPlus || OO == OO_MinusMinus)
return false;
BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
if (IsArithmeticOp(OpKind)) {
*Opcode = OpKind;
*RHSExprs = Call->getArg(1);
return true;
}
}
return false;
}
/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
/// or is a logical expression such as (x==y) which has int type, but is
/// commonly interpreted as boolean.
static bool ExprLooksBoolean(Expr *E) {
E = E->IgnoreParenImpCasts();
if (E->getType()->isBooleanType())
return true;
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
return OP->isComparisonOp() || OP->isLogicalOp();
if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
return OP->getOpcode() == UO_LNot;
if (E->getType()->isPointerType())
return true;
// FIXME: What about overloaded operator calls returning "unspecified boolean
// type"s (commonly pointer-to-members)?
return false;
}
/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
/// and binary operator are mixed in a way that suggests the programmer assumed
/// the conditional operator has higher precedence, for example:
/// "int x = a + someBinaryCondition ? 1 : 2".
static void DiagnoseConditionalPrecedence(Sema &Self,
SourceLocation OpLoc,
Expr *Condition,
Expr *LHSExpr,
Expr *RHSExpr) {
BinaryOperatorKind CondOpcode;
Expr *CondRHS;
if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
return;
if (!ExprLooksBoolean(CondRHS))
return;
// The condition is an arithmetic binary expression, with a right-
// hand side that looks boolean, so warn.
unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
? diag::warn_precedence_bitwise_conditional
: diag::warn_precedence_conditional;
Self.Diag(OpLoc, DiagID)
<< Condition->getSourceRange()
<< BinaryOperator::getOpcodeStr(CondOpcode);
SuggestParentheses(
Self, OpLoc,
Self.PDiag(diag::note_precedence_silence)
<< BinaryOperator::getOpcodeStr(CondOpcode),
SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::note_precedence_conditional_first),
SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
}
/// Compute the nullability of a conditional expression.
static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
QualType LHSTy, QualType RHSTy,
ASTContext &Ctx) {
if (!ResTy->isAnyPointerType())
return ResTy;
auto GetNullability = [&Ctx](QualType Ty) {
Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
if (Kind)
return *Kind;
return NullabilityKind::Unspecified;
};
auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
NullabilityKind MergedKind;
// Compute nullability of a binary conditional expression.
if (IsBin) {
if (LHSKind == NullabilityKind::NonNull)
MergedKind = NullabilityKind::NonNull;
else
MergedKind = RHSKind;
// Compute nullability of a normal conditional expression.
} else {
if (LHSKind == NullabilityKind::Nullable ||
RHSKind == NullabilityKind::Nullable)
MergedKind = NullabilityKind::Nullable;
else if (LHSKind == NullabilityKind::NonNull)
MergedKind = RHSKind;
else if (RHSKind == NullabilityKind::NonNull)
MergedKind = LHSKind;
else
MergedKind = NullabilityKind::Unspecified;
}
// Return if ResTy already has the correct nullability.
if (GetNullability(ResTy) == MergedKind)
return ResTy;
// Strip all nullability from ResTy.
while (ResTy->getNullability(Ctx))
ResTy = ResTy.getSingleStepDesugaredType(Ctx);
// Create a new AttributedType with the new nullability kind.
auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
}
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
Expr *CondExpr, Expr *LHSExpr,
Expr *RHSExpr) {
if (!getLangOpts().CPlusPlus) {
// C cannot handle TypoExpr nodes in the condition because it
// doesn't handle dependent types properly, so make sure any TypoExprs have
// been dealt with before checking the operands.
ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
if (!CondResult.isUsable())
return ExprError();
if (LHSExpr) {
if (!LHSResult.isUsable())
return ExprError();
}
if (!RHSResult.isUsable())
return ExprError();
CondExpr = CondResult.get();
LHSExpr = LHSResult.get();
RHSExpr = RHSResult.get();
}
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
// was the condition.
OpaqueValueExpr *opaqueValue = nullptr;
Expr *commonExpr = nullptr;
if (!LHSExpr) {
commonExpr = CondExpr;
// Lower out placeholder types first. This is important so that we don't
// try to capture a placeholder. This happens in few cases in C++; such
// as Objective-C++'s dictionary subscripting syntax.
if (commonExpr->hasPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(commonExpr);
if (!result.isUsable()) return ExprError();
commonExpr = result.get();
}
// We usually want to apply unary conversions *before* saving, except
// in the special case of a C++ l-value conditional.
if (!(getLangOpts().CPlusPlus
&& !commonExpr->isTypeDependent()
&& commonExpr->getValueKind() == RHSExpr->getValueKind()
&& commonExpr->isGLValue()
&& commonExpr->isOrdinaryOrBitFieldObject()
&& RHSExpr->isOrdinaryOrBitFieldObject()
&& Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
ExprResult commonRes = UsualUnaryConversions(commonExpr);
if (commonRes.isInvalid())
return ExprError();
commonExpr = commonRes.get();
}
// If the common expression is a class or array prvalue, materialize it
// so that we can safely refer to it multiple times.
if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
commonExpr->getType()->isArrayType())) {
ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
if (MatExpr.isInvalid())
return ExprError();
commonExpr = MatExpr.get();
}
opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
commonExpr->getType(),
commonExpr->getValueKind(),
commonExpr->getObjectKind(),
commonExpr);
LHSExpr = CondExpr = opaqueValue;
}
QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
QualType result = CheckConditionalOperands(Cond, LHS, RHS,
VK, OK, QuestionLoc);
if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
RHS.isInvalid())
return ExprError();
DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
RHS.get());
CheckBoolLikeConversion(Cond.get(), QuestionLoc);
result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
Context);
if (!commonExpr)
return new (Context)
ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
RHS.get(), result, VK, OK);
return new (Context) BinaryConditionalOperator(
commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
ColonLoc, result, VK, OK);
}
// Check if we have a conversion between incompatible cmse function pointer
// types, that is, a conversion between a function pointer with the
// cmse_nonsecure_call attribute and one without.
static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
QualType ToType) {
if (const auto *ToFn =
dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
if (const auto *FromFn =
dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
}
}
return false;
}
// checkPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
assert(LHSType.isCanonical() && "LHS not canonicalized!");
assert(RHSType.isCanonical() && "RHS not canonicalized!");
// get the "pointed to" type (ignoring qualifiers at the top level)
const Type *lhptee, *rhptee;
Qualifiers lhq, rhq;
std::tie(lhptee, lhq) =
cast<PointerType>(LHSType)->getPointeeType().split().asPair();
std::tie(rhptee, rhq) =
cast<PointerType>(RHSType)->getPointeeType().split().asPair();
Sema::AssignConvertType ConvTy = Sema::Compatible;
// C99 6.5.16.1p1: This following citation is common to constraints
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
// qualifiers of the type *pointed to* by the right;
// As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
lhq.compatiblyIncludesObjCLifetime(rhq)) {
// Ignore lifetime for further calculation.
lhq.removeObjCLifetime();
rhq.removeObjCLifetime();
}
if (!lhq.compatiblyIncludes(rhq)) {
// Treat address-space mismatches as fatal.
if (!lhq.isAddressSpaceSupersetOf(rhq))
return Sema::IncompatiblePointerDiscardsQualifiers;
// It's okay to add or remove GC or lifetime qualifiers when converting to
// and from void*.
else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
.compatiblyIncludes(
rhq.withoutObjCGCAttr().withoutObjCLifetime())
&& (lhptee->isVoidType() || rhptee->isVoidType()))
; // keep old
// Treat lifetime mismatches as fatal.
else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
// For GCC/MS compatibility, other qualifier mismatches are treated
// as still compatible in C.
else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
}
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
// incomplete type and the other is a pointer to a qualified or unqualified
// version of void...
if (lhptee->isVoidType()) {
if (rhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(rhptee->isFunctionType());
return Sema::FunctionVoidPointer;
}
if (rhptee->isVoidType()) {
if (lhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(lhptee->isFunctionType());
return Sema::FunctionVoidPointer;
}
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
// unqualified versions of compatible types, ...
QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
// Check if the pointee types are compatible ignoring the sign.
// We explicitly check for char so that we catch "char" vs
// "unsigned char" on systems where "char" is unsigned.
if (lhptee->isCharType())
ltrans = S.Context.UnsignedCharTy;
else if (lhptee->hasSignedIntegerRepresentation())
ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
if (rhptee->isCharType())
rtrans = S.Context.UnsignedCharTy;
else if (rhptee->hasSignedIntegerRepresentation())
rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
if (ltrans == rtrans) {
// Types are compatible ignoring the sign. Qualifier incompatibility
// takes priority over sign incompatibility because the sign
// warning can be disabled.
if (ConvTy != Sema::Compatible)
return ConvTy;
return Sema::IncompatiblePointerSign;
}
// If we are a multi-level pointer, it's possible that our issue is simply
// one of qualification - e.g. char ** -> const char ** is not allowed. If
// the eventual target type is the same and the pointers have the same
// level of indirection, this must be the issue.
if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
do {
std::tie(lhptee, lhq) =
cast<PointerType>(lhptee)->getPointeeType().split().asPair();
std::tie(rhptee, rhq) =
cast<PointerType>(rhptee)->getPointeeType().split().asPair();
// Inconsistent address spaces at this point is invalid, even if the
// address spaces would be compatible.
// FIXME: This doesn't catch address space mismatches for pointers of
// different nesting levels, like:
// __local int *** a;
// int ** b = a;
// It's not clear how to actually determine when such pointers are
// invalidly incompatible.
if (lhq.getAddressSpace() != rhq.getAddressSpace())
return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
} while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
if (lhptee == rhptee)
return Sema::IncompatibleNestedPointerQualifiers;
}
// General pointer incompatibility takes priority over qualifiers.
if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
return Sema::IncompatibleFunctionPointer;
return Sema::IncompatiblePointer;
}
if (!S.getLangOpts().CPlusPlus &&
S.IsFunctionConversion(ltrans, rtrans, ltrans))
return Sema::IncompatibleFunctionPointer;
if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
return Sema::IncompatibleFunctionPointer;
return ConvTy;
}
/// checkBlockPointerTypesForAssignment - This routine determines whether two
/// block pointer types are compatible or whether a block and normal pointer
/// are compatible. It is more restrict than comparing two function pointer
// types.
static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
QualType RHSType) {
assert(LHSType.isCanonical() && "LHS not canonicalized!");
assert(RHSType.isCanonical() && "RHS not canonicalized!");
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
// In C++, the types have to match exactly.
if (S.getLangOpts().CPlusPlus)
return Sema::IncompatibleBlockPointer;
Sema::AssignConvertType ConvTy = Sema::Compatible;
// For blocks we enforce that qualifiers are identical.
Qualifiers LQuals = lhptee.getLocalQualifiers();
Qualifiers RQuals = rhptee.getLocalQualifiers();
if (S.getLangOpts().OpenCL) {
LQuals.removeAddressSpace();
RQuals.removeAddressSpace();
}
if (LQuals != RQuals)
ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
// FIXME: OpenCL doesn't define the exact compile time semantics for a block
// assignment.
// The current behavior is similar to C++ lambdas. A block might be
// assigned to a variable iff its return type and parameters are compatible
// (C99 6.2.7) with the corresponding return type and parameters of the LHS of
// an assignment. Presumably it should behave in way that a function pointer
// assignment does in C, so for each parameter and return type:
// * CVR and address space of LHS should be a superset of CVR and address
// space of RHS.
// * unqualified types should be compatible.
if (S.getLangOpts().OpenCL) {
if (!S.Context.typesAreBlockPointerCompatible(
S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
return Sema::IncompatibleBlockPointer;
} else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
return Sema::IncompatibleBlockPointer;
return ConvTy;
}
/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
/// for assignment compatibility.
static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
QualType RHSType) {
assert(LHSType.isCanonical() && "LHS was not canonicalized!");
assert(RHSType.isCanonical() && "RHS was not canonicalized!");
if (LHSType->isObjCBuiltinType()) {
// Class is not compatible with ObjC object pointers.
if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
!RHSType->isObjCQualifiedClassType())
return Sema::IncompatiblePointer;
return Sema::Compatible;
}
if (RHSType->isObjCBuiltinType()) {
if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
!LHSType->isObjCQualifiedClassType())
return Sema::IncompatiblePointer;
return Sema::Compatible;
}
QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
// make an exception for id<P>
!LHSType->isObjCQualifiedIdType())
return Sema::CompatiblePointerDiscardsQualifiers;
if (S.Context.typesAreCompatible(LHSType, RHSType))
return Sema::Compatible;
if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
return Sema::IncompatibleObjCQualifiedId;
return Sema::IncompatiblePointer;
}
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(SourceLocation Loc,
QualType LHSType, QualType RHSType) {
// Fake up an opaque expression. We don't actually care about what
// cast operations are required, so if CheckAssignmentConstraints
// adds casts to this they'll be wasted, but fortunately that doesn't
// usually happen on valid code.
OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
ExprResult RHSPtr = &RHSExpr;
CastKind K;
return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
}
/// This helper function returns true if QT is a vector type that has element
/// type ElementType.
static bool isVector(QualType QT, QualType ElementType) {
if (const VectorType *VT = QT->getAs<VectorType>())
return VT->getElementType().getCanonicalType() == ElementType;
return false;
}
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
/// has code to accommodate several GCC extensions when type checking
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
/// int a, *pint;
/// short *pshort;
/// struct foo *pfoo;
///
/// pint = pshort; // warning: assignment from incompatible pointer type
/// a = pint; // warning: assignment makes integer from pointer without a cast
/// pint = a; // warning: assignment makes pointer from integer without a cast
/// pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
///
/// Sets 'Kind' for any result kind except Incompatible.
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
CastKind &Kind, bool ConvertRHS) {
QualType RHSType = RHS.get()->getType();
QualType OrigLHSType = LHSType;
// Get canonical types. We're not formatting these types, just comparing
// them.
LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
// Common case: no conversion required.
if (LHSType == RHSType) {
Kind = CK_NoOp;
return Compatible;
}
// If we have an atomic type, try a non-atomic assignment, then just add an
// atomic qualification step.
if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
Sema::AssignConvertType result =
CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
if (result != Compatible)
return result;
if (Kind != CK_NoOp && ConvertRHS)
RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
Kind = CK_NonAtomicToAtomic;
return Compatible;
}
// If the left-hand side is a reference type, then we are in a
// (rare!) case where we've allowed the use of references in C,
// e.g., as a parameter type in a built-in function. In this case,
// just make sure that the type referenced is compatible with the
// right-hand side type. The caller is responsible for adjusting
// LHSType so that the resulting expression does not have reference
// type.
if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
Kind = CK_LValueBitCast;
return Compatible;
}
return Incompatible;
}
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
// to the same ExtVector type.
if (LHSType->isExtVectorType()) {
if (RHSType->isExtVectorType())
return Incompatible;
if (RHSType->isArithmeticType()) {
// CK_VectorSplat does T -> vector T, so first cast to the element type.
if (ConvertRHS)
RHS = prepareVectorSplat(LHSType, RHS.get());
Kind = CK_VectorSplat;
return Compatible;
}
}
// Conversions to or from vector type.
if (LHSType->isVectorType() || RHSType->isVectorType()) {
if (LHSType->isVectorType() && RHSType->isVectorType()) {
// Allow assignments of an AltiVec vector type to an equivalent GCC
// vector type and vice versa
if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
Kind = CK_BitCast;
return Compatible;
}
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a bitcast;
// no bits are changed but the result type is different.
if (isLaxVectorConversion(RHSType, LHSType)) {
Kind = CK_BitCast;
return IncompatibleVectors;
}
}
// When the RHS comes from another lax conversion (e.g. binops between
// scalars and vectors) the result is canonicalized as a vector. When the
// LHS is also a vector, the lax is allowed by the condition above. Handle
// the case where LHS is a scalar.
if (LHSType->isScalarType()) {
const VectorType *VecType = RHSType->getAs<VectorType>();
if (VecType && VecType->getNumElements() == 1 &&
isLaxVectorConversion(RHSType, LHSType)) {
ExprResult *VecExpr = &RHS;
*VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
Kind = CK_BitCast;
return Compatible;
}
}
// Allow assignments between fixed-length and sizeless SVE vectors.
if (((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
(LHSType->isVectorType() && RHSType->isSizelessBuiltinType())) &&
Context.areCompatibleSveTypes(LHSType, RHSType)) {
Kind = CK_BitCast;
return Compatible;
}
return Incompatible;
}
// Diagnose attempts to convert between __float128 and long double where
// such conversions currently can't be handled.
if (unsupportedTypeConversion(*this, LHSType, RHSType))
return Incompatible;
// Disallow assigning a _Complex to a real type in C++ mode since it simply
// discards the imaginary part.
if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
!LHSType->getAs<ComplexType>())
return Incompatible;
// Arithmetic conversions.
if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
!(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
if (ConvertRHS)
Kind = PrepareScalarCast(RHS, LHSType);
return Compatible;
}
// Conversions to normal pointers.
if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
// U* -> T*
if (isa<PointerType>(RHSType)) {
LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
if (AddrSpaceL != AddrSpaceR)
Kind = CK_AddressSpaceConversion;
else if (Context.hasCvrSimilarType(RHSType, LHSType))
Kind = CK_NoOp;
else
Kind = CK_BitCast;
return checkPointerTypesForAssignment(*this, LHSType, RHSType);
}
// int -> T*
if (RHSType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null?
return IntToPointer;
}
// C pointers are not compatible with ObjC object pointers,
// with two exceptions:
if (isa<ObjCObjectPointerType>(RHSType)) {
// - conversions to void*
if (LHSPointer->getPointeeType()->isVoidType()) {
Kind = CK_BitCast;
return Compatible;
}
// - conversions from 'Class' to the redefinition type
if (RHSType->isObjCClassType() &&
Context.hasSameType(LHSType,
Context.getObjCClassRedefinitionType())) {
Kind = CK_BitCast;
return Compatible;
}
Kind = CK_BitCast;
return IncompatiblePointer;
}
// U^ -> void*
if (RHSType->getAs<BlockPointerType>()) {
if (LHSPointer->getPointeeType()->isVoidType()) {
LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
->getPointeeType()
.getAddressSpace();
Kind =
AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
return Compatible;
}
}
return Incompatible;
}
// Conversions to block pointers.
if (isa<BlockPointerType>(LHSType)) {
// U^ -> T^
if (RHSType->isBlockPointerType()) {
LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
->getPointeeType()
.getAddressSpace();
LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
->getPointeeType()
.getAddressSpace();
Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
}
// int or null -> T^
if (RHSType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null
return IntToBlockPointer;
}
// id -> T^
if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
}
// void* -> T^
if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
if (RHSPT->getPointeeType()->isVoidType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
}
return Incompatible;
}
// Conversions to Objective-C pointers.
if (isa<ObjCObjectPointerType>(LHSType)) {
// A* -> B*
if (RHSType->isObjCObjectPointerType()) {
Kind = CK_BitCast;
Sema::AssignConvertType result =
checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
result == Compatible &&
!CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
result = IncompatibleObjCWeakRef;
return result;
}
// int or null -> A*
if (RHSType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null
return IntToPointer;
}
// In general, C pointers are not compatible with ObjC object pointers,
// with two exceptions:
if (isa<PointerType>(RHSType)) {
Kind = CK_CPointerToObjCPointerCast;
// - conversions from 'void*'
if (RHSType->isVoidPointerType()) {
return Compatible;
}
// - conversions to 'Class' from its redefinition type
if (LHSType->isObjCClassType() &&
Context.hasSameType(RHSType,
Context.getObjCClassRedefinitionType())) {
return Compatible;
}
return IncompatiblePointer;
}
// Only under strict condition T^ is compatible with an Objective-C pointer.
if (RHSType->isBlockPointerType() &&
LHSType->isBlockCompatibleObjCPointerType(Context)) {
if (ConvertRHS)
maybeExtendBlockObject(RHS);
Kind = CK_BlockPointerToObjCPointerCast;
return Compatible;
}
return Incompatible;
}
// Conversions from pointers that are not covered by the above.
if (isa<PointerType>(RHSType)) {
// T* -> _Bool
if (LHSType == Context.BoolTy) {
Kind = CK_PointerToBoolean;
return Compatible;
}
// T* -> int
if (LHSType->isIntegerType()) {
Kind = CK_PointerToIntegral;
return PointerToInt;
}
return Incompatible;
}
// Conversions from Objective-C pointers that are not covered by the above.
if (isa<ObjCObjectPointerType>(RHSType)) {
// T* -> _Bool
if (LHSType == Context.BoolTy) {
Kind = CK_PointerToBoolean;
return Compatible;
}
// T* -> int
if (LHSType->isIntegerType()) {
Kind = CK_PointerToIntegral;
return PointerToInt;
}
return Incompatible;
}
// struct A -> struct B
if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
if (Context.typesAreCompatible(LHSType, RHSType)) {
Kind = CK_NoOp;
return Compatible;
}
}
if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
Kind = CK_IntToOCLSampler;
return Compatible;
}
return Incompatible;
}
/// Constructs a transparent union from an expression that is
/// used to initialize the transparent union.
static void ConstructTransparentUnion(Sema &S, ASTContext &C,
ExprResult &EResult, QualType UnionType,
FieldDecl *Field) {
// Build an initializer list that designates the appropriate member
// of the transparent union.
Expr *E = EResult.get();
InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
E, SourceLocation());
Initializer->setType(UnionType);
Initializer->setInitializedFieldInUnion(Field);
// Build a compound literal constructing a value of the transparent
// union type from this initializer list.
TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
VK_RValue, Initializer, false);
}
Sema::AssignConvertType
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
ExprResult &RHS) {
QualType RHSType = RHS.get()->getType();
// If the ArgType is a Union type, we want to handle a potential
// transparent_union GCC extension.
const RecordType *UT = ArgType->getAsUnionType();
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
return Incompatible;
// The field to initialize within the transparent union.
RecordDecl *UD = UT->getDecl();
FieldDecl *InitField = nullptr;
// It's compatible if the expression matches any of the fields.
for (auto *it : UD->fields()) {
if (it->getType()->isPointerType()) {
// If the transparent union contains a pointer type, we allow:
// 1) void pointer
// 2) null pointer constant
if (RHSType->isPointerType())
if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
InitField = it;
break;
}
if (RHS.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
RHS = ImpCastExprToType(RHS.get(), it->getType(),
CK_NullToPointer);
InitField = it;
break;
}
}
CastKind Kind;
if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
== Compatible) {
RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
InitField = it;
break;
}
}
if (!InitField)
return Incompatible;
ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
return Compatible;
}
Sema::AssignConvertType
Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
bool Diagnose,
bool DiagnoseCFAudited,
bool ConvertRHS) {
// We need to be able to tell the caller whether we diagnosed a problem, if
// they ask us to issue diagnostics.
assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
// If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
// we can't avoid *all* modifications at the moment, so we need some somewhere
// to put the updated value.
ExprResult LocalRHS = CallerRHS;
ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
!LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
Diag(RHS.get()->getExprLoc(),
diag::warn_noderef_to_dereferenceable_pointer)
<< RHS.get()->getSourceRange();
}
}
}
if (getLangOpts().CPlusPlus) {
if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
// C++ 5.17p3: If the left operand is not of class type, the
// expression is implicitly converted (C++ 4) to the
// cv-unqualified type of the left operand.
QualType RHSType = RHS.get()->getType();
if (Diagnose) {
RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
AA_Assigning);
} else {
ImplicitConversionSequence ICS =
TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
/*SuppressUserConversions=*/false,
AllowedExplicit::None,
/*InOverloadResolution=*/false,
/*CStyle=*/false,
/*AllowObjCWritebackConversion=*/false);
if (ICS.isFailure())
return Incompatible;
RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
ICS, AA_Assigning);
}
if (RHS.isInvalid())
return Incompatible;
Sema::AssignConvertType result = Compatible;
if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
!CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
result = IncompatibleObjCWeakRef;
return result;
}
// FIXME: Currently, we fall through and treat C++ classes like C
// structures.
// FIXME: We also fall through for atomics; not sure what should
// happen there, though.
} else if (RHS.get()->getType() == Context.OverloadTy) {
// As a set of extensions to C, we support overloading on functions. These
// functions need to be resolved here.
DeclAccessPair DAP;
if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
RHS.get(), LHSType, /*Complain=*/false, DAP))
RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
else
return Incompatible;
}
// C99 6.5.16.1p1: the left operand is a pointer and the right is
// a null pointer constant.
if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
LHSType->isBlockPointerType()) &&
RHS.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
if (Diagnose || ConvertRHS) {
CastKind Kind;
CXXCastPath Path;
CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
/*IgnoreBaseAccess=*/false, Diagnose);
if (ConvertRHS)
RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
}
return Compatible;
}
// OpenCL queue_t type assignment.
if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
Context, Expr::NPC_ValueDependentIsNull)) {
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
return Compatible;
}
// This check seems unnatural, however it is necessary to ensure the proper
// conversion of functions/arrays. If the conversion were done for all
// DeclExpr's (created by ActOnIdExpression), it would mess up the unary
// expressions that suppress this implicit conversion (&, sizeof).
//
// Suppress this for references: C++ 8.5.3p5.
if (!LHSType->isReferenceType()) {
// FIXME: We potentially allocate here even if ConvertRHS is false.
RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
if (RHS.isInvalid())
return Incompatible;
}
CastKind Kind;
Sema::AssignConvertType result =
CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
// C99 6.5.16.1p2: The value of the right operand is converted to the
// type of the assignment expression.
// CheckAssignmentConstraints allows the left-hand side to be a reference,
// so that we can use references in built-in functions even in C.
// The getNonReferenceType() call makes sure that the resulting expression
// does not have reference type.
if (result != Incompatible && RHS.get()->getType() != LHSType) {
QualType Ty = LHSType.getNonLValueExprType(Context);
Expr *E = RHS.get();
// Check for various Objective-C errors. If we are not reporting
// diagnostics and just checking for errors, e.g., during overload
// resolution, return Incompatible to indicate the failure.
if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
Diagnose, DiagnoseCFAudited) != ACR_okay) {
if (!Diagnose)
return Incompatible;
}
if (getLangOpts().ObjC &&
(CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
E->getType(), E, Diagnose) ||
CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
if (!Diagnose)
return Incompatible;
// Replace the expression with a corrected version and continue so we
// can find further errors.
RHS = E;
return Compatible;
}
if (ConvertRHS)
RHS = ImpCastExprToType(E, Ty, Kind);
}
return result;
}
namespace {
/// The original operand to an operator, prior to the application of the usual
/// arithmetic conversions and converting the arguments of a builtin operator
/// candidate.
struct OriginalOperand {
explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
Op = MTE->getSubExpr();
if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
Op = BTE->getSubExpr();
if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
Orig = ICE->getSubExprAsWritten();
Conversion = ICE->getConversionFunction();
}
}
QualType getType() const { return Orig->getType(); }
Expr *Orig;
NamedDecl *Conversion;
};
}
QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
ExprResult &RHS) {
OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
Diag(Loc, diag::err_typecheck_invalid_operands)
<< OrigLHS.getType() << OrigRHS.getType()
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
// If a user-defined conversion was applied to either of the operands prior
// to applying the built-in operator rules, tell the user about it.
if (OrigLHS.Conversion) {
Diag(OrigLHS.Conversion->getLocation(),
diag::note_typecheck_invalid_operands_converted)
<< 0 << LHS.get()->getType();
}
if (OrigRHS.Conversion) {
Diag(OrigRHS.Conversion->getLocation(),
diag::note_typecheck_invalid_operands_converted)
<< 1 << RHS.get()->getType();
}
return QualType();
}
// Diagnose cases where a scalar was implicitly converted to a vector and
// diagnose the underlying types. Otherwise, diagnose the error
// as invalid vector logical operands for non-C++ cases.
QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
ExprResult &RHS) {
QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
bool LHSNatVec = LHSType->isVectorType();
bool RHSNatVec = RHSType->isVectorType();
if (!(LHSNatVec && RHSNatVec)) {
Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
<< 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
<< Vector->getSourceRange();
return QualType();
}
Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
<< 1 << LHSType << RHSType << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
return QualType();
}
/// Try to convert a value of non-vector type to a vector type by converting
/// the type to the element type of the vector and then performing a splat.
/// If the language is OpenCL, we only use conversions that promote scalar
/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
/// for float->int.
///
/// OpenCL V2.0 6.2.6.p2:
/// An error shall occur if any scalar operand type has greater rank
/// than the type of the vector element.
///
/// \param scalar - if non-null, actually perform the conversions
/// \return true if the operation fails (but without diagnosing the failure)
static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
QualType scalarTy,
QualType vectorEltTy,
QualType vectorTy,
unsigned &DiagID) {
// The conversion to apply to the scalar before splatting it,
// if necessary.
CastKind scalarCast = CK_NoOp;
if (vectorEltTy->isIntegralType(S.Context)) {
if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
(scalarTy->isIntegerType() &&
S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
return true;
}
if (!scalarTy->isIntegralType(S.Context))
return true;
scalarCast = CK_IntegralCast;
} else if (vectorEltTy->isRealFloatingType()) {
if (scalarTy->isRealFloatingType()) {
if (S.getLangOpts().OpenCL &&
S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
return true;
}
scalarCast = CK_FloatingCast;
}
else if (scalarTy->isIntegralType(S.Context))
scalarCast = CK_IntegralToFloating;
else
return true;
} else {
return true;
}
// Adjust scalar if desired.
if (scalar) {
if (scalarCast != CK_NoOp)
*scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
*scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
}
return false;
}
/// Convert vector E to a vector with the same number of elements but different
/// element type.
static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
const auto *VecTy = E->getType()->getAs<VectorType>();
assert(VecTy && "Expression E must be a vector");
QualType NewVecTy = S.Context.getVectorType(ElementType,
VecTy->getNumElements(),
VecTy->getVectorKind());
// Look through the implicit cast. Return the subexpression if its type is
// NewVecTy.
if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
if (ICE->getSubExpr()->getType() == NewVecTy)
return ICE->getSubExpr();
auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
return S.ImpCastExprToType(E, NewVecTy, Cast);
}
/// Test if a (constant) integer Int can be casted to another integer type
/// IntTy without losing precision.
static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
QualType OtherIntTy) {
QualType IntTy = Int->get()->getType().getUnqualifiedType();
// Reject cases where the value of the Int is unknown as that would
// possibly cause truncation, but accept cases where the scalar can be
// demoted without loss of precision.
Expr::EvalResult EVResult;
bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
bool IntSigned = IntTy->hasSignedIntegerRepresentation();
bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
if (CstInt) {
// If the scalar is constant and is of a higher order and has more active
// bits that the vector element type, reject it.
llvm::APSInt Result = EVResult.Val.getInt();
unsigned NumBits = IntSigned
? (Result.isNegative() ? Result.getMinSignedBits()
: Result.getActiveBits())
: Result.getActiveBits();
if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
return true;
// If the signedness of the scalar type and the vector element type
// differs and the number of bits is greater than that of the vector
// element reject it.
return (IntSigned != OtherIntSigned &&
NumBits > S.Context.getIntWidth(OtherIntTy));
}
// Reject cases where the value of the scalar is not constant and it's
// order is greater than that of the vector element type.
return (Order < 0);
}
/// Test if a (constant) integer Int can be casted to floating point type
/// FloatTy without losing precision.
static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
QualType FloatTy) {
QualType IntTy = Int->get()->getType().getUnqualifiedType();
// Determine if the integer constant can be expressed as a floating point
// number of the appropriate type.
Expr::EvalResult EVResult;
bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
uint64_t Bits = 0;
if (CstInt) {
// Reject constants that would be truncated if they were converted to
// the floating point type. Test by simple to/from conversion.
// FIXME: Ideally the conversion to an APFloat and from an APFloat
// could be avoided if there was a convertFromAPInt method
// which could signal back if implicit truncation occurred.
llvm::APSInt Result = EVResult.Val.getInt();
llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
llvm::APFloat::rmTowardZero);
llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
!IntTy->hasSignedIntegerRepresentation());
bool Ignored = false;
Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
&Ignored);
if (Result != ConvertBack)
return true;
} else {
// Reject types that cannot be fully encoded into the mantissa of
// the float.
Bits = S.Context.getTypeSize(IntTy);
unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
S.Context.getFloatTypeSemantics(FloatTy));
if (Bits > FloatPrec)
return true;
}
return false;
}
/// Attempt to convert and splat Scalar into a vector whose types matches
/// Vector following GCC conversion rules. The rule is that implicit
/// conversion can occur when Scalar can be casted to match Vector's element
/// type without causing truncation of Scalar.
static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
ExprResult *Vector) {
QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
const VectorType *VT = VectorTy->getAs<VectorType>();
assert(!isa<ExtVectorType>(VT) &&
"ExtVectorTypes should not be handled here!");
QualType VectorEltTy = VT->getElementType();
// Reject cases where the vector element type or the scalar element type are
// not integral or floating point types.
if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
return true;
// The conversion to apply to the scalar before splatting it,
// if necessary.
CastKind ScalarCast = CK_NoOp;
// Accept cases where the vector elements are integers and the scalar is
// an integer.
// FIXME: Notionally if the scalar was a floating point value with a precise
// integral representation, we could cast it to an appropriate integer
// type and then perform the rest of the checks here. GCC will perform
// this conversion in some cases as determined by the input language.
// We should accept it on a language independent basis.
if (VectorEltTy->isIntegralType(S.Context) &&
ScalarTy->isIntegralType(S.Context) &&
S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
return true;
ScalarCast = CK_IntegralCast;
} else if (VectorEltTy->isIntegralType(S.Context) &&
ScalarTy->isRealFloatingType()) {
if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
ScalarCast = CK_FloatingToIntegral;
else
return true;
} else if (VectorEltTy->isRealFloatingType()) {
if (ScalarTy->isRealFloatingType()) {
// Reject cases where the scalar type is not a constant and has a higher
// Order than the vector element type.
llvm::APFloat Result(0.0);
// Determine whether this is a constant scalar. In the event that the
// value is dependent (and thus cannot be evaluated by the constant
// evaluator), skip the evaluation. This will then diagnose once the
// expression is instantiated.
bool CstScalar = Scalar->get()->isValueDependent() ||
Scalar->get()->EvaluateAsFloat(Result, S.Context);
int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
if (!CstScalar && Order < 0)
return true;
// If the scalar cannot be safely casted to the vector element type,
// reject it.
if (CstScalar) {
bool Truncated = false;
Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
llvm::APFloat::rmNearestTiesToEven, &Truncated);
if (Truncated)
return true;
}
ScalarCast = CK_FloatingCast;
} else if (ScalarTy->isIntegralType(S.Context)) {
if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
return true;
ScalarCast = CK_IntegralToFloating;
} else
return true;
} else if (ScalarTy->isEnumeralType())
return true;
// Adjust scalar if desired.
if (Scalar) {
if (ScalarCast != CK_NoOp)
*Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
*Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
}
return false;
}
QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign,
bool AllowBothBool,
bool AllowBoolConversions) {
if (!IsCompAssign) {
LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
if (LHS.isInvalid())
return QualType();
}
RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
if (RHS.isInvalid())
return QualType();
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType LHSType = LHS.get()->getType().getUnqualifiedType();
QualType RHSType = RHS.get()->getType().getUnqualifiedType();
const VectorType *LHSVecType = LHSType->getAs<VectorType>();
const VectorType *RHSVecType = RHSType->getAs<VectorType>();
assert(LHSVecType || RHSVecType);
if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
(RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
return InvalidOperands(Loc, LHS, RHS);
// AltiVec-style "vector bool op vector bool" combinations are allowed
// for some operators but not others.
if (!AllowBothBool &&
LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
return InvalidOperands(Loc, LHS, RHS);
// If the vector types are identical, return.
if (Context.hasSameType(LHSType, RHSType))
return LHSType;
// If we have compatible AltiVec and GCC vector types, use the AltiVec type.
if (LHSVecType && RHSVecType &&
Context.areCompatibleVectorTypes(LHSType, RHSType)) {
if (isa<ExtVectorType>(LHSVecType)) {
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
return LHSType;
}
if (!IsCompAssign)
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
return RHSType;
}
// AllowBoolConversions says that bool and non-bool AltiVec vectors
// can be mixed, with the result being the non-bool type. The non-bool
// operand must have integer element type.
if (AllowBoolConversions && LHSVecType && RHSVecType &&
LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
(Context.getTypeSize(LHSVecType->getElementType()) ==
Context.getTypeSize(RHSVecType->getElementType()))) {
if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
LHSVecType->getElementType()->isIntegerType() &&
RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
return LHSType;
}
if (!IsCompAssign &&
LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
RHSVecType->getElementType()->isIntegerType()) {
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
return RHSType;
}
}
// If there's a vector type and a scalar, try to convert the scalar to
// the vector element type and splat.
unsigned DiagID = diag::err_typecheck_vector_not_convertable;
if (!RHSVecType) {
if (isa<ExtVectorType>(LHSVecType)) {
if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
LHSVecType->getElementType(), LHSType,
DiagID))
return LHSType;
} else {
if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
return LHSType;
}
}
if (!LHSVecType) {
if (isa<ExtVectorType>(RHSVecType)) {
if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
LHSType, RHSVecType->getElementType(),
RHSType, DiagID))
return RHSType;
} else {
if (LHS.get()->getValueKind() == VK_LValue ||
!tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
return RHSType;
}
}
// FIXME: The code below also handles conversion between vectors and
// non-scalars, we should break this down into fine grained specific checks
// and emit proper diagnostics.
