SemaExpr.cpp 747 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//

#include "TreeTransform.h"
#include "UsedDeclVisitor.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Designator.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaFixItUtils.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace clang;
using namespace sema;
using llvm::RoundingMode;

/// Determine whether the use of this declaration is valid, without
/// emitting diagnostics.
bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
  // See if this is an auto-typed variable whose initializer we are parsing.
  if (ParsingInitForAutoVars.count(D))
    return false;

  // See if this is a deleted function.
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    if (FD->isDeleted())
      return false;

    // If the function has a deduced return type, and we can't deduce it,
    // then we can't use it either.
    if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
        DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
      return false;

    // See if this is an aligned allocation/deallocation function that is
    // unavailable.
    if (TreatUnavailableAsInvalid &&
        isUnavailableAlignedAllocationFunction(*FD))
      return false;
  }

  // See if this function is unavailable.
  if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
    return false;

  return true;
}

static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
  // Warn if this is used but marked unused.
  if (const auto *A = D->getAttr<UnusedAttr>()) {
    // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
    // should diagnose them.
    if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
        A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
      const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
      if (DC && !DC->hasAttr<UnusedAttr>())
        S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
    }
  }
}

/// Emit a note explaining that this function is deleted.
void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
  assert(Decl && Decl->isDeleted());

  if (Decl->isDefaulted()) {
    // If the method was explicitly defaulted, point at that declaration.
    if (!Decl->isImplicit())
      Diag(Decl->getLocation(), diag::note_implicitly_deleted);

    // Try to diagnose why this special member function was implicitly
    // deleted. This might fail, if that reason no longer applies.
    DiagnoseDeletedDefaultedFunction(Decl);
    return;
  }

  auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
  if (Ctor && Ctor->isInheritingConstructor())
    return NoteDeletedInheritingConstructor(Ctor);

  Diag(Decl->getLocation(), diag::note_availability_specified_here)
    << Decl << 1;
}

/// Determine whether a FunctionDecl was ever declared with an
/// explicit storage class.
static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
  for (auto I : D->redecls()) {
    if (I->getStorageClass() != SC_None)
      return true;
  }
  return false;
}

/// Check whether we're in an extern inline function and referring to a
/// variable or function with internal linkage (C11 6.7.4p3).
///
/// This is only a warning because we used to silently accept this code, but
/// in many cases it will not behave correctly. This is not enabled in C++ mode
/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
/// and so while there may still be user mistakes, most of the time we can't
/// prove that there are errors.
static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
                                                      const NamedDecl *D,
                                                      SourceLocation Loc) {
  // This is disabled under C++; there are too many ways for this to fire in
  // contexts where the warning is a false positive, or where it is technically
  // correct but benign.
  if (S.getLangOpts().CPlusPlus)
    return;

  // Check if this is an inlined function or method.
  FunctionDecl *Current = S.getCurFunctionDecl();
  if (!Current)
    return;
  if (!Current->isInlined())
    return;
  if (!Current->isExternallyVisible())
    return;

  // Check if the decl has internal linkage.
  if (D->getFormalLinkage() != InternalLinkage)
    return;

  // Downgrade from ExtWarn to Extension if
  //  (1) the supposedly external inline function is in the main file,
  //      and probably won't be included anywhere else.
  //  (2) the thing we're referencing is a pure function.
  //  (3) the thing we're referencing is another inline function.
  // This last can give us false negatives, but it's better than warning on
  // wrappers for simple C library functions.
  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
  bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
  if (!DowngradeWarning && UsedFn)
    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();

  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
                               : diag::ext_internal_in_extern_inline)
    << /*IsVar=*/!UsedFn << D;

  S.MaybeSuggestAddingStaticToDecl(Current);

  S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
      << D;
}

void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
  const FunctionDecl *First = Cur->getFirstDecl();