QualType VecType = LHSVecType ? LHSType : RHSType;
const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
QualType OtherType = LHSVecType ? RHSType : LHSType;
ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
if (isLaxVectorConversion(OtherType, VecType)) {
// If we're allowing lax vector conversions, only the total (data) size
// needs to be the same. For non compound assignment, if one of the types is
// scalar, the result is always the vector type.
if (!IsCompAssign) {
*OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
return VecType;
// In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
// any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
// type. Note that this is already done by non-compound assignments in
// CheckAssignmentConstraints. If it's a scalar type, only bitcast for
// <1 x T> -> T. The result is also a vector type.
} else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
(OtherType->isScalarType() && VT->getNumElements() == 1)) {
ExprResult *RHSExpr = &RHS;
*RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
return VecType;
}
}
// Okay, the expression is invalid.
// Returns true if the operands are SVE VLA and VLS types.
auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
const VectorType *VecType = SecondType->getAs<VectorType>();
return FirstType->isSizelessBuiltinType() && VecType &&
(VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
VecType->getVectorKind() ==
VectorType::SveFixedLengthPredicateVector);
};
// If there's a sizeless and fixed-length operand, diagnose that.
if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
Diag(Loc, diag::err_typecheck_vector_not_convertable_sizeless)
<< LHSType << RHSType;
return QualType();
}
// If there's a non-vector, non-real operand, diagnose that.
if ((!RHSVecType && !RHSType->isRealType()) ||
(!LHSVecType && !LHSType->isRealType())) {
Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
<< LHSType << RHSType
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
return QualType();
}
// OpenCL V1.1 6.2.6.p1:
// If the operands are of more than one vector type, then an error shall
// occur. Implicit conversions between vector types are not permitted, per
// section 6.2.1.
if (getLangOpts().OpenCL &&
RHSVecType && isa<ExtVectorType>(RHSVecType) &&
LHSVecType && isa<ExtVectorType>(LHSVecType)) {
Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
<< RHSType;
return QualType();
}
// If there is a vector type that is not a ExtVector and a scalar, we reach
// this point if scalar could not be converted to the vector's element type
// without truncation.
if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
(LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
QualType Scalar = LHSVecType ? RHSType : LHSType;
QualType Vector = LHSVecType ? LHSType : RHSType;
unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
Diag(Loc,
diag::err_typecheck_vector_not_convertable_implict_truncation)
<< ScalarOrVector << Scalar << Vector;
return QualType();
}
// Otherwise, use the generic diagnostic.
Diag(Loc, DiagID)
<< LHSType << RHSType
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
return QualType();
}
// checkArithmeticNull - Detect when a NULL constant is used improperly in an
// expression. These are mainly cases where the null pointer is used as an
// integer instead of a pointer.
static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompare) {
// The canonical way to check for a GNU null is with isNullPointerConstant,
// but we use a bit of a hack here for speed; this is a relatively
// hot path, and isNullPointerConstant is slow.
bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
// Avoid analyzing cases where the result will either be invalid (and
// diagnosed as such) or entirely valid and not something to warn about.
if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
return;
// Comparison operations would not make sense with a null pointer no matter
// what the other expression is.
if (!IsCompare) {
S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
<< (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
<< (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
return;
}
// The rest of the operations only make sense with a null pointer
// if the other expression is a pointer.
if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
NonNullType->canDecayToPointerType())
return;
S.Diag(Loc, diag::warn_null_in_comparison_operation)
<< LHSNull /* LHS is NULL */ << NonNullType
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
}
static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
SourceLocation Loc) {
const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
if (!LUE || !RUE)
return;
if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
RUE->getKind() != UETT_SizeOf)
return;
const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
QualType LHSTy = LHSArg->getType();
QualType RHSTy;
if (RUE->isArgumentType())
RHSTy = RUE->getArgumentType();
else
RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
return;
S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
if (const ValueDecl *LHSArgDecl = DRE->getDecl())
S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
<< LHSArgDecl;
}
} else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
QualType ArrayElemTy = ArrayTy->getElementType();
if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
return;
S.Diag(Loc, diag::warn_division_sizeof_array)
<< LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
if (const ValueDecl *LHSArgDecl = DRE->getDecl())
S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
<< LHSArgDecl;
}
S.Diag(Loc, diag::note_precedence_silence) << RHS;
}
}
static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
ExprResult &RHS,
SourceLocation Loc, bool IsDiv) {
// Check for division/remainder by zero.
Expr::EvalResult RHSValue;
if (!RHS.get()->isValueDependent() &&
RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
RHSValue.Val.getInt() == 0)
S.DiagRuntimeBehavior(Loc, RHS.get(),
S.PDiag(diag::warn_remainder_division_by_zero)
<< IsDiv << RHS.get()->getSourceRange());
}
QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
bool IsCompAssign, bool IsDiv) {
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
if (LHS.get()->getType()->isVectorType() ||
RHS.get()->getType()->isVectorType())
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
/*AllowBothBool*/getLangOpts().AltiVec,
/*AllowBoolConversions*/false);
if (!IsDiv && (LHS.get()->getType()->isConstantMatrixType() ||
RHS.get()->getType()->isConstantMatrixType()))
return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
QualType compType = UsualArithmeticConversions(
LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
if (compType.isNull() || !compType->isArithmeticType())
return InvalidOperands(Loc, LHS, RHS);
if (IsDiv) {
DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
}
return compType;
}
QualType Sema::CheckRemainderOperands(
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
if (LHS.get()->getType()->isVectorType() ||
RHS.get()->getType()->isVectorType()) {
if (LHS.get()->getType()->hasIntegerRepresentation() &&
RHS.get()->getType()->hasIntegerRepresentation())
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
/*AllowBothBool*/getLangOpts().AltiVec,
/*AllowBoolConversions*/false);
return InvalidOperands(Loc, LHS, RHS);
}
QualType compType = UsualArithmeticConversions(
LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
if (compType.isNull() || !compType->isIntegerType())
return InvalidOperands(Loc, LHS, RHS);
DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
return compType;
}
/// Diagnose invalid arithmetic on two void pointers.
static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
Expr *LHSExpr, Expr *RHSExpr) {
S.Diag(Loc, S.getLangOpts().CPlusPlus
? diag::err_typecheck_pointer_arith_void_type
: diag::ext_gnu_void_ptr)
<< 1 /* two pointers */ << LHSExpr->getSourceRange()
<< RHSExpr->getSourceRange();
}
/// Diagnose invalid arithmetic on a void pointer.
static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
Expr *Pointer) {
S.Diag(Loc, S.getLangOpts().CPlusPlus
? diag::err_typecheck_pointer_arith_void_type
: diag::ext_gnu_void_ptr)
<< 0 /* one pointer */ << Pointer->getSourceRange();
}
/// Diagnose invalid arithmetic on a null pointer.
///
/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
/// idiom, which we recognize as a GNU extension.
///
static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
Expr *Pointer, bool IsGNUIdiom) {
if (IsGNUIdiom)
S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
<< Pointer->getSourceRange();
else
S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
<< S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
}
/// Diagnose invalid arithmetic on two function pointers.
static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
Expr *LHS, Expr *RHS) {
assert(LHS->getType()->isAnyPointerType());
assert(RHS->getType()->isAnyPointerType());
S.Diag(Loc, S.getLangOpts().CPlusPlus
? diag::err_typecheck_pointer_arith_function_type
: diag::ext_gnu_ptr_func_arith)
<< 1 /* two pointers */ << LHS->getType()->getPointeeType()
// We only show the second type if it differs from the first.
<< (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
RHS->getType())
<< RHS->getType()->getPointeeType()
<< LHS->getSourceRange() << RHS->getSourceRange();
}
/// Diagnose invalid arithmetic on a function pointer.
static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
Expr *Pointer) {
assert(Pointer->getType()->isAnyPointerType());
S.Diag(Loc, S.getLangOpts().CPlusPlus
? diag::err_typecheck_pointer_arith_function_type
: diag::ext_gnu_ptr_func_arith)
<< 0 /* one pointer */ << Pointer->getType()->getPointeeType()
<< 0 /* one pointer, so only one type */
<< Pointer->getSourceRange();
}
/// Emit error if Operand is incomplete pointer type
///
/// \returns True if pointer has incomplete type
static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
Expr *Operand) {
QualType ResType = Operand->getType();
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
ResType = ResAtomicType->getValueType();
assert(ResType->isAnyPointerType() && !ResType->isDependentType());
QualType PointeeTy = ResType->getPointeeType();
return S.RequireCompleteSizedType(
Loc, PointeeTy,
diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
Operand->getSourceRange());
}
/// Check the validity of an arithmetic pointer operand.
///
/// If the operand has pointer type, this code will check for pointer types
/// which are invalid in arithmetic operations. These will be diagnosed
/// appropriately, including whether or not the use is supported as an
/// extension.
///
/// \returns True when the operand is valid to use (even if as an extension).
static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
Expr *Operand) {
QualType ResType = Operand->getType();
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
ResType = ResAtomicType->getValueType();
if (!ResType->isAnyPointerType()) return true;
QualType PointeeTy = ResType->getPointeeType();
if (PointeeTy->isVoidType()) {
diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
return !S.getLangOpts().CPlusPlus;
}
if (PointeeTy->isFunctionType()) {
diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
return !S.getLangOpts().CPlusPlus;
}
if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
return true;
}
/// Check the validity of a binary arithmetic operation w.r.t. pointer
/// operands.
///
/// This routine will diagnose any invalid arithmetic on pointer operands much
/// like \see checkArithmeticOpPointerOperand. However, it has special logic
/// for emitting a single diagnostic even for operations where both LHS and RHS
/// are (potentially problematic) pointers.
///
/// \returns True when the operand is valid to use (even if as an extension).
static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
Expr *LHSExpr, Expr *RHSExpr) {
bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
if (!isLHSPointer && !isRHSPointer) return true;
QualType LHSPointeeTy, RHSPointeeTy;
if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
// if both are pointers check if operation is valid wrt address spaces
if (isLHSPointer && isRHSPointer) {
if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
S.Diag(Loc,
diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
<< LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
<< LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
return false;
}
}
// Check for arithmetic on pointers to incomplete types.
bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
if (isLHSVoidPtr || isRHSVoidPtr) {
if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
return !S.getLangOpts().CPlusPlus;
}
bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
if (isLHSFuncPtr || isRHSFuncPtr) {
if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
RHSExpr);
else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
return !S.getLangOpts().CPlusPlus;
}
if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
return false;
if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
return false;
return true;
}
/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
/// literal.
static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
Expr *LHSExpr, Expr *RHSExpr) {
StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
Expr* IndexExpr = RHSExpr;
if (!StrExpr) {
StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
IndexExpr = LHSExpr;
}
bool IsStringPlusInt = StrExpr &&
IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
if (!IsStringPlusInt || IndexExpr->isValueDependent())
return;
SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
Self.Diag(OpLoc, diag::warn_string_plus_int)
<< DiagRange << IndexExpr->IgnoreImpCasts()->getType();
// Only print a fixit for "str" + int, not for int + "str".
if (IndexExpr == RHSExpr) {
SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
<< FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
<< FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
<< FixItHint::CreateInsertion(EndLoc, "]");
} else
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
}
/// Emit a warning when adding a char literal to a string.
static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
Expr *LHSExpr, Expr *RHSExpr) {
const Expr *StringRefExpr = LHSExpr;
const CharacterLiteral *CharExpr =
dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
if (!CharExpr) {
CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
StringRefExpr = RHSExpr;
}
if (!CharExpr || !StringRefExpr)
return;
const QualType StringType = StringRefExpr->getType();
// Return if not a PointerType.
if (!StringType->isAnyPointerType())
return;
// Return if not a CharacterType.
if (!StringType->getPointeeType()->isAnyCharacterType())
return;
ASTContext &Ctx = Self.getASTContext();
SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
const QualType CharType = CharExpr->getType();
if (!CharType->isAnyCharacterType() &&
CharType->isIntegerType() &&
llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
Self.Diag(OpLoc, diag::warn_string_plus_char)
<< DiagRange << Ctx.CharTy;
} else {
Self.Diag(OpLoc, diag::warn_string_plus_char)
<< DiagRange << CharExpr->getType();
}
// Only print a fixit for str + char, not for char + str.
if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
<< FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
<< FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
<< FixItHint::CreateInsertion(EndLoc, "]");
} else {
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
}
}
/// Emit error when two pointers are incompatible.
static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
Expr *LHSExpr, Expr *RHSExpr) {
assert(LHSExpr->getType()->isAnyPointerType());
assert(RHSExpr->getType()->isAnyPointerType());
S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
<< LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
<< RHSExpr->getSourceRange();
}
// C99 6.5.6
QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, BinaryOperatorKind Opc,
QualType* CompLHSTy) {
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
if (LHS.get()->getType()->isVectorType() ||
RHS.get()->getType()->isVectorType()) {
QualType compType = CheckVectorOperands(
LHS, RHS, Loc, CompLHSTy,
/*AllowBothBool*/getLangOpts().AltiVec,
/*AllowBoolConversions*/getLangOpts().ZVector);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
if (LHS.get()->getType()->isConstantMatrixType() ||
RHS.get()->getType()->isConstantMatrixType()) {
return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
}
QualType compType = UsualArithmeticConversions(
LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
// Diagnose "string literal" '+' int and string '+' "char literal".
if (Opc == BO_Add) {
diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
}
// handle the common case first (both operands are arithmetic).
if (!compType.isNull() && compType->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Type-checking. Ultimately the pointer's going to be in PExp;
// note that we bias towards the LHS being the pointer.
Expr *PExp = LHS.get(), *IExp = RHS.get();
bool isObjCPointer;
if (PExp->getType()->isPointerType()) {
isObjCPointer = false;
} else if (PExp->getType()->isObjCObjectPointerType()) {
isObjCPointer = true;
} else {
std::swap(PExp, IExp);
if (PExp->getType()->isPointerType()) {
isObjCPointer = false;
} else if (PExp->getType()->isObjCObjectPointerType()) {
isObjCPointer = true;
} else {
return InvalidOperands(Loc, LHS, RHS);
}
}
assert(PExp->getType()->isAnyPointerType());
if (!IExp->getType()->isIntegerType())
return InvalidOperands(Loc, LHS, RHS);
// Adding to a null pointer results in undefined behavior.
if (PExp->IgnoreParenCasts()->isNullPointerConstant(
Context, Expr::NPC_ValueDependentIsNotNull)) {
// In C++ adding zero to a null pointer is defined.
Expr::EvalResult KnownVal;
if (!getLangOpts().CPlusPlus ||
(!IExp->isValueDependent() &&
(!IExp->EvaluateAsInt(KnownVal, Context) ||
KnownVal.Val.getInt() != 0))) {
// Check the conditions to see if this is the 'p = nullptr + n' idiom.
bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
Context, BO_Add, PExp, IExp);
diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
}
}
if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
return QualType();
if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
return QualType();
// Check array bounds for pointer arithemtic
CheckArrayAccess(PExp, IExp);
if (CompLHSTy) {
QualType LHSTy = Context.isPromotableBitField(LHS.get());
if (LHSTy.isNull()) {
LHSTy = LHS.get()->getType();
if (LHSTy->isPromotableIntegerType())
LHSTy = Context.getPromotedIntegerType(LHSTy);
}
*CompLHSTy = LHSTy;
}
return PExp->getType();
}
// C99 6.5.6
QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
QualType* CompLHSTy) {
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
if (LHS.get()->getType()->isVectorType() ||
RHS.get()->getType()->isVectorType()) {
QualType compType = CheckVectorOperands(
LHS, RHS, Loc, CompLHSTy,
/*AllowBothBool*/getLangOpts().AltiVec,
/*AllowBoolConversions*/getLangOpts().ZVector);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
if (LHS.get()->getType()->isConstantMatrixType() ||
RHS.get()->getType()->isConstantMatrixType()) {
return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
}
QualType compType = UsualArithmeticConversions(
LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
// Enforce type constraints: C99 6.5.6p3.
// Handle the common case first (both operands are arithmetic).
if (!compType.isNull() && compType->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Either ptr - int or ptr - ptr.
if (LHS.get()->getType()->isAnyPointerType()) {
QualType lpointee = LHS.get()->getType()->getPointeeType();
// Diagnose bad cases where we step over interface counts.
if (LHS.get()->getType()->isObjCObjectPointerType() &&
checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
return QualType();
// The result type of a pointer-int computation is the pointer type.
if (RHS.get()->getType()->isIntegerType()) {
// Subtracting from a null pointer should produce a warning.
// The last argument to the diagnose call says this doesn't match the
// GNU int-to-pointer idiom.
if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull)) {
// In C++ adding zero to a null pointer is defined.
Expr::EvalResult KnownVal;
if (!getLangOpts().CPlusPlus ||
(!RHS.get()->isValueDependent() &&
(!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
KnownVal.Val.getInt() != 0))) {
diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
}
}
if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
return QualType();
// Check array bounds for pointer arithemtic
CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
/*AllowOnePastEnd*/true, /*IndexNegated*/true);
if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
return LHS.get()->getType();
}
// Handle pointer-pointer subtractions.
if (const PointerType *RHSPTy
= RHS.get()->getType()->getAs<PointerType>()) {
QualType rpointee = RHSPTy->getPointeeType();
if (getLangOpts().CPlusPlus) {
// Pointee types must be the same: C++ [expr.add]
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
}
} else {
// Pointee types must be compatible C99 6.5.6p3
if (!Context.typesAreCompatible(
Context.getCanonicalType(lpointee).getUnqualifiedType(),
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
return QualType();
}
}
if (!checkArithmeticBinOpPointerOperands(*this, Loc,
LHS.get(), RHS.get()))
return QualType();
// FIXME: Add warnings for nullptr - ptr.
// The pointee type may have zero size. As an extension, a structure or
// union may have zero size or an array may have zero length. In this
// case subtraction does not make sense.
if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
if (ElementSize.isZero()) {
Diag(Loc,diag::warn_sub_ptr_zero_size_types)
<< rpointee.getUnqualifiedType()
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
}
}
if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
return Context.getPointerDiffType();
}
}
return InvalidOperands(Loc, LHS, RHS);
}
static bool isScopedEnumerationType(QualType T) {
if (const EnumType *ET = T->getAs<EnumType>())
return ET->getDecl()->isScoped();
return false;
}
static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, BinaryOperatorKind Opc,
QualType LHSType) {
// OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
// so skip remaining warnings as we don't want to modify values within Sema.
if (S.getLangOpts().OpenCL)
return;
// Check right/shifter operand
Expr::EvalResult RHSResult;
if (RHS.get()->isValueDependent() ||
!RHS.get()->EvaluateAsInt(RHSResult, S.Context))
return;
llvm::APSInt Right = RHSResult.Val.getInt();
if (Right.isNegative()) {
S.DiagRuntimeBehavior(Loc, RHS.get(),
S.PDiag(diag::warn_shift_negative)
<< RHS.get()->getSourceRange());
return;
}
QualType LHSExprType = LHS.get()->getType();
uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
if (LHSExprType->isExtIntType())
LeftSize = S.Context.getIntWidth(LHSExprType);
else if (LHSExprType->isFixedPointType()) {
auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
}
llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
if (Right.uge(LeftBits)) {
S.DiagRuntimeBehavior(Loc, RHS.get(),
S.PDiag(diag::warn_shift_gt_typewidth)
<< RHS.get()->getSourceRange());
return;
}
// FIXME: We probably need to handle fixed point types specially here.
if (Opc != BO_Shl || LHSExprType->isFixedPointType())
return;
// When left shifting an ICE which is signed, we can check for overflow which
// according to C++ standards prior to C++2a has undefined behavior
// ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
// more than the maximum value representable in the result type, so never
// warn for those. (FIXME: Unsigned left-shift overflow in a constant
// expression is still probably a bug.)
Expr::EvalResult LHSResult;
if (LHS.get()->isValueDependent() ||
LHSType->hasUnsignedIntegerRepresentation() ||
!LHS.get()->EvaluateAsInt(LHSResult, S.Context))
return;
llvm::APSInt Left = LHSResult.Val.getInt();
// If LHS does not have a signed type and non-negative value
// then, the behavior is undefined before C++2a. Warn about it.
if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
!S.getLangOpts().CPlusPlus20) {
S.DiagRuntimeBehavior(Loc, LHS.get(),
S.PDiag(diag::warn_shift_lhs_negative)
<< LHS.get()->getSourceRange());
return;
}
llvm::APInt ResultBits =
static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
if (LeftBits.uge(ResultBits))
return;
llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
Result = Result.shl(Right);
// Print the bit representation of the signed integer as an unsigned
// hexadecimal number.
SmallString<40> HexResult;
Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
// If we are only missing a sign bit, this is less likely to result in actual
// bugs -- if the result is cast back to an unsigned type, it will have the
// expected value. Thus we place this behind a different warning that can be
// turned off separately if needed.
if (LeftBits == ResultBits - 1) {
S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
<< HexResult << LHSType
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
return;
}
S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
<< HexResult.str() << Result.getMinSignedBits() << LHSType
<< Left.getBitWidth() << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
}
/// Return the resulting type when a vector is shifted
/// by a scalar or vector shift amount.
static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, bool IsCompAssign) {
// OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
!LHS.get()->getType()->isVectorType()) {
S.Diag(Loc, diag::err_shift_rhs_only_vector)
<< RHS.get()->getType() << LHS.get()->getType()
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
return QualType();
}
if (!IsCompAssign) {
LHS = S.UsualUnaryConversions(LHS.get());
if (LHS.isInvalid()) return QualType();
}
RHS = S.UsualUnaryConversions(RHS.get());
if (RHS.isInvalid()) return QualType();
QualType LHSType = LHS.get()->getType();
// Note that LHS might be a scalar because the routine calls not only in
// OpenCL case.
const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
// Note that RHS might not be a vector.
QualType RHSType = RHS.get()->getType();
const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
// The operands need to be integers.
if (!LHSEleType->isIntegerType()) {
S.Diag(Loc, diag::err_typecheck_expect_int)
<< LHS.get()->getType() << LHS.get()->getSourceRange();
return QualType();
}
if (!RHSEleType->isIntegerType()) {
S.Diag(Loc, diag::err_typecheck_expect_int)
<< RHS.get()->getType() << RHS.get()->getSourceRange();
return QualType();
}
if (!LHSVecTy) {
assert(RHSVecTy);
if (IsCompAssign)
return RHSType;
if (LHSEleType != RHSEleType) {
LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
LHSEleType = RHSEleType;
}
QualType VecTy =
S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
LHSType = VecTy;
} else if (RHSVecTy) {
// OpenCL v1.1 s6.3.j says that for vector types, the operators
// are applied component-wise. So if RHS is a vector, then ensure
// that the number of elements is the same as LHS...
if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
<< LHS.get()->getType() << RHS.get()->getType()
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
return QualType();
}
if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
if (LHSBT != RHSBT &&
S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
<< LHS.get()->getType() << RHS.get()->getType()
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
}
}
} else {
// ...else expand RHS to match the number of elements in LHS.
QualType VecTy =
S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
}
return LHSType;
}
// C99 6.5.7
QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc, BinaryOperatorKind Opc,
bool IsCompAssign) {
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
// Vector shifts promote their scalar inputs to vector type.
if (LHS.get()->getType()->isVectorType() ||
RHS.get()->getType()->isVectorType()) {
if (LangOpts.ZVector) {
// The shift operators for the z vector extensions work basically
// like general shifts, except that neither the LHS nor the RHS is
// allowed to be a "vector bool".
if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
return InvalidOperands(Loc, LHS, RHS);
if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
return InvalidOperands(Loc, LHS, RHS);
}
return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
}
// Shifts don't perform usual arithmetic conversions, they just do integer
// promotions on each operand. C99 6.5.7p3
// For the LHS, do usual unary conversions, but then reset them away
// if this is a compound assignment.
ExprResult OldLHS = LHS;
LHS = UsualUnaryConversions(LHS.get());
if (LHS.isInvalid())
return QualType();
QualType LHSType = LHS.get()->getType();
if (IsCompAssign) LHS = OldLHS;
// The RHS is simpler.
RHS = UsualUnaryConversions(RHS.get());
if (RHS.isInvalid())
return QualType();
QualType RHSType = RHS.get()->getType();
// C99 6.5.7p2: Each of the operands shall have integer type.
// Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
if ((!LHSType->isFixedPointOrIntegerType() &&
!LHSType->hasIntegerRepresentation()) ||
!RHSType->hasIntegerRepresentation())
return InvalidOperands(Loc, LHS, RHS);
// C++0x: Don't allow scoped enums. FIXME: Use something better than
// hasIntegerRepresentation() above instead of this.
if (isScopedEnumerationType(LHSType) ||
isScopedEnumerationType(RHSType)) {
return InvalidOperands(Loc, LHS, RHS);
}
// Sanity-check shift operands
DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
// "The type of the result is that of the promoted left operand."
return LHSType;
}
/// Diagnose bad pointer comparisons.
static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
ExprResult &LHS, ExprResult &RHS,
bool IsError) {
S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
: diag::ext_typecheck_comparison_of_distinct_pointers)
<< LHS.get()->getType() << RHS.get()->getType()
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
}
/// Returns false if the pointers are converted to a composite type,
/// true otherwise.
static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
ExprResult &LHS, ExprResult &RHS) {
// C++ [expr.rel]p2:
// [...] Pointer conversions (4.10) and qualification
// conversions (4.4) are performed on pointer operands (or on
// a pointer operand and a null pointer constant) to bring
// them to their composite pointer type. [...]
//
// C++ [expr.eq]p1 uses the same notion for (in)equality
// comparisons of pointers.
QualType LHSType = LHS.get()->getType();
QualType RHSType = RHS.get()->getType();
assert(LHSType->isPointerType() || RHSType->isPointerType() ||
LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
if (T.isNull()) {
if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
(RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
else
S.InvalidOperands(Loc, LHS, RHS);
return true;
}
return false;
}
static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
ExprResult &LHS,
ExprResult &RHS,
bool IsError) {
S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
: diag::ext_typecheck_comparison_of_fptr_to_void)
<< LHS.get()->getType() << RHS.get()->getType()
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
}
static bool isObjCObjectLiteral(ExprResult &E) {
switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
case Stmt::ObjCArrayLiteralClass:
case Stmt::ObjCDictionaryLiteralClass:
case Stmt::ObjCStringLiteralClass:
case Stmt::ObjCBoxedExprClass:
return true;
default:
// Note that ObjCBoolLiteral is NOT an object literal!
return false;
}
}
static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
const ObjCObjectPointerType *Type =
LHS->getType()->getAs<ObjCObjectPointerType>();
// If this is not actually an Objective-C object, bail out.
if (!Type)
return false;
// Get the LHS object's interface type.
QualType InterfaceType = Type->getPointeeType();
// If the RHS isn't an Objective-C object, bail out.
if (!RHS->getType()->isObjCObjectPointerType())
return false;
// Try to find the -isEqual: method.
Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
InterfaceType,
/*IsInstance=*/true);
if (!Method) {
if (Type->isObjCIdType()) {
// For 'id', just check the global pool.
Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
/*receiverId=*/true);
} else {
// Check protocols.
Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
/*IsInstance=*/true);
}
}
if (!Method)
return false;
QualType T = Method->parameters()[0]->getType();
if (!T->isObjCObjectPointerType())
return false;
QualType R = Method->getReturnType();
if (!R->isScalarType())
return false;
return true;
}
Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
FromE = FromE->IgnoreParenImpCasts();
switch (FromE->getStmtClass()) {
default:
break;
case Stmt::ObjCStringLiteralClass:
// "string literal"
return LK_String;
case Stmt::ObjCArrayLiteralClass:
// "array literal"
return LK_Array;
case Stmt::ObjCDictionaryLiteralClass:
// "dictionary literal"
return LK_Dictionary;
case Stmt::BlockExprClass:
return LK_Block;
case Stmt::ObjCBoxedExprClass: {
Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
switch (Inner->getStmtClass()) {
case Stmt::IntegerLiteralClass:
case Stmt::FloatingLiteralClass:
case Stmt::CharacterLiteralClass:
case Stmt::ObjCBoolLiteralExprClass:
case Stmt::CXXBoolLiteralExprClass:
// "numeric literal"
return LK_Numeric;
case Stmt::ImplicitCastExprClass: {
CastKind CK = cast<CastExpr>(Inner)->getCastKind();
// Boolean literals can be represented by implicit casts.
if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
return LK_Numeric;
break;
}
default:
break;
}
return LK_Boxed;
}
}
return LK_None;
}
static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
ExprResult &LHS, ExprResult &RHS,
BinaryOperator::Opcode Opc){
Expr *Literal;
Expr *Other;
if (isObjCObjectLiteral(LHS)) {
Literal = LHS.get();
Other = RHS.get();
} else {
Literal = RHS.get();
Other = LHS.get();
}
// Don't warn on comparisons against nil.
Other = Other->IgnoreParenCasts();
if (Other->isNullPointerConstant(S.getASTContext(),
Expr::NPC_ValueDependentIsNotNull))
return;
// This should be kept in sync with warn_objc_literal_comparison.
// LK_String should always be after the other literals, since it has its own
// warning flag.
Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
assert(LiteralKind != Sema::LK_Block);
if (LiteralKind == Sema::LK_None) {
llvm_unreachable("Unknown Objective-C object literal kind");
}
if (LiteralKind == Sema::LK_String)
S.Diag(Loc, diag::warn_objc_string_literal_comparison)
<< Literal->getSourceRange();
else
S.Diag(Loc, diag::warn_objc_literal_comparison)
<< LiteralKind << Literal->getSourceRange();
if (BinaryOperator::isEqualityOp(Opc) &&
hasIsEqualMethod(S, LHS.get(), RHS.get())) {
SourceLocation Start = LHS.get()->getBeginLoc();
SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
CharSourceRange OpRange =
CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
<< FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
<< FixItHint::CreateReplacement(OpRange, " isEqual:")
<< FixItHint::CreateInsertion(End, "]");
}
}
/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
ExprResult &RHS, SourceLocation Loc,
BinaryOperatorKind Opc) {
// Check that left hand side is !something.
UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
if (!UO || UO->getOpcode() != UO_LNot) return;
// Only check if the right hand side is non-bool arithmetic type.
if (RHS.get()->isKnownToHaveBooleanValue()) return;
// Make sure that the something in !something is not bool.
Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
if (SubExpr->isKnownToHaveBooleanValue()) return;
// Emit warning.
bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
<< Loc << IsBitwiseOp;
// First note suggest !(x < y)
SourceLocation FirstOpen = SubExpr->getBeginLoc();
SourceLocation FirstClose = RHS.get()->getEndLoc();
FirstClose = S.getLocForEndOfToken(FirstClose);
if (FirstClose.isInvalid())
FirstOpen = SourceLocation();
S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
<< IsBitwiseOp
<< FixItHint::CreateInsertion(FirstOpen, "(")
<< FixItHint::CreateInsertion(FirstClose, ")");
// Second note suggests (!x) < y
SourceLocation SecondOpen = LHS.get()->getBeginLoc();
SourceLocation SecondClose = LHS.get()->getEndLoc();
SecondClose = S.getLocForEndOfToken(SecondClose);
if (SecondClose.isInvalid())
SecondOpen = SourceLocation();
S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
<< FixItHint::CreateInsertion(SecondOpen, "(")
<< FixItHint::CreateInsertion(SecondClose, ")");
}
// Returns true if E refers to a non-weak array.
static bool checkForArray(const Expr *E) {
const ValueDecl *D = nullptr;
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
D = DR->getDecl();
} else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
if (Mem->isImplicitAccess())
D = Mem->getMemberDecl();
}
if (!D)
return false;
return D->getType()->isArrayType() && !D->isWeak();
}
/// Diagnose some forms of syntactically-obvious tautological comparison.
static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
Expr *LHS, Expr *RHS,
BinaryOperatorKind Opc) {
Expr *LHSStripped = LHS->IgnoreParenImpCasts();
Expr *RHSStripped = RHS->IgnoreParenImpCasts();
QualType LHSType = LHS->getType();
QualType RHSType = RHS->getType();
if (LHSType->hasFloatingRepresentation() ||
(LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
S.inTemplateInstantiation())
return;
// Comparisons between two array types are ill-formed for operator<=>, so
// we shouldn't emit any additional warnings about it.
if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
return;
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
//
// NOTE: Don't warn about comparison expressions resulting from macro
// expansion. Also don't warn about comparisons which are only self
// comparisons within a template instantiation. The warnings should catch
// obvious cases in the definition of the template anyways. The idea is to
// warn when the typed comparison operator will always evaluate to the same
// result.
// Used for indexing into %select in warn_comparison_always
enum {
AlwaysConstant,
AlwaysTrue,
AlwaysFalse,
AlwaysEqual, // std::strong_ordering::equal from operator<=>
};
// C++2a [depr.array.comp]:
// Equality and relational comparisons ([expr.eq], [expr.rel]) between two
// operands of array type are deprecated.
if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
RHSStripped->getType()->isArrayType()) {
S.Diag(Loc, diag::warn_depr_array_comparison)
<< LHS->getSourceRange() << RHS->getSourceRange()
<< LHSStripped->getType() << RHSStripped->getType();
// Carry on to produce the tautological comparison warning, if this
// expression is potentially-evaluated, we can resolve the array to a
// non-weak declaration, and so on.
}
if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
if (Expr::isSameComparisonOperand(LHS, RHS)) {
unsigned Result;
switch (Opc) {
case BO_EQ:
case BO_LE:
case BO_GE:
Result = AlwaysTrue;
break;
case BO_NE:
case BO_LT:
case BO_GT:
Result = AlwaysFalse;
break;
case BO_Cmp:
Result = AlwaysEqual;
break;
default:
Result = AlwaysConstant;
break;
}
S.DiagRuntimeBehavior(Loc, nullptr,
S.PDiag(diag::warn_comparison_always)
<< 0 /*self-comparison*/
<< Result);
} else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
// What is it always going to evaluate to?
unsigned Result;
switch (Opc) {
case BO_EQ: // e.g. array1 == array2
Result = AlwaysFalse;
break;
case BO_NE: // e.g. array1 != array2
Result = AlwaysTrue;
break;
default: // e.g. array1 <= array2
// The best we can say is 'a constant'
Result = AlwaysConstant;
break;
}
S.DiagRuntimeBehavior(Loc, nullptr,
S.PDiag(diag::warn_comparison_always)
<< 1 /*array comparison*/
<< Result);
}
}
if (isa<CastExpr>(LHSStripped))
LHSStripped = LHSStripped->IgnoreParenCasts();
if (isa<CastExpr>(RHSStripped))
RHSStripped = RHSStripped->IgnoreParenCasts();
// Warn about comparisons against a string constant (unless the other
// operand is null); the user probably wants string comparison function.