  // Suggest "static" on the function, if possible.
  if (!hasAnyExplicitStorageClass(First)) {
    SourceLocation DeclBegin = First->getSourceRange().getBegin();
    Diag(DeclBegin, diag::note_convert_inline_to_static)
      << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
  }
}

/// Determine whether the use of this declaration is valid, and
/// emit any corresponding diagnostics.
///
/// This routine diagnoses various problems with referencing
/// declarations that can occur when using a declaration. For example,
/// it might warn if a deprecated or unavailable declaration is being
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
///
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
                             const ObjCInterfaceDecl *UnknownObjCClass,
                             bool ObjCPropertyAccess,
                             bool AvoidPartialAvailabilityChecks,
                             ObjCInterfaceDecl *ClassReceiver) {
  SourceLocation Loc = Locs.front();
  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    // If there were any diagnostics suppressed by template argument deduction,
    // emit them now.
    auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    if (Pos != SuppressedDiagnostics.end()) {
      for (const PartialDiagnosticAt &Suppressed : Pos->second)
        Diag(Suppressed.first, Suppressed.second);

      // Clear out the list of suppressed diagnostics, so that we don't emit
      // them again for this specialization. However, we don't obsolete this
      // entry from the table, because we want to avoid ever emitting these
      // diagnostics again.
      Pos->second.clear();
    }

    // C++ [basic.start.main]p3:
    //   The function 'main' shall not be used within a program.
    if (cast<FunctionDecl>(D)->isMain())
      Diag(Loc, diag::ext_main_used);

    diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
  }

  // See if this is an auto-typed variable whose initializer we are parsing.
  if (ParsingInitForAutoVars.count(D)) {
    if (isa<BindingDecl>(D)) {
      Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
        << D->getDeclName();
    } else {
      Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
        << D->getDeclName() << cast<VarDecl>(D)->getType();
    }
    return true;
  }

  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    // See if this is a deleted function.
    if (FD->isDeleted()) {
      auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
      if (Ctor && Ctor->isInheritingConstructor())
        Diag(Loc, diag::err_deleted_inherited_ctor_use)
            << Ctor->getParent()
            << Ctor->getInheritedConstructor().getConstructor()->getParent();
      else
        Diag(Loc, diag::err_deleted_function_use);
      NoteDeletedFunction(FD);
      return true;
    }

    // [expr.prim.id]p4
    //   A program that refers explicitly or implicitly to a function with a
    //   trailing requires-clause whose constraint-expression is not satisfied,
    //   other than to declare it, is ill-formed. [...]
    //
    // See if this is a function with constraints that need to be satisfied.
    // Check this before deducing the return type, as it might instantiate the
    // definition.
    if (FD->getTrailingRequiresClause()) {
      ConstraintSatisfaction Satisfaction;
      if (CheckFunctionConstraints(FD, Satisfaction, Loc))
        // A diagnostic will have already been generated (non-constant
        // constraint expression, for example)
        return true;
      if (!Satisfaction.IsSatisfied) {
        Diag(Loc,
             diag::err_reference_to_function_with_unsatisfied_constraints)
            << D;
        DiagnoseUnsatisfiedConstraint(Satisfaction);
        return true;
      }
    }

    // If the function has a deduced return type, and we can't deduce it,
    // then we can't use it either.
    if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
        DeduceReturnType(FD, Loc))
      return true;

    if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
      return true;

    if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
      return true;
  }

  if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
    // Lambdas are only default-constructible or assignable in C++2a onwards.
    if (MD->getParent()->isLambda() &&
        ((isa<CXXConstructorDecl>(MD) &&
          cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
         MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
      Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
        << !isa<CXXConstructorDecl>(MD);
    }
  }

  auto getReferencedObjCProp = [](const NamedDecl *D) ->
                                      const ObjCPropertyDecl * {
    if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
      return MD->findPropertyDecl();
    return nullptr;
  };
  if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
    if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
      return true;
  } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
      return true;
  }

  // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
  // Only the variables omp_in and omp_out are allowed in the combiner.
  // Only the variables omp_priv and omp_orig are allowed in the
  // initializer-clause.
  auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
  if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
      isa<VarDecl>(D)) {
    Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
        << getCurFunction()->HasOMPDeclareReductionCombiner;
    Diag(D->getLocation(), diag::note_entity_declared_at) << D;
    return true;
  }

  // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
  //  List-items in map clauses on this construct may only refer to the declared
  //  variable var and entities that could be referenced by a procedure defined
  //  at the same location
  if (LangOpts.OpenMP && isa<VarDecl>(D) &&
      !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
    Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
        << getOpenMPDeclareMapperVarName();
    Diag(D->getLocation(), diag::note_entity_declared_at) << D;
    return true;
  }

  DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
                             AvoidPartialAvailabilityChecks, ClassReceiver);

  DiagnoseUnusedOfDecl(*this, D, Loc);

  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);

  if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
    if (const auto *VD = dyn_cast<ValueDecl>(D))
      checkDeviceDecl(VD, Loc);

    if (!Context.getTargetInfo().isTLSSupported())
      if (const auto *VD = dyn_cast<VarDecl>(D))
        if (VD->getTLSKind() != VarDecl::TLS_None)
          targetDiag(*Locs.begin(), diag::err_thread_unsupported);
  }

  if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
      !isUnevaluatedContext()) {
    // C++ [expr.prim.req.nested] p3
    //   A local parameter shall only appear as an unevaluated operand
    //   (Clause 8) within the constraint-expression.
    Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
        << D;
    Diag(D->getLocation(), diag::note_entity_declared_at) << D;
    return true;
  }

  return false;
}

/// DiagnoseSentinelCalls - This routine checks whether a call or
/// message-send is to a declaration with the sentinel attribute, and
/// if so, it checks that the requirements of the sentinel are
/// satisfied.
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
                                 ArrayRef<Expr *> Args) {
  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
  if (!attr)
    return;

  // The number of formal parameters of the declaration.
  unsigned numFormalParams;

  // The kind of declaration.  This is also an index into a %select in
  // the diagnostic.
  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;

  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    numFormalParams = MD->param_size();
    calleeType = CT_Method;
  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    numFormalParams = FD->param_size();
    calleeType = CT_Function;
  } else if (isa<VarDecl>(D)) {
    QualType type = cast<ValueDecl>(D)->getType();
    const FunctionType *fn = nullptr;
    if (const PointerType *ptr = type->getAs<PointerType>()) {
      fn = ptr->getPointeeType()->getAs<FunctionType>();
      if (!fn) return;
      calleeType = CT_Function;
    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
      fn = ptr->getPointeeType()->castAs<FunctionType>();
      calleeType = CT_Block;
    } else {
      return;
    }

    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
      numFormalParams = proto->getNumParams();
    } else {
      numFormalParams = 0;
    }
  } else {
    return;
  }

  // "nullPos" is the number of formal parameters at the end which
  // effectively count as part of the variadic arguments.  This is
  // useful if you would prefer to not have *any* formal parameters,
  // but the language forces you to have at least one.
  unsigned nullPos = attr->getNullPos();
  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);

  // The number of arguments which should follow the sentinel.
  unsigned numArgsAfterSentinel = attr->getSentinel();

  // If there aren't enough arguments for all the formal parameters,
  // the sentinel, and the args after the sentinel, complain.
  if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    return;
  }

  // Otherwise, find the sentinel expression.
  Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
  if (!sentinelExpr) return;
  if (sentinelExpr->isValueDependent()) return;
  if (Context.isSentinelNullExpr(sentinelExpr)) return;

  // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
  // or 'NULL' if those are actually defined in the context.  Only use
  // 'nil' for ObjC methods, where it's much more likely that the
  // variadic arguments form a list of object pointers.
  SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
  std::string NullValue;
  if (calleeType == CT_Method && PP.isMacroDefined("nil"))
    NullValue = "nil";
  else if (getLangOpts().CPlusPlus11)
    NullValue = "nullptr";
  else if (PP.isMacroDefined("NULL"))
    NullValue = "NULL";
  else
    NullValue = "(void*) 0";

  if (MissingNilLoc.isInvalid())
    Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
  else
    Diag(MissingNilLoc, diag::warn_missing_sentinel)
      << int(calleeType)
      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
  Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
}

SourceRange Sema::getExprRange(Expr *E) const {
  return E ? E->getSourceRange() : SourceRange();
}

//===----------------------------------------------------------------------===//
//  Standard Promotions and Conversions
//===----------------------------------------------------------------------===//

/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
  // Handle any placeholder expressions which made it here.
  if (E->getType()->isPlaceholderType()) {
    ExprResult result = CheckPlaceholderExpr(E);
    if (result.isInvalid()) return ExprError();
    E = result.get();
  }

  QualType Ty = E->getType();
  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");

  if (Ty->isFunctionType()) {
    if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
      if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
        if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
          return ExprError();

    E = ImpCastExprToType(E, Context.getPointerType(Ty),
                          CK_FunctionToPointerDecay).get();
  } else if (Ty->isArrayType()) {
    // In C90 mode, arrays only promote to pointers if the array expression is
    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    // type 'array of type' is converted to an expression that has type 'pointer
    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    // that has type 'array of type' ...".  The relevant change is "an lvalue"
    // (C90) to "an expression" (C99).
    //
    // C++ 4.2p1:
    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    // T" can be converted to an rvalue of type "pointer to T".
    //
    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
                            CK_ArrayToPointerDecay).get();
  }
  return E;
}

static void CheckForNullPointerDereference(Sema &S, Expr *E) {
  // Check to see if we are dereferencing a null pointer.  If so,
  // and if not volatile-qualified, this is undefined behavior that the
  // optimizer will delete, so warn about it.  People sometimes try to use this
  // to get a deterministic trap and are surprised by clang's behavior.  This
  // only handles the pattern "*null", which is a very syntactic check.
  const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
  if (UO && UO->getOpcode() == UO_Deref &&
      UO->getSubExpr()->getType()->isPointerType()) {
    const LangAS AS =
        UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
    if ((!isTargetAddressSpace(AS) ||
         (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
        UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
            S.Context, Expr::NPC_ValueDependentIsNotNull) &&
        !UO->getType().isVolatileQualified()) {
      S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
                            S.PDiag(diag::warn_indirection_through_null)
                                << UO->getSubExpr()->getSourceRange());
      S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
                            S.PDiag(diag::note_indirection_through_null));
    }
  }
}

static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
                                    SourceLocation AssignLoc,
                                    const Expr* RHS) {
  const ObjCIvarDecl *IV = OIRE->getDecl();
  if (!IV)
    return;

  DeclarationName MemberName = IV->getDeclName();
  IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
  if (!Member || !Member->isStr("isa"))
    return;

  const Expr *Base = OIRE->getBase();
  QualType BaseType = Base->getType();
  if (OIRE->isArrow())
    BaseType = BaseType->getPointeeType();
  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
    if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
      ObjCInterfaceDecl *ClassDeclared = nullptr;
      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
      if (!ClassDeclared->getSuperClass()
          && (*ClassDeclared->ivar_begin()) == IV) {
        if (RHS) {
          NamedDecl *ObjectSetClass =
            S.LookupSingleName(S.TUScope,
                               &S.Context.Idents.get("object_setClass"),
                               SourceLocation(), S.LookupOrdinaryName);
          if (ObjectSetClass) {
            SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
                << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
                                              "object_setClass(")
                << FixItHint::CreateReplacement(
                       SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
                << FixItHint::CreateInsertion(RHSLocEnd, ")");
          }
          else
            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
        } else {
          NamedDecl *ObjectGetClass =
            S.LookupSingleName(S.TUScope,
                               &S.Context.Idents.get("object_getClass"),
                               SourceLocation(), S.LookupOrdinaryName);
          if (ObjectGetClass)
            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
                << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
                                              "object_getClass(")
                << FixItHint::CreateReplacement(
                       SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
          else
            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
        }
        S.Diag(IV->getLocation(), diag::note_ivar_decl);
      }
    }
}