Expr *LiteralString = nullptr;
Expr *LiteralStringStripped = nullptr;
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
!RHSStripped->isNullPointerConstant(S.Context,
Expr::NPC_ValueDependentIsNull)) {
LiteralString = LHS;
LiteralStringStripped = LHSStripped;
} else if ((isa<StringLiteral>(RHSStripped) ||
isa<ObjCEncodeExpr>(RHSStripped)) &&
!LHSStripped->isNullPointerConstant(S.Context,
Expr::NPC_ValueDependentIsNull)) {
LiteralString = RHS;
LiteralStringStripped = RHSStripped;
}
if (LiteralString) {
S.DiagRuntimeBehavior(Loc, nullptr,
S.PDiag(diag::warn_stringcompare)
<< isa<ObjCEncodeExpr>(LiteralStringStripped)
<< LiteralString->getSourceRange());
}
}
static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
switch (CK) {
default: {
#ifndef NDEBUG
llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
<< "\n";
#endif
llvm_unreachable("unhandled cast kind");
}
case CK_UserDefinedConversion:
return ICK_Identity;
case CK_LValueToRValue:
return ICK_Lvalue_To_Rvalue;
case CK_ArrayToPointerDecay:
return ICK_Array_To_Pointer;
case CK_FunctionToPointerDecay:
return ICK_Function_To_Pointer;
case CK_IntegralCast:
return ICK_Integral_Conversion;
case CK_FloatingCast:
return ICK_Floating_Conversion;
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
return ICK_Floating_Integral;
case CK_IntegralComplexCast:
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralComplexToFloatingComplex:
return ICK_Complex_Conversion;
case CK_FloatingComplexToReal:
case CK_FloatingRealToComplex:
case CK_IntegralComplexToReal:
case CK_IntegralRealToComplex:
return ICK_Complex_Real;
}
}
static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
QualType FromType,
SourceLocation Loc) {
// Check for a narrowing implicit conversion.
StandardConversionSequence SCS;
SCS.setAsIdentityConversion();
SCS.setToType(0, FromType);
SCS.setToType(1, ToType);
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
APValue PreNarrowingValue;
QualType PreNarrowingType;
switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
PreNarrowingType,
/*IgnoreFloatToIntegralConversion*/ true)) {
case NK_Dependent_Narrowing:
// Implicit conversion to a narrower type, but the expression is
// value-dependent so we can't tell whether it's actually narrowing.
case NK_Not_Narrowing:
return false;
case NK_Constant_Narrowing:
// Implicit conversion to a narrower type, and the value is not a constant
// expression.
S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
<< /*Constant*/ 1
<< PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
return true;
case NK_Variable_Narrowing:
// Implicit conversion to a narrower type, and the value is not a constant
// expression.
case NK_Type_Narrowing:
S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
<< /*Constant*/ 0 << FromType << ToType;
// TODO: It's not a constant expression, but what if the user intended it
// to be? Can we produce notes to help them figure out why it isn't?
return true;
}
llvm_unreachable("unhandled case in switch");
}
static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
ExprResult &LHS,
ExprResult &RHS,
SourceLocation Loc) {
QualType LHSType = LHS.get()->getType();
QualType RHSType = RHS.get()->getType();
// Dig out the original argument type and expression before implicit casts
// were applied. These are the types/expressions we need to check the
// [expr.spaceship] requirements against.
ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
QualType LHSStrippedType = LHSStripped.get()->getType();
QualType RHSStrippedType = RHSStripped.get()->getType();
// C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
// other is not, the program is ill-formed.
if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
S.InvalidOperands(Loc, LHSStripped, RHSStripped);
return QualType();
}
// FIXME: Consider combining this with checkEnumArithmeticConversions.
int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
RHSStrippedType->isEnumeralType();
if (NumEnumArgs == 1) {
bool LHSIsEnum = LHSStrippedType->isEnumeralType();
QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
if (OtherTy->hasFloatingRepresentation()) {
S.InvalidOperands(Loc, LHSStripped, RHSStripped);
return QualType();
}
}
if (NumEnumArgs == 2) {
// C++2a [expr.spaceship]p5: If both operands have the same enumeration
// type E, the operator yields the result of converting the operands
// to the underlying type of E and applying <=> to the converted operands.
if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
S.InvalidOperands(Loc, LHS, RHS);
return QualType();
}
QualType IntType =
LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
assert(IntType->isArithmeticType());
// We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
// promote the boolean type, and all other promotable integer types, to
// avoid this.
if (IntType->isPromotableIntegerType())
IntType = S.Context.getPromotedIntegerType(IntType);
LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
LHSType = RHSType = IntType;
}
// C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
// usual arithmetic conversions are applied to the operands.
QualType Type =
S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
if (Type.isNull())
return S.InvalidOperands(Loc, LHS, RHS);
Optional<ComparisonCategoryType> CCT =
getComparisonCategoryForBuiltinCmp(Type);
if (!CCT)
return S.InvalidOperands(Loc, LHS, RHS);
bool HasNarrowing = checkThreeWayNarrowingConversion(
S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
RHS.get()->getBeginLoc());
if (HasNarrowing)
return QualType();
assert(!Type.isNull() && "composite type for <=> has not been set");
return S.CheckComparisonCategoryType(
*CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
}
static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc) {
if (Opc == BO_Cmp)
return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
// C99 6.5.8p3 / C99 6.5.9p4
QualType Type =
S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
if (Type.isNull())
return S.InvalidOperands(Loc, LHS, RHS);
assert(Type->isArithmeticType() || Type->isEnumeralType());
if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
return S.InvalidOperands(Loc, LHS, RHS);
// Check for comparisons of floating point operands using != and ==.
if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
// The result of comparisons is 'bool' in C++, 'int' in C.
return S.Context.getLogicalOperationType();
}
void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
if (!NullE.get()->getType()->isAnyPointerType())
return;
int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
if (!E.get()->getType()->isAnyPointerType() &&
E.get()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull) ==
Expr::NPCK_ZeroExpression) {
if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
if (CL->getValue() == 0)
Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
<< NullValue
<< FixItHint::CreateReplacement(E.get()->getExprLoc(),
NullValue ? "NULL" : "(void *)0");
} else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
if (T == Context.CharTy)
Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
<< NullValue
<< FixItHint::CreateReplacement(E.get()->getExprLoc(),
NullValue ? "NULL" : "(void *)0");
}
}
}
// C99 6.5.8, C++ [expr.rel]
QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc) {
bool IsRelational = BinaryOperator::isRelationalOp(Opc);
bool IsThreeWay = Opc == BO_Cmp;
bool IsOrdered = IsRelational || IsThreeWay;
auto IsAnyPointerType = [](ExprResult E) {
QualType Ty = E.get()->getType();
return Ty->isPointerType() || Ty->isMemberPointerType();
};
// C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
// type, array-to-pointer, ..., conversions are performed on both operands to
// bring them to their composite type.
// Otherwise, all comparisons expect an rvalue, so convert to rvalue before
// any type-related checks.
if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
if (LHS.isInvalid())
return QualType();
RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
if (RHS.isInvalid())
return QualType();
} else {
LHS = DefaultLvalueConversion(LHS.get());
if (LHS.isInvalid())
return QualType();
RHS = DefaultLvalueConversion(RHS.get());
if (RHS.isInvalid())
return QualType();
}
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
CheckPtrComparisonWithNullChar(LHS, RHS);
CheckPtrComparisonWithNullChar(RHS, LHS);
}
// Handle vector comparisons separately.
if (LHS.get()->getType()->isVectorType() ||
RHS.get()->getType()->isVectorType())
return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
QualType LHSType = LHS.get()->getType();
QualType RHSType = RHS.get()->getType();
if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
(RHSType->isArithmeticType() || RHSType->isEnumeralType()))
return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
const Expr::NullPointerConstantKind LHSNullKind =
LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
const Expr::NullPointerConstantKind RHSNullKind =
RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
auto computeResultTy = [&]() {
if (Opc != BO_Cmp)
return Context.getLogicalOperationType();
assert(getLangOpts().CPlusPlus);
assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
QualType CompositeTy = LHS.get()->getType();
assert(!CompositeTy->isReferenceType());
Optional<ComparisonCategoryType> CCT =
getComparisonCategoryForBuiltinCmp(CompositeTy);
if (!CCT)
return InvalidOperands(Loc, LHS, RHS);
if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
// P0946R0: Comparisons between a null pointer constant and an object
// pointer result in std::strong_equality, which is ill-formed under
// P1959R0.
Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
<< (LHSIsNull ? LHS.get()->getSourceRange()
: RHS.get()->getSourceRange());
return QualType();
}
return CheckComparisonCategoryType(
*CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
};
if (!IsOrdered && LHSIsNull != RHSIsNull) {
bool IsEquality = Opc == BO_EQ;
if (RHSIsNull)
DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
RHS.get()->getSourceRange());
else
DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
LHS.get()->getSourceRange());
}
if ((LHSType->isIntegerType() && !LHSIsNull) ||
(RHSType->isIntegerType() && !RHSIsNull)) {
// Skip normal pointer conversion checks in this case; we have better
// diagnostics for this below.
} else if (getLangOpts().CPlusPlus) {
// Equality comparison of a function pointer to a void pointer is invalid,
// but we allow it as an extension.
// FIXME: If we really want to allow this, should it be part of composite
// pointer type computation so it works in conditionals too?
if (!IsOrdered &&
((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
(RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
// This is a gcc extension compatibility comparison.
// In a SFINAE context, we treat this as a hard error to maintain
// conformance with the C++ standard.
diagnoseFunctionPointerToVoidComparison(
*this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
if (isSFINAEContext())
return QualType();
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
return computeResultTy();
}
// C++ [expr.eq]p2:
// If at least one operand is a pointer [...] bring them to their
// composite pointer type.
// C++ [expr.spaceship]p6
// If at least one of the operands is of pointer type, [...] bring them
// to their composite pointer type.
// C++ [expr.rel]p2:
// If both operands are pointers, [...] bring them to their composite
// pointer type.
// For <=>, the only valid non-pointer types are arrays and functions, and
// we already decayed those, so this is really the same as the relational
// comparison rule.
if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
(IsOrdered ? 2 : 1) &&
(!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
RHSType->isObjCObjectPointerType()))) {
if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
return QualType();
return computeResultTy();
}
} else if (LHSType->isPointerType() &&
RHSType->isPointerType()) { // C99 6.5.8p2
// All of the following pointer-related warnings are GCC extensions, except
// when handling null pointer constants.
QualType LCanPointeeTy =
LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
QualType RCanPointeeTy =
RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
// C99 6.5.9p2 and C99 6.5.8p2
if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
RCanPointeeTy.getUnqualifiedType())) {
if (IsRelational) {
// Pointers both need to point to complete or incomplete types
if ((LCanPointeeTy->isIncompleteType() !=
RCanPointeeTy->isIncompleteType()) &&
!getLangOpts().C11) {
Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
<< LHSType << RHSType << LCanPointeeTy->isIncompleteType()
<< RCanPointeeTy->isIncompleteType();
}
if (LCanPointeeTy->isFunctionType()) {
// Valid unless a relational comparison of function pointers
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
<< LHSType << RHSType << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
}
}
} else if (!IsRelational &&
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
// Valid unless comparison between non-null pointer and function pointer
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
&& !LHSIsNull && !RHSIsNull)
diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
/*isError*/false);
} else {
// Invalid
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
}
if (LCanPointeeTy != RCanPointeeTy) {
// Treat NULL constant as a special case in OpenCL.
if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
Diag(Loc,
diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
<< LHSType << RHSType << 0 /* comparison */
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
}
}
LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
: CK_BitCast;
if (LHSIsNull && !RHSIsNull)
LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
else
RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
}
return computeResultTy();
}
if (getLangOpts().CPlusPlus) {
// C++ [expr.eq]p4:
// Two operands of type std::nullptr_t or one operand of type
// std::nullptr_t and the other a null pointer constant compare equal.
if (!IsOrdered && LHSIsNull && RHSIsNull) {
if (LHSType->isNullPtrType()) {
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
return computeResultTy();
}
if (RHSType->isNullPtrType()) {
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
return computeResultTy();
}
}
// Comparison of Objective-C pointers and block pointers against nullptr_t.
// These aren't covered by the composite pointer type rules.
if (!IsOrdered && RHSType->isNullPtrType() &&
(LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
return computeResultTy();
}
if (!IsOrdered && LHSType->isNullPtrType() &&
(RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
return computeResultTy();
}
if (IsRelational &&
((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
(RHSType->isNullPtrType() && LHSType->isPointerType()))) {
// HACK: Relational comparison of nullptr_t against a pointer type is
// invalid per DR583, but we allow it within std::less<> and friends,
// since otherwise common uses of it break.
// FIXME: Consider removing this hack once LWG fixes std::less<> and
// friends to have std::nullptr_t overload candidates.
DeclContext *DC = CurContext;
if (isa<FunctionDecl>(DC))
DC = DC->getParent();
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
if (CTSD->isInStdNamespace() &&
llvm::StringSwitch<bool>(CTSD->getName())
.Cases("less", "less_equal", "greater", "greater_equal", true)
.Default(false)) {
if (RHSType->isNullPtrType())
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
else
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
return computeResultTy();
}
}
}
// C++ [expr.eq]p2:
// If at least one operand is a pointer to member, [...] bring them to
// their composite pointer type.
if (!IsOrdered &&
(LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
return QualType();
else
return computeResultTy();
}
}
// Handle block pointer types.
if (!IsOrdered && LHSType->isBlockPointerType() &&
RHSType->isBlockPointerType()) {
QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
if (!LHSIsNull && !RHSIsNull &&
!Context.typesAreCompatible(lpointee, rpointee)) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< LHSType << RHSType << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
}
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
return computeResultTy();
}
// Allow block pointers to be compared with null pointer constants.
if (!IsOrdered
&& ((LHSType->isBlockPointerType() && RHSType->isPointerType())
|| (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
if (!LHSIsNull && !RHSIsNull) {
if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
->getPointeeType()->isVoidType())
|| (LHSType->isPointerType() && LHSType->castAs<PointerType>()
->getPointeeType()->isVoidType())))
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< LHSType << RHSType << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
}
if (LHSIsNull && !RHSIsNull)
LHS = ImpCastExprToType(LHS.get(), RHSType,
RHSType->isPointerType() ? CK_BitCast
: CK_AnyPointerToBlockPointerCast);
else
RHS = ImpCastExprToType(RHS.get(), LHSType,
LHSType->isPointerType() ? CK_BitCast
: CK_AnyPointerToBlockPointerCast);
return computeResultTy();
}
if (LHSType->isObjCObjectPointerType() ||
RHSType->isObjCObjectPointerType()) {
const PointerType *LPT = LHSType->getAs<PointerType>();
const PointerType *RPT = RHSType->getAs<PointerType>();
if (LPT || RPT) {
bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
if (!LPtrToVoid && !RPtrToVoid &&
!Context.typesAreCompatible(LHSType, RHSType)) {
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
/*isError*/false);
}
// FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
// the RHS, but we have test coverage for this behavior.
// FIXME: Consider using convertPointersToCompositeType in C++.
if (LHSIsNull && !RHSIsNull) {
Expr *E = LHS.get();
if (getLangOpts().ObjCAutoRefCount)
CheckObjCConversion(SourceRange(), RHSType, E,
CCK_ImplicitConversion);
LHS = ImpCastExprToType(E, RHSType,
RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
}
else {
Expr *E = RHS.get();
if (getLangOpts().ObjCAutoRefCount)
CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
/*Diagnose=*/true,
/*DiagnoseCFAudited=*/false, Opc);
RHS = ImpCastExprToType(E, LHSType,
LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
}
return computeResultTy();
}
if (LHSType->isObjCObjectPointerType() &&
RHSType->isObjCObjectPointerType()) {
if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
/*isError*/false);
if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
if (LHSIsNull && !RHSIsNull)
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
else
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
return computeResultTy();
}
if (!IsOrdered && LHSType->isBlockPointerType() &&
RHSType->isBlockCompatibleObjCPointerType(Context)) {
LHS = ImpCastExprToType(LHS.get(), RHSType,
CK_BlockPointerToObjCPointerCast);
return computeResultTy();
} else if (!IsOrdered &&
LHSType->isBlockCompatibleObjCPointerType(Context) &&
RHSType->isBlockPointerType()) {
RHS = ImpCastExprToType(RHS.get(), LHSType,
CK_BlockPointerToObjCPointerCast);
return computeResultTy();
}
}
if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
(LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
unsigned DiagID = 0;
bool isError = false;
if (LangOpts.DebuggerSupport) {
// Under a debugger, allow the comparison of pointers to integers,
// since users tend to want to compare addresses.
} else if ((LHSIsNull && LHSType->isIntegerType()) ||
(RHSIsNull && RHSType->isIntegerType())) {
if (IsOrdered) {
isError = getLangOpts().CPlusPlus;
DiagID =
isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
: diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
}
} else if (getLangOpts().CPlusPlus) {
DiagID = diag::err_typecheck_comparison_of_pointer_integer;
isError = true;
} else if (IsOrdered)
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
else
DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
if (DiagID) {
Diag(Loc, DiagID)
<< LHSType << RHSType << LHS.get()->getSourceRange()
<< RHS.get()->getSourceRange();
if (isError)
return QualType();
}
if (LHSType->isIntegerType())
LHS = ImpCastExprToType(LHS.get(), RHSType,
LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
else
RHS = ImpCastExprToType(RHS.get(), LHSType,
RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
return computeResultTy();
}
// Handle block pointers.
if (!IsOrdered && RHSIsNull
&& LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
return computeResultTy();
}
if (!IsOrdered && LHSIsNull
&& LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
return computeResultTy();
}
if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
return computeResultTy();
}
if (LHSType->isQueueT() && RHSType->isQueueT()) {
return computeResultTy();
}
if (LHSIsNull && RHSType->isQueueT()) {
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
return computeResultTy();
}
if (LHSType->isQueueT() && RHSIsNull) {
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
return computeResultTy();
}
}
return InvalidOperands(Loc, LHS, RHS);
}
// Return a signed ext_vector_type that is of identical size and number of
// elements. For floating point vectors, return an integer type of identical
// size and number of elements. In the non ext_vector_type case, search from
// the largest type to the smallest type to avoid cases where long long == long,
// where long gets picked over long long.
QualType Sema::GetSignedVectorType(QualType V) {
const VectorType *VTy = V->castAs<VectorType>();
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
if (isa<ExtVectorType>(VTy)) {
if (TypeSize == Context.getTypeSize(Context.CharTy))
return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
else if (TypeSize == Context.getTypeSize(Context.ShortTy))
return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
else if (TypeSize == Context.getTypeSize(Context.IntTy))
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
else if (TypeSize == Context.getTypeSize(Context.LongTy))
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
"Unhandled vector element size in vector compare");
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
}
if (TypeSize == Context.getTypeSize(Context.LongLongTy))
return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
VectorType::GenericVector);
else if (TypeSize == Context.getTypeSize(Context.LongTy))
return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
VectorType::GenericVector);
else if (TypeSize == Context.getTypeSize(Context.IntTy))
return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
VectorType::GenericVector);
else if (TypeSize == Context.getTypeSize(Context.ShortTy))
return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
VectorType::GenericVector);
assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
"Unhandled vector element size in vector compare");
return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
VectorType::GenericVector);
}
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types. Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc) {
if (Opc == BO_Cmp) {
Diag(Loc, diag::err_three_way_vector_comparison);
return QualType();
}
// Check to make sure we're operating on vectors of the same type and width,
// Allowing one side to be a scalar of element type.
QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
/*AllowBothBool*/true,
/*AllowBoolConversions*/getLangOpts().ZVector);
if (vType.isNull())
return vType;
QualType LHSType = LHS.get()->getType();
// If AltiVec, the comparison results in a numeric type, i.e.
// bool for C++, int for C
if (getLangOpts().AltiVec &&
vType->castAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
return Context.getLogicalOperationType();
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
// Check for comparisons of floating point operands using != and ==.
if (BinaryOperator::isEqualityOp(Opc) &&
LHSType->hasFloatingRepresentation()) {
assert(RHS.get()->getType()->hasFloatingRepresentation());
CheckFloatComparison(Loc, LHS.get(), RHS.get());
}
// Return a signed type for the vector.
return GetSignedVectorType(vType);
}
static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
const ExprResult &XorRHS,
const SourceLocation Loc) {
// Do not diagnose macros.
if (Loc.isMacroID())
return;
bool Negative = false;
bool ExplicitPlus = false;
const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
if (!LHSInt)
return;
if (!RHSInt) {
// Check negative literals.
if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
UnaryOperatorKind Opc = UO->getOpcode();
if (Opc != UO_Minus && Opc != UO_Plus)
return;
RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
if (!RHSInt)
return;
Negative = (Opc == UO_Minus);
ExplicitPlus = !Negative;
} else {
return;
}
}
const llvm::APInt &LeftSideValue = LHSInt->getValue();
llvm::APInt RightSideValue = RHSInt->getValue();
if (LeftSideValue != 2 && LeftSideValue != 10)
return;
if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
return;
CharSourceRange ExprRange = CharSourceRange::getCharRange(
LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
llvm::StringRef ExprStr =
Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
CharSourceRange XorRange =
CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
llvm::StringRef XorStr =
Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
// Do not diagnose if xor keyword/macro is used.
if (XorStr == "xor")
return;
std::string LHSStr = std::string(Lexer::getSourceText(
CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
S.getSourceManager(), S.getLangOpts()));
std::string RHSStr = std::string(Lexer::getSourceText(
CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
S.getSourceManager(), S.getLangOpts()));
if (Negative) {
RightSideValue = -RightSideValue;
RHSStr = "-" + RHSStr;
} else if (ExplicitPlus) {
RHSStr = "+" + RHSStr;
}
StringRef LHSStrRef = LHSStr;
StringRef RHSStrRef = RHSStr;
// Do not diagnose literals with digit separators, binary, hexadecimal, octal
// literals.
if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
(LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
(RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
LHSStrRef.find('\'') != StringRef::npos ||
RHSStrRef.find('\'') != StringRef::npos)
return;
bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
int64_t RightSideIntValue = RightSideValue.getSExtValue();
if (LeftSideValue == 2 && RightSideIntValue >= 0) {
std::string SuggestedExpr = "1 << " + RHSStr;
bool Overflow = false;
llvm::APInt One = (LeftSideValue - 1);
llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
if (Overflow) {
if (RightSideIntValue < 64)
S.Diag(Loc, diag::warn_xor_used_as_pow_base)
<< ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr)
<< FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
else if (RightSideIntValue == 64)
S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << XorValue.toString(10, true);
else
return;
} else {
S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
<< ExprStr << XorValue.toString(10, true) << SuggestedExpr
<< PowValue.toString(10, true)
<< FixItHint::CreateReplacement(
ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
}
S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor;
} else if (LeftSideValue == 10) {
std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
S.Diag(Loc, diag::warn_xor_used_as_pow_base)
<< ExprStr << XorValue.toString(10, true) << SuggestedValue
<< FixItHint::CreateReplacement(ExprRange, SuggestedValue);
S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor;
}
}
QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc) {
// Ensure that either both operands are of the same vector type, or
// one operand is of a vector type and the other is of its element type.
QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
/*AllowBothBool*/true,
/*AllowBoolConversions*/false);
if (vType.isNull())
return InvalidOperands(Loc, LHS, RHS);
if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
!getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
return InvalidOperands(Loc, LHS, RHS);
// FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
// usage of the logical operators && and || with vectors in C. This
// check could be notionally dropped.
if (!getLangOpts().CPlusPlus &&
!(isa<ExtVectorType>(vType->getAs<VectorType>())))
return InvalidLogicalVectorOperands(Loc, LHS, RHS);
return GetSignedVectorType(LHS.get()->getType());
}
QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
bool IsCompAssign) {
if (!IsCompAssign) {
LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
if (LHS.isInvalid())
return QualType();
}
RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
if (RHS.isInvalid())
return QualType();
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType LHSType = LHS.get()->getType().getUnqualifiedType();
QualType RHSType = RHS.get()->getType().getUnqualifiedType();
const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
if (Context.hasSameType(LHSType, RHSType))
return LHSType;
// Type conversion may change LHS/RHS. Keep copies to the original results, in
// case we have to return InvalidOperands.
ExprResult OriginalLHS = LHS;
ExprResult OriginalRHS = RHS;
if (LHSMatType && !RHSMatType) {
RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
if (!RHS.isInvalid())
return LHSType;
return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
}
if (!LHSMatType && RHSMatType) {
LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
if (!LHS.isInvalid())
return RHSType;
return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
}
return InvalidOperands(Loc, LHS, RHS);
}
QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
bool IsCompAssign) {
if (!IsCompAssign) {
LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
if (LHS.isInvalid())
return QualType();
}
RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
if (RHS.isInvalid())
return QualType();
auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
if (LHSMatType && RHSMatType) {
if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
return InvalidOperands(Loc, LHS, RHS);
if (!Context.hasSameType(LHSMatType->getElementType(),
RHSMatType->getElementType()))
return InvalidOperands(Loc, LHS, RHS);
return Context.getConstantMatrixType(LHSMatType->getElementType(),
LHSMatType->getNumRows(),
RHSMatType->getNumColumns());
}
return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
}
inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc) {
checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
bool IsCompAssign =
Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
if (LHS.get()->getType()->isVectorType() ||
RHS.get()->getType()->isVectorType()) {
if (LHS.get()->getType()->hasIntegerRepresentation() &&
RHS.get()->getType()->hasIntegerRepresentation())
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
/*AllowBothBool*/true,
/*AllowBoolConversions*/getLangOpts().ZVector);
return InvalidOperands(Loc, LHS, RHS);
}
if (Opc == BO_And)
diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
if (LHS.get()->getType()->hasFloatingRepresentation() ||
RHS.get()->getType()->hasFloatingRepresentation())
return InvalidOperands(Loc, LHS, RHS);
ExprResult LHSResult = LHS, RHSResult = RHS;
QualType compType = UsualArithmeticConversions(
LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
if (LHSResult.isInvalid() || RHSResult.isInvalid())
return QualType();
LHS = LHSResult.get();
RHS = RHSResult.get();
if (Opc == BO_Xor)
diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
return compType;
return InvalidOperands(Loc, LHS, RHS);
}
// C99 6.5.[13,14]
inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc,
BinaryOperatorKind Opc) {
// Check vector operands differently.
if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
return CheckVectorLogicalOperands(LHS, RHS, Loc);
bool EnumConstantInBoolContext = false;
for (const ExprResult &HS : {LHS, RHS}) {
if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
EnumConstantInBoolContext = true;
}
}
if (EnumConstantInBoolContext)
Diag(Loc, diag::warn_enum_constant_in_bool_context);
// Diagnose cases where the user write a logical and/or but probably meant a
// bitwise one. We do this when the LHS is a non-bool integer and the RHS
// is a constant.
if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
!LHS.get()->getType()->isBooleanType() &&
RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
// Don't warn in macros or template instantiations.
!Loc.isMacroID() && !inTemplateInstantiation()) {
// If the RHS can be constant folded, and if it constant folds to something
// that isn't 0 or 1 (which indicate a potential logical operation that
// happened to fold to true/false) then warn.
// Parens on the RHS are ignored.
Expr::EvalResult EVResult;
if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
llvm::APSInt Result = EVResult.Val.getInt();
if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
!RHS.get()->getExprLoc().isMacroID()) ||
(Result != 0 && Result != 1)) {
Diag(Loc, diag::warn_logical_instead_of_bitwise)
<< RHS.get()->getSourceRange()
<< (Opc == BO_LAnd ? "&&" : "||");
// Suggest replacing the logical operator with the bitwise version
Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
<< (Opc == BO_LAnd ? "&" : "|")
<< FixItHint::CreateReplacement(SourceRange(
Loc, getLocForEndOfToken(Loc)),
Opc == BO_LAnd ? "&" : "|");
if (Opc == BO_LAnd)
// Suggest replacing "Foo() && kNonZero" with "Foo()"
Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
<< FixItHint::CreateRemoval(
SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
RHS.get()->getEndLoc()));
}
}
}
if (!Context.getLangOpts().CPlusPlus) {
// OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
// not operate on the built-in scalar and vector float types.
if (Context.getLangOpts().OpenCL &&
Context.getLangOpts().OpenCLVersion < 120) {
if (LHS.get()->getType()->isFloatingType() ||
RHS.get()->getType()->isFloatingType())
return InvalidOperands(Loc, LHS, RHS);
}
LHS = UsualUnaryConversions(LHS.get());
if (LHS.isInvalid())
return QualType();
RHS = UsualUnaryConversions(RHS.get());
if (RHS.isInvalid())
return QualType();
if (!LHS.get()->getType()->isScalarType() ||
!RHS.get()->getType()->isScalarType())
return InvalidOperands(Loc, LHS, RHS);
return Context.IntTy;
}
// The following is safe because we only use this method for
// non-overloadable operands.
// C++ [expr.log.and]p1
// C++ [expr.log.or]p1
// The operands are both contextually converted to type bool.
ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
if (LHSRes.isInvalid())
return InvalidOperands(Loc, LHS, RHS);
LHS = LHSRes;
ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
if (RHSRes.isInvalid())
return InvalidOperands(Loc, LHS, RHS);
RHS = RHSRes;
// C++ [expr.log.and]p2
// C++ [expr.log.or]p2
// The result is a bool.
return Context.BoolTy;
}
static bool IsReadonlyMessage(Expr *E, Sema &S) {
const MemberExpr *ME = dyn_cast<MemberExpr>(E);
if (!ME) return false;
if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
if (!Base) return false;
return Base->getMethodDecl() != nullptr;
}
/// Is the given expression (which must be 'const') a reference to a
/// variable which was originally non-const, but which has become
/// 'const' due to being captured within a block?
enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
assert(E->isLValue() && E->getType().isConstQualified());
E = E->IgnoreParens();
// Must be a reference to a declaration from an enclosing scope.
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE) return NCCK_None;
if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
// The declaration must be a variable which is not declared 'const'.
VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
if (!var) return NCCK_None;
if (var->getType().isConstQualified()) return NCCK_None;
assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
// Decide whether the first capture was for a block or a lambda.
DeclContext *DC = S.CurContext, *Prev = nullptr;
// Decide whether the first capture was for a block or a lambda.
while (DC) {
// For init-capture, it is possible that the variable belongs to the
// template pattern of the current context.
if (auto *FD = dyn_cast<FunctionDecl>(DC))
if (var->isInitCapture() &&
FD->getTemplateInstantiationPattern() == var->getDeclContext())
break;
if (DC == var->getDeclContext())
break;
Prev = DC;
DC = DC->getParent();
}
// Unless we have an init-capture, we've gone one step too far.
if (!var->isInitCapture())
DC = Prev;
return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
}
static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
Ty = Ty.getNonReferenceType();
if (IsDereference && Ty->isPointerType())
Ty = Ty->getPointeeType();
return !Ty.isConstQualified();
}
// Update err_typecheck_assign_const and note_typecheck_assign_const
// when this enum is changed.
enum {
ConstFunction,
ConstVariable,
ConstMember,
ConstMethod,
NestedConstMember,
ConstUnknown, // Keep as last element
};
/// Emit the "read-only variable not assignable" error and print notes to give
/// more information about why the variable is not assignable, such as pointing
/// to the declaration of a const variable, showing that a method is const, or
/// that the function is returning a const reference.
static void DiagnoseConstAssignment(Sema &S, const Expr *E,
SourceLocation Loc) {
SourceRange ExprRange = E->getSourceRange();
// Only emit one error on the first const found. All other consts will emit
// a note to the error.
bool DiagnosticEmitted = false;
// Track if the current expression is the result of a dereference, and if the
// next checked expression is the result of a dereference.
bool IsDereference = false;
bool NextIsDereference = false;
// Loop to process MemberExpr chains.
while (true) {
IsDereference = NextIsDereference;
E = E->IgnoreImplicit()->IgnoreParenImpCasts();
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
NextIsDereference = ME->isArrow();
const ValueDecl *VD = ME->getMemberDecl();
if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
// Mutable fields can be modified even if the class is const.
if (Field->isMutable()) {
assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
break;
}
if (!IsTypeModifiable(Field->getType(), IsDereference)) {
if (!DiagnosticEmitted) {
S.Diag(Loc, diag::err_typecheck_assign_const)
<< ExprRange << ConstMember << false /*static*/ << Field
<< Field->getType();
DiagnosticEmitted = true;
}
S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
<< ConstMember << false /*static*/ << Field << Field->getType()
<< Field->getSourceRange();
}
E = ME->getBase();
continue;
} else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
if (VDecl->getType().isConstQualified()) {
if (!DiagnosticEmitted) {
S.Diag(Loc, diag::err_typecheck_assign_const)
<< ExprRange << ConstMember << true /*static*/ << VDecl
<< VDecl->getType();
DiagnosticEmitted = true;
}
S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
<< ConstMember << true /*static*/ << VDecl << VDecl->getType()
<< VDecl->getSourceRange();
}
// Static fields do not inherit constness from parents.
break;
}
break; // End MemberExpr
} else if (const ArraySubscriptExpr *ASE =
dyn_cast<ArraySubscriptExpr>(E)) {
E = ASE->getBase()->IgnoreParenImpCasts();
continue;
} else if (const ExtVectorElementExpr *EVE =
dyn_cast<ExtVectorElementExpr>(E)) {
E = EVE->getBase()->IgnoreParenImpCasts();
continue;
}
break;
}
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
// Function calls
const FunctionDecl *FD = CE->getDirectCallee();
if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
if (!DiagnosticEmitted) {
S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
<< ConstFunction << FD;
DiagnosticEmitted = true;
}
S.Diag(FD->getReturnTypeSourceRange().getBegin(),
diag::note_typecheck_assign_const)
<< ConstFunction << FD << FD->getReturnType()
<< FD->getReturnTypeSourceRange();
}
} else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
// Point to variable declaration.
if (const ValueDecl *VD = DRE->getDecl()) {
if (!IsTypeModifiable(VD->getType(), IsDereference)) {
if (!DiagnosticEmitted) {
S.Diag(Loc, diag::err_typecheck_assign_const)
<< ExprRange << ConstVariable << VD << VD->getType();
DiagnosticEmitted = true;
}
S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
<< ConstVariable << VD << VD->getType() << VD->getSourceRange();
}
}
} else if (isa<CXXThisExpr>(E)) {
if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
if (MD->isConst()) {
if (!DiagnosticEmitted) {
S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
<< ConstMethod << MD;
DiagnosticEmitted = true;
}
S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
<< ConstMethod << MD << MD->getSourceRange();
}
}
}
}
if (DiagnosticEmitted)
return;
// Can't determine a more specific message, so display the generic error.
S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
}
enum OriginalExprKind {
OEK_Variable,
OEK_Member,
OEK_LValue
};
static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
const RecordType *Ty,
SourceLocation Loc, SourceRange Range,
OriginalExprKind OEK,
bool &DiagnosticEmitted) {
std::vector<const RecordType *> RecordTypeList;
RecordTypeList.push_back(Ty);
unsigned NextToCheckIndex = 0;
// We walk the record hierarchy breadth-first to ensure that we print
// diagnostics in field nesting order.
while (RecordTypeList.size() > NextToCheckIndex) {
bool IsNested = NextToCheckIndex > 0;
for (const FieldDecl *Field :
RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
// First, check every field for constness.
QualType FieldTy = Field->getType();
if (FieldTy.isConstQualified()) {
if (!DiagnosticEmitted) {
S.Diag(Loc, diag::err_typecheck_assign_const)
<< Range << NestedConstMember << OEK << VD
<< IsNested << Field;
DiagnosticEmitted = true;
}
S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
<< NestedConstMember << IsNested << Field
<< FieldTy << Field->getSourceRange();
}
// Then we append it to the list to check next in order.