ExprResult Sema::DefaultLvalueConversion(Expr *E) {
  // Handle any placeholder expressions which made it here.
  if (E->getType()->isPlaceholderType()) {
    ExprResult result = CheckPlaceholderExpr(E);
    if (result.isInvalid()) return ExprError();
    E = result.get();
  }

  // C++ [conv.lval]p1:
  //   A glvalue of a non-function, non-array type T can be
  //   converted to a prvalue.
  if (!E->isGLValue()) return E;

  QualType T = E->getType();
  assert(!T.isNull() && "r-value conversion on typeless expression?");

  // lvalue-to-rvalue conversion cannot be applied to function or array types.
  if (T->isFunctionType() || T->isArrayType())
    return E;

  // We don't want to throw lvalue-to-rvalue casts on top of
  // expressions of certain types in C++.
  if (getLangOpts().CPlusPlus &&
      (E->getType() == Context.OverloadTy ||
       T->isDependentType() ||
       T->isRecordType()))
    return E;

  // The C standard is actually really unclear on this point, and
  // DR106 tells us what the result should be but not why.  It's
  // generally best to say that void types just doesn't undergo
  // lvalue-to-rvalue at all.  Note that expressions of unqualified
  // 'void' type are never l-values, but qualified void can be.
  if (T->isVoidType())
    return E;

  // OpenCL usually rejects direct accesses to values of 'half' type.
  if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
      T->isHalfType()) {
    Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
      << 0 << T;
    return ExprError();
  }

  CheckForNullPointerDereference(*this, E);
  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
    NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
                                     &Context.Idents.get("object_getClass"),
                                     SourceLocation(), LookupOrdinaryName);
    if (ObjectGetClass)
      Diag(E->getExprLoc(), diag::warn_objc_isa_use)
          << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
          << FixItHint::CreateReplacement(
                 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
    else
      Diag(E->getExprLoc(), diag::warn_objc_isa_use);
  }
  else if (const ObjCIvarRefExpr *OIRE =
            dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
    DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);

  // C++ [conv.lval]p1:
  //   [...] If T is a non-class type, the type of the prvalue is the
  //   cv-unqualified version of T. Otherwise, the type of the
  //   rvalue is T.
  //
  // C99 6.3.2.1p2:
  //   If the lvalue has qualified type, the value has the unqualified
  //   version of the type of the lvalue; otherwise, the value has the
  //   type of the lvalue.
  if (T.hasQualifiers())
    T = T.getUnqualifiedType();

  // Under the MS ABI, lock down the inheritance model now.
  if (T->isMemberPointerType() &&
      Context.getTargetInfo().getCXXABI().isMicrosoft())
    (void)isCompleteType(E->getExprLoc(), T);

  ExprResult Res = CheckLValueToRValueConversionOperand(E);
  if (Res.isInvalid())
    return Res;
  E = Res.get();

  // Loading a __weak object implicitly retains the value, so we need a cleanup to
  // balance that.
  if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    Cleanup.setExprNeedsCleanups(true);

  if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
    Cleanup.setExprNeedsCleanups(true);

  // C++ [conv.lval]p3:
  //   If T is cv std::nullptr_t, the result is a null pointer constant.
  CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
  Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue,
                                 FPOptionsOverride());

  // C11 6.3.2.1p2:
  //   ... if the lvalue has atomic type, the value has the non-atomic version
  //   of the type of the lvalue ...
  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    T = Atomic->getValueType().getUnqualifiedType();
    Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
                                   nullptr, VK_RValue, FPOptionsOverride());
  }

  return Res;
}

ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
  ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
  if (Res.isInvalid())
    return ExprError();
  Res = DefaultLvalueConversion(Res.get());
  if (Res.isInvalid())
    return ExprError();
  return Res;
}