FieldTy = FieldTy.getCanonicalType();
if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
RecordTypeList.push_back(FieldRecTy);
}
}
++NextToCheckIndex;
}
}
/// Emit an error for the case where a record we are trying to assign to has a
/// const-qualified field somewhere in its hierarchy.
static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
SourceLocation Loc) {
QualType Ty = E->getType();
assert(Ty->isRecordType() && "lvalue was not record?");
SourceRange Range = E->getSourceRange();
const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
bool DiagEmitted = false;
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
Range, OEK_Member, DiagEmitted);
else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
Range, OEK_Variable, DiagEmitted);
else
DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
Range, OEK_LValue, DiagEmitted);
if (!DiagEmitted)
DiagnoseConstAssignment(S, E, Loc);
}
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
/// emit an error and return true. If so, return false.
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
S.CheckShadowingDeclModification(E, Loc);
SourceLocation OrigLoc = Loc;
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
&Loc);
if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
IsLV = Expr::MLV_InvalidMessageExpression;
if (IsLV == Expr::MLV_Valid)
return false;
unsigned DiagID = 0;
bool NeedType = false;
switch (IsLV) { // C99 6.5.16p2
case Expr::MLV_ConstQualified:
// Use a specialized diagnostic when we're assigning to an object
// from an enclosing function or block.
if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
if (NCCK == NCCK_Block)
DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
else
DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
break;
}
// In ARC, use some specialized diagnostics for occasions where we
// infer 'const'. These are always pseudo-strong variables.
if (S.getLangOpts().ObjCAutoRefCount) {
DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
if (declRef && isa<VarDecl>(declRef->getDecl())) {
VarDecl *var = cast<VarDecl>(declRef->getDecl());
// Use the normal diagnostic if it's pseudo-__strong but the
// user actually wrote 'const'.
if (var->isARCPseudoStrong() &&
(!var->getTypeSourceInfo() ||
!var->getTypeSourceInfo()->getType().isConstQualified())) {
// There are three pseudo-strong cases:
// - self
ObjCMethodDecl *method = S.getCurMethodDecl();
if (method && var == method->getSelfDecl()) {
DiagID = method->isClassMethod()
? diag::err_typecheck_arc_assign_self_class_method
: diag::err_typecheck_arc_assign_self;
// - Objective-C externally_retained attribute.
} else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
isa<ParmVarDecl>(var)) {
DiagID = diag::err_typecheck_arc_assign_externally_retained;
// - fast enumeration variables
} else {
DiagID = diag::err_typecheck_arr_assign_enumeration;
}
SourceRange Assign;
if (Loc != OrigLoc)
Assign = SourceRange(OrigLoc, OrigLoc);
S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
// We need to preserve the AST regardless, so migration tool
// can do its job.
return false;
}
}
}
// If none of the special cases above are triggered, then this is a
// simple const assignment.
if (DiagID == 0) {
DiagnoseConstAssignment(S, E, Loc);
return true;
}
break;
case Expr::MLV_ConstAddrSpace:
DiagnoseConstAssignment(S, E, Loc);
return true;
case Expr::MLV_ConstQualifiedField:
DiagnoseRecursiveConstFields(S, E, Loc);
return true;
case Expr::MLV_ArrayType:
case Expr::MLV_ArrayTemporary:
DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_NotObjectType:
DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_LValueCast:
DiagID = diag::err_typecheck_lvalue_casts_not_supported;
break;
case Expr::MLV_Valid:
llvm_unreachable("did not take early return for MLV_Valid");
case Expr::MLV_InvalidExpression:
case Expr::MLV_MemberFunction:
case Expr::MLV_ClassTemporary:
DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
break;
case Expr::MLV_IncompleteType:
case Expr::MLV_IncompleteVoidType:
return S.RequireCompleteType(Loc, E->getType(),
diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
case Expr::MLV_DuplicateVectorComponents:
DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
break;
case Expr::MLV_NoSetterProperty:
llvm_unreachable("readonly properties should be processed differently");
case Expr::MLV_InvalidMessageExpression:
DiagID = diag::err_readonly_message_assignment;
break;
case Expr::MLV_SubObjCPropertySetting:
DiagID = diag::err_no_subobject_property_setting;
break;
}
SourceRange Assign;
if (Loc != OrigLoc)
Assign = SourceRange(OrigLoc, OrigLoc);
if (NeedType)
S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
else
S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
return true;
}
static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
SourceLocation Loc,
Sema &Sema) {
if (Sema.inTemplateInstantiation())
return;
if (Sema.isUnevaluatedContext())
return;
if (Loc.isInvalid() || Loc.isMacroID())
return;
if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
return;
// C / C++ fields
MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
if (ML && MR) {
if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
return;
const ValueDecl *LHSDecl =
cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
const ValueDecl *RHSDecl =
cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
if (LHSDecl != RHSDecl)
return;
if (LHSDecl->getType().isVolatileQualified())
return;
if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
if (RefTy->getPointeeType().isVolatileQualified())
return;
Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
}
// Objective-C instance variables
ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
if (OL && OR && OL->getDecl() == OR->getDecl()) {
DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
if (RL && RR && RL->getDecl() == RR->getDecl())
Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
}
}
// C99 6.5.16.1
QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
SourceLocation Loc,
QualType CompoundType) {
assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
// Verify that LHS is a modifiable lvalue, and emit error if not.
if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
return QualType();
QualType LHSType = LHSExpr->getType();
QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
CompoundType;
// OpenCL v1.2 s6.1.1.1 p2:
// The half data type can only be used to declare a pointer to a buffer that
// contains half values
if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
LHSType->isHalfType()) {
Diag(Loc, diag::err_opencl_half_load_store) << 1
<< LHSType.getUnqualifiedType();
return QualType();
}
AssignConvertType ConvTy;
if (CompoundType.isNull()) {
Expr *RHSCheck = RHS.get();
CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
QualType LHSTy(LHSType);
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
if (RHS.isInvalid())
return QualType();
// Special case of NSObject attributes on c-style pointer types.
if (ConvTy == IncompatiblePointer &&
((Context.isObjCNSObjectType(LHSType) &&
RHSType->isObjCObjectPointerType()) ||
(Context.isObjCNSObjectType(RHSType) &&
LHSType->isObjCObjectPointerType())))
ConvTy = Compatible;
if (ConvTy == Compatible &&
LHSType->isObjCObjectType())
Diag(Loc, diag::err_objc_object_assignment)
<< LHSType;
// If the RHS is a unary plus or minus, check to see if they = and + are
// right next to each other. If so, the user may have typo'd "x =+ 4"
// instead of "x += 4".
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
RHSCheck = ICE->getSubExpr();
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
// Only if the two operators are exactly adjacent.
Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
// And there is a space or other character before the subexpr of the
// unary +/-. We don't want to warn on "x=-1".
Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
UO->getSubExpr()->getBeginLoc().isFileID()) {
Diag(Loc, diag::warn_not_compound_assign)
<< (UO->getOpcode() == UO_Plus ? "+" : "-")
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
}
}
if (ConvTy == Compatible) {
if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
// Warn about retain cycles where a block captures the LHS, but
// not if the LHS is a simple variable into which the block is
// being stored...unless that variable can be captured by reference!
const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
checkRetainCycles(LHSExpr, RHS.get());
}
if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
// It is safe to assign a weak reference into a strong variable.
// Although this code can still have problems:
// id x = self.weakProp;
// id y = self.weakProp;
// we do not warn to warn spuriously when 'x' and 'y' are on separate
// paths through the function. This should be revisited if
// -Wrepeated-use-of-weak is made flow-sensitive.
// For ObjCWeak only, we do not warn if the assign is to a non-weak
// variable, which will be valid for the current autorelease scope.
if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
RHS.get()->getBeginLoc()))
getCurFunction()->markSafeWeakUse(RHS.get());
} else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
}
}
} else {
// Compound assignment "x += y"
ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
}
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
RHS.get(), AA_Assigning))
return QualType();
CheckForNullPointerDereference(*this, LHSExpr);
if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
if (CompoundType.isNull()) {
// C++2a [expr.ass]p5:
// A simple-assignment whose left operand is of a volatile-qualified
// type is deprecated unless the assignment is either a discarded-value
// expression or an unevaluated operand
ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
} else {
// C++2a [expr.ass]p6:
// [Compound-assignment] expressions are deprecated if E1 has
// volatile-qualified type
Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
}
}
// C99 6.5.16p3: The type of an assignment expression is the type of the
// left operand unless the left operand has qualified type, in which case
// it is the unqualified version of the type of the left operand.
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
// is converted to the type of the assignment expression (above).
// C++ 5.17p1: the type of the assignment expression is that of its left
// operand.
return (getLangOpts().CPlusPlus
? LHSType : LHSType.getUnqualifiedType());
}
// Only ignore explicit casts to void.
static bool IgnoreCommaOperand(const Expr *E) {
E = E->IgnoreParens();
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
if (CE->getCastKind() == CK_ToVoid) {
return true;
}
// static_cast<void> on a dependent type will not show up as CK_ToVoid.
if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
CE->getSubExpr()->getType()->isDependentType()) {
return true;
}
}
return false;
}
// Look for instances where it is likely the comma operator is confused with
// another operator. There is an explicit list of acceptable expressions for
// the left hand side of the comma operator, otherwise emit a warning.
void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
// No warnings in macros
if (Loc.isMacroID())
return;
// Don't warn in template instantiations.
if (inTemplateInstantiation())
return;
// Scope isn't fine-grained enough to explicitly list the specific cases, so
// instead, skip more than needed, then call back into here with the
// CommaVisitor in SemaStmt.cpp.
// The listed locations are the initialization and increment portions
// of a for loop. The additional checks are on the condition of
// if statements, do/while loops, and for loops.
// Differences in scope flags for C89 mode requires the extra logic.
const unsigned ForIncrementFlags =
getLangOpts().C99 || getLangOpts().CPlusPlus
? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
: Scope::ContinueScope | Scope::BreakScope;
const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
const unsigned ScopeFlags = getCurScope()->getFlags();
if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
(ScopeFlags & ForInitFlags) == ForInitFlags)
return;
// If there are multiple comma operators used together, get the RHS of the
// of the comma operator as the LHS.
while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
if (BO->getOpcode() != BO_Comma)
break;
LHS = BO->getRHS();
}
// Only allow some expressions on LHS to not warn.
if (IgnoreCommaOperand(LHS))
return;
Diag(Loc, diag::warn_comma_operator);
Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
<< LHS->getSourceRange()
<< FixItHint::CreateInsertion(LHS->getBeginLoc(),
LangOpts.CPlusPlus ? "static_cast<void>("
: "(void)(")
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
")");
}
// C99 6.5.17
static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
SourceLocation Loc) {
LHS = S.CheckPlaceholderExpr(LHS.get());
RHS = S.CheckPlaceholderExpr(RHS.get());
if (LHS.isInvalid() || RHS.isInvalid())
return QualType();
// C's comma performs lvalue conversion (C99 6.3.2.1) on both its
// operands, but not unary promotions.
// C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
// So we treat the LHS as a ignored value, and in C++ we allow the
// containing site to determine what should be done with the RHS.
LHS = S.IgnoredValueConversions(LHS.get());
if (LHS.isInvalid())
return QualType();
S.DiagnoseUnusedExprResult(LHS.get());
if (!S.getLangOpts().CPlusPlus) {
RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
if (RHS.isInvalid())
return QualType();
if (!RHS.get()->getType()->isVoidType())
S.RequireCompleteType(Loc, RHS.get()->getType(),
diag::err_incomplete_type);
}
if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
S.DiagnoseCommaOperator(LHS.get(), Loc);
return RHS.get()->getType();
}
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
ExprValueKind &VK,
ExprObjectKind &OK,
SourceLocation OpLoc,
bool IsInc, bool IsPrefix) {
if (Op->isTypeDependent())
return S.Context.DependentTy;
QualType ResType = Op->getType();
// Atomic types can be used for increment / decrement where the non-atomic
// versions can, so ignore the _Atomic() specifier for the purpose of
// checking.
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
ResType = ResAtomicType->getValueType();
assert(!ResType.isNull() && "no type for increment/decrement expression");
if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
// Decrement of bool is not allowed.
if (!IsInc) {
S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
return QualType();
}
// Increment of bool sets it to true, but is deprecated.
S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
: diag::warn_increment_bool)
<< Op->getSourceRange();
} else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
// Error on enum increments and decrements in C++ mode
S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
return QualType();
} else if (ResType->isRealType()) {
// OK!
} else if (ResType->isPointerType()) {
// C99 6.5.2.4p2, 6.5.6p2
if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
return QualType();
} else if (ResType->isObjCObjectPointerType()) {
// On modern runtimes, ObjC pointer arithmetic is forbidden.
// Otherwise, we just need a complete type.
if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
checkArithmeticOnObjCPointer(S, OpLoc, Op))
return QualType();
} else if (ResType->isAnyComplexType()) {
// C99 does not support ++/-- on complex types, we allow as an extension.
S.Diag(OpLoc, diag::ext_integer_increment_complex)
<< ResType << Op->getSourceRange();
} else if (ResType->isPlaceholderType()) {
ExprResult PR = S.CheckPlaceholderExpr(Op);
if (PR.isInvalid()) return QualType();
return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
IsInc, IsPrefix);
} else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
// OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
} else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
(ResType->castAs<VectorType>()->getVectorKind() !=
VectorType::AltiVecBool)) {
// The z vector extensions allow ++ and -- for non-bool vectors.
} else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
// OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
} else {
S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
<< ResType << int(IsInc) << Op->getSourceRange();
return QualType();
}
// At this point, we know we have a real, complex or pointer type.
// Now make sure the operand is a modifiable lvalue.
if (CheckForModifiableLvalue(Op, OpLoc, S))
return QualType();
if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
// C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
// An operand with volatile-qualified type is deprecated
S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
<< IsInc << ResType;
}
// In C++, a prefix increment is the same type as the operand. Otherwise
// (in C or with postfix), the increment is the unqualified type of the
// operand.
if (IsPrefix && S.getLangOpts().CPlusPlus) {
VK = VK_LValue;
OK = Op->getObjectKind();
return ResType;
} else {
VK = VK_RValue;
return ResType.getUnqualifiedType();
}
}
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
/// where the declaration is needed for type checking. We only need to
/// handle cases when the expression references a function designator
/// or is an lvalue. Here are some examples:
/// - &(x) => x
/// - &*****f => f for f a function designator.
/// - &s.xx => s
/// - &s.zz[1].yy -> s, if zz is an array
/// - *(x + 1) -> x, if x is an array
/// - &"123"[2] -> 0
/// - & __real__ x -> x
///
/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
/// members.
static ValueDecl *getPrimaryDecl(Expr *E) {
switch (E->getStmtClass()) {
case Stmt::DeclRefExprClass:
return cast<DeclRefExpr>(E)->getDecl();
case Stmt::MemberExprClass:
// If this is an arrow operator, the address is an offset from
// the base's value, so the object the base refers to is
// irrelevant.
if (cast<MemberExpr>(E)->isArrow())
return nullptr;
// Otherwise, the expression refers to a part of the base
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
case Stmt::ArraySubscriptExprClass: {
// FIXME: This code shouldn't be necessary! We should catch the implicit
// promotion of register arrays earlier.
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
if (ICE->getSubExpr()->getType()->isArrayType())
return getPrimaryDecl(ICE->getSubExpr());
}
return nullptr;
}
case Stmt::UnaryOperatorClass: {
UnaryOperator *UO = cast<UnaryOperator>(E);
switch(UO->getOpcode()) {
case UO_Real:
case UO_Imag:
case UO_Extension:
return getPrimaryDecl(UO->getSubExpr());
default:
return nullptr;
}
}
case Stmt::ParenExprClass:
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
case Stmt::ImplicitCastExprClass:
// If the result of an implicit cast is an l-value, we care about
// the sub-expression; otherwise, the result here doesn't matter.
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
case Stmt::CXXUuidofExprClass:
return cast<CXXUuidofExpr>(E)->getGuidDecl();
default:
return nullptr;
}
}
namespace {
enum {
AO_Bit_Field = 0,
AO_Vector_Element = 1,
AO_Property_Expansion = 2,
AO_Register_Variable = 3,
AO_Matrix_Element = 4,
AO_No_Error = 5
};
}
/// Diagnose invalid operand for address of operations.
///
/// \param Type The type of operand which cannot have its address taken.
static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
Expr *E, unsigned Type) {
S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
}
/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the &
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
/// In C++, the operand might be an overloaded function name, in which case
/// we allow the '&' but retain the overloaded-function type.
QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
if (PTy->getKind() == BuiltinType::Overload) {
Expr *E = OrigOp.get()->IgnoreParens();
if (!isa<OverloadExpr>(E)) {
assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
<< OrigOp.get()->getSourceRange();
return QualType();
}
OverloadExpr *Ovl = cast<OverloadExpr>(E);
if (isa<UnresolvedMemberExpr>(Ovl))
if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
<< OrigOp.get()->getSourceRange();
return QualType();
}
return Context.OverloadTy;
}
if (PTy->getKind() == BuiltinType::UnknownAny)
return Context.UnknownAnyTy;
if (PTy->getKind() == BuiltinType::BoundMember) {
Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
<< OrigOp.get()->getSourceRange();
return QualType();
}
OrigOp = CheckPlaceholderExpr(OrigOp.get());
if (OrigOp.isInvalid()) return QualType();
}
if (OrigOp.get()->isTypeDependent())
return Context.DependentTy;
assert(!OrigOp.get()->getType()->isPlaceholderType());
// Make sure to ignore parentheses in subsequent checks
Expr *op = OrigOp.get()->IgnoreParens();
// In OpenCL captures for blocks called as lambda functions
// are located in the private address space. Blocks used in
// enqueue_kernel can be located in a different address space
// depending on a vendor implementation. Thus preventing
// taking an address of the capture to avoid invalid AS casts.
if (LangOpts.OpenCL) {
auto* VarRef = dyn_cast<DeclRefExpr>(op);
if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
return QualType();
}
}
if (getLangOpts().C99) {
// Implement C99-only parts of addressof rules.
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
if (uOp->getOpcode() == UO_Deref)
// Per C99 6.5.3.2, the address of a deref always returns a valid result
// (assuming the deref expression is valid).
return uOp->getSubExpr()->getType();
}
// Technically, there should be a check for array subscript
// expressions here, but the result of one is always an lvalue anyway.
}
ValueDecl *dcl = getPrimaryDecl(op);
if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
op->getBeginLoc()))
return QualType();
Expr::LValueClassification lval = op->ClassifyLValue(Context);
unsigned AddressOfError = AO_No_Error;
if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
bool sfinae = (bool)isSFINAEContext();
Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
: diag::ext_typecheck_addrof_temporary)
<< op->getType() << op->getSourceRange();
if (sfinae)
return QualType();
// Materialize the temporary as an lvalue so that we can take its address.
OrigOp = op =
CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
} else if (isa<ObjCSelectorExpr>(op)) {
return Context.getPointerType(op->getType());
} else if (lval == Expr::LV_MemberFunction) {
// If it's an instance method, make a member pointer.
// The expression must have exactly the form &A::foo.
// If the underlying expression isn't a decl ref, give up.
if (!isa<DeclRefExpr>(op)) {
Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
<< OrigOp.get()->getSourceRange();
return QualType();
}
DeclRefExpr *DRE = cast<DeclRefExpr>(op);
CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
// The id-expression was parenthesized.
if (OrigOp.get() != DRE) {
Diag(OpLoc, diag::err_parens_pointer_member_function)
<< OrigOp.get()->getSourceRange();
// The method was named without a qualifier.
} else if (!DRE->getQualifier()) {
if (MD->getParent()->getName().empty())
Diag(OpLoc, diag::err_unqualified_pointer_member_function)
<< op->getSourceRange();
else {
SmallString<32> Str;
StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
Diag(OpLoc, diag::err_unqualified_pointer_member_function)
<< op->getSourceRange()
<< FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
}
}
// Taking the address of a dtor is illegal per C++ [class.dtor]p2.
if (isa<CXXDestructorDecl>(MD))
Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
QualType MPTy = Context.getMemberPointerType(
op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
// Under the MS ABI, lock down the inheritance model now.
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
(void)isCompleteType(OpLoc, MPTy);
return MPTy;
} else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
// C99 6.5.3.2p1
// The operand must be either an l-value or a function designator
if (!op->getType()->isFunctionType()) {
// Use a special diagnostic for loads from property references.
if (isa<PseudoObjectExpr>(op)) {
AddressOfError = AO_Property_Expansion;
} else {
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
<< op->getType() << op->getSourceRange();
return QualType();
}
}
} else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
// The operand cannot be a bit-field
AddressOfError = AO_Bit_Field;
} else if (op->getObjectKind() == OK_VectorComponent) {
// The operand cannot be an element of a vector
AddressOfError = AO_Vector_Element;
} else if (op->getObjectKind() == OK_MatrixComponent) {
// The operand cannot be an element of a matrix.
AddressOfError = AO_Matrix_Element;
} else if (dcl) { // C99 6.5.3.2p1
// We have an lvalue with a decl. Make sure the decl is not declared
// with the register storage-class specifier.
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
// in C++ it is not error to take address of a register
// variable (c++03 7.1.1P3)
if (vd->getStorageClass() == SC_Register &&
!getLangOpts().CPlusPlus) {
AddressOfError = AO_Register_Variable;
}
} else if (isa<MSPropertyDecl>(dcl)) {
AddressOfError = AO_Property_Expansion;
} else if (isa<FunctionTemplateDecl>(dcl)) {
return Context.OverloadTy;
} else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
// Okay: we can take the address of a field.
// Could be a pointer to member, though, if there is an explicit
// scope qualifier for the class.
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
DeclContext *Ctx = dcl->getDeclContext();
if (Ctx && Ctx->isRecord()) {
if (dcl->getType()->isReferenceType()) {
Diag(OpLoc,
diag::err_cannot_form_pointer_to_member_of_reference_type)
<< dcl->getDeclName() << dcl->getType();
return QualType();
}
while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
Ctx = Ctx->getParent();
QualType MPTy = Context.getMemberPointerType(
op->getType(),
Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
// Under the MS ABI, lock down the inheritance model now.
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
(void)isCompleteType(OpLoc, MPTy);
return MPTy;
}
}
} else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
!isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
llvm_unreachable("Unknown/unexpected decl type");
}
if (AddressOfError != AO_No_Error) {
diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
return QualType();
}
if (lval == Expr::LV_IncompleteVoidType) {
// Taking the address of a void variable is technically illegal, but we
// allow it in cases which are otherwise valid.
// Example: "extern void x; void* y = &x;".
Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
}
// If the operand has type "type", the result has type "pointer to type".
if (op->getType()->isObjCObjectType())
return Context.getObjCObjectPointerType(op->getType());
CheckAddressOfPackedMember(op);
return Context.getPointerType(op->getType());
}
static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
if (!DRE)
return;
const Decl *D = DRE->getDecl();
if (!D)
return;
const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
if (!Param)
return;
if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
return;
if (FunctionScopeInfo *FD = S.getCurFunction())
if (!FD->ModifiedNonNullParams.count(Param))
FD->ModifiedNonNullParams.insert(Param);
}
/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
SourceLocation OpLoc) {
if (Op->isTypeDependent())
return S.Context.DependentTy;
ExprResult ConvResult = S.UsualUnaryConversions(Op);
if (ConvResult.isInvalid())
return QualType();
Op = ConvResult.get();
QualType OpTy = Op->getType();
QualType Result;
if (isa<CXXReinterpretCastExpr>(Op)) {
QualType OpOrigType = Op->IgnoreParenCasts()->getType();
S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
Op->getSourceRange());
}
if (const PointerType *PT = OpTy->getAs<PointerType>())
{
Result = PT->getPointeeType();
}
else if (const ObjCObjectPointerType *OPT =
OpTy->getAs<ObjCObjectPointerType>())
Result = OPT->getPointeeType();
else {
ExprResult PR = S.CheckPlaceholderExpr(Op);
if (PR.isInvalid()) return QualType();
if (PR.get() != Op)
return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
}
if (Result.isNull()) {
S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
<< OpTy << Op->getSourceRange();
return QualType();
}
// Note that per both C89 and C99, indirection is always legal, even if Result
// is an incomplete type or void. It would be possible to warn about
// dereferencing a void pointer, but it's completely well-defined, and such a
// warning is unlikely to catch any mistakes. In C++, indirection is not valid
// for pointers to 'void' but is fine for any other pointer type:
//
// C++ [expr.unary.op]p1:
// [...] the expression to which [the unary * operator] is applied shall
// be a pointer to an object type, or a pointer to a function type
if (S.getLangOpts().CPlusPlus && Result->isVoidType())
S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
<< OpTy << Op->getSourceRange();
// Dereferences are usually l-values...
VK = VK_LValue;
// ...except that certain expressions are never l-values in C.
if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
VK = VK_RValue;
return Result;
}
BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
BinaryOperatorKind Opc;
switch (Kind) {
default: llvm_unreachable("Unknown binop!");
case tok::periodstar: Opc = BO_PtrMemD; break;
case tok::arrowstar: Opc = BO_PtrMemI; break;
case tok::star: Opc = BO_Mul; break;
case tok::slash: Opc = BO_Div; break;
case tok::percent: Opc = BO_Rem; break;
case tok::plus: Opc = BO_Add; break;
case tok::minus: Opc = BO_Sub; break;
case tok::lessless: Opc = BO_Shl; break;
case tok::greatergreater: Opc = BO_Shr; break;
case tok::lessequal: Opc = BO_LE; break;
case tok::less: Opc = BO_LT; break;
case tok::greaterequal: Opc = BO_GE; break;
case tok::greater: Opc = BO_GT; break;
case tok::exclaimequal: Opc = BO_NE; break;
case tok::equalequal: Opc = BO_EQ; break;
case tok::spaceship: Opc = BO_Cmp; break;
case tok::amp: Opc = BO_And; break;
case tok::caret: Opc = BO_Xor; break;
case tok::pipe: Opc = BO_Or; break;
case tok::ampamp: Opc = BO_LAnd; break;
case tok::pipepipe: Opc = BO_LOr; break;
case tok::equal: Opc = BO_Assign; break;
case tok::starequal: Opc = BO_MulAssign; break;
case tok::slashequal: Opc = BO_DivAssign; break;
case tok::percentequal: Opc = BO_RemAssign; break;
case tok::plusequal: Opc = BO_AddAssign; break;
case tok::minusequal: Opc = BO_SubAssign; break;
case tok::lesslessequal: Opc = BO_ShlAssign; break;
case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
case tok::ampequal: Opc = BO_AndAssign; break;
case tok::caretequal: Opc = BO_XorAssign; break;
case tok::pipeequal: Opc = BO_OrAssign; break;
case tok::comma: Opc = BO_Comma; break;
}
return Opc;
}
static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
tok::TokenKind Kind) {
UnaryOperatorKind Opc;
switch (Kind) {
default: llvm_unreachable("Unknown unary op!");
case tok::plusplus: Opc = UO_PreInc; break;
case tok::minusminus: Opc = UO_PreDec; break;
case tok::amp: Opc = UO_AddrOf; break;
case tok::star: Opc = UO_Deref; break;
case tok::plus: Opc = UO_Plus; break;
case tok::minus: Opc = UO_Minus; break;
case tok::tilde: Opc = UO_Not; break;
case tok::exclaim: Opc = UO_LNot; break;
case tok::kw___real: Opc = UO_Real; break;
case tok::kw___imag: Opc = UO_Imag; break;
case tok::kw___extension__: Opc = UO_Extension; break;
}
return Opc;
}
/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
/// This warning suppressed in the event of macro expansions.
static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
SourceLocation OpLoc, bool IsBuiltin) {
if (S.inTemplateInstantiation())
return;
if (S.isUnevaluatedContext())
return;
if (OpLoc.isInvalid() || OpLoc.isMacroID())
return;
LHSExpr = LHSExpr->IgnoreParenImpCasts();
RHSExpr = RHSExpr->IgnoreParenImpCasts();
const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
if (!LHSDeclRef || !RHSDeclRef ||
LHSDeclRef->getLocation().isMacroID() ||
RHSDeclRef->getLocation().isMacroID())
return;
const ValueDecl *LHSDecl =
cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
const ValueDecl *RHSDecl =
cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
if (LHSDecl != RHSDecl)
return;
if (LHSDecl->getType().isVolatileQualified())
return;
if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
if (RefTy->getPointeeType().isVolatileQualified())
return;
S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
: diag::warn_self_assignment_overloaded)
<< LHSDeclRef->getType() << LHSExpr->getSourceRange()
<< RHSExpr->getSourceRange();
}
/// Check if a bitwise-& is performed on an Objective-C pointer. This
/// is usually indicative of introspection within the Objective-C pointer.
static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
SourceLocation OpLoc) {
if (!S.getLangOpts().ObjC)
return;
const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
const Expr *LHS = L.get();
const Expr *RHS = R.get();
if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
ObjCPointerExpr = LHS;
OtherExpr = RHS;
}
else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
ObjCPointerExpr = RHS;
OtherExpr = LHS;
}
// This warning is deliberately made very specific to reduce false
// positives with logic that uses '&' for hashing. This logic mainly
// looks for code trying to introspect into tagged pointers, which
// code should generally never do.
if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
unsigned Diag = diag::warn_objc_pointer_masking;
// Determine if we are introspecting the result of performSelectorXXX.
const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
// Special case messages to -performSelector and friends, which
// can return non-pointer values boxed in a pointer value.
// Some clients may wish to silence warnings in this subcase.
if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
Selector S = ME->getSelector();
StringRef SelArg0 = S.getNameForSlot(0);
if (SelArg0.startswith("performSelector"))
Diag = diag::warn_objc_pointer_masking_performSelector;
}
S.Diag(OpLoc, Diag)
<< ObjCPointerExpr->getSourceRange();
}
}
static NamedDecl *getDeclFromExpr(Expr *E) {
if (!E)
return nullptr;
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getDecl();
if (auto *ME = dyn_cast<MemberExpr>(E))
return ME->getMemberDecl();
if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
return IRE->getDecl();
return nullptr;
}
// This helper function promotes a binary operator's operands (which are of a
// half vector type) to a vector of floats and then truncates the result to
// a vector of either half or short.
static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
BinaryOperatorKind Opc, QualType ResultTy,
ExprValueKind VK, ExprObjectKind OK,
bool IsCompAssign, SourceLocation OpLoc,
FPOptionsOverride FPFeatures) {
auto &Context = S.getASTContext();
assert((isVector(ResultTy, Context.HalfTy) ||
isVector(ResultTy, Context.ShortTy)) &&
"Result must be a vector of half or short");
assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
isVector(RHS.get()->getType(), Context.HalfTy) &&
"both operands expected to be a half vector");
RHS = convertVector(RHS.get(), Context.FloatTy, S);
QualType BinOpResTy = RHS.get()->getType();
// If Opc is a comparison, ResultType is a vector of shorts. In that case,
// change BinOpResTy to a vector of ints.
if (isVector(ResultTy, Context.ShortTy))
BinOpResTy = S.GetSignedVectorType(BinOpResTy);
if (IsCompAssign)
return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
ResultTy, VK, OK, OpLoc, FPFeatures,
BinOpResTy, BinOpResTy);
LHS = convertVector(LHS.get(), Context.FloatTy, S);
auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
BinOpResTy, VK, OK, OpLoc, FPFeatures);
return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
}
static std::pair<ExprResult, ExprResult>
CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
Expr *RHSExpr) {
ExprResult LHS = LHSExpr, RHS = RHSExpr;
if (!S.getLangOpts().CPlusPlus) {
// C cannot handle TypoExpr nodes on either side of a binop because it
// doesn't handle dependent types properly, so make sure any TypoExprs have
// been dealt with before checking the operands.
LHS = S.CorrectDelayedTyposInExpr(LHS);
RHS = S.CorrectDelayedTyposInExpr(
RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
[Opc, LHS](Expr *E) {
if (Opc != BO_Assign)
return ExprResult(E);
// Avoid correcting the RHS to the same Expr as the LHS.
Decl *D = getDeclFromExpr(E);
return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
});
}
return std::make_pair(LHS, RHS);
}
/// Returns true if conversion between vectors of halfs and vectors of floats
/// is needed.
static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
Expr *E0, Expr *E1 = nullptr) {
if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
Ctx.getTargetInfo().useFP16ConversionIntrinsics())
return false;
auto HasVectorOfHalfType = [&Ctx](Expr *E) {
QualType Ty = E->IgnoreImplicit()->getType();
// Don't promote half precision neon vectors like float16x4_t in arm_neon.h
// to vectors of floats. Although the element type of the vectors is __fp16,
// the vectors shouldn't be treated as storage-only types. See the
// discussion here: https://reviews.llvm.org/rG825235c140e7
if (const VectorType *VT = Ty->getAs<VectorType>()) {
if (VT->getVectorKind() == VectorType::NeonVector)
return false;
return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
}
return false;
};
return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
}
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
/// operator @p Opc at location @c TokLoc. This routine only supports
/// built-in operations; ActOnBinOp handles overloaded operators.
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *LHSExpr, Expr *RHSExpr) {
if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
// The syntax only allows initializer lists on the RHS of assignment,
// so we don't need to worry about accepting invalid code for
// non-assignment operators.
// C++11 5.17p9:
// The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
// of x = {} is x = T().
InitializationKind Kind = InitializationKind::CreateDirectList(
RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
InitializedEntity Entity =
InitializedEntity::InitializeTemporary(LHSExpr->getType());
InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
if (Init.isInvalid())
return Init;
RHSExpr = Init.get();
}
ExprResult LHS = LHSExpr, RHS = RHSExpr;
QualType ResultTy; // Result type of the binary operator.
// The following two variables are used for compound assignment operators
QualType CompLHSTy; // Type of LHS after promotions for computation
QualType CompResultTy; // Type of computation result
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
bool ConvertHalfVec = false;
std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
if (!LHS.isUsable() || !RHS.isUsable())
return ExprError();
if (getLangOpts().OpenCL) {
QualType LHSTy = LHSExpr->getType();
QualType RHSTy = RHSExpr->getType();
// OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
// the ATOMIC_VAR_INIT macro.
if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
if (BO_Assign == Opc)
Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
else
ResultTy = InvalidOperands(OpLoc, LHS, RHS);
return ExprError();
}
// OpenCL special types - image, sampler, pipe, and blocks are to be used
// only with a builtin functions and therefore should be disallowed here.
if (LHSTy->isImageType() || RHSTy->isImageType() ||
LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
LHSTy->isPipeType() || RHSTy->isPipeType() ||
LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
ResultTy = InvalidOperands(OpLoc, LHS, RHS);
return ExprError();
}
}
switch (Opc) {
case BO_Assign:
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
if (getLangOpts().CPlusPlus &&
LHS.get()->getObjectKind() != OK_ObjCProperty) {
VK = LHS.get()->getValueKind();
OK = LHS.get()->getObjectKind();
}
if (!ResultTy.isNull()) {
DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
// Avoid copying a block to the heap if the block is assigned to a local
// auto variable that is declared in the same scope as the block. This
// optimization is unsafe if the local variable is declared in an outer
// scope. For example:
//
// BlockTy b;
// {
// b = ^{...};
// }
// // It is unsafe to invoke the block here if it wasn't copied to the
// // heap.