/// CallExprUnaryConversions - a special case of an unary conversion
/// performed on a function designator of a call expression.
ExprResult Sema::CallExprUnaryConversions(Expr *E) {
  QualType Ty = E->getType();
  ExprResult Res = E;
  // Only do implicit cast for a function type, but not for a pointer
  // to function type.
  if (Ty->isFunctionType()) {
    Res = ImpCastExprToType(E, Context.getPointerType(Ty),
                            CK_FunctionToPointerDecay);
    if (Res.isInvalid())
      return ExprError();
  }
  Res = DefaultLvalueConversion(Res.get());
  if (Res.isInvalid())
    return ExprError();
  return Res.get();
}

/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are
/// sometimes suppressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
ExprResult Sema::UsualUnaryConversions(Expr *E) {
  // First, convert to an r-value.
  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
  if (Res.isInvalid())
    return ExprError();
  E = Res.get();

  QualType Ty = E->getType();
  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");

  // Half FP have to be promoted to float unless it is natively supported
  if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);

  // Try to perform integral promotions if the object has a theoretically
  // promotable type.
  if (Ty->isIntegralOrUnscopedEnumerationType()) {
    // C99 6.3.1.1p2:
    //
    //   The following may be used in an expression wherever an int or
    //   unsigned int may be used:
    //     - an object or expression with an integer type whose integer
    //       conversion rank is less than or equal to the rank of int
    //       and unsigned int.
    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    //
    //   If an int can represent all values of the original type, the
    //   value is converted to an int; otherwise, it is converted to an
    //   unsigned int. These are called the integer promotions. All
    //   other types are unchanged by the integer promotions.

    QualType PTy = Context.isPromotableBitField(E);
    if (!PTy.isNull()) {
      E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
      return E;
    }
    if (Ty->isPromotableIntegerType()) {
      QualType PT = Context.getPromotedIntegerType(Ty);
      E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
      return E;
    }
  }
  return E;
}

/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float or __fp16
/// are promoted to double. All other argument types are converted by
/// UsualUnaryConversions().
ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
  QualType Ty = E->getType();
  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");

  ExprResult Res = UsualUnaryConversions(E);
  if (Res.isInvalid())
    return ExprError();
  E = Res.get();

  // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
  // promote to double.
  // Note that default argument promotion applies only to float (and
  // half/fp16); it does not apply to _Float16.
  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
  if (BTy && (BTy->getKind() == BuiltinType::Half ||
              BTy->getKind() == BuiltinType::Float)) {
    if (getLangOpts().OpenCL &&
        !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
        if (BTy->getKind() == BuiltinType::Half) {
            E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
        }
    } else {
      E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
    }
  }

  // C++ performs lvalue-to-rvalue conversion as a default argument
  // promotion, even on class types, but note:
  //   C++11 [conv.lval]p2:
  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
  //     operand or a subexpression thereof the value contained in the
  //     referenced object is not accessed. Otherwise, if the glvalue
  //     has a class type, the conversion copy-initializes a temporary
  //     of type T from the glvalue and the result of the conversion
  //     is a prvalue for the temporary.
  // FIXME: add some way to gate this entire thing for correctness in
  // potentially potentially evaluated contexts.
  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    ExprResult Temp = PerformCopyInitialization(
                       InitializedEntity::InitializeTemporary(E->getType()),
                                                E->getExprLoc(), E);
    if (Temp.isInvalid())
      return ExprError();
    E = Temp.get();
  }