// b();
if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
BE->getBlockDecl()->setCanAvoidCopyToHeap();
if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
NTCUC_Assignment, NTCUK_Copy);
}
RecordModifiableNonNullParam(*this, LHS.get());
break;
case BO_PtrMemD:
case BO_PtrMemI:
ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
Opc == BO_PtrMemI);
break;
case BO_Mul:
case BO_Div:
ConvertHalfVec = true;
ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
Opc == BO_Div);
break;
case BO_Rem:
ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
break;
case BO_Add:
ConvertHalfVec = true;
ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
break;
case BO_Sub:
ConvertHalfVec = true;
ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
break;
case BO_Shl:
case BO_Shr:
ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
break;
case BO_LE:
case BO_LT:
case BO_GE:
case BO_GT:
ConvertHalfVec = true;
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
break;
case BO_EQ:
case BO_NE:
ConvertHalfVec = true;
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
break;
case BO_Cmp:
ConvertHalfVec = true;
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
break;
case BO_And:
checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
LLVM_FALLTHROUGH;
case BO_Xor:
case BO_Or:
ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
break;
case BO_LAnd:
case BO_LOr:
ConvertHalfVec = true;
ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
break;
case BO_MulAssign:
case BO_DivAssign:
ConvertHalfVec = true;
CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
Opc == BO_DivAssign);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_RemAssign:
CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_AddAssign:
ConvertHalfVec = true;
CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_SubAssign:
ConvertHalfVec = true;
CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_ShlAssign:
case BO_ShrAssign:
CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_AndAssign:
case BO_OrAssign: // fallthrough
DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
LLVM_FALLTHROUGH;
case BO_XorAssign:
CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
break;
case BO_Comma:
ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
VK = RHS.get()->getValueKind();
OK = RHS.get()->getObjectKind();
}
break;
}
if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
return ExprError();
// Some of the binary operations require promoting operands of half vector to
// float vectors and truncating the result back to half vector. For now, we do
// this only when HalfArgsAndReturn is set (that is, when the target is arm or
// arm64).
assert(
(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
isVector(LHS.get()->getType(), Context.HalfTy)) &&
"both sides are half vectors or neither sides are");
ConvertHalfVec =
needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
// Check for array bounds violations for both sides of the BinaryOperator
CheckArrayAccess(LHS.get());
CheckArrayAccess(RHS.get());
if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
&Context.Idents.get("object_setClass"),
SourceLocation(), LookupOrdinaryName);
if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
<< FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
"object_setClass(")
<< FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
",")
<< FixItHint::CreateInsertion(RHSLocEnd, ")");
}
else
Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
}
else if (const ObjCIvarRefExpr *OIRE =
dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
// Opc is not a compound assignment if CompResultTy is null.
if (CompResultTy.isNull()) {
if (ConvertHalfVec)
return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
OpLoc, CurFPFeatureOverrides());
return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
VK, OK, OpLoc, CurFPFeatureOverrides());
}
// Handle compound assignments.
if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
OK_ObjCProperty) {
VK = VK_LValue;
OK = LHS.get()->getObjectKind();
}
// The LHS is not converted to the result type for fixed-point compound
// assignment as the common type is computed on demand. Reset the CompLHSTy
// to the LHS type we would have gotten after unary conversions.
if (CompResultTy->isFixedPointType())
CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
if (ConvertHalfVec)
return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
OpLoc, CurFPFeatureOverrides());
return CompoundAssignOperator::Create(
Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
}
/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
/// operators are mixed in a way that suggests that the programmer forgot that
/// comparison operators have higher precedence. The most typical example of
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
SourceLocation OpLoc, Expr *LHSExpr,
Expr *RHSExpr) {
BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
// Check that one of the sides is a comparison operator and the other isn't.
bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
bool isRightComp = RHSBO && RHSBO->isComparisonOp();
if (isLeftComp == isRightComp)
return;
// Bitwise operations are sometimes used as eager logical ops.
// Don't diagnose this.
bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
if (isLeftBitwise || isRightBitwise)
return;
SourceRange DiagRange = isLeftComp
? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
: SourceRange(OpLoc, RHSExpr->getEndLoc());
StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
SourceRange ParensRange =
isLeftComp
? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
: SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
<< DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::note_precedence_silence) << OpStr,
(isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::note_precedence_bitwise_first)
<< BinaryOperator::getOpcodeStr(Opc),
ParensRange);
}
/// It accepts a '&&' expr that is inside a '||' one.
/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
/// in parentheses.
static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
BinaryOperator *Bop) {
assert(Bop->getOpcode() == BO_LAnd);
Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
<< Bop->getSourceRange() << OpLoc;
SuggestParentheses(Self, Bop->getOperatorLoc(),
Self.PDiag(diag::note_precedence_silence)
<< Bop->getOpcodeStr(),
Bop->getSourceRange());
}
/// Returns true if the given expression can be evaluated as a constant
/// 'true'.
static bool EvaluatesAsTrue(Sema &S, Expr *E) {
bool Res;
return !E->isValueDependent() &&
E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
}
/// Returns true if the given expression can be evaluated as a constant
/// 'false'.
static bool EvaluatesAsFalse(Sema &S, Expr *E) {
bool Res;
return !E->isValueDependent() &&
E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
}
/// Look for '&&' in the left hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
Expr *LHSExpr, Expr *RHSExpr) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
if (Bop->getOpcode() == BO_LAnd) {
// If it's "a && b || 0" don't warn since the precedence doesn't matter.
if (EvaluatesAsFalse(S, RHSExpr))
return;
// If it's "1 && a || b" don't warn since the precedence doesn't matter.
if (!EvaluatesAsTrue(S, Bop->getLHS()))
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
} else if (Bop->getOpcode() == BO_LOr) {
if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
// If it's "a || b && 1 || c" we didn't warn earlier for
// "a || b && 1", but warn now.
if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
}
}
}
}
/// Look for '&&' in the right hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
Expr *LHSExpr, Expr *RHSExpr) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
if (Bop->getOpcode() == BO_LAnd) {
// If it's "0 || a && b" don't warn since the precedence doesn't matter.
if (EvaluatesAsFalse(S, LHSExpr))
return;
// If it's "a || b && 1" don't warn since the precedence doesn't matter.
if (!EvaluatesAsTrue(S, Bop->getRHS()))
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
}
}
}
/// Look for bitwise op in the left or right hand of a bitwise op with
/// lower precedence and emit a diagnostic together with a fixit hint that wraps
/// the '&' expression in parentheses.
static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
SourceLocation OpLoc, Expr *SubExpr) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
<< Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
<< Bop->getSourceRange() << OpLoc;
SuggestParentheses(S, Bop->getOperatorLoc(),
S.PDiag(diag::note_precedence_silence)
<< Bop->getOpcodeStr(),
Bop->getSourceRange());
}
}
}
static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
Expr *SubExpr, StringRef Shift) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
StringRef Op = Bop->getOpcodeStr();
S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
<< Bop->getSourceRange() << OpLoc << Shift << Op;
SuggestParentheses(S, Bop->getOperatorLoc(),
S.PDiag(diag::note_precedence_silence) << Op,
Bop->getSourceRange());
}
}
}
static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
Expr *LHSExpr, Expr *RHSExpr) {
CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
if (!OCE)
return;
FunctionDecl *FD = OCE->getDirectCallee();
if (!FD || !FD->isOverloadedOperator())
return;
OverloadedOperatorKind Kind = FD->getOverloadedOperator();
if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
return;
S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
<< LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
<< (Kind == OO_LessLess);
SuggestParentheses(S, OCE->getOperatorLoc(),
S.PDiag(diag::note_precedence_silence)
<< (Kind == OO_LessLess ? "<<" : ">>"),
OCE->getSourceRange());
SuggestParentheses(
S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
}
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
/// precedence.
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
SourceLocation OpLoc, Expr *LHSExpr,
Expr *RHSExpr){
// Diagnose "arg1 'bitwise' arg2 'eq' arg3".
if (BinaryOperator::isBitwiseOp(Opc))
DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
// Diagnose "arg1 & arg2 | arg3"
if ((Opc == BO_Or || Opc == BO_Xor) &&
!OpLoc.isMacroID()/* Don't warn in macros. */) {
DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
}
// Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
// We don't warn for 'assert(a || b && "bad")' since this is safe.
if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
}
if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
|| Opc == BO_Shr) {
StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
}
// Warn on overloaded shift operators and comparisons, such as:
// cout << 5 == 4;
if (BinaryOperator::isComparisonOp(Opc))
DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
}
// Binary Operators. 'Tok' is the token for the operator.
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind,
Expr *LHSExpr, Expr *RHSExpr) {
BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
assert(LHSExpr && "ActOnBinOp(): missing left expression");
assert(RHSExpr && "ActOnBinOp(): missing right expression");
// Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
}
void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
UnresolvedSetImpl &Functions) {
OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
if (OverOp != OO_None && OverOp != OO_Equal)
LookupOverloadedOperatorName(OverOp, S, Functions);
// In C++20 onwards, we may have a second operator to look up.
if (getLangOpts().CPlusPlus20) {
if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
LookupOverloadedOperatorName(ExtraOp, S, Functions);
}
}
/// Build an overloaded binary operator expression in the given scope.
static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *LHS, Expr *RHS) {
switch (Opc) {
case BO_Assign:
case BO_DivAssign:
case BO_RemAssign:
case BO_SubAssign:
case BO_AndAssign:
case BO_OrAssign:
case BO_XorAssign:
DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
break;
default:
break;
}
// Find all of the overloaded operators visible from this point.
UnresolvedSet<16> Functions;
S.LookupBinOp(Sc, OpLoc, Opc, Functions);
// Build the (potentially-overloaded, potentially-dependent)
// binary operation.
return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
}
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *LHSExpr, Expr *RHSExpr) {
ExprResult LHS, RHS;
std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
if (!LHS.isUsable() || !RHS.isUsable())
return ExprError();
LHSExpr = LHS.get();
RHSExpr = RHS.get();
// We want to end up calling one of checkPseudoObjectAssignment
// (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
// both expressions are overloadable or either is type-dependent),
// or CreateBuiltinBinOp (in any other case). We also want to get
// any placeholder types out of the way.
// Handle pseudo-objects in the LHS.
if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
// Assignments with a pseudo-object l-value need special analysis.
if (pty->getKind() == BuiltinType::PseudoObject &&
BinaryOperator::isAssignmentOp(Opc))
return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
// Don't resolve overloads if the other type is overloadable.
if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
// We can't actually test that if we still have a placeholder,
// though. Fortunately, none of the exceptions we see in that
// code below are valid when the LHS is an overload set. Note
// that an overload set can be dependently-typed, but it never
// instantiates to having an overloadable type.
ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
if (resolvedRHS.isInvalid()) return ExprError();
RHSExpr = resolvedRHS.get();
if (RHSExpr->isTypeDependent() ||
RHSExpr->getType()->isOverloadableType())
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
}
// If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
// template, diagnose the missing 'template' keyword instead of diagnosing
// an invalid use of a bound member function.
//
// Note that "A::x < b" might be valid if 'b' has an overloadable type due
// to C++1z [over.over]/1.4, but we already checked for that case above.
if (Opc == BO_LT && inTemplateInstantiation() &&
(pty->getKind() == BuiltinType::BoundMember ||
pty->getKind() == BuiltinType::Overload)) {
auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
return isa<FunctionTemplateDecl>(ND);
})) {
Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
: OE->getNameLoc(),
diag::err_template_kw_missing)
<< OE->getName().getAsString() << "";
return ExprError();
}
}
ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
if (LHS.isInvalid()) return ExprError();
LHSExpr = LHS.get();
}
// Handle pseudo-objects in the RHS.
if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
// An overload in the RHS can potentially be resolved by the type
// being assigned to.
if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
if (getLangOpts().CPlusPlus &&
(LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
LHSExpr->getType()->isOverloadableType()))
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
}
// Don't resolve overloads if the other type is overloadable.
if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
LHSExpr->getType()->isOverloadableType())
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
if (!resolvedRHS.isUsable()) return ExprError();
RHSExpr = resolvedRHS.get();
}
if (getLangOpts().CPlusPlus) {
// If either expression is type-dependent, always build an
// overloaded op.
if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
// Otherwise, build an overloaded op if either expression has an
// overloadable type.
if (LHSExpr->getType()->isOverloadableType() ||
RHSExpr->getType()->isOverloadableType())
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
}
// Build a built-in binary operation.
return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
}
static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
if (T.isNull() || T->isDependentType())
return false;
if (!T->isPromotableIntegerType())
return true;
return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
}
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
UnaryOperatorKind Opc,
Expr *InputExpr) {
ExprResult Input = InputExpr;
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
QualType resultType;
bool CanOverflow = false;
bool ConvertHalfVec = false;
if (getLangOpts().OpenCL) {
QualType Ty = InputExpr->getType();
// The only legal unary operation for atomics is '&'.
if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
// OpenCL special types - image, sampler, pipe, and blocks are to be used
// only with a builtin functions and therefore should be disallowed here.
(Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
|| Ty->isBlockPointerType())) {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< InputExpr->getType()
<< Input.get()->getSourceRange());
}
}
switch (Opc) {
case UO_PreInc:
case UO_PreDec:
case UO_PostInc:
case UO_PostDec:
resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
OpLoc,
Opc == UO_PreInc ||
Opc == UO_PostInc,
Opc == UO_PreInc ||
Opc == UO_PreDec);
CanOverflow = isOverflowingIntegerType(Context, resultType);
break;
case UO_AddrOf:
resultType = CheckAddressOfOperand(Input, OpLoc);
CheckAddressOfNoDeref(InputExpr);
RecordModifiableNonNullParam(*this, InputExpr);
break;
case UO_Deref: {
Input = DefaultFunctionArrayLvalueConversion(Input.get());
if (Input.isInvalid()) return ExprError();
resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
break;
}
case UO_Plus:
case UO_Minus:
CanOverflow = Opc == UO_Minus &&
isOverflowingIntegerType(Context, Input.get()->getType());
Input = UsualUnaryConversions(Input.get());
if (Input.isInvalid()) return ExprError();
// Unary plus and minus require promoting an operand of half vector to a
// float vector and truncating the result back to a half vector. For now, we
// do this only when HalfArgsAndReturns is set (that is, when the target is
// arm or arm64).
ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
// If the operand is a half vector, promote it to a float vector.
if (ConvertHalfVec)
Input = convertVector(Input.get(), Context.FloatTy, *this);
resultType = Input.get()->getType();
if (resultType->isDependentType())
break;
if (resultType->isArithmeticType()) // C99 6.5.3.3p1
break;
else if (resultType->isVectorType() &&
// The z vector extensions don't allow + or - with bool vectors.
(!Context.getLangOpts().ZVector ||
resultType->castAs<VectorType>()->getVectorKind() !=
VectorType::AltiVecBool))
break;
else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
Opc == UO_Plus &&
resultType->isPointerType())
break;
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
case UO_Not: // bitwise complement
Input = UsualUnaryConversions(Input.get());
if (Input.isInvalid())
return ExprError();
resultType = Input.get()->getType();
if (resultType->isDependentType())
break;
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
if (resultType->isComplexType() || resultType->isComplexIntegerType())
// C99 does not support '~' for complex conjugation.
Diag(OpLoc, diag::ext_integer_complement_complex)
<< resultType << Input.get()->getSourceRange();
else if (resultType->hasIntegerRepresentation())
break;
else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
// OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
// on vector float types.
QualType T = resultType->castAs<ExtVectorType>()->getElementType();
if (!T->isIntegerType())
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
} else {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
}
break;
case UO_LNot: // logical negation
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
Input = DefaultFunctionArrayLvalueConversion(Input.get());
if (Input.isInvalid()) return ExprError();
resultType = Input.get()->getType();
// Though we still have to promote half FP to float...
if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
resultType = Context.FloatTy;
}
if (resultType->isDependentType())
break;
if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
// C99 6.5.3.3p1: ok, fallthrough;
if (Context.getLangOpts().CPlusPlus) {
// C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
// operand contextually converted to bool.
Input = ImpCastExprToType(Input.get(), Context.BoolTy,
ScalarTypeToBooleanCastKind(resultType));
} else if (Context.getLangOpts().OpenCL &&
Context.getLangOpts().OpenCLVersion < 120) {
// OpenCL v1.1 6.3.h: The logical operator not (!) does not
// operate on scalar float types.
if (!resultType->isIntegerType() && !resultType->isPointerType())
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
}
} else if (resultType->isExtVectorType()) {
if (Context.getLangOpts().OpenCL &&
Context.getLangOpts().OpenCLVersion < 120 &&
!Context.getLangOpts().OpenCLCPlusPlus) {
// OpenCL v1.1 6.3.h: The logical operator not (!) does not
// operate on vector float types.
QualType T = resultType->castAs<ExtVectorType>()->getElementType();
if (!T->isIntegerType())
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
}
// Vector logical not returns the signed variant of the operand type.
resultType = GetSignedVectorType(resultType);
break;
} else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
const VectorType *VTy = resultType->castAs<VectorType>();
if (VTy->getVectorKind() != VectorType::GenericVector)
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
// Vector logical not returns the signed variant of the operand type.
resultType = GetSignedVectorType(resultType);
break;
} else {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input.get()->getSourceRange());
}
// LNot always has type int. C99 6.5.3.3p5.
// In C++, it's bool. C++ 5.3.1p8
resultType = Context.getLogicalOperationType();
break;
case UO_Real:
case UO_Imag:
resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
// _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
// complex l-values to ordinary l-values and all other values to r-values.
if (Input.isInvalid()) return ExprError();
if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
if (Input.get()->getValueKind() != VK_RValue &&
Input.get()->getObjectKind() == OK_Ordinary)
VK = Input.get()->getValueKind();
} else if (!getLangOpts().CPlusPlus) {
// In C, a volatile scalar is read by __imag. In C++, it is not.
Input = DefaultLvalueConversion(Input.get());
}
break;
case UO_Extension:
resultType = Input.get()->getType();
VK = Input.get()->getValueKind();
OK = Input.get()->getObjectKind();
break;
case UO_Coawait:
// It's unnecessary to represent the pass-through operator co_await in the
// AST; just return the input expression instead.
assert(!Input.get()->getType()->isDependentType() &&
"the co_await expression must be non-dependant before "
"building operator co_await");
return Input;
}
if (resultType.isNull() || Input.isInvalid())
return ExprError();
// Check for array bounds violations in the operand of the UnaryOperator,
// except for the '*' and '&' operators that have to be handled specially
// by CheckArrayAccess (as there are special cases like &array[arraysize]
// that are explicitly defined as valid by the standard).
if (Opc != UO_AddrOf && Opc != UO_Deref)
CheckArrayAccess(Input.get());
auto *UO =
UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
OpLoc, CanOverflow, CurFPFeatureOverrides());
if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
!isa<ArrayType>(UO->getType().getDesugaredType(Context)))
ExprEvalContexts.back().PossibleDerefs.insert(UO);
// Convert the result back to a half vector.
if (ConvertHalfVec)
return convertVector(UO, Context.HalfTy, *this);
return UO;
}
/// Determine whether the given expression is a qualified member
/// access expression, of a form that could be turned into a pointer to member
/// with the address-of operator.
bool Sema::isQualifiedMemberAccess(Expr *E) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (!DRE->getQualifier())
return false;
ValueDecl *VD = DRE->getDecl();
if (!VD->isCXXClassMember())
return false;
if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
return true;
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
return Method->isInstance();
return false;
}
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
if (!ULE->getQualifier())
return false;
for (NamedDecl *D : ULE->decls()) {
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Method->isInstance())
return true;
} else {
// Overload set does not contain methods.
break;
}
}
return false;
}
return false;
}
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
UnaryOperatorKind Opc, Expr *Input) {
// First things first: handle placeholders so that the
// overloaded-operator check considers the right type.
if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
// Increment and decrement of pseudo-object references.
if (pty->getKind() == BuiltinType::PseudoObject &&
UnaryOperator::isIncrementDecrementOp(Opc))
return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
// extension is always a builtin operator.
if (Opc == UO_Extension)
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
// & gets special logic for several kinds of placeholder.
// The builtin code knows what to do.
if (Opc == UO_AddrOf &&
(pty->getKind() == BuiltinType::Overload ||
pty->getKind() == BuiltinType::UnknownAny ||
pty->getKind() == BuiltinType::BoundMember))
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
// Anything else needs to be handled now.
ExprResult Result = CheckPlaceholderExpr(Input);
if (Result.isInvalid()) return ExprError();
Input = Result.get();
}
if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
!(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
// Find all of the overloaded operators visible from this point.
UnresolvedSet<16> Functions;
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
if (S && OverOp != OO_None)
LookupOverloadedOperatorName(OverOp, S, Functions);
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
}
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
}
// Unary Operators. 'Tok' is the token for the operator.
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, Expr *Input) {
return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
}
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
LabelDecl *TheDecl) {
TheDecl->markUsed(Context);
// Create the AST node. The address of a label always has type 'void*'.
return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
Context.getPointerType(Context.VoidTy));
}
void Sema::ActOnStartStmtExpr() {
PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
}
void Sema::ActOnStmtExprError() {
// Note that function is also called by TreeTransform when leaving a
// StmtExpr scope without rebuilding anything.
DiscardCleanupsInEvaluationContext();
PopExpressionEvaluationContext();
}
ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc) {
return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
}
ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc, unsigned TemplateDepth) {
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
if (hasAnyUnrecoverableErrorsInThisFunction())
DiscardCleanupsInEvaluationContext();
assert(!Cleanup.exprNeedsCleanups() &&
"cleanups within StmtExpr not correctly bound!");
PopExpressionEvaluationContext();
// FIXME: there are a variety of strange constraints to enforce here, for
// example, it is not possible to goto into a stmt expression apparently.
// More semantic analysis is needed.
// If there are sub-stmts in the compound stmt, take the type of the last one
// as the type of the stmtexpr.
QualType Ty = Context.VoidTy;
bool StmtExprMayBindToTemp = false;
if (!Compound->body_empty()) {
// For GCC compatibility we get the last Stmt excluding trailing NullStmts.
if (const auto *LastStmt =
dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
if (const Expr *Value = LastStmt->getExprStmt()) {
StmtExprMayBindToTemp = true;
Ty = Value->getType();
}
}
}
// FIXME: Check that expression type is complete/non-abstract; statement
// expressions are not lvalues.
Expr *ResStmtExpr =
new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
if (StmtExprMayBindToTemp)
return MaybeBindToTemporary(ResStmtExpr);
return ResStmtExpr;
}
ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
if (ER.isInvalid())
return ExprError();
// Do function/array conversion on the last expression, but not
// lvalue-to-rvalue. However, initialize an unqualified type.
ER = DefaultFunctionArrayConversion(ER.get());
if (ER.isInvalid())
return ExprError();
Expr *E = ER.get();
if (E->isTypeDependent())
return E;
// In ARC, if the final expression ends in a consume, splice
// the consume out and bind it later. In the alternate case
// (when dealing with a retainable type), the result
// initialization will create a produce. In both cases the
// result will be +1, and we'll need to balance that out with
// a bind.
auto *Cast = dyn_cast<ImplicitCastExpr>(E);
if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
return Cast->getSubExpr();
// FIXME: Provide a better location for the initialization.
return PerformCopyInitialization(
InitializedEntity::InitializeStmtExprResult(
E->getBeginLoc(), E->getType().getUnqualifiedType()),
SourceLocation(), E);
}
ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
TypeSourceInfo *TInfo,
ArrayRef<OffsetOfComponent> Components,
SourceLocation RParenLoc) {
QualType ArgTy = TInfo->getType();
bool Dependent = ArgTy->isDependentType();
SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
// We must have at least one component that refers to the type, and the first
// one is known to be a field designator. Verify that the ArgTy represents
// a struct/union/class.
if (!Dependent && !ArgTy->isRecordType())
return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
<< ArgTy << TypeRange);
// Type must be complete per C99 7.17p3 because a declaring a variable
// with an incomplete type would be ill-formed.
if (!Dependent
&& RequireCompleteType(BuiltinLoc, ArgTy,
diag::err_offsetof_incomplete_type, TypeRange))
return ExprError();
bool DidWarnAboutNonPOD = false;
QualType CurrentType = ArgTy;
SmallVector<OffsetOfNode, 4> Comps;
SmallVector<Expr*, 4> Exprs;
for (const OffsetOfComponent &OC : Components) {
if (OC.isBrackets) {
// Offset of an array sub-field. TODO: Should we allow vector elements?
if (!CurrentType->isDependentType()) {
const ArrayType *AT = Context.getAsArrayType(CurrentType);
if(!AT)
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
<< CurrentType);
CurrentType = AT->getElementType();
} else
CurrentType = Context.DependentTy;
ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
if (IdxRval.isInvalid())
return ExprError();
Expr *Idx = IdxRval.get();
// The expression must be an integral expression.
// FIXME: An integral constant expression?
if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
!Idx->getType()->isIntegerType())
return ExprError(
Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
<< Idx->getSourceRange());
// Record this array index.
Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
Exprs.push_back(Idx);
continue;
}
// Offset of a field.
if (CurrentType->isDependentType()) {
// We have the offset of a field, but we can't look into the dependent
// type. Just record the identifier of the field.
Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
CurrentType = Context.DependentTy;
continue;
}
// We need to have a complete type to look into.
if (RequireCompleteType(OC.LocStart, CurrentType,
diag::err_offsetof_incomplete_type))
return ExprError();
// Look for the designated field.
const RecordType *RC = CurrentType->getAs<RecordType>();
if (!RC)
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
<< CurrentType);
RecordDecl *RD = RC->getDecl();
// C++ [lib.support.types]p5:
// The macro offsetof accepts a restricted set of type arguments in this
// International Standard. type shall be a POD structure or a POD union
// (clause 9).
// C++11 [support.types]p4:
// If type is not a standard-layout class (Clause 9), the results are
// undefined.
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
unsigned DiagID =
LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
: diag::ext_offsetof_non_pod_type;
if (!IsSafe && !DidWarnAboutNonPOD &&
DiagRuntimeBehavior(BuiltinLoc, nullptr,
PDiag(DiagID)
<< SourceRange(Components[0].LocStart, OC.LocEnd)
<< CurrentType))
DidWarnAboutNonPOD = true;
}
// Look for the field.
LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
LookupQualifiedName(R, RD);
FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
IndirectFieldDecl *IndirectMemberDecl = nullptr;
if (!MemberDecl) {
if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
MemberDecl = IndirectMemberDecl->getAnonField();
}
if (!MemberDecl)
return ExprError(Diag(BuiltinLoc, diag::err_no_member)
<< OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
OC.LocEnd));
// C99 7.17p3:
// (If the specified member is a bit-field, the behavior is undefined.)
//
// We diagnose this as an error.
if (MemberDecl->isBitField()) {
Diag(OC.LocEnd, diag::err_offsetof_bitfield)
<< MemberDecl->getDeclName()
<< SourceRange(BuiltinLoc, RParenLoc);
Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
return ExprError();
}
RecordDecl *Parent = MemberDecl->getParent();
if (IndirectMemberDecl)
Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
// If the member was found in a base class, introduce OffsetOfNodes for
// the base class indirections.
CXXBasePaths Paths;
if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
Paths)) {
if (Paths.getDetectedVirtual()) {
Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
<< MemberDecl->getDeclName()
<< SourceRange(BuiltinLoc, RParenLoc);
return ExprError();
}
CXXBasePath &Path = Paths.front();
for (const CXXBasePathElement &B : Path)
Comps.push_back(OffsetOfNode(B.Base));
}
if (IndirectMemberDecl) {
for (auto *FI : IndirectMemberDecl->chain()) {
assert(isa<FieldDecl>(FI));
Comps.push_back(OffsetOfNode(OC.LocStart,
cast<FieldDecl>(FI), OC.LocEnd));
}
} else
Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
CurrentType = MemberDecl->getType().getNonReferenceType();
}
return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
Comps, Exprs, RParenLoc);
}
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
ParsedType ParsedArgTy,
ArrayRef<OffsetOfComponent> Components,
SourceLocation RParenLoc) {
TypeSourceInfo *ArgTInfo;
QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
if (ArgTy.isNull())
return ExprError();
if (!ArgTInfo)
ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
}
ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
Expr *CondExpr,
Expr *LHSExpr, Expr *RHSExpr,
SourceLocation RPLoc) {
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
QualType resType;
bool CondIsTrue = false;
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
resType = Context.DependentTy;
} else {
// The conditional expression is required to be a constant expression.
llvm::APSInt condEval(32);
ExprResult CondICE
= VerifyIntegerConstantExpression(CondExpr, &condEval,
diag::err_typecheck_choose_expr_requires_constant, false);
if (CondICE.isInvalid())
return ExprError();
CondExpr = CondICE.get();
CondIsTrue = condEval.getZExtValue();
// If the condition is > zero, then the AST type is the same as the LHSExpr.
Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
resType = ActiveExpr->getType();
VK = ActiveExpr->getValueKind();
OK = ActiveExpr->getObjectKind();
}
return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
resType, VK, OK, RPLoc, CondIsTrue);
}
//===----------------------------------------------------------------------===//
// Clang Extensions.
//===----------------------------------------------------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is started.
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
if (LangOpts.CPlusPlus) {
MangleNumberingContext *MCtx;
Decl *ManglingContextDecl;
std::tie(MCtx, ManglingContextDecl) =
getCurrentMangleNumberContext(Block->getDeclContext());
if (MCtx) {
unsigned ManglingNumber = MCtx->getManglingNumber(Block);
Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
}
}
PushBlockScope(CurScope, Block);
CurContext->addDecl(Block);
if (CurScope)
PushDeclContext(CurScope, Block);
else
CurContext = Block;
getCurBlock()->HasImplicitReturnType = true;
// Enter a new evaluation context to insulate the block from any
// cleanups from the enclosing full-expression.
PushExpressionEvaluationContext(
ExpressionEvaluationContext::PotentiallyEvaluated);
}
void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
Scope *CurScope) {
assert(ParamInfo.getIdentifier() == nullptr &&
"block-id should have no identifier!");
assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext);
BlockScopeInfo *CurBlock = getCurBlock();
TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
QualType T = Sig->getType();
// FIXME: We should allow unexpanded parameter packs here, but that would,
// in turn, make the block expression contain unexpanded parameter packs.
if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
// Drop the parameters.
FunctionProtoType::ExtProtoInfo EPI;
EPI.HasTrailingReturn = false;
EPI.TypeQuals.addConst();
T = Context.getFunctionType(Context.DependentTy, None, EPI);
Sig = Context.getTrivialTypeSourceInfo(T);
}
// GetTypeForDeclarator always produces a function type for a block
// literal signature. Furthermore, it is always a FunctionProtoType
// unless the function was written with a typedef.
assert(T->isFunctionType() &&
"GetTypeForDeclarator made a non-function block signature");
// Look for an explicit signature in that function type.
FunctionProtoTypeLoc ExplicitSignature;
if ((ExplicitSignature = Sig->getTypeLoc()
.getAsAdjusted<FunctionProtoTypeLoc>())) {
// Check whether that explicit signature was synthesized by
// GetTypeForDeclarator. If so, don't save that as part of the
// written signature.
if (ExplicitSignature.getLocalRangeBegin() ==
ExplicitSignature.getLocalRangeEnd()) {
// This would be much cheaper if we stored TypeLocs instead of
// TypeSourceInfos.
TypeLoc Result = ExplicitSignature.getReturnLoc();
unsigned Size = Result.getFullDataSize();
Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
Sig->getTypeLoc().initializeFullCopy(Result, Size);
ExplicitSignature = FunctionProtoTypeLoc();
}
}
CurBlock->TheDecl->setSignatureAsWritten(Sig);
CurBlock->FunctionType = T;
const FunctionType *Fn = T->getAs<FunctionType>();
QualType RetTy = Fn->getReturnType();
bool isVariadic =
(isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
CurBlock->TheDecl->setIsVariadic(isVariadic);
// Context.DependentTy is used as a placeholder for a missing block
// return type. TODO: what should we do with declarators like:
// ^ * { ... }
// If the answer is "apply template argument deduction"....
if (RetTy != Context.DependentTy) {
CurBlock->ReturnType = RetTy;
CurBlock->TheDecl->setBlockMissingReturnType(false);
CurBlock->HasImplicitReturnType = false;
}
// Push block parameters from the declarator if we had them.
SmallVector<ParmVarDecl*, 8> Params;
if (ExplicitSignature) {
for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
ParmVarDecl *Param = ExplicitSignature.getParam(I);
if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
!Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
// Diagnose this as an extension in C17 and earlier.
if (!getLangOpts().C2x)
Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
}
Params.push_back(Param);
}
// Fake up parameter variables if we have a typedef, like
// ^ fntype { ... }
} else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
for (const auto &I : Fn->param_types()) {
ParmVarDecl *Param = BuildParmVarDeclForTypedef(
CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
Params.push_back(Param);
}
}
// Set the parameters on the block decl.
if (!Params.empty()) {
CurBlock->TheDecl->setParams(Params);
CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
/*CheckParameterNames=*/false);
}
// Finally we can process decl attributes.
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
// Put the parameter variables in scope.
for (auto AI : CurBlock->TheDecl->parameters()) {
AI->setOwningFunction(CurBlock->TheDecl);
// If this has an identifier, add it to the scope stack.
if (AI->getIdentifier()) {
CheckShadow(CurBlock->TheScope, AI);
PushOnScopeChains(AI, CurBlock->TheScope);
}
}
}
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
// Leave the expression-evaluation context.
DiscardCleanupsInEvaluationContext();
PopExpressionEvaluationContext();
// Pop off CurBlock, handle nested blocks.
PopDeclContext();
PopFunctionScopeInfo();
}
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
Stmt *Body, Scope *CurScope) {
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
// Leave the expression-evaluation context.
if (hasAnyUnrecoverableErrorsInThisFunction())
DiscardCleanupsInEvaluationContext();
assert(!Cleanup.exprNeedsCleanups() &&
"cleanups within block not correctly bound!");
PopExpressionEvaluationContext();
BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
BlockDecl *BD = BSI->TheDecl;
if (BSI->HasImplicitReturnType)
deduceClosureReturnType(*BSI);
QualType RetTy = Context.VoidTy;
if (!BSI->ReturnType.isNull())
RetTy = BSI->ReturnType;
bool NoReturn = BD->hasAttr<NoReturnAttr>();
QualType BlockTy;
// If the user wrote a function type in some form, try to use that.
if (!BSI->FunctionType.isNull()) {
const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
FunctionType::ExtInfo Ext = FTy->getExtInfo();
if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
// Turn protoless block types into nullary block types.
if (isa<FunctionNoProtoType>(FTy)) {
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = Ext;
BlockTy = Context.getFunctionType(RetTy, None, EPI);
// Otherwise, if we don't need to change anything about the function type,
// preserve its sugar structure.
} else if (FTy->getReturnType() == RetTy &&
(!NoReturn || FTy->getNoReturnAttr())) {
BlockTy = BSI->FunctionType;
// Otherwise, make the minimal modifications to the function type.
} else {
const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
EPI.TypeQuals = Qualifiers();
EPI.ExtInfo = Ext;
BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
}
// If we don't have a function type, just build one from nothing.
} else {
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
BlockTy = Context.getFunctionType(RetTy, None, EPI);
}
DiagnoseUnusedParameters(BD->parameters());
BlockTy = Context.getBlockPointerType(BlockTy);
// If needed, diagnose invalid gotos and switches in the block.
if (getCurFunction()->NeedsScopeChecking() &&
!PP.isCodeCompletionEnabled())
DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
BD->setBody(cast<CompoundStmt>(Body));
if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
DiagnoseUnguardedAvailabilityViolations(BD);
// Try to apply the named return value optimization. We have to check again
// if we can do this, though, because blocks keep return statements around
// to deduce an implicit return type.
if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
!BD->isDependentContext())
computeNRVO(Body, BSI);
if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
RetTy.hasNonTrivialToPrimitiveCopyCUnion())
checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
NTCUK_Destruct|NTCUK_Copy);
PopDeclContext();
// Pop the block scope now but keep it alive to the end of this function.
AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
// Set the captured variables on the block.
SmallVector<BlockDecl::Capture, 4> Captures;
for (Capture &Cap : BSI->Captures) {
if (Cap.isInvalid() || Cap.isThisCapture())
continue;
VarDecl *Var = Cap.getVariable();
Expr *CopyExpr = nullptr;
if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
if (const RecordType *Record =
Cap.getCaptureType()->getAs<RecordType>()) {
// The capture logic needs the destructor, so make sure we mark it.
// Usually this is unnecessary because most local variables have
// their destructors marked at declaration time, but parameters are
// an exception because it's technically only the call site that
// actually requires the destructor.
if (isa<ParmVarDecl>(Var))
FinalizeVarWithDestructor(Var, Record);
// Enter a separate potentially-evaluated context while building block
// initializers to isolate their cleanups from those of the block
// itself.
// FIXME: Is this appropriate even when the block itself occurs in an
// unevaluated operand?
EnterExpressionEvaluationContext EvalContext(
*this, ExpressionEvaluationContext::PotentiallyEvaluated);
SourceLocation Loc = Cap.getLocation();
ExprResult Result = BuildDeclarationNameExpr(
CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
// According to the blocks spec, the capture of a variable from
// the stack requires a const copy constructor. This is not true
// of the copy/move done to move a __block variable to the heap.
if (!Result.isInvalid() &&
!Result.get()->getType().isConstQualified()) {
Result = ImpCastExprToType(Result.get(),
Result.get()->getType().withConst(),
CK_NoOp, VK_LValue);
}
if (!Result.isInvalid()) {
Result = PerformCopyInitialization(
InitializedEntity::InitializeBlock(Var->getLocation(),
Cap.getCaptureType(), false),
Loc, Result.get());
}
// Build a full-expression copy expression if initialization
// succeeded and used a non-trivial constructor. Recover from
// errors by pretending that the copy isn't necessary.
if (!Result.isInvalid() &&
!cast<CXXConstructExpr>(Result.get())->getConstructor()
->isTrivial()) {
Result = MaybeCreateExprWithCleanups(Result);
CopyExpr = Result.get();
}
}
}
BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
CopyExpr);
Captures.push_back(NewCap);
}
BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
// If the block isn't obviously global, i.e. it captures anything at
// all, then we need to do a few things in the surrounding context:
if (Result->getBlockDecl()->hasCaptures()) {
// First, this expression has a new cleanup object.
ExprCleanupObjects.push_back(Result->getBlockDecl());
Cleanup.setExprNeedsCleanups(true);
// It also gets a branch-protected scope if any of the captured
// variables needs destruction.
for (const auto &CI : Result->getBlockDecl()->captures()) {
const VarDecl *var = CI.getVariable();
if (var->getType().isDestructedType() != QualType::DK_none) {
setFunctionHasBranchProtectedScope();
break;
}
}
}
if (getCurFunction())
getCurFunction()->addBlock(BD);
return Result;
}
ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
SourceLocation RPLoc) {
TypeSourceInfo *TInfo;
GetTypeFromParser(Ty, &TInfo);
return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
}
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
Expr *E, TypeSourceInfo *TInfo,
SourceLocation RPLoc) {
Expr *OrigExpr = E;
bool IsMS = false;
// CUDA device code does not support varargs.
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
CUDAFunctionTarget T = IdentifyCUDATarget(F);
if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
}
}
// NVPTX does not support va_arg expression.
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
Context.getTargetInfo().getTriple().isNVPTX())
targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
// It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
// as Microsoft ABI on an actual Microsoft platform, where
// __builtin_ms_va_list and __builtin_va_list are the same.)
if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
QualType MSVaListType = Context.getBuiltinMSVaListType();
if (Context.hasSameType(MSVaListType, E->getType())) {
if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
return ExprError();
IsMS = true;
}
}
// Get the va_list type
QualType VaListType = Context.getBuiltinVaListType();
if (!IsMS) {
if (VaListType->isArrayType()) {
// Deal with implicit array decay; for example, on x86-64,
// va_list is an array, but it's supposed to decay to
// a pointer for va_arg.
VaListType = Context.getArrayDecayedType(VaListType);
// Make sure the input expression also decays appropriately.
ExprResult Result = UsualUnaryConversions(E);
if (Result.isInvalid())
return ExprError();
E = Result.get();
} else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
// If va_list is a record type and we are compiling in C++ mode,
// check the argument using reference binding.
InitializedEntity Entity = InitializedEntity::InitializeParameter(
Context, Context.getLValueReferenceType(VaListType), false);
ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
if (Init.isInvalid())
return ExprError();
E = Init.getAs<Expr>();
} else {
// Otherwise, the va_list argument must be an l-value because
// it is modified by va_arg.
if (!E->isTypeDependent() &&
CheckForModifiableLvalue(E, BuiltinLoc, *this))
return ExprError();
}
}
if (!IsMS && !E->isTypeDependent() &&
!Context.hasSameType(VaListType, E->getType()))
return ExprError(
Diag(E->getBeginLoc(),
diag::err_first_argument_to_va_arg_not_of_type_va_list)
<< OrigExpr->getType() << E->getSourceRange());
if (!TInfo->getType()->isDependentType()) {
if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
diag::err_second_parameter_to_va_arg_incomplete,
TInfo->getTypeLoc()))
return ExprError();
if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
TInfo->getType(),
diag::err_second_parameter_to_va_arg_abstract,
TInfo->getTypeLoc()))
return ExprError();
if (!TInfo->getType().isPODType(Context)) {
Diag(TInfo->getTypeLoc().getBeginLoc(),
TInfo->getType()->isObjCLifetimeType()
? diag::warn_second_parameter_to_va_arg_ownership_qualified
: diag::warn_second_parameter_to_va_arg_not_pod)
<< TInfo->getType()
<< TInfo->getTypeLoc().getSourceRange();
}
// Check for va_arg where arguments of the given type will be promoted
// (i.e. this va_arg is guaranteed to have undefined behavior).
QualType PromoteType;
if (TInfo->getType()->isPromotableIntegerType()) {
PromoteType = Context.getPromotedIntegerType(TInfo->getType());
if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
PromoteType = QualType();
}
if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
PromoteType = Context.DoubleTy;
if (!PromoteType.isNull())
DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
<< TInfo->getType()
<< PromoteType
<< TInfo->getTypeLoc().getSourceRange());
}
QualType T = TInfo->getType().getNonLValueExprType(Context);
return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
}
ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
// The type of __null will be int or long, depending on the size of
// pointers on the target.
QualType Ty;
unsigned pw = Context.getTargetInfo().getPointerWidth(0);
if (pw == Context.getTargetInfo().getIntWidth())
Ty = Context.IntTy;
else if (pw == Context.getTargetInfo().getLongWidth())
Ty = Context.LongTy;
else if (pw == Context.getTargetInfo().getLongLongWidth())
Ty = Context.LongLongTy;
else {
llvm_unreachable("I don't know size of pointer!");
}
return new (Context) GNUNullExpr(Ty, TokenLoc);
}
ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
SourceLocation BuiltinLoc,
SourceLocation RPLoc) {
return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
}
ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
SourceLocation BuiltinLoc,
SourceLocation RPLoc,
DeclContext *ParentContext) {
return new (Context)
SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
}
bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
bool Diagnose) {
if (!getLangOpts().ObjC)
return false;
const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
// Ignore any parens, implicit casts (should only be
// array-to-pointer decays), and not-so-opaque values. The last is
// important for making this trigger for property assignments.
Expr *SrcExpr = Exp->IgnoreParenImpCasts();
if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
if (OV->getSourceExpr())
SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
if (!PT->isObjCIdType() &&
!(ID && ID->getIdentifier()->isStr("NSString")))
return false;
if (!SL->isAscii())
return false;
if (Diagnose) {
Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
<< /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
}
return true;
}
if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
isa<CXXBoolLiteralExpr>(SrcExpr)) &&
!SrcExpr->isNullPointerConstant(
getASTContext(), Expr::NPC_NeverValueDependent)) {
if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
return false;
if (Diagnose) {
Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
<< /*number*/1
<< FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
Expr *NumLit =
BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
if (NumLit)
Exp = NumLit;
}
return true;
}
return false;
}
static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
const Expr *SrcExpr) {
if (!DstType->isFunctionPointerType() ||
!SrcExpr->getType()->isFunctionType())
return false;
auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
if (!DRE)
return false;
auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
if (!FD)
return false;
return !S.checkAddressOfFunctionIsAvailable(FD,
/*Complain=*/true,
SrcExpr->getBeginLoc());
}
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, AssignmentAction Action,
bool *Complained) {
if (Complained)
*Complained = false;
// Decode the result (notice that AST's are still created for extensions).
bool CheckInferredResultType = false;
bool isInvalid = false;
unsigned DiagKind = 0;
ConversionFixItGenerator ConvHints;
bool MayHaveConvFixit = false;
bool MayHaveFunctionDiff = false;
const ObjCInterfaceDecl *IFace = nullptr;
const ObjCProtocolDecl *PDecl = nullptr;
switch (ConvTy) {
case Compatible:
DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
return false;
case PointerToInt:
if (getLangOpts().CPlusPlus) {
DiagKind = diag::err_typecheck_convert_pointer_int;
isInvalid = true;
} else {
DiagKind = diag::ext_typecheck_convert_pointer_int;
}
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
MayHaveConvFixit = true;
break;
case IntToPointer:
if (getLangOpts().CPlusPlus) {
DiagKind = diag::err_typecheck_convert_int_pointer;
isInvalid = true;
} else {
DiagKind = diag::ext_typecheck_convert_int_pointer;
}
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
MayHaveConvFixit = true;
break;
case IncompatibleFunctionPointer:
if (getLangOpts().CPlusPlus) {
DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
isInvalid = true;
} else {
DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
}
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
MayHaveConvFixit = true;
break;
case IncompatiblePointer:
if (Action == AA_Passing_CFAudited) {
DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
} else if (getLangOpts().CPlusPlus) {
DiagKind = diag::err_typecheck_convert_incompatible_pointer;
isInvalid = true;
} else {
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
}
CheckInferredResultType = DstType->isObjCObjectPointerType() &&
SrcType->isObjCObjectPointerType();
if (!CheckInferredResultType) {
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
} else if (CheckInferredResultType) {
SrcType = SrcType.getUnqualifiedType();
DstType = DstType.getUnqualifiedType();
}
MayHaveConvFixit = true;
break;
case IncompatiblePointerSign:
if (getLangOpts().CPlusPlus) {
DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
isInvalid = true;
} else {
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
}
break;
case FunctionVoidPointer:
if (getLangOpts().CPlusPlus) {
DiagKind = diag::err_typecheck_convert_pointer_void_func;
isInvalid = true;
} else {
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
}
break;
case IncompatiblePointerDiscardsQualifiers: {
// Perform array-to-pointer decay if necessary.
if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
isInvalid = true;
Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
Qualifiers rhq = DstType->getPointeeType().getQualifiers();
if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
DiagKind = diag::err_typecheck_incompatible_address_space;
break;
} else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
DiagKind = diag::err_typecheck_incompatible_ownership;
break;
}
llvm_unreachable("unknown error case for discarding qualifiers!");
// fallthrough
}
case CompatiblePointerDiscardsQualifiers:
// If the qualifiers lost were because we were applying the
// (deprecated) C++ conversion from a string literal to a char*
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
// Ideally, this check would be performed in
// checkPointerTypesForAssignment. However, that would require a
// bit of refactoring (so that the second argument is an
// expression, rather than a type), which should be done as part
// of a larger effort to fix checkPointerTypesForAssignment for
// C++ semantics.
if (getLangOpts().CPlusPlus &&
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
return false;
if (getLangOpts().CPlusPlus) {
DiagKind = diag::err_typecheck_convert_discards_qualifiers;
isInvalid = true;
} else {
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
}
break;
case IncompatibleNestedPointerQualifiers:
if (getLangOpts().CPlusPlus) {
isInvalid = true;
DiagKind = diag::err_nested_pointer_qualifier_mismatch;
} else {
DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
}
break;
case IncompatibleNestedPointerAddressSpaceMismatch:
DiagKind = diag::err_typecheck_incompatible_nested_address_space;
isInvalid = true;
break;
case IntToBlockPointer:
DiagKind = diag::err_int_to_block_pointer;
isInvalid = true;
break;
case IncompatibleBlockPointer:
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
isInvalid = true;
break;
case IncompatibleObjCQualifiedId: {
if (SrcType->isObjCQualifiedIdType()) {
const ObjCObjectPointerType *srcOPT =
SrcType->castAs<ObjCObjectPointerType>();
for (auto *srcProto : srcOPT->quals()) {
PDecl = srcProto;
break;
}
if (const ObjCInterfaceType *IFaceT =
DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
IFace = IFaceT->getDecl();
}
else if (DstType->isObjCQualifiedIdType()) {
const ObjCObjectPointerType *dstOPT =
DstType->castAs<ObjCObjectPointerType>();
for (auto *dstProto : dstOPT->quals()) {
PDecl = dstProto;
break;
}
if (const ObjCInterfaceType *IFaceT =
SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
IFace = IFaceT->getDecl();
}
if (getLangOpts().CPlusPlus) {
DiagKind = diag::err_incompatible_qualified_id;
isInvalid = true;
} else {
DiagKind = diag::warn_incompatible_qualified_id;
}
break;
}
case IncompatibleVectors:
if (getLangOpts().CPlusPlus) {
DiagKind = diag::err_incompatible_vectors;
isInvalid = true;
} else {
DiagKind = diag::warn_incompatible_vectors;
}
break;
case IncompatibleObjCWeakRef:
DiagKind = diag::err_arc_weak_unavailable_assign;
isInvalid = true;
break;
case Incompatible:
if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
if (Complained)
*Complained = true;
return true;
}
DiagKind = diag::err_typecheck_convert_incompatible;
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
MayHaveConvFixit = true;
isInvalid = true;
MayHaveFunctionDiff = true;
break;
}
QualType FirstType, SecondType;
switch (Action) {
case AA_Assigning:
case AA_Initializing:
// The destination type comes first.
FirstType = DstType;
SecondType = SrcType;
break;
case AA_Returning:
case AA_Passing:
case AA_Passing_CFAudited:
case AA_Converting:
case AA_Sending:
case AA_Casting:
// The source type comes first.
FirstType = SrcType;
SecondType = DstType;
break;
}
PartialDiagnostic FDiag = PDiag(DiagKind);
if (Action == AA_Passing_CFAudited)
FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
else
FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
// If we can fix the conversion, suggest the FixIts.
if (!ConvHints.isNull()) {
for (FixItHint &H : ConvHints.Hints)
FDiag << H;
}
if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
if (MayHaveFunctionDiff)
HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
Diag(Loc, FDiag);
if ((DiagKind == diag::warn_incompatible_qualified_id ||
DiagKind == diag::err_incompatible_qualified_id) &&
PDecl && IFace && !IFace->hasDefinition())
Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
<< IFace << PDecl;
if (SecondType == Context.OverloadTy)
NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
FirstType, /*TakingAddress=*/true);
if (CheckInferredResultType)
EmitRelatedResultTypeNote(SrcExpr);
if (Action == AA_Returning && ConvTy == IncompatiblePointer)
EmitRelatedResultTypeNoteForReturn(DstType);
if (Complained)
*Complained = true;
return isInvalid;
}
ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
llvm::APSInt *Result) {
class SimpleICEDiagnoser : public VerifyICEDiagnoser {
public:
SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_ice_not_integral)
<< T << S.LangOpts.CPlusPlus;
}
SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
}
} Diagnoser;
return VerifyIntegerConstantExpression(E, Result, Diagnoser);
}
ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
llvm::APSInt *Result,
unsigned DiagID,
bool AllowFold) {
class IDDiagnoser : public VerifyICEDiagnoser {
unsigned DiagID;
public:
IDDiagnoser(unsigned DiagID)
: VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
return S.Diag(Loc, DiagID);
}
} Diagnoser(DiagID);
return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
}
Sema::SemaDiagnosticBuilder
Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
QualType T) {
return diagnoseNotICE(S, Loc);
}
Sema::SemaDiagnosticBuilder
Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
}
ExprResult
Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
VerifyICEDiagnoser &Diagnoser,
bool AllowFold) {
SourceLocation DiagLoc = E->getBeginLoc();
if (getLangOpts().CPlusPlus11) {
// C++11 [expr.const]p5:
// If an expression of literal class type is used in a context where an
// integral constant expression is required, then that class type shall
// have a single non-explicit conversion function to an integral or
// unscoped enumeration type
ExprResult Converted;
class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
VerifyICEDiagnoser &BaseDiagnoser;
public:
CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
: ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
BaseDiagnoser.Suppress, true),
BaseDiagnoser(BaseDiagnoser) {}
SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
}
SemaDiagnosticBuilder diagnoseIncomplete(
Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
}
SemaDiagnosticBuilder diagnoseExplicitConv(
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
}
SemaDiagnosticBuilder noteExplicitConv(
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaDiagnosticBuilder diagnoseAmbiguous(
Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
}
SemaDiagnosticBuilder noteAmbiguous(
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaDiagnosticBuilder diagnoseConversion(
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
llvm_unreachable("conversion functions are permitted");
}
} ConvertDiagnoser(Diagnoser);
Converted = PerformContextualImplicitConversion(DiagLoc, E,
ConvertDiagnoser);
if (Converted.isInvalid())
return Converted;
E = Converted.get();
if (!E->getType()->isIntegralOrUnscopedEnumerationType())
return ExprError();
} else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
// An ICE must be of integral or unscoped enumeration type.
if (!Diagnoser.Suppress)
Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
<< E->getSourceRange();
return ExprError();
}
ExprResult RValueExpr = DefaultLvalueConversion(E);
if (RValueExpr.isInvalid())
return ExprError();
E = RValueExpr.get();
// Circumvent ICE checking in C++11 to avoid evaluating the expression twice
// in the non-ICE case.
if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
if (Result)
*Result = E->EvaluateKnownConstIntCheckOverflow(Context);
if (!isa<ConstantExpr>(E))
E = ConstantExpr::Create(Context, E);
return E;
}
Expr::EvalResult EvalResult;
SmallVector<PartialDiagnosticAt, 8> Notes;
EvalResult.Diag = &Notes;
// Try to evaluate the expression, and produce diagnostics explaining why it's
// not a constant expression as a side-effect.
bool Folded =
E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
if (!isa<ConstantExpr>(E))
E = ConstantExpr::Create(Context, E, EvalResult.Val);
// In C++11, we can rely on diagnostics being produced for any expression
// which is not a constant expression. If no diagnostics were produced, then
// this is a constant expression.
if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
if (Result)
*Result = EvalResult.Val.getInt();
return E;
}
// If our only note is the usual "invalid subexpression" note, just point
// the caret at its location rather than producing an essentially
// redundant note.
if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
diag::note_invalid_subexpr_in_const_expr) {
DiagLoc = Notes[0].first;
Notes.clear();
}
if (!Folded || !AllowFold) {
if (!Diagnoser.Suppress) {
Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
for (const PartialDiagnosticAt &Note : Notes)
Diag(Note.first, Note.second);
}
return ExprError();
}
Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
for (const PartialDiagnosticAt &Note : Notes)
Diag(Note.first, Note.second);
if (Result)
*Result = EvalResult.Val.getInt();
return E;
}
namespace {
// Handle the case where we conclude a expression which we speculatively
// considered to be unevaluated is actually evaluated.
class TransformToPE : public TreeTransform<TransformToPE> {
typedef TreeTransform<TransformToPE> BaseTransform;
public:
TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
// Make sure we redo semantic analysis
bool AlwaysRebuild() { return true; }
bool ReplacingOriginal() { return true; }
// We need to special-case DeclRefExprs referring to FieldDecls which
// are not part of a member pointer formation; normal TreeTransforming
// doesn't catch this case because of the way we represent them in the AST.
// FIXME: This is a bit ugly; is it really the best way to handle this
// case?
//
// Error on DeclRefExprs referring to FieldDecls.
ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
if (isa<FieldDecl>(E->getDecl()) &&
!SemaRef.isUnevaluatedContext())
return SemaRef.Diag(E->getLocation(),
diag::err_invalid_non_static_member_use)
<< E->getDecl() << E->getSourceRange();
return BaseTransform::TransformDeclRefExpr(E);
}
// Exception: filter out member pointer formation
ExprResult TransformUnaryOperator(UnaryOperator *E) {
if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
return E;
return BaseTransform::TransformUnaryOperator(E);
}
// The body of a lambda-expression is in a separate expression evaluation
// context so never needs to be transformed.
// FIXME: Ideally we wouldn't transform the closure type either, and would
// just recreate the capture expressions and lambda expression.
StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
return SkipLambdaBody(E, Body);
}
};
}
ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
assert(isUnevaluatedContext() &&
"Should only transform unevaluated expressions");
ExprEvalContexts.back().Context =
ExprEvalContexts[ExprEvalContexts.size()-2].Context;
if (isUnevaluatedContext())
return E;
return TransformToPE(*this).TransformExpr(E);
}
void
Sema::PushExpressionEvaluationContext(
ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
LambdaContextDecl, ExprContext);
Cleanup.reset();
if (!MaybeODRUseExprs.empty())
std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
}
void
Sema::PushExpressionEvaluationContext(
ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
}
namespace {
const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
if (E->getOpcode() == UO_Deref)
return CheckPossibleDeref(S, E->getSubExpr());
} else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
return CheckPossibleDeref(S, E->getBase());
} else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
return CheckPossibleDeref(S, E->getBase());
} else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
QualType Inner;
QualType Ty = E->getType();
if (const auto *Ptr = Ty->getAs<PointerType>())
Inner = Ptr->getPointeeType();
else if (const auto *Arr = S.Context.getAsArrayType(Ty))
Inner = Arr->getElementType();
else
return nullptr;
if (Inner->hasAttr(attr::NoDeref))
return E;
}
return nullptr;
}
} // namespace
void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
for (const Expr *E : Rec.PossibleDerefs) {
const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
if (DeclRef) {
const ValueDecl *Decl = DeclRef->getDecl();
Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
<< Decl->getName() << E->getSourceRange();
Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
} else {
Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
<< E->getSourceRange();
}
}
Rec.PossibleDerefs.clear();
}
/// Check whether E, which is either a discarded-value expression or an
/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
/// and if so, remove it from the list of volatile-qualified assignments that
/// we are going to warn are deprecated.
void Sema::CheckUnusedVolatileAssignment(Expr *E) {
if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
return;
// Note: ignoring parens here is not justified by the standard rules, but
// ignoring parentheses seems like a more reasonable approach, and this only
// drives a deprecation warning so doesn't affect conformance.
if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
if (BO->getOpcode() == BO_Assign) {
auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
LHSs.end());
}
}
}
ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
if (!E.isUsable() || !Decl || !Decl->isConsteval() || isConstantEvaluated() ||
RebuildingImmediateInvocation)
return E;
/// Opportunistically remove the callee from ReferencesToConsteval if we can.
/// It's OK if this fails; we'll also remove this in
/// HandleImmediateInvocations, but catching it here allows us to avoid
/// walking the AST looking for it in simple cases.
if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
if (auto *DeclRef =
dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
E = MaybeCreateExprWithCleanups(E);
ConstantExpr *Res = ConstantExpr::Create(
getASTContext(), E.get(),
ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
getASTContext()),
/*IsImmediateInvocation*/ true);
ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
return Res;
}
static void EvaluateAndDiagnoseImmediateInvocation(
Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
Expr::EvalResult Eval;
Eval.Diag = &Notes;
ConstantExpr *CE = Candidate.getPointer();
bool Result = CE->EvaluateAsConstantExpr(Eval, Expr::EvaluateForCodeGen,
SemaRef.getASTContext(), true);
if (!Result || !Notes.empty()) {
Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
InnerExpr = FunctionalCast->getSubExpr();
FunctionDecl *FD = nullptr;
if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
FD = cast<FunctionDecl>(Call->getCalleeDecl());
else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
FD = Call->getConstructor();
else
llvm_unreachable("unhandled decl kind");
assert(FD->isConsteval());
SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
for (auto &Note : Notes)
SemaRef.Diag(Note.first, Note.second);
return;
}
CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
}
static void RemoveNestedImmediateInvocation(
Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
struct ComplexRemove : TreeTransform<ComplexRemove> {
using Base = TreeTransform<ComplexRemove>;
llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
CurrentII;
ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
SmallVector<Sema::ImmediateInvocationCandidate,
4>::reverse_iterator Current)
: Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
void RemoveImmediateInvocation(ConstantExpr* E) {
auto It = std::find_if(CurrentII, IISet.rend(),
[E](Sema::ImmediateInvocationCandidate Elem) {
return Elem.getPointer() == E;
});
assert(It != IISet.rend() &&
"ConstantExpr marked IsImmediateInvocation should "
"be present");
It->setInt(1); // Mark as deleted
}
ExprResult TransformConstantExpr(ConstantExpr *E) {
if (!E->isImmediateInvocation())
return Base::TransformConstantExpr(E);
RemoveImmediateInvocation(E);
return Base::TransformExpr(E->getSubExpr());
}
/// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
/// we need to remove its DeclRefExpr from the DRSet.
ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
return Base::TransformCXXOperatorCallExpr(E);
}
/// Base::TransformInitializer skip ConstantExpr so we need to visit them
/// here.
ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
if (!Init)
return Init;
/// ConstantExpr are the first layer of implicit node to be removed so if
/// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
if (auto *CE = dyn_cast<ConstantExpr>(Init))
if (CE->isImmediateInvocation())
RemoveImmediateInvocation(CE);
return Base::TransformInitializer(Init, NotCopyInit);
}
ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
DRSet.erase(E);
return E;
}
bool AlwaysRebuild() { return false; }
bool ReplacingOriginal() { return true; }
bool AllowSkippingCXXConstructExpr() {
bool Res = AllowSkippingFirstCXXConstructExpr;
AllowSkippingFirstCXXConstructExpr = true;
return Res;
}
bool AllowSkippingFirstCXXConstructExpr = true;
} Transformer(SemaRef, Rec.ReferenceToConsteval,
Rec.ImmediateInvocationCandidates, It);
/// CXXConstructExpr with a single argument are getting skipped by
/// TreeTransform in some situtation because they could be implicit. This
/// can only occur for the top-level CXXConstructExpr because it is used
/// nowhere in the expression being transformed therefore will not be rebuilt.
/// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
/// skipping the first CXXConstructExpr.
if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
Transformer.AllowSkippingFirstCXXConstructExpr = false;
ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
assert(Res.isUsable());
Res = SemaRef.MaybeCreateExprWithCleanups(Res);
It->getPointer()->setSubExpr(Res.get());
}
static void
HandleImmediateInvocations(Sema &SemaRef,
Sema::ExpressionEvaluationContextRecord &Rec) {
if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
Rec.ReferenceToConsteval.size() == 0) ||
SemaRef.RebuildingImmediateInvocation)
return;
/// When we have more then 1 ImmediateInvocationCandidates we need to check
/// for nested ImmediateInvocationCandidates. when we have only 1 we only
/// need to remove ReferenceToConsteval in the immediate invocation.
if (Rec.ImmediateInvocationCandidates.size() > 1) {
/// Prevent sema calls during the tree transform from adding pointers that
/// are already in the sets.
llvm::SaveAndRestore<bool> DisableIITracking(
SemaRef.RebuildingImmediateInvocation, true);
/// Prevent diagnostic during tree transfrom as they are duplicates
Sema::TentativeAnalysisScope DisableDiag(SemaRef);
for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
It != Rec.ImmediateInvocationCandidates.rend(); It++)
if (!It->getInt())
RemoveNestedImmediateInvocation(SemaRef, Rec, It);
} else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
Rec.ReferenceToConsteval.size()) {
struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
bool VisitDeclRefExpr(DeclRefExpr *E) {
DRSet.erase(E);
return DRSet.size();
}
} Visitor(Rec.ReferenceToConsteval);
Visitor.TraverseStmt(
Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
}
for (auto CE : Rec.ImmediateInvocationCandidates)
if (!CE.getInt())
EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
for (auto DR : Rec.ReferenceToConsteval) {
auto *FD = cast<FunctionDecl>(DR->getDecl());
SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
<< FD;
SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
}
}
void Sema::PopExpressionEvaluationContext() {
ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
unsigned NumTypos = Rec.NumTypos;
if (!Rec.Lambdas.empty()) {
using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
(Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
unsigned D;
if (Rec.isUnevaluated()) {
// C++11 [expr.prim.lambda]p2:
// A lambda-expression shall not appear in an unevaluated operand
// (Clause 5).
D = diag::err_lambda_unevaluated_operand;
} else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
// C++1y [expr.const]p2:
// A conditional-expression e is a core constant expression unless the
// evaluation of e, following the rules of the abstract machine, would
// evaluate [...] a lambda-expression.
D = diag::err_lambda_in_constant_expression;
} else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
// C++17 [expr.prim.lamda]p2:
// A lambda-expression shall not appear [...] in a template-argument.
D = diag::err_lambda_in_invalid_context;
} else
llvm_unreachable("Couldn't infer lambda error message.");
for (const auto *L : Rec.Lambdas)
Diag(L->getBeginLoc(), D);
}
}
WarnOnPendingNoDerefs(Rec);
HandleImmediateInvocations(*this, Rec);
// Warn on any volatile-qualified simple-assignments that are not discarded-
// value expressions nor unevaluated operands (those cases get removed from
// this list by CheckUnusedVolatileAssignment).
for (auto *BO : Rec.VolatileAssignmentLHSs)
Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
<< BO->getType();
// When are coming out of an unevaluated context, clear out any
// temporaries that we may have created as part of the evaluation of
// the expression in that context: they aren't relevant because they
// will never be constructed.
if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
ExprCleanupObjects.end());
Cleanup = Rec.ParentCleanup;
CleanupVarDeclMarking();
std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
// Otherwise, merge the contexts together.
} else {
Cleanup.mergeFrom(Rec.ParentCleanup);
MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
Rec.SavedMaybeODRUseExprs.end());
}
// Pop the current expression evaluation context off the stack.
ExprEvalContexts.pop_back();
// The global expression evaluation context record is never popped.
ExprEvalContexts.back().NumTypos += NumTypos;
}
void Sema::DiscardCleanupsInEvaluationContext() {
ExprCleanupObjects.erase(
ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
ExprCleanupObjects.end());
Cleanup.reset();
MaybeODRUseExprs.clear();
}
ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
ExprResult Result = CheckPlaceholderExpr(E);
if (Result.isInvalid())
return ExprError();
E = Result.get();
if (!E->getType()->isVariablyModifiedType())
return E;
return TransformToPotentiallyEvaluated(E);
}
/// Are we in a context that is potentially constant evaluated per C++20
/// [expr.const]p12?
static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
/// C++2a [expr.const]p12:
// An expression or conversion is potentially constant evaluated if it is
switch (SemaRef.ExprEvalContexts.back().Context) {
case Sema::ExpressionEvaluationContext::ConstantEvaluated:
// -- a manifestly constant-evaluated expression,
case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
case Sema::ExpressionEvaluationContext::DiscardedStatement:
// -- a potentially-evaluated expression,
case Sema::ExpressionEvaluationContext::UnevaluatedList:
// -- an immediate subexpression of a braced-init-list,
// -- [FIXME] an expression of the form & cast-expression that occurs
// within a templated entity
// -- a subexpression of one of the above that is not a subexpression of
// a nested unevaluated operand.
return true;
case Sema::ExpressionEvaluationContext::Unevaluated:
case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
// Expressions in this context are never evaluated.
return false;
}
llvm_unreachable("Invalid context");
}
/// Return true if this function has a calling convention that requires mangling
/// in the size of the parameter pack.
static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
// These manglings don't do anything on non-Windows or non-x86 platforms, so
// we don't need parameter type sizes.
const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
if (!TT.isOSWindows() || !TT.isX86())
return false;
// If this is C++ and this isn't an extern "C" function, parameters do not
// need to be complete. In this case, C++ mangling will apply, which doesn't
// use the size of the parameters.
if (S.getLangOpts().CPlusPlus && !FD->isExternC())
return false;
// Stdcall, fastcall, and vectorcall need this special treatment.
CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
switch (CC) {
case CC_X86StdCall:
case CC_X86FastCall:
case CC_X86VectorCall:
return true;
default:
break;
}
return false;
}
/// Require that all of the parameter types of function be complete. Normally,
/// parameter types are only required to be complete when a function is called
/// or defined, but to mangle functions with certain calling conventions, the
/// mangler needs to know the size of the parameter list. In this situation,
/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
/// result in a linker error. Clang doesn't implement this behavior, and instead
/// attempts to error at compile time.
static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
SourceLocation Loc) {
class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
FunctionDecl *FD;
ParmVarDecl *Param;
public:
ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
: FD(FD), Param(Param) {}
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
StringRef CCName;
switch (CC) {
case CC_X86StdCall:
CCName = "stdcall";
break;
case CC_X86FastCall:
CCName = "fastcall";
break;
case CC_X86VectorCall:
CCName = "vectorcall";
break;
default:
llvm_unreachable("CC does not need mangling");
}
S.Diag(Loc, diag::err_cconv_incomplete_param_type)
<< Param->getDeclName() << FD->getDeclName() << CCName;
}
};
for (ParmVarDecl *Param : FD->parameters()) {
ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
}
}
namespace {
enum class OdrUseContext {
/// Declarations in this context are not odr-used.
None,
/// Declarations in this context are formally odr-used, but this is a
/// dependent context.
Dependent,
/// Declarations in this context are odr-used but not actually used (yet).
FormallyOdrUsed,
/// Declarations in this context are used.
Used
};
}
/// Are we within a context in which references to resolved functions or to
/// variables result in odr-use?
static OdrUseContext isOdrUseContext(Sema &SemaRef) {
OdrUseContext Result;
switch (SemaRef.ExprEvalContexts.back().Context) {
case Sema::ExpressionEvaluationContext::Unevaluated:
case Sema::ExpressionEvaluationContext::UnevaluatedList:
case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
return OdrUseContext::None;
case Sema::ExpressionEvaluationContext::ConstantEvaluated:
case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
Result = OdrUseContext::Used;
break;
case Sema::ExpressionEvaluationContext::DiscardedStatement:
Result = OdrUseContext::FormallyOdrUsed;
break;
case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
// A default argument formally results in odr-use, but doesn't actually
// result in a use in any real sense until it itself is used.
Result = OdrUseContext::FormallyOdrUsed;
break;
}
if (SemaRef.CurContext->isDependentContext())
return OdrUseContext::Dependent;
return Result;
}
static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
if (!Func->isConstexpr())
return false;
if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
return true;
auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
return CCD && CCD->getInheritedConstructor();
}
/// Mark a function referenced, and check whether it is odr-used
/// (C++ [basic.def.odr]p2, C99 6.9p3)
void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
bool MightBeOdrUse) {
assert(Func && "No function?");
Func->setReferenced();
// Recursive functions aren't really used until they're used from some other
// context.
bool IsRecursiveCall = CurContext == Func;
// C++11 [basic.def.odr]p3:
// A function whose name appears as a potentially-evaluated expression is
// odr-used if it is the unique lookup result or the selected member of a
// set of overloaded functions [...].
//
// We (incorrectly) mark overload resolution as an unevaluated context, so we
// can just check that here.
OdrUseContext OdrUse =
MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
OdrUse = OdrUseContext::FormallyOdrUsed;
// Trivial default constructors and destructors are never actually used.
// FIXME: What about other special members?
if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
OdrUse == OdrUseContext::Used) {
if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
if (Constructor->isDefaultConstructor())
OdrUse = OdrUseContext::FormallyOdrUsed;
if (isa<CXXDestructorDecl>(Func))
OdrUse = OdrUseContext::FormallyOdrUsed;
}
// C++20 [expr.const]p12:
// A function [...] is needed for constant evaluation if it is [...] a
// constexpr function that is named by an expression that is potentially
// constant evaluated
bool NeededForConstantEvaluation =
isPotentiallyConstantEvaluatedContext(*this) &&
isImplicitlyDefinableConstexprFunction(Func);
// Determine whether we require a function definition to exist, per
// C++11 [temp.inst]p3:
// Unless a function template specialization has been explicitly
// instantiated or explicitly specialized, the function template
// specialization is implicitly instantiated when the specialization is
// referenced in a context that requires a function definition to exist.
// C++20 [temp.inst]p7:
// The existence of a definition of a [...] function is considered to
// affect the semantics of the program if the [...] function is needed for
// constant evaluation by an expression
// C++20 [basic.def.odr]p10:
// Every program shall contain exactly one definition of every non-inline
// function or variable that is odr-used in that program outside of a
// discarded statement
// C++20 [special]p1:
// The implementation will implicitly define [defaulted special members]
// if they are odr-used or needed for constant evaluation.
//
// Note that we skip the implicit instantiation of templates that are only
// used in unused default arguments or by recursive calls to themselves.
// This is formally non-conforming, but seems reasonable in practice.
bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
NeededForConstantEvaluation);
// C++14 [temp.expl.spec]p6:
// If a template [...] is explicitly specialized then that specialization
// shall be declared before the first use of that specialization that would
// cause an implicit instantiation to take place, in every translation unit
// in which such a use occurs
if (NeedDefinition &&
(Func->getTemplateSpecializationKind() != TSK_Undeclared ||
Func->getMemberSpecializationInfo()))
checkSpecializationVisibility(Loc, Func);
if (getLangOpts().CUDA)
CheckCUDACall(Loc, Func);
if (getLangOpts().SYCLIsDevice)
checkSYCLDeviceFunction(Loc, Func);
// If we need a definition, try to create one.
if (NeedDefinition && !Func->getBody()) {
runWithSufficientStackSpace(Loc, [&] {
if (CXXConstructorDecl *Constructor =
dyn_cast<CXXConstructorDecl>(Func)) {
Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
if (Constructor->isDefaultConstructor()) {
if (Constructor->isTrivial() &&
!Constructor->hasAttr<DLLExportAttr>())
return;
DefineImplicitDefaultConstructor(Loc, Constructor);
} else if (Constructor->isCopyConstructor()) {
DefineImplicitCopyConstructor(Loc, Constructor);
} else if (Constructor->isMoveConstructor()) {
DefineImplicitMoveConstructor(Loc, Constructor);
}
} else if (Constructor->getInheritedConstructor()) {
DefineInheritingConstructor(Loc, Constructor);
}
} else if (CXXDestructorDecl *Destructor =
dyn_cast<CXXDestructorDecl>(Func)) {
Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
return;
DefineImplicitDestructor(Loc, Destructor);
}
if (Destructor->isVirtual() && getLangOpts().AppleKext)
MarkVTableUsed(Loc, Destructor->getParent());
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
if (MethodDecl->isOverloadedOperator() &&
MethodDecl->getOverloadedOperator() == OO_Equal) {
MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
if (MethodDecl->isCopyAssignmentOperator())
DefineImplicitCopyAssignment(Loc, MethodDecl);
else if (MethodDecl->isMoveAssignmentOperator())
DefineImplicitMoveAssignment(Loc, MethodDecl);
}
} else if (isa<CXXConversionDecl>(MethodDecl) &&
MethodDecl->getParent()->isLambda()) {
CXXConversionDecl *Conversion =
cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
if (Conversion->isLambdaToBlockPointerConversion())
DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
else
DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
} else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
MarkVTableUsed(Loc, MethodDecl->getParent());
}
if (Func->isDefaulted() && !Func->isDeleted()) {
DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
if (DCK != DefaultedComparisonKind::None)
DefineDefaultedComparison(Loc, Func, DCK);
}
// Implicit instantiation of function templates and member functions of
// class templates.
if (Func->isImplicitlyInstantiable()) {
TemplateSpecializationKind TSK =
Func->getTemplateSpecializationKindForInstantiation();
SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
bool FirstInstantiation = PointOfInstantiation.isInvalid();
if (FirstInstantiation) {
PointOfInstantiation = Loc;
Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
} else if (TSK != TSK_ImplicitInstantiation) {
// Use the point of use as the point of instantiation, instead of the
// point of explicit instantiation (which we track as the actual point
// of instantiation). This gives better backtraces in diagnostics.
PointOfInstantiation = Loc;
}
if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
Func->isConstexpr()) {
if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
CodeSynthesisContexts.size())
PendingLocalImplicitInstantiations.push_back(
std::make_pair(Func, PointOfInstantiation));
else if (Func->isConstexpr())
// Do not defer instantiations of constexpr functions, to avoid the
// expression evaluator needing to call back into Sema if it sees a
// call to such a function.
InstantiateFunctionDefinition(PointOfInstantiation, Func);
else {
Func->setInstantiationIsPending(true);
PendingInstantiations.push_back(
std::make_pair(Func, PointOfInstantiation));
// Notify the consumer that a function was implicitly instantiated.
Consumer.HandleCXXImplicitFunctionInstantiation(Func);
}
}
} else {
// Walk redefinitions, as some of them may be instantiable.
for (auto i : Func->redecls()) {
if (!i->isUsed(false) && i->isImplicitlyInstantiable())
MarkFunctionReferenced(Loc, i, MightBeOdrUse);
}
}
});
}
// C++14 [except.spec]p17:
// An exception-specification is considered to be needed when:
// - the function is odr-used or, if it appears in an unevaluated operand,
// would be odr-used if the expression were potentially-evaluated;
//
// Note, we do this even if MightBeOdrUse is false. That indicates that the
// function is a pure virtual function we're calling, and in that case the
// function was selected by overload resolution and we need to resolve its
// exception specification for a different reason.
const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
ResolveExceptionSpec(Loc, FPT);
// If this is the first "real" use, act on that.
if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
// Keep track of used but undefined functions.
if (!Func->isDefined()) {
if (mightHaveNonExternalLinkage(Func))
UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
else if (Func->getMostRecentDecl()->isInlined() &&
!LangOpts.GNUInline &&
!Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
else if (isExternalWithNoLinkageType(Func))
UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
}
// Some x86 Windows calling conventions mangle the size of the parameter
// pack into the name. Computing the size of the parameters requires the
// parameter types to be complete. Check that now.
if (funcHasParameterSizeMangling(*this, Func))
CheckCompleteParameterTypesForMangler(*this, Func, Loc);
// In the MS C++ ABI, the compiler emits destructor variants where they are
// used. If the destructor is used here but defined elsewhere, mark the
// virtual base destructors referenced. If those virtual base destructors
// are inline, this will ensure they are defined when emitting the complete
// destructor variant. This checking may be redundant if the destructor is
// provided later in this TU.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
CXXRecordDecl *Parent = Dtor->getParent();
if (Parent->getNumVBases() > 0 && !Dtor->getBody())
CheckCompleteDestructorVariant(Loc, Dtor);
}
}
Func->markUsed(Context);
}
}
/// Directly mark a variable odr-used. Given a choice, prefer to use
/// MarkVariableReferenced since it does additional checks and then
/// calls MarkVarDeclODRUsed.
/// If the variable must be captured:
/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
/// - else capture it in the DeclContext that maps to the
/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
static void
MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
// Keep track of used but undefined variables.
// FIXME: We shouldn't suppress this warning for static data members.
if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
(!Var->isExternallyVisible() || Var->isInline() ||
SemaRef.isExternalWithNoLinkageType(Var)) &&
!(Var->isStaticDataMember() && Var->hasInit())) {
SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
if (old.isInvalid())
old = Loc;
}
QualType CaptureType, DeclRefType;
if (SemaRef.LangOpts.OpenMP)
SemaRef.tryCaptureOpenMPLambdas(Var);
SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
/*EllipsisLoc*/ SourceLocation(),
/*BuildAndDiagnose*/ true,
CaptureType, DeclRefType,
FunctionScopeIndexToStopAt);
Var->markUsed(SemaRef.Context);
}
void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
SourceLocation Loc,
unsigned CapturingScopeIndex) {
MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
}
static void
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
ValueDecl *var, DeclContext *DC) {
DeclContext *VarDC = var->getDeclContext();
// If the parameter still belongs to the translation unit, then
// we're actually just using one parameter in the declaration of
// the next.
if (isa<ParmVarDecl>(var) &&
isa<TranslationUnitDecl>(VarDC))
return;
// For C code, don't diagnose about capture if we're not actually in code
// right now; it's impossible to write a non-constant expression outside of
// function context, so we'll get other (more useful) diagnostics later.
//
// For C++, things get a bit more nasty... it would be nice to suppress this
// diagnostic for certain cases like using a local variable in an array bound
// for a member of a local class, but the correct predicate is not obvious.
if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
return;
unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
unsigned ContextKind = 3; // unknown
if (isa<CXXMethodDecl>(VarDC) &&
cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
ContextKind = 2;
} else if (isa<FunctionDecl>(VarDC)) {
ContextKind = 0;
} else if (isa<BlockDecl>(VarDC)) {
ContextKind = 1;
}
S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
<< var << ValueKind << ContextKind << VarDC;
S.Diag(var->getLocation(), diag::note_entity_declared_at)
<< var;
// FIXME: Add additional diagnostic info about class etc. which prevents
// capture.
}
static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
bool &SubCapturesAreNested,
QualType &CaptureType,
QualType &DeclRefType) {
// Check whether we've already captured it.
if (CSI->CaptureMap.count(Var)) {
// If we found a capture, any subcaptures are nested.
SubCapturesAreNested = true;
// Retrieve the capture type for this variable.
CaptureType = CSI->getCapture(Var).getCaptureType();
// Compute the type of an expression that refers to this variable.
DeclRefType = CaptureType.getNonReferenceType();
// Similarly to mutable captures in lambda, all the OpenMP captures by copy
// are mutable in the sense that user can change their value - they are
// private instances of the captured declarations.
const Capture &Cap = CSI->getCapture(Var);
if (Cap.isCopyCapture() &&
!(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
!(isa<CapturedRegionScopeInfo>(CSI) &&
cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
DeclRefType.addConst();
return true;
}
return false;
}
// Only block literals, captured statements, and lambda expressions can
// capture; other scopes don't work.
static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
SourceLocation Loc,
const bool Diagnose, Sema &S) {
if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
return getLambdaAwareParentOfDeclContext(DC);
else if (Var->hasLocalStorage()) {
if (Diagnose)
diagnoseUncapturableValueReference(S, Loc, Var, DC);
}
return nullptr;
}
// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
// certain types of variables (unnamed, variably modified types etc.)
// so check for eligibility.
static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
SourceLocation Loc,
const bool Diagnose, Sema &S) {
bool IsBlock = isa<BlockScopeInfo>(CSI);
bool IsLambda = isa<LambdaScopeInfo>(CSI);
// Lambdas are not allowed to capture unnamed variables
// (e.g. anonymous unions).
// FIXME: The C++11 rule don't actually state this explicitly, but I'm
// assuming that's the intent.
if (IsLambda && !Var->getDeclName()) {
if (Diagnose) {
S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
S.Diag(Var->getLocation(), diag::note_declared_at);
}
return false;
}
// Prohibit variably-modified types in blocks; they're difficult to deal with.
if (Var->getType()->isVariablyModifiedType() && IsBlock) {
if (Diagnose) {
S.Diag(Loc, diag::err_ref_vm_type);
S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
}
return false;
}
// Prohibit structs with flexible array members too.
// We cannot capture what is in the tail end of the struct.
if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
if (VTTy->getDecl()->hasFlexibleArrayMember()) {
if (Diagnose) {
if (IsBlock)
S.Diag(Loc, diag::err_ref_flexarray_type);
else
S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
}
return false;
}
}
const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
// Lambdas and captured statements are not allowed to capture __block
// variables; they don't support the expected semantics.
if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
if (Diagnose) {
S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
}
return false;
}
// OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
if (S.getLangOpts().OpenCL && IsBlock &&
Var->getType()->isBlockPointerType()) {
if (Diagnose)
S.Diag(Loc, diag::err_opencl_block_ref_block);
return false;
}
return true;
}
// Returns true if the capture by block was successful.
static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
SourceLocation Loc,
const bool BuildAndDiagnose,
QualType &CaptureType,
QualType &DeclRefType,
const bool Nested,
Sema &S, bool Invalid) {
bool ByRef = false;
// Blocks are not allowed to capture arrays, excepting OpenCL.
// OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
// (decayed to pointers).
if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
if (BuildAndDiagnose) {
S.Diag(Loc, diag::err_ref_array_type);
S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
Invalid = true;
} else {
return false;
}
}
// Forbid the block-capture of autoreleasing variables.
if (!Invalid &&
CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
if (BuildAndDiagnose) {
S.Diag(Loc, diag::err_arc_autoreleasing_capture)
<< /*block*/ 0;
S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
Invalid = true;
} else {
return false;
}
}
// Warn about implicitly autoreleasing indirect parameters captured by blocks.
if (const auto *PT = CaptureType->getAs<PointerType>()) {
QualType PointeeTy = PT->getPointeeType();
if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
!S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
if (BuildAndDiagnose) {
SourceLocation VarLoc = Var->getLocation();
S.Diag(Loc, diag::warn_block_capture_autoreleasing);
S.Diag(VarLoc, diag::note_declare_parameter_strong);
}
}
}
const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
if (HasBlocksAttr || CaptureType->isReferenceType() ||
(S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
// Block capture by reference does not change the capture or
// declaration reference types.
ByRef = true;
} else {
// Block capture by copy introduces 'const'.
CaptureType = CaptureType.getNonReferenceType().withConst();
DeclRefType = CaptureType;
}
// Actually capture the variable.
if (BuildAndDiagnose)
BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
CaptureType, Invalid);
return !Invalid;
}
/// Capture the given variable in the captured region.
static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
VarDecl *Var,
SourceLocation Loc,
const bool BuildAndDiagnose,
QualType &CaptureType,
QualType &DeclRefType,
const bool RefersToCapturedVariable,
Sema &S, bool Invalid) {
// By default, capture variables by reference.
bool ByRef = true;
// Using an LValue reference type is consistent with Lambdas (see below).
if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
if (S.isOpenMPCapturedDecl(Var)) {
bool HasConst = DeclRefType.isConstQualified();
DeclRefType = DeclRefType.getUnqualifiedType();
// Don't lose diagnostics about assignments to const.
if (HasConst)
DeclRefType.addConst();
}
// Do not capture firstprivates in tasks.
if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
OMPC_unknown)
return true;
ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
RSI->OpenMPCaptureLevel);
}
if (ByRef)
CaptureType = S.Context.getLValueReferenceType(DeclRefType);
else
CaptureType = DeclRefType;
// Actually capture the variable.
if (BuildAndDiagnose)
RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
Loc, SourceLocation(), CaptureType, Invalid);
return !Invalid;
}
/// Capture the given variable in the lambda.
static bool captureInLambda(LambdaScopeInfo *LSI,
VarDecl *Var,
SourceLocation Loc,
const bool BuildAndDiagnose,
QualType &CaptureType,
QualType &DeclRefType,
const bool RefersToCapturedVariable,
const Sema::TryCaptureKind Kind,
SourceLocation EllipsisLoc,
const bool IsTopScope,
Sema &S, bool Invalid) {
// Determine whether we are capturing by reference or by value.
bool ByRef = false;
if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
} else {
ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
}
// Compute the type of the field that will capture this variable.
if (ByRef) {
// C++11 [expr.prim.lambda]p15:
// An entity is captured by reference if it is implicitly or
// explicitly captured but not captured by copy. It is
// unspecified whether additional unnamed non-static data
// members are declared in the closure type for entities
// captured by reference.
//
// FIXME: It is not clear whether we want to build an lvalue reference
// to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
// to do the former, while EDG does the latter. Core issue 1249 will
// clarify, but for now we follow GCC because it's a more permissive and
// easily defensible position.
CaptureType = S.Context.getLValueReferenceType(DeclRefType);
} else {
// C++11 [expr.prim.lambda]p14:
// For each entity captured by copy, an unnamed non-static
// data member is declared in the closure type. The
// declaration order of these members is unspecified. The type
// of such a data member is the type of the corresponding
// captured entity if the entity is not a reference to an
// object, or the referenced type otherwise. [Note: If the
// captured entity is a reference to a function, the
// corresponding data member is also a reference to a
// function. - end note ]
if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
if (!RefType->getPointeeType()->isFunctionType())
CaptureType = RefType->getPointeeType();
}
// Forbid the lambda copy-capture of autoreleasing variables.
if (!Invalid &&
CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
if (BuildAndDiagnose) {
S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
S.Diag(Var->getLocation(), diag::note_previous_decl)
<< Var->getDeclName();
Invalid = true;
} else {
return false;
}
}
// Make sure that by-copy captures are of a complete and non-abstract type.
if (!Invalid && BuildAndDiagnose) {
if (!CaptureType->isDependentType() &&
S.RequireCompleteSizedType(
Loc, CaptureType,
diag::err_capture_of_incomplete_or_sizeless_type,
Var->getDeclName()))
Invalid = true;
else if (S.RequireNonAbstractType(Loc, CaptureType,
diag::err_capture_of_abstract_type))
Invalid = true;
}
}
// Compute the type of a reference to this captured variable.
if (ByRef)
DeclRefType = CaptureType.getNonReferenceType();
else {
// C++ [expr.prim.lambda]p5:
// The closure type for a lambda-expression has a public inline
// function call operator [...]. This function call operator is
// declared const (9.3.1) if and only if the lambda-expression's
// parameter-declaration-clause is not followed by mutable.
DeclRefType = CaptureType.getNonReferenceType();
if (!LSI->Mutable && !CaptureType->isReferenceType())
DeclRefType.addConst();
}
// Add the capture.
if (BuildAndDiagnose)
LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
Loc, EllipsisLoc, CaptureType, Invalid);
return !Invalid;
}
bool Sema::tryCaptureVariable(
VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
// An init-capture is notionally from the context surrounding its
// declaration, but its parent DC is the lambda class.
DeclContext *VarDC = Var->getDeclContext();
if (Var->isInitCapture())
VarDC = VarDC->getParent();
DeclContext *DC = CurContext;
const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
// We need to sync up the Declaration Context with the
// FunctionScopeIndexToStopAt
if (FunctionScopeIndexToStopAt) {
unsigned FSIndex = FunctionScopes.size() - 1;
while (FSIndex != MaxFunctionScopesIndex) {
DC = getLambdaAwareParentOfDeclContext(DC);
--FSIndex;
}
}
// If the variable is declared in the current context, there is no need to
// capture it.
if (VarDC == DC) return true;
// Capture global variables if it is required to use private copy of this
// variable.
bool IsGlobal = !Var->hasLocalStorage();
if (IsGlobal &&
!(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
MaxFunctionScopesIndex)))
return true;
Var = Var->getCanonicalDecl();
// Walk up the stack to determine whether we can capture the variable,
// performing the "simple" checks that don't depend on type. We stop when
// we've either hit the declared scope of the variable or find an existing
// capture of that variable. We start from the innermost capturing-entity
// (the DC) and ensure that all intervening capturing-entities
// (blocks/lambdas etc.) between the innermost capturer and the variable`s
// declcontext can either capture the variable or have already captured
// the variable.
CaptureType = Var->getType();
DeclRefType = CaptureType.getNonReferenceType();
bool Nested = false;
bool Explicit = (Kind != TryCapture_Implicit);
unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
do {
// Only block literals, captured statements, and lambda expressions can
// capture; other scopes don't work.
DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
ExprLoc,
BuildAndDiagnose,
*this);
// We need to check for the parent *first* because, if we *have*
// private-captured a global variable, we need to recursively capture it in
// intermediate blocks, lambdas, etc.
if (!ParentDC) {
if (IsGlobal) {
FunctionScopesIndex = MaxFunctionScopesIndex - 1;
break;
}
return true;
}
FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
// Check whether we've already captured it.
if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
DeclRefType)) {
CSI->getCapture(Var).markUsed(BuildAndDiagnose);
break;
}
// If we are instantiating a generic lambda call operator body,
// we do not want to capture new variables. What was captured
// during either a lambdas transformation or initial parsing
// should be used.
if (isGenericLambdaCallOperatorSpecialization(DC)) {
if (BuildAndDiagnose) {
LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
Diag(ExprLoc, diag::err_lambda_impcap) << Var;
Diag(Var->getLocation(), diag::note_previous_decl) << Var;
Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
} else
diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
}
return true;
}
// Try to capture variable-length arrays types.
if (Var->getType()->isVariablyModifiedType()) {
// We're going to walk down into the type and look for VLA
// expressions.
QualType QTy = Var->getType();
if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
QTy = PVD->getOriginalType();
captureVariablyModifiedType(Context, QTy, CSI);
}
if (getLangOpts().OpenMP) {
if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
// OpenMP private variables should not be captured in outer scope, so
// just break here. Similarly, global variables that are captured in a
// target region should not be captured outside the scope of the region.
if (RSI->CapRegionKind == CR_OpenMP) {
OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
// If the variable is private (i.e. not captured) and has variably
// modified type, we still need to capture the type for correct
// codegen in all regions, associated with the construct. Currently,
// it is captured in the innermost captured region only.
if (IsOpenMPPrivateDecl != OMPC_unknown &&
Var->getType()->isVariablyModifiedType()) {
QualType QTy = Var->getType();
if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
QTy = PVD->getOriginalType();
for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
I < E; ++I) {
auto *OuterRSI = cast<CapturedRegionScopeInfo>(
FunctionScopes[FunctionScopesIndex - I]);
assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
"Wrong number of captured regions associated with the "
"OpenMP construct.");
captureVariablyModifiedType(Context, QTy, OuterRSI);
}
}
bool IsTargetCap =
IsOpenMPPrivateDecl != OMPC_private &&
isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
RSI->OpenMPCaptureLevel);
// Do not capture global if it is not privatized in outer regions.
bool IsGlobalCap =
IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
RSI->OpenMPCaptureLevel);
// When we detect target captures we are looking from inside the
// target region, therefore we need to propagate the capture from the
// enclosing region. Therefore, the capture is not initially nested.
if (IsTargetCap)
adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
(IsGlobal && !IsGlobalCap)) {
Nested = !IsTargetCap;
DeclRefType = DeclRefType.getUnqualifiedType();
CaptureType = Context.getLValueReferenceType(DeclRefType);
break;
}
}
}
}
if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
// No capture-default, and this is not an explicit capture
// so cannot capture this variable.
if (BuildAndDiagnose) {
Diag(ExprLoc, diag::err_lambda_impcap) << Var;
Diag(Var->getLocation(), diag::note_previous_decl) << Var;
if (cast<LambdaScopeInfo>(CSI)->Lambda)
Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
diag::note_lambda_decl);
// FIXME: If we error out because an outer lambda can not implicitly
// capture a variable that an inner lambda explicitly captures, we
// should have the inner lambda do the explicit capture - because
// it makes for cleaner diagnostics later. This would purely be done
// so that the diagnostic does not misleadingly claim that a variable
// can not be captured by a lambda implicitly even though it is captured
// explicitly. Suggestion:
// - create const bool VariableCaptureWasInitiallyExplicit = Explicit
// at the function head
// - cache the StartingDeclContext - this must be a lambda
// - captureInLambda in the innermost lambda the variable.
}
return true;
}
FunctionScopesIndex--;
DC = ParentDC;
Explicit = false;
} while (!VarDC->Equals(DC));
// Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
// computing the type of the capture at each step, checking type-specific
// requirements, and adding captures if requested.
// If the variable had already been captured previously, we start capturing
// at the lambda nested within that one.
bool Invalid = false;
for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
++I) {
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
// certain types of variables (unnamed, variably modified types etc.)
// so check for eligibility.
if (!Invalid)
Invalid =
!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
// After encountering an error, if we're actually supposed to capture, keep
// capturing in nested contexts to suppress any follow-on diagnostics.
if (Invalid && !BuildAndDiagnose)
return true;
if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
DeclRefType, Nested, *this, Invalid);
Nested = true;
} else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose,
CaptureType, DeclRefType, Nested,
*this, Invalid);
Nested = true;
} else {
LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
Invalid =
!captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
DeclRefType, Nested, Kind, EllipsisLoc,
/*IsTopScope*/ I == N - 1, *this, Invalid);
Nested = true;
}
if (Invalid && !BuildAndDiagnose)
return true;
}
return Invalid;
}
bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
TryCaptureKind Kind, SourceLocation EllipsisLoc) {
QualType CaptureType;
QualType DeclRefType;
return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
/*BuildAndDiagnose=*/true, CaptureType,
DeclRefType, nullptr);
}
bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
QualType CaptureType;
QualType DeclRefType;
return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
/*BuildAndDiagnose=*/false, CaptureType,
DeclRefType, nullptr);
}
QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
QualType CaptureType;
QualType DeclRefType;
// Determine whether we can capture this variable.
if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
/*BuildAndDiagnose=*/false, CaptureType,
DeclRefType, nullptr))
return QualType();
return DeclRefType;
}
namespace {
// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
// The produced TemplateArgumentListInfo* points to data stored within this
// object, so should only be used in contexts where the pointer will not be
// used after the CopiedTemplateArgs object is destroyed.
class CopiedTemplateArgs {
bool HasArgs;
TemplateArgumentListInfo TemplateArgStorage;
public:
template<typename RefExpr>
CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
if (HasArgs)
E->copyTemplateArgumentsInto(TemplateArgStorage);
}
operator TemplateArgumentListInfo*()
#ifdef __has_cpp_attribute
#if __has_cpp_attribute(clang::lifetimebound)
[[clang::lifetimebound]]
#endif
#endif
{
return HasArgs ? &TemplateArgStorage : nullptr;
}
};
}
/// Walk the set of potential results of an expression and mark them all as
/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
///
/// \return A new expression if we found any potential results, ExprEmpty() if
/// not, and ExprError() if we diagnosed an error.
static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
NonOdrUseReason NOUR) {
// Per C++11 [basic.def.odr], a variable is odr-used "unless it is
// an object that satisfies the requirements for appearing in a
// constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
// is immediately applied." This function handles the lvalue-to-rvalue
// conversion part.
//
// If we encounter a node that claims to be an odr-use but shouldn't be, we
// transform it into the relevant kind of non-odr-use node and rebuild the
// tree of nodes leading to it.
//
// This is a mini-TreeTransform that only transforms a restricted subset of
// nodes (and only certain operands of them).
// Rebuild a subexpression.
auto Rebuild = [&](Expr *Sub) {
return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
};
// Check whether a potential result satisfies the requirements of NOUR.
auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
// Any entity other than a VarDecl is always odr-used whenever it's named
// in a potentially-evaluated expression.
auto *VD = dyn_cast<VarDecl>(D);
if (!VD)
return true;
// C++2a [basic.def.odr]p4:
// A variable x whose name appears as a potentially-evalauted expression
// e is odr-used by e unless
// -- x is a reference that is usable in constant expressions, or
// -- x is a variable of non-reference type that is usable in constant
// expressions and has no mutable subobjects, and e is an element of
// the set of potential results of an expression of
// non-volatile-qualified non-class type to which the lvalue-to-rvalue
// conversion is applied, or
// -- x is a variable of non-reference type, and e is an element of the
// set of potential results of a discarded-value expression to which
// the lvalue-to-rvalue conversion is not applied
//
// We check the first bullet and the "potentially-evaluated" condition in
// BuildDeclRefExpr. We check the type requirements in the second bullet
// in CheckLValueToRValueConversionOperand below.
switch (NOUR) {
case NOUR_None:
case NOUR_Unevaluated:
llvm_unreachable("unexpected non-odr-use-reason");
case NOUR_Constant:
// Constant references were handled when they were built.
if (VD->getType()->isReferenceType())
return true;
if (auto *RD = VD->getType()->getAsCXXRecordDecl())
if (RD->hasMutableFields())
return true;
if (!VD->isUsableInConstantExpressions(S.Context))
return true;
break;
case NOUR_Discarded:
if (VD->getType()->isReferenceType())
return true;
break;
}
return false;
};
// Mark that this expression does not constitute an odr-use.
auto MarkNotOdrUsed = [&] {
S.MaybeODRUseExprs.remove(E);
if (LambdaScopeInfo *LSI = S.getCurLambda())
LSI->markVariableExprAsNonODRUsed(E);
};
// C++2a [basic.def.odr]p2:
// The set of potential results of an expression e is defined as follows:
switch (E->getStmtClass()) {
// -- If e is an id-expression, ...
case Expr::DeclRefExprClass: {
auto *DRE = cast<DeclRefExpr>(E);
if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
break;
// Rebuild as a non-odr-use DeclRefExpr.
MarkNotOdrUsed();
return DeclRefExpr::Create(
S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
}
case Expr::FunctionParmPackExprClass: {
auto *FPPE = cast<FunctionParmPackExpr>(E);
// If any of the declarations in the pack is odr-used, then the expression
// as a whole constitutes an odr-use.
for (VarDecl *D : *FPPE)
if (IsPotentialResultOdrUsed(D))
return ExprEmpty();
// FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
// nothing cares about whether we marked this as an odr-use, but it might
// be useful for non-compiler tools.
MarkNotOdrUsed();
break;
}
// -- If e is a subscripting operation with an array operand...
case Expr::ArraySubscriptExprClass: {
auto *ASE = cast<ArraySubscriptExpr>(E);
Expr *OldBase = ASE->getBase()->IgnoreImplicit();
if (!OldBase->getType()->isArrayType())
break;
ExprResult Base = Rebuild(OldBase);
if (!Base.isUsable())
return Base;
Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
ASE->getRBracketLoc());
}
case Expr::MemberExprClass: {
auto *ME = cast<MemberExpr>(E);
// -- If e is a class member access expression [...] naming a non-static
// data member...
if (isa<FieldDecl>(ME->getMemberDecl())) {
ExprResult Base = Rebuild(ME->getBase());
if (!Base.isUsable())
return Base;
return MemberExpr::Create(
S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
ME->getObjectKind(), ME->isNonOdrUse());
}
if (ME->getMemberDecl()->isCXXInstanceMember())
break;
// -- If e is a class member access expression naming a static data member,
// ...
if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
break;
// Rebuild as a non-odr-use MemberExpr.
MarkNotOdrUsed();
return MemberExpr::Create(
S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
return ExprEmpty();
}
case Expr::BinaryOperatorClass: {
auto *BO = cast<BinaryOperator>(E);
Expr *LHS = BO->getLHS();
Expr *RHS = BO->getRHS();
// -- If e is a pointer-to-member expression of the form e1 .* e2 ...
if (BO->getOpcode() == BO_PtrMemD) {
ExprResult Sub = Rebuild(LHS);
if (!Sub.isUsable())
return Sub;
LHS = Sub.get();
// -- If e is a comma expression, ...
} else if (BO->getOpcode() == BO_Comma) {
ExprResult Sub = Rebuild(RHS);
if (!Sub.isUsable())
return Sub;
RHS = Sub.get();
} else {
break;
}
return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
LHS, RHS);
}
// -- If e has the form (e1)...
case Expr::ParenExprClass: {
auto *PE = cast<ParenExpr>(E);
ExprResult Sub = Rebuild(PE->getSubExpr());
if (!Sub.isUsable())
return Sub;
return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
}
// -- If e is a glvalue conditional expression, ...
// We don't apply this to a binary conditional operator. FIXME: Should we?
case Expr::ConditionalOperatorClass: {
auto *CO = cast<ConditionalOperator>(E);
ExprResult LHS = Rebuild(CO->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = Rebuild(CO->getRHS());
if (RHS.isInvalid())
return ExprError();
if (!LHS.isUsable() && !RHS.isUsable())
return ExprEmpty();
if (!LHS.isUsable())
LHS = CO->getLHS();
if (!RHS.isUsable())
RHS = CO->getRHS();
return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
CO->getCond(), LHS.get(), RHS.get());
}
// [Clang extension]
// -- If e has the form __extension__ e1...
case Expr::UnaryOperatorClass: {
auto *UO = cast<UnaryOperator>(E);
if (UO->getOpcode() != UO_Extension)
break;
ExprResult Sub = Rebuild(UO->getSubExpr());
if (!Sub.isUsable())
return Sub;
return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
Sub.get());
}
// [Clang extension]
// -- If e has the form _Generic(...), the set of potential results is the
// union of the sets of potential results of the associated expressions.
case Expr::GenericSelectionExprClass: {
auto *GSE = cast<GenericSelectionExpr>(E);
SmallVector<Expr *, 4> AssocExprs;
bool AnyChanged = false;
for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
ExprResult AssocExpr = Rebuild(OrigAssocExpr);
if (AssocExpr.isInvalid())
return ExprError();
if (AssocExpr.isUsable()) {
AssocExprs.push_back(AssocExpr.get());
AnyChanged = true;
} else {
AssocExprs.push_back(OrigAssocExpr);
}
}
return AnyChanged ? S.CreateGenericSelectionExpr(
GSE->getGenericLoc(), GSE->getDefaultLoc(),
GSE->getRParenLoc(), GSE->getControllingExpr(),
GSE->getAssocTypeSourceInfos(), AssocExprs)
: ExprEmpty();
}
// [Clang extension]
// -- If e has the form __builtin_choose_expr(...), the set of potential
// results is the union of the sets of potential results of the
// second and third subexpressions.
case Expr::ChooseExprClass: {
auto *CE = cast<ChooseExpr>(E);
ExprResult LHS = Rebuild(CE->getLHS());
if (LHS.isInvalid())
return ExprError();
ExprResult RHS = Rebuild(CE->getLHS());
if (RHS.isInvalid())
return ExprError();
if (!LHS.get() && !RHS.get())
return ExprEmpty();
if (!LHS.isUsable())
LHS = CE->getLHS();
if (!RHS.isUsable())
RHS = CE->getRHS();
return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
RHS.get(), CE->getRParenLoc());
}
// Step through non-syntactic nodes.
case Expr::ConstantExprClass: {
auto *CE = cast<ConstantExpr>(E);
ExprResult Sub = Rebuild(CE->getSubExpr());
if (!Sub.isUsable())
return Sub;
return ConstantExpr::Create(S.Context, Sub.get());
}
// We could mostly rely on the recursive rebuilding to rebuild implicit
// casts, but not at the top level, so rebuild them here.
case Expr::ImplicitCastExprClass: {
auto *ICE = cast<ImplicitCastExpr>(E);
// Only step through the narrow set of cast kinds we expect to encounter.
// Anything else suggests we've left the region in which potential results
// can be found.
switch (ICE->getCastKind()) {
case CK_NoOp:
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase: {
ExprResult Sub = Rebuild(ICE->getSubExpr());
if (!Sub.isUsable())
return Sub;
CXXCastPath Path(ICE->path());
return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
ICE->getValueKind(), &Path);
}
default:
break;
}
break;
}
default:
break;
}
// Can't traverse through this node. Nothing to do.
return ExprEmpty();
}
ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
// Check whether the operand is or contains an object of non-trivial C union
// type.
if (E->getType().isVolatileQualified() &&
(E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
Sema::NTCUC_LValueToRValueVolatile,
NTCUK_Destruct|NTCUK_Copy);
// C++2a [basic.def.odr]p4:
// [...] an expression of non-volatile-qualified non-class type to which
// the lvalue-to-rvalue conversion is applied [...]
if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
return E;
ExprResult Result =
rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
if (Result.isInvalid())
return ExprError();
return Result.get() ? Result : E;
}
ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
Res = CorrectDelayedTyposInExpr(Res);
if (!Res.isUsable())
return Res;
// If a constant-expression is a reference to a variable where we delay
// deciding whether it is an odr-use, just assume we will apply the
// lvalue-to-rvalue conversion. In the one case where this doesn't happen
// (a non-type template argument), we have special handling anyway.
return CheckLValueToRValueConversionOperand(Res.get());
}
void Sema::CleanupVarDeclMarking() {
// Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
// call.
MaybeODRUseExprSet LocalMaybeODRUseExprs;
std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
for (Expr *E : LocalMaybeODRUseExprs) {
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
DRE->getLocation(), *this);
} else if (auto *ME = dyn_cast<MemberExpr>(E)) {
MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
*this);
} else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
for (VarDecl *VD : *FP)
MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
} else {
llvm_unreachable("Unexpected expression");
}
}
assert(MaybeODRUseExprs.empty() &&
"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
}
static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
VarDecl *Var, Expr *E) {
assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
isa<FunctionParmPackExpr>(E)) &&
"Invalid Expr argument to DoMarkVarDeclReferenced");
Var->setReferenced();
if (Var->isInvalidDecl())
return;
// Record a CUDA/HIP static device/constant variable if it is referenced
// by host code. This is done conservatively, when the variable is referenced
// in any of the following contexts:
// - a non-function context
// - a host function
// - a host device function
// This also requires the reference of the static device/constant variable by
// host code to be visible in the device compilation for the compiler to be
// able to externalize the static device/constant variable.
if (SemaRef.getASTContext().mayExternalizeStaticVar(Var)) {
auto *CurContext = SemaRef.CurContext;
if (!CurContext || !isa<FunctionDecl>(CurContext) ||
cast<FunctionDecl>(CurContext)->hasAttr<CUDAHostAttr>() ||
(!cast<FunctionDecl>(CurContext)->hasAttr<CUDADeviceAttr>() &&
!cast<FunctionDecl>(CurContext)->hasAttr<CUDAGlobalAttr>()))
SemaRef.getASTContext().CUDAStaticDeviceVarReferencedByHost.insert(Var);
}
auto *MSI = Var->getMemberSpecializationInfo();
TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
: Var->getTemplateSpecializationKind();
OdrUseContext OdrUse = isOdrUseContext(SemaRef);
bool UsableInConstantExpr =
Var->mightBeUsableInConstantExpressions(SemaRef.Context);
// C++20 [expr.const]p12:
// A variable [...] is needed for constant evaluation if it is [...] a
// variable whose name appears as a potentially constant evaluated
// expression that is either a contexpr variable or is of non-volatile
// const-qualified integral type or of reference type
bool NeededForConstantEvaluation =
isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
bool NeedDefinition =
OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
"Can't instantiate a partial template specialization.");
// If this might be a member specialization of a static data member, check
// the specialization is visible. We already did the checks for variable
// template specializations when we created them.
if (NeedDefinition && TSK != TSK_Undeclared &&
!isa<VarTemplateSpecializationDecl>(Var))
SemaRef.checkSpecializationVisibility(Loc, Var);
// Perform implicit instantiation of static data members, static data member
// templates of class templates, and variable template specializations. Delay
// instantiations of variable templates, except for those that could be used
// in a constant expression.
if (NeedDefinition && isTemplateInstantiation(TSK)) {
// Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
// instantiation declaration if a variable is usable in a constant
// expression (among other cases).
bool TryInstantiating =
TSK == TSK_ImplicitInstantiation ||
(TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
if (TryInstantiating) {
SourceLocation PointOfInstantiation =
MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
bool FirstInstantiation = PointOfInstantiation.isInvalid();
if (FirstInstantiation) {
PointOfInstantiation = Loc;
if (MSI)
MSI->setPointOfInstantiation(PointOfInstantiation);
else
Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
}
if (UsableInConstantExpr) {
// Do not defer instantiations of variables that could be used in a
// constant expression.
SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
});
} else if (FirstInstantiation ||
isa<VarTemplateSpecializationDecl>(Var)) {
// FIXME: For a specialization of a variable template, we don't
// distinguish between "declaration and type implicitly instantiated"
// and "implicit instantiation of definition requested", so we have
// no direct way to avoid enqueueing the pending instantiation
// multiple times.
SemaRef.PendingInstantiations
.push_back(std::make_pair(Var, PointOfInstantiation));
}
}
}
// C++2a [basic.def.odr]p4:
// A variable x whose name appears as a potentially-evaluated expression e
// is odr-used by e unless
// -- x is a reference that is usable in constant expressions
// -- x is a variable of non-reference type that is usable in constant
// expressions and has no mutable subobjects [FIXME], and e is an
// element of the set of potential results of an expression of
// non-volatile-qualified non-class type to which the lvalue-to-rvalue
// conversion is applied
// -- x is a variable of non-reference type, and e is an element of the set
// of potential results of a discarded-value expression to which the
// lvalue-to-rvalue conversion is not applied [FIXME]
//
// We check the first part of the second bullet here, and
// Sema::CheckLValueToRValueConversionOperand deals with the second part.
// FIXME: To get the third bullet right, we need to delay this even for
// variables that are not usable in constant expressions.
// If we already know this isn't an odr-use, there's nothing more to do.
if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
if (DRE->isNonOdrUse())
return;
if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
if (ME->isNonOdrUse())
return;
switch (OdrUse) {
case OdrUseContext::None:
assert((!E || isa<FunctionParmPackExpr>(E)) &&
"missing non-odr-use marking for unevaluated decl ref");
break;
case OdrUseContext::FormallyOdrUsed:
// FIXME: Ignoring formal odr-uses results in incorrect lambda capture
// behavior.
break;
case OdrUseContext::Used:
// If we might later find that this expression isn't actually an odr-use,
// delay the marking.
if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
SemaRef.MaybeODRUseExprs.insert(E);
else
MarkVarDeclODRUsed(Var, Loc, SemaRef);
break;
case OdrUseContext::Dependent:
// If this is a dependent context, we don't need to mark variables as
// odr-used, but we may still need to track them for lambda capture.
// FIXME: Do we also need to do this inside dependent typeid expressions
// (which are modeled as unevaluated at this point)?
const bool RefersToEnclosingScope =
(SemaRef.CurContext != Var->getDeclContext() &&
Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
if (RefersToEnclosingScope) {
LambdaScopeInfo *const LSI =
SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
if (LSI && (!LSI->CallOperator ||
!LSI->CallOperator->Encloses(Var->getDeclContext()))) {
// If a variable could potentially be odr-used, defer marking it so
// until we finish analyzing the full expression for any
// lvalue-to-rvalue
// or discarded value conversions that would obviate odr-use.
// Add it to the list of potential captures that will be analyzed
// later (ActOnFinishFullExpr) for eventual capture and odr-use marking
// unless the variable is a reference that was initialized by a constant
// expression (this will never need to be captured or odr-used).
//
// FIXME: We can simplify this a lot after implementing P0588R1.
assert(E && "Capture variable should be used in an expression.");
if (!Var->getType()->isReferenceType() ||
!Var->isUsableInConstantExpressions(SemaRef.Context))
LSI->addPotentialCapture(E->IgnoreParens());
}
}
break;
}
}
/// Mark a variable referenced, and check whether it is odr-used
/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
/// used directly for normal expressions referring to VarDecl.
void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
}
static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
Decl *D, Expr *E, bool MightBeOdrUse) {
if (SemaRef.isInOpenMPDeclareTargetContext())
SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
return;
}
SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
// If this is a call to a method via a cast, also mark the method in the
// derived class used in case codegen can devirtualize the call.
const MemberExpr *ME = dyn_cast<MemberExpr>(E);
if (!ME)
return;
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
if (!MD)
return;
// Only attempt to devirtualize if this is truly a virtual call.
bool IsVirtualCall = MD->isVirtual() &&
ME->performsVirtualDispatch(SemaRef.getLangOpts());
if (!IsVirtualCall)
return;
// If it's possible to devirtualize the call, mark the called function
// referenced.
CXXMethodDecl *DM = MD->getDevirtualizedMethod(
ME->getBase(), SemaRef.getLangOpts().AppleKext);
if (DM)
SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
}
/// Perform reference-marking and odr-use handling for a DeclRefExpr.
void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
// TODO: update this with DR# once a defect report is filed.
// C++11 defect. The address of a pure member should not be an ODR use, even
// if it's a qualified reference.
bool OdrUse = true;
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
if (Method->isVirtual() &&
!Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
OdrUse = false;
if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
if (!isConstantEvaluated() && FD->isConsteval() &&
!RebuildingImmediateInvocation)
ExprEvalContexts.back().ReferenceToConsteval.insert(E);
MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
}
/// Perform reference-marking and odr-use handling for a MemberExpr.
void Sema::MarkMemberReferenced(MemberExpr *E) {
// C++11 [basic.def.odr]p2:
// A non-overloaded function whose name appears as a potentially-evaluated
// expression or a member of a set of candidate functions, if selected by
// overload resolution when referred to from a potentially-evaluated
// expression, is odr-used, unless it is a pure virtual function and its
// name is not explicitly qualified.
bool MightBeOdrUse = true;
if (E->performsVirtualDispatch(getLangOpts())) {
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
if (Method->isPure())
MightBeOdrUse = false;
}
SourceLocation Loc =
E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
}
/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
for (VarDecl *VD : *E)
MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
}
/// Perform marking for a reference to an arbitrary declaration. It
/// marks the declaration referenced, and performs odr-use checking for
/// functions and variables. This method should not be used when building a
/// normal expression which refers to a variable.
void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
bool MightBeOdrUse) {
if (MightBeOdrUse) {
if (auto *VD = dyn_cast<VarDecl>(D)) {
MarkVariableReferenced(Loc, VD);
return;
}
}
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
return;
}
D->setReferenced();
}
namespace {
// Mark all of the declarations used by a type as referenced.
// FIXME: Not fully implemented yet! We need to have a better understanding
// of when we're entering a context we should not recurse into.
// FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
// TreeTransforms rebuilding the type in a new context. Rather than
// duplicating the TreeTransform logic, we should consider reusing it here.
// Currently that causes problems when rebuilding LambdaExprs.
class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
Sema &S;
SourceLocation Loc;
public:
typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
bool TraverseTemplateArgument(const TemplateArgument &Arg);
};
}
bool MarkReferencedDecls::TraverseTemplateArgument(
const TemplateArgument &Arg) {
{
// A non-type template argument is a constant-evaluated context.
EnterExpressionEvaluationContext Evaluated(
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
if (Arg.getKind() == TemplateArgument::Declaration) {
if (Decl *D = Arg.getAsDecl())
S.MarkAnyDeclReferenced(Loc, D, true);
} else if (Arg.getKind() == TemplateArgument::Expression) {
S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
}
}
return Inherited::TraverseTemplateArgument(Arg);
}
void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
MarkReferencedDecls Marker(*this, Loc);
Marker.TraverseType(T);
}
namespace {
/// Helper class that marks all of the declarations referenced by
/// potentially-evaluated subexpressions as "referenced".
class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
public:
typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
bool SkipLocalVariables;
EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
: Inherited(S), SkipLocalVariables(SkipLocalVariables) {}
void visitUsedDecl(SourceLocation Loc, Decl *D) {
S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
}
void VisitDeclRefExpr(DeclRefExpr *E) {
// If we were asked not to visit local variables, don't.
if (SkipLocalVariables) {
if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
if (VD->hasLocalStorage())
return;
}
S.MarkDeclRefReferenced(E);
}
void VisitMemberExpr(MemberExpr *E) {
S.MarkMemberReferenced(E);
Visit(E->getBase());
}
};
} // namespace
/// Mark any declarations that appear within this expression or any
/// potentially-evaluated subexpressions as "referenced".
///
/// \param SkipLocalVariables If true, don't mark local variables as
/// 'referenced'.
void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
bool SkipLocalVariables) {
EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
}
/// Emit a diagnostic that describes an effect on the run-time behavior
/// of the program being compiled.
///
/// This routine emits the given diagnostic when the code currently being
/// type-checked is "potentially evaluated", meaning that there is a
/// possibility that the code will actually be executable. Code in sizeof()
/// expressions, code used only during overload resolution, etc., are not
/// potentially evaluated. This routine will suppress such diagnostics or,
/// in the absolutely nutty case of potentially potentially evaluated
/// expressions (C++ typeid), queue the diagnostic to potentially emit it
/// later.
///
/// This routine should be used for all diagnostics that describe the run-time
/// behavior of a program, such as passing a non-POD value through an ellipsis.
/// Failure to do so will likely result in spurious diagnostics or failures
/// during overload resolution or within sizeof/alignof/typeof/typeid.
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
const PartialDiagnostic &PD) {
switch (ExprEvalContexts.back().Context) {
case ExpressionEvaluationContext::Unevaluated:
case ExpressionEvaluationContext::UnevaluatedList:
case ExpressionEvaluationContext::UnevaluatedAbstract:
case ExpressionEvaluationContext::DiscardedStatement:
// The argument will never be evaluated, so don't complain.
break;
case ExpressionEvaluationContext::ConstantEvaluated:
// Relevant diagnostics should be produced by constant evaluation.
break;
case ExpressionEvaluationContext::PotentiallyEvaluated:
case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
FunctionScopes.back()->PossiblyUnreachableDiags.
push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
return true;
}
// The initializer of a constexpr variable or of the first declaration of a
// static data member is not syntactically a constant evaluated constant,
// but nonetheless is always required to be a constant expression, so we
// can skip diagnosing.
// FIXME: Using the mangling context here is a hack.
if (auto *VD = dyn_cast_or_null<VarDecl>(
ExprEvalContexts.back().ManglingContextDecl)) {
if (VD->isConstexpr() ||
(VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
break;
// FIXME: For any other kind of variable, we should build a CFG for its
// initializer and check whether the context in question is reachable.
}
Diag(Loc, PD);
return true;
}
return false;
}
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
const PartialDiagnostic &PD) {
return DiagRuntimeBehavior(
Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
}
bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
CallExpr *CE, FunctionDecl *FD) {
if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
return false;
// If we're inside a decltype's expression, don't check for a valid return
// type or construct temporaries until we know whether this is the last call.
if (ExprEvalContexts.back().ExprContext ==
ExpressionEvaluationContextRecord::EK_Decltype) {
ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
return false;
}
class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
FunctionDecl *FD;
CallExpr *CE;
public:
CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
: FD(FD), CE(CE) { }
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
if (!FD) {
S.Diag(Loc, diag::err_call_incomplete_return)
<< T << CE->getSourceRange();
return;
}
S.Diag(Loc, diag::err_call_function_incomplete_return)
<< CE->getSourceRange() << FD << T;
S.Diag(FD->getLocation(), diag::note_entity_declared_at)
<< FD->getDeclName();
}
} Diagnoser(FD, CE);
if (RequireCompleteType(Loc, ReturnType, Diagnoser))
return true;
return false;
}
// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
// will prevent this condition from triggering, which is what we want.
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
SourceLocation Loc;
unsigned diagnostic = diag::warn_condition_is_assignment;
bool IsOrAssign = false;
if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
return;
IsOrAssign = Op->getOpcode() == BO_OrAssign;
// Greylist some idioms by putting them into a warning subcategory.
if (ObjCMessageExpr *ME
= dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
Selector Sel = ME->getSelector();
// self = [<foo> init...]
if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
diagnostic = diag::warn_condition_is_idiomatic_assignment;
// <foo> = [<bar> nextObject]
else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
diagnostic = diag::warn_condition_is_idiomatic_assignment;
}
Loc = Op->getOperatorLoc();
} else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
return;
IsOrAssign = Op->getOperator() == OO_PipeEqual;
Loc = Op->getOperatorLoc();
} else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
else {
// Not an assignment.
return;
}
Diag(Loc, diagnostic) << E->getSourceRange();
SourceLocation Open = E->getBeginLoc();
SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
Diag(Loc, diag::note_condition_assign_silence)
<< FixItHint::CreateInsertion(Open, "(")
<< FixItHint::CreateInsertion(Close, ")");
if (IsOrAssign)
Diag(Loc, diag::note_condition_or_assign_to_comparison)
<< FixItHint::CreateReplacement(Loc, "!=");
else
Diag(Loc, diag::note_condition_assign_to_comparison)
<< FixItHint::CreateReplacement(Loc, "==");
}
/// Redundant parentheses over an equality comparison can indicate
/// that the user intended an assignment used as condition.
void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
// Don't warn if the parens came from a macro.
SourceLocation parenLoc = ParenE->getBeginLoc();
if (parenLoc.isInvalid() || parenLoc.isMacroID())
return;
// Don't warn for dependent expressions.
if (ParenE->isTypeDependent())
return;
Expr *E = ParenE->IgnoreParens();
if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
if (opE->getOpcode() == BO_EQ &&
opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
== Expr::MLV_Valid) {
SourceLocation Loc = opE->getOperatorLoc();
Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
SourceRange ParenERange = ParenE->getSourceRange();
Diag(Loc, diag::note_equality_comparison_silence)
<< FixItHint::CreateRemoval(ParenERange.getBegin())
<< FixItHint::CreateRemoval(ParenERange.getEnd());
Diag(Loc, diag::note_equality_comparison_to_assign)
<< FixItHint::CreateReplacement(Loc, "=");
}
}
ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
bool IsConstexpr) {
DiagnoseAssignmentAsCondition(E);
if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
DiagnoseEqualityWithExtraParens(parenE);
ExprResult result = CheckPlaceholderExpr(E);
if (result.isInvalid()) return ExprError();
E = result.get();
if (!E->isTypeDependent()) {
if (getLangOpts().CPlusPlus)
return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
if (ERes.isInvalid())
return ExprError();
E = ERes.get();
QualType T = E->getType();
if (!T->isScalarType()) { // C99 6.8.4.1p1
Diag(Loc, diag::err_typecheck_statement_requires_scalar)
<< T << E->getSourceRange();
return ExprError();
}
CheckBoolLikeConversion(E, Loc);
}
return E;
}
Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
Expr *SubExpr, ConditionKind CK) {
// Empty conditions are valid in for-statements.
if (!SubExpr)
return ConditionResult();
ExprResult Cond;
switch (CK) {
case ConditionKind::Boolean:
Cond = CheckBooleanCondition(Loc, SubExpr);
break;
case ConditionKind::ConstexprIf:
Cond = CheckBooleanCondition(Loc, SubExpr, true);
break;
case ConditionKind::Switch:
Cond = CheckSwitchCondition(Loc, SubExpr);
break;
}
if (Cond.isInvalid()) {
Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
{SubExpr});
if (!Cond.get())
return ConditionError();
}
// FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
if (!FullExpr.get())
return ConditionError();
return ConditionResult(*this, nullptr, FullExpr,
CK == ConditionKind::ConstexprIf);
}
namespace {
/// A visitor for rebuilding a call to an __unknown_any expression
/// to have an appropriate type.
struct RebuildUnknownAnyFunction
: StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
Sema &S;
RebuildUnknownAnyFunction(Sema &S) : S(S) {}
ExprResult VisitStmt(Stmt *S) {
llvm_unreachable("unexpected statement!");
}
ExprResult VisitExpr(Expr *E) {
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
<< E->getSourceRange();
return ExprError();
}
/// Rebuild an expression which simply semantically wraps another
/// expression which it shares the type and value kind of.
template <class T> ExprResult rebuildSugarExpr(T *E) {
ExprResult SubResult = Visit(E->getSubExpr());
if (SubResult.isInvalid()) return ExprError();
Expr *SubExpr = SubResult.get();
E->setSubExpr(SubExpr);
E->setType(SubExpr->getType());
E->setValueKind(SubExpr->getValueKind());
assert(E->getObjectKind() == OK_Ordinary);
return E;
}
ExprResult VisitParenExpr(ParenExpr *E) {
return rebuildSugarExpr(E);
}
ExprResult VisitUnaryExtension(UnaryOperator *E) {
return rebuildSugarExpr(E);
}
ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
ExprResult SubResult = Visit(E->getSubExpr());
if (SubResult.isInvalid()) return ExprError();
Expr *SubExpr = SubResult.get();
E->setSubExpr(SubExpr);
E->setType(S.Context.getPointerType(SubExpr->getType()));
assert(E->getValueKind() == VK_RValue);
assert(E->getObjectKind() == OK_Ordinary);
return E;
}
ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
E->setType(VD->getType());
assert(E->getValueKind() == VK_RValue);
if (S.getLangOpts().CPlusPlus &&
!(isa<CXXMethodDecl>(VD) &&
cast<CXXMethodDecl>(VD)->isInstance()))
E->setValueKind(VK_LValue);
return E;
}
ExprResult VisitMemberExpr(MemberExpr *E) {
return resolveDecl(E, E->getMemberDecl());
}
ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
return resolveDecl(E, E->getDecl());
}
};
}
/// Given a function expression of unknown-any type, try to rebuild it
/// to have a function type.
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
if (Result.isInvalid()) return ExprError();
return S.DefaultFunctionArrayConversion(Result.get());
}
namespace {
/// A visitor for rebuilding an expression of type __unknown_anytype
/// into one which resolves the type directly on the referring
/// expression. Strict preservation of the original source
/// structure is not a goal.
struct RebuildUnknownAnyExpr
: StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
Sema &S;
/// The current destination type.
QualType DestType;
RebuildUnknownAnyExpr(Sema &S, QualType CastType)
: S(S), DestType(CastType) {}
ExprResult VisitStmt(Stmt *S) {
llvm_unreachable("unexpected statement!");
}
ExprResult VisitExpr(Expr *E) {
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
<< E->getSourceRange();
return ExprError();
}
ExprResult VisitCallExpr(CallExpr *E);
ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
/// Rebuild an expression which simply semantically wraps another
/// expression which it shares the type and value kind of.
template <class T> ExprResult rebuildSugarExpr(T *E) {
ExprResult SubResult = Visit(E->getSubExpr());
if (SubResult.isInvalid()) return ExprError();
Expr *SubExpr = SubResult.get();
E->setSubExpr(SubExpr);
E->setType(SubExpr->getType());
E->setValueKind(SubExpr->getValueKind());
assert(E->getObjectKind() == OK_Ordinary);
return E;
}
ExprResult VisitParenExpr(ParenExpr *E) {
return rebuildSugarExpr(E);
}
ExprResult VisitUnaryExtension(UnaryOperator *E) {
return rebuildSugarExpr(E);
}
ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
const PointerType *Ptr = DestType->getAs<PointerType>();
if (!Ptr) {
S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
<< E->getSourceRange();
return ExprError();
}
if (isa<CallExpr>(E->getSubExpr())) {
S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
<< E->getSourceRange();
return ExprError();
}
assert(E->getValueKind() == VK_RValue);
assert(E->getObjectKind() == OK_Ordinary);
E->setType(DestType);
// Build the sub-expression as if it were an object of the pointee type.
DestType = Ptr->getPointeeType();
ExprResult SubResult = Visit(E->getSubExpr());
if (SubResult.isInvalid()) return ExprError();
E->setSubExpr(SubResult.get());
return E;
}
ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
ExprResult resolveDecl(Expr *E, ValueDecl *VD);
ExprResult VisitMemberExpr(MemberExpr *E) {
return resolveDecl(E, E->getMemberDecl());
}
ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
return resolveDecl(E, E->getDecl());
}
};
}
/// Rebuilds a call expression which yielded __unknown_anytype.
ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
Expr *CalleeExpr = E->getCallee();
enum FnKind {
FK_MemberFunction,
FK_FunctionPointer,
FK_BlockPointer
};
FnKind Kind;
QualType CalleeType = CalleeExpr->getType();
if (CalleeType == S.Context.BoundMemberTy) {
assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
Kind = FK_MemberFunction;
CalleeType = Expr::findBoundMemberType(CalleeExpr);
} else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
CalleeType = Ptr->getPointeeType();
Kind = FK_FunctionPointer;
} else {
CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
Kind = FK_BlockPointer;
}
const FunctionType *FnType = CalleeType->castAs<FunctionType>();
// Verify that this is a legal result type of a function.
if (DestType->isArrayType() || DestType->isFunctionType()) {
unsigned diagID = diag::err_func_returning_array_function;
if (Kind == FK_BlockPointer)
diagID = diag::err_block_returning_array_function;
S.Diag(E->getExprLoc(), diagID)
<< DestType->isFunctionType() << DestType;
return ExprError();
}
// Otherwise, go ahead and set DestType as the call's result.
E->setType(DestType.getNonLValueExprType(S.Context));
E->setValueKind(Expr::getValueKindForType(DestType));
assert(E->getObjectKind() == OK_Ordinary);
// Rebuild the function type, replacing the result type with DestType.
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
if (Proto) {
// __unknown_anytype(...) is a special case used by the debugger when
// it has no idea what a function's signature is.
//
// We want to build this call essentially under the K&R
// unprototyped rules, but making a FunctionNoProtoType in C++
// would foul up all sorts of assumptions. However, we cannot
// simply pass all arguments as variadic arguments, nor can we
// portably just call the function under a non-variadic type; see
// the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
// However, it turns out that in practice it is generally safe to
// call a function declared as "A foo(B,C,D);" under the prototype
// "A foo(B,C,D,...);". The only known exception is with the
// Windows ABI, where any variadic function is implicitly cdecl
// regardless of its normal CC. Therefore we change the parameter
// types to match the types of the arguments.
//
// This is a hack, but it is far superior to moving the
// corresponding target-specific code from IR-gen to Sema/AST.
ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
SmallVector<QualType, 8> ArgTypes;
if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
ArgTypes.reserve(E->getNumArgs());
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Expr *Arg = E->getArg(i);
QualType ArgType = Arg->getType();
if (E->isLValue()) {
ArgType = S.Context.getLValueReferenceType(ArgType);
} else if (E->isXValue()) {
ArgType = S.Context.getRValueReferenceType(ArgType);
}
ArgTypes.push_back(ArgType);
}
ParamTypes = ArgTypes;
}
DestType = S.Context.getFunctionType(DestType, ParamTypes,
Proto->getExtProtoInfo());
} else {
DestType = S.Context.getFunctionNoProtoType(DestType,
FnType->getExtInfo());
}
// Rebuild the appropriate pointer-to-function type.
switch (Kind) {
case FK_MemberFunction:
// Nothing to do.
break;
case FK_FunctionPointer:
DestType = S.Context.getPointerType(DestType);
break;
case FK_BlockPointer:
DestType = S.Context.getBlockPointerType(DestType);
break;
}
// Finally, we can recurse.
ExprResult CalleeResult = Visit(CalleeExpr);
if (!CalleeResult.isUsable()) return ExprError();
E->setCallee(CalleeResult.get());
// Bind a temporary if necessary.
return S.MaybeBindToTemporary(E);
}
ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
// Verify that this is a legal result type of a call.
if (DestType->isArrayType() || DestType->isFunctionType()) {
S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
<< DestType->isFunctionType() << DestType;
return ExprError();
}
// Rewrite the method result type if available.
if (ObjCMethodDecl *Method = E->getMethodDecl()) {
assert(Method->getReturnType() == S.Context.UnknownAnyTy);
Method->setReturnType(DestType);
}
// Change the type of the message.
E->setType(DestType.getNonReferenceType());
E->setValueKind(Expr::getValueKindForType(DestType));
return S.MaybeBindToTemporary(E);
}
ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
// The only case we should ever see here is a function-to-pointer decay.
if (E->getCastKind() == CK_FunctionToPointerDecay) {
assert(E->getValueKind() == VK_RValue);
assert(E->getObjectKind() == OK_Ordinary);
E->setType(DestType);
// Rebuild the sub-expression as the pointee (function) type.
DestType = DestType->castAs<PointerType>()->getPointeeType();
ExprResult Result = Visit(E->getSubExpr());
if (!Result.isUsable()) return ExprError();
E->setSubExpr(Result.get());
return E;
} else if (E->getCastKind() == CK_LValueToRValue) {
assert(E->getValueKind() == VK_RValue);
assert(E->getObjectKind() == OK_Ordinary);
assert(isa<BlockPointerType>(E->getType()));
E->setType(DestType);
// The sub-expression has to be a lvalue reference, so rebuild it as such.
DestType = S.Context.getLValueReferenceType(DestType);
ExprResult Result = Visit(E->getSubExpr());
if (!Result.isUsable()) return ExprError();
E->setSubExpr(Result.get());
return E;
} else {
llvm_unreachable("Unhandled cast type!");
}
}
ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
ExprValueKind ValueKind = VK_LValue;
QualType Type = DestType;
// We know how to make this work for certain kinds of decls:
// - functions
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
if (const PointerType *Ptr = Type->getAs<PointerType>()) {
DestType = Ptr->getPointeeType();
ExprResult Result = resolveDecl(E, VD);
if (Result.isInvalid()) return ExprError();
return S.ImpCastExprToType(Result.get(), Type,
CK_FunctionToPointerDecay, VK_RValue);
}
if (!Type->isFunctionType()) {
S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
<< VD << E->getSourceRange();
return ExprError();
}
if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
// We must match the FunctionDecl's type to the hack introduced in
// RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
// type. See the lengthy commentary in that routine.
QualType FDT = FD->getType();
const FunctionType *FnType = FDT->castAs<FunctionType>();
const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
SourceLocation Loc = FD->getLocation();
FunctionDecl *NewFD = FunctionDecl::Create(
S.Context, FD->getDeclContext(), Loc, Loc,
FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
/*ConstexprKind*/ CSK_unspecified);
if (FD->getQualifier())
NewFD->setQualifierInfo(FD->getQualifierLoc());
SmallVector<ParmVarDecl*, 16> Params;
for (const auto &AI : FT->param_types()) {
ParmVarDecl *Param =
S.BuildParmVarDeclForTypedef(FD, Loc, AI);
Param->setScopeInfo(0, Params.size());
Params.push_back(Param);
}
NewFD->setParams(Params);
DRE->setDecl(NewFD);
VD = DRE->getDecl();
}
}
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
if (MD->isInstance()) {
ValueKind = VK_RValue;
Type = S.Context.BoundMemberTy;
}
// Function references aren't l-values in C.
if (!S.getLangOpts().CPlusPlus)
ValueKind = VK_RValue;
// - variables
} else if (isa<VarDecl>(VD)) {
if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
Type = RefTy->getPointeeType();
} else if (Type->isFunctionType()) {
S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
<< VD << E->getSourceRange();
return ExprError();
}
// - nothing else
} else {
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
<< VD << E->getSourceRange();
return ExprError();
}
// Modifying the declaration like this is friendly to IR-gen but
// also really dangerous.
VD->setType(DestType);
E->setType(Type);
E->setValueKind(ValueKind);
return E;
}
/// Check a cast of an unknown-any type. We intentionally only
/// trigger this for C-style casts.
ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
Expr *CastExpr, CastKind &CastKind,
ExprValueKind &VK, CXXCastPath &Path) {
// The type we're casting to must be either void or complete.
if (!CastType->isVoidType() &&
RequireCompleteType(TypeRange.getBegin(), CastType,
diag::err_typecheck_cast_to_incomplete))
return ExprError();
// Rewrite the casted expression from scratch.
ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
if (!result.isUsable()) return ExprError();
CastExpr = result.get();
VK = CastExpr->getValueKind();
CastKind = CK_NoOp;
return CastExpr;
}
ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
}
ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
Expr *arg, QualType ¶mType) {
// If the syntactic form of the argument is not an explicit cast of
// any sort, just do default argument promotion.
ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
if (!castArg) {
ExprResult result = DefaultArgumentPromotion(arg);
if (result.isInvalid()) return ExprError();
paramType = result.get()->getType();
return result;
}
// Otherwise, use the type that was written in the explicit cast.
assert(!arg->hasPlaceholderType());
paramType = castArg->getTypeAsWritten();
// Copy-initialize a parameter of that type.
InitializedEntity entity =
InitializedEntity::InitializeParameter(Context, paramType,
/*consumed*/ false);
return PerformCopyInitialization(entity, callLoc, arg);
}
static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
Expr *orig = E;
unsigned diagID = diag::err_uncasted_use_of_unknown_any;
while (true) {
E = E->IgnoreParenImpCasts();
if (CallExpr *call = dyn_cast<CallExpr>(E)) {
E = call->getCallee();
diagID = diag::err_uncasted_call_of_unknown_any;
} else {
break;
}
}
SourceLocation loc;
NamedDecl *d;
if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
loc = ref->getLocation();
d = ref->getDecl();
} else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
loc = mem->getMemberLoc();
d = mem->getMemberDecl();
} else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
diagID = diag::err_uncasted_call_of_unknown_any;
loc = msg->getSelectorStartLoc();
d = msg->getMethodDecl();
if (!d) {
S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
<< static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
<< orig->getSourceRange();
return ExprError();
}
} else {
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
<< E->getSourceRange();
return ExprError();
}
S.Diag(loc, diagID) << d << orig->getSourceRange();
// Never recoverable.
return ExprError();
}
/// Check for operands with placeholder types and complain if found.
/// Returns ExprError() if there was an error and no recovery was possible.
ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
if (!getLangOpts().CPlusPlus) {
// C cannot handle TypoExpr nodes on either side of a binop because it
// doesn't handle dependent types properly, so make sure any TypoExprs have
// been dealt with before checking the operands.
ExprResult Result = CorrectDelayedTyposInExpr(E);
if (!Result.isUsable()) return ExprError();
E = Result.get();
}
const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
if (!placeholderType) return E;
switch (placeholderType->getKind()) {
// Overloaded expressions.
case BuiltinType::Overload: {
// Try to resolve a single function template specialization.
// This is obligatory.
ExprResult Result = E;
if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
return Result;
// No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
// leaves Result unchanged on failure.
Result = E;
if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
return Result;
// If that failed, try to recover with a call.
tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
/*complain*/ true);
return Result;
}
// Bound member functions.
case BuiltinType::BoundMember: {
ExprResult result = E;
const Expr *BME = E->IgnoreParens();
PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
// Try to give a nicer diagnostic if it is a bound member that we recognize.
if (isa<CXXPseudoDestructorExpr>(BME)) {
PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
} else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
if (ME->getMemberNameInfo().getName().getNameKind() ==
DeclarationName::CXXDestructorName)
PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
}
tryToRecoverWithCall(result, PD,
/*complain*/ true);
return result;
}
// ARC unbridged casts.
case BuiltinType::ARCUnbridgedCast: {
Expr *realCast = stripARCUnbridgedCast(E);
diagnoseARCUnbridgedCast(realCast);
return realCast;
}
// Expressions of unknown type.
case BuiltinType::UnknownAny:
return diagnoseUnknownAnyExpr(*this, E);
// Pseudo-objects.
case BuiltinType::PseudoObject:
return checkPseudoObjectRValue(E);
case BuiltinType::BuiltinFn: {
// Accept __noop without parens by implicitly converting it to a call expr.
auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
if (DRE) {
auto *FD = cast<FunctionDecl>(DRE->getDecl());
if (FD->getBuiltinID() == Builtin::BI__noop) {
E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
CK_BuiltinFnToFnPtr)
.get();
return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
VK_RValue, SourceLocation(),
FPOptionsOverride());
}
}
Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
return ExprError();
}
case BuiltinType::IncompleteMatrixIdx:
Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
->getRowIdx()
->getBeginLoc(),
diag::err_matrix_incomplete_index);
return ExprError();
// Expressions of unknown type.
case BuiltinType::OMPArraySection:
Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
return ExprError();
// Expressions of unknown type.
case BuiltinType::OMPArrayShaping:
return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
case BuiltinType::OMPIterator:
return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
// Everything else should be impossible.
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
#define SVE_TYPE(Name, Id, SingletonId) \
case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
#define PLACEHOLDER_TYPE(Id, SingletonId)
#include "clang/AST/BuiltinTypes.def"
break;
}
llvm_unreachable("invalid placeholder type!");
}
bool Sema::CheckCaseExpression(Expr *E) {
if (E->isTypeDependent())
return true;
if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
return E->getType()->isIntegralOrEnumerationType();
return false;
}
/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
ExprResult
Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
"Unknown Objective-C Boolean value!");
QualType BoolT = Context.ObjCBuiltinBoolTy;
if (!Context.getBOOLDecl()) {
LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
Sema::LookupOrdinaryName);
if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
NamedDecl *ND = Result.getFoundDecl();
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
Context.setBOOLDecl(TD);
}
}
if (Context.getBOOLDecl())
BoolT = Context.getBOOLType();
return new (Context)
ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
}
ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
SourceLocation RParen) {
StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
return Spec.getPlatform() == Platform;
});
VersionTuple Version;
if (Spec != AvailSpecs.end())
Version = Spec->getVersion();
// The use of `@available` in the enclosing function should be analyzed to
// warn when it's used inappropriately (i.e. not if(@available)).
if (getCurFunctionOrMethodDecl())
getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
else if (getCurBlock() || getCurLambda())
getCurFunction()->HasPotentialAvailabilityViolations = true;
return new (Context)
ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
}
ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
ArrayRef<Expr *> SubExprs, QualType T) {
if (!Context.getLangOpts().RecoveryAST)
return ExprError();
if (isSFINAEContext())
return ExprError();
if (T.isNull() || !Context.getLangOpts().RecoveryASTType)
// We don't know the concrete type, fallback to dependent type.
T = Context.DependentTy;
return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
}