  return E;
}

/// Determine the degree of POD-ness for an expression.
/// Incomplete types are considered POD, since this check can be performed
/// when we're in an unevaluated context.
Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
  if (Ty->isIncompleteType()) {
    // C++11 [expr.call]p7:
    //   After these conversions, if the argument does not have arithmetic,
    //   enumeration, pointer, pointer to member, or class type, the program
    //   is ill-formed.
    //
    // Since we've already performed array-to-pointer and function-to-pointer
    // decay, the only such type in C++ is cv void. This also handles
    // initializer lists as variadic arguments.
    if (Ty->isVoidType())
      return VAK_Invalid;

    if (Ty->isObjCObjectType())
      return VAK_Invalid;
    return VAK_Valid;
  }

  if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
    return VAK_Invalid;

  if (Ty.isCXX98PODType(Context))
    return VAK_Valid;

  // C++11 [expr.call]p7:
  //   Passing a potentially-evaluated argument of class type (Clause 9)
  //   having a non-trivial copy constructor, a non-trivial move constructor,
  //   or a non-trivial destructor, with no corresponding parameter,
  //   is conditionally-supported with implementation-defined semantics.
  if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
      if (!Record->hasNonTrivialCopyConstructor() &&
          !Record->hasNonTrivialMoveConstructor() &&
          !Record->hasNonTrivialDestructor())
        return VAK_ValidInCXX11;

  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    return VAK_Valid;

  if (Ty->isObjCObjectType())
    return VAK_Invalid;

  if (getLangOpts().MSVCCompat)
    return VAK_MSVCUndefined;

  // FIXME: In C++11, these cases are conditionally-supported, meaning we're
  // permitted to reject them. We should consider doing so.
  return VAK_Undefined;
}

void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
  // Don't allow one to pass an Objective-C interface to a vararg.
  const QualType &Ty = E->getType();
  VarArgKind VAK = isValidVarArgType(Ty);

  // Complain about passing non-POD types through varargs.
  switch (VAK) {
  case VAK_ValidInCXX11:
    DiagRuntimeBehavior(
        E->getBeginLoc(), nullptr,
        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
    LLVM_FALLTHROUGH;
  case VAK_Valid:
    if (Ty->isRecordType()) {
      // This is unlikely to be what the user intended. If the class has a
      // 'c_str' member function, the user probably meant to call that.
      DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
                          PDiag(diag::warn_pass_class_arg_to_vararg)
                              << Ty << CT << hasCStrMethod(E) << ".c_str()");
    }
    break;

  case VAK_Undefined:
  case VAK_MSVCUndefined:
    DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
                        PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
                            << getLangOpts().CPlusPlus11 << Ty << CT);
    break;

  case VAK_Invalid:
    if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
      Diag(E->getBeginLoc(),
           diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
          << Ty << CT;
    else if (Ty->isObjCObjectType())
      DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
                          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
                              << Ty << CT);
    else
      Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
          << isa<InitListExpr>(E) << Ty << CT;
    break;
  }
}

/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
/// will create a trap if the resulting type is not a POD type.
ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
                                                  FunctionDecl *FDecl) {
  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    // Strip the unbridged-cast placeholder expression off, if applicable.
    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
        (CT == VariadicMethod ||
         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
      E = stripARCUnbridgedCast(E);

    // Otherwise, do normal placeholder checking.
    } else {
      ExprResult ExprRes = CheckPlaceholderExpr(E);
      if (ExprRes.isInvalid())
        return ExprError();
      E = ExprRes.get();
    }
  }

  ExprResult ExprRes = DefaultArgumentPromotion(E);
  if (ExprRes.isInvalid())
    return ExprError();

  // Copy blocks to the heap.
  if (ExprRes.get()->getType()->isBlockPointerType())
    maybeExtendBlockObject(ExprRes);

  E = ExprRes.get();

  // Diagnostics regarding non-POD argument types are
  // emitted along with format string checking in Sema::CheckFunctionCall().
  if (isValidVarArgType(E->getType()) == VAK_Undefined) {
    // Turn this into a trap.
    CXXScopeSpec SS;
    SourceLocation TemplateKWLoc;
    UnqualifiedId Name;
    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
                       E->getBeginLoc());
    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
                                          /*HasTrailingLParen=*/true,
                                          /*IsAddressOfOperand=*/false);
    if (TrapFn.isInvalid())
      return ExprError();

    ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
                                    None, E->getEndLoc());
    if (Call.isInvalid())
      return ExprError();

    ExprResult Comma =
        ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
    if (Comma.isInvalid())
      return ExprError();
    return Comma.get();
  }

  if (!getLangOpts().CPlusPlus &&
      RequireCompleteType(E->getExprLoc(), E->getType(),
                          diag::err_call_incomplete_argument))
    return ExprError();

  return E;
}

/// Converts an integer to complex float type.  Helper function of
/// UsualArithmeticConversions()
///
/// \return false if the integer expression is an integer type and is
/// successfully converted to the complex type.
static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
                                                  ExprResult &ComplexExpr,
                                                  QualType IntTy,
                                                  QualType ComplexTy,
                                                  bool SkipCast) {
  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
  if (SkipCast) return false;
  if (IntTy->isIntegerType()) {
    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
    IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
    IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
                                  CK_FloatingRealToComplex);
  } else {
    assert(IntTy->isComplexIntegerType());
    IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
                                  CK_IntegralComplexToFloatingComplex);
  }
  return false;
}

/// Handle arithmetic conversion with complex types.  Helper function of
/// UsualArithmeticConversions()
static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
                                             ExprResult &RHS, QualType LHSType,
                                             QualType RHSType,
                                             bool IsCompAssign) {
  // if we have an integer operand, the result is the complex type.
  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
                                             /*skipCast*/false))
    return LHSType;
  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
                                             /*skipCast*/IsCompAssign))
    return RHSType;

  // This handles complex/complex, complex/float, or float/complex.
  // When both operands are complex, the shorter operand is converted to the
  // type of the longer, and that is the type of the result. This corresponds
  // to what is done when combining two real floating-point operands.
  // The fun begins when size promotion occur across type domains.
  // From H&S 6.3.4: When one operand is complex and the other is a real
  // floating-point type, the less precise type is converted, within it's
  // real or complex domain, to the precision of the other type. For example,
  // when combining a "long double" with a "double _Complex", the
  // "double _Complex" is promoted to "long double _Complex".

  // Compute the rank of the two types, regardless of whether they are complex.
  int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);

  auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
  auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
  QualType LHSElementType =
      LHSComplexType ? LHSComplexType->getElementType() : LHSType;
  QualType RHSElementType =
      RHSComplexType ? RHSComplexType->getElementType() : RHSType;

  QualType ResultType = S.Context.getComplexType(LHSElementType);
  if (Order < 0) {
    // Promote the precision of the LHS if not an assignment.
    ResultType = S.Context.getComplexType(RHSElementType);
    if (!IsCompAssign) {
      if (LHSComplexType)
        LHS =
            S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
      else
        LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
    }
  } else if (Order > 0) {
    // Promote the precision of the RHS.
    if (RHSComplexType)
      RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
    else
      RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
  }
  return ResultType;
}

/// Handle arithmetic conversion from integer to float.  Helper function
/// of UsualArithmeticConversions()
static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
                                           ExprResult &IntExpr,
                                           QualType FloatTy, QualType IntTy,
                                           bool ConvertFloat, bool ConvertInt) {
  if (IntTy->isIntegerType()) {
    if (ConvertInt)
      // Convert intExpr to the lhs floating point type.
      IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
                                    CK_IntegralToFloating);
    return FloatTy;
  }

  // Convert both sides to the appropriate complex float.
  assert(IntTy->isComplexIntegerType());
  QualType result = S.Context.getComplexType(FloatTy);

  // _Complex int -> _Complex float
  if (ConvertInt)
    IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
                                  CK_IntegralComplexToFloatingComplex);

  // float -> _Complex float
  if (ConvertFloat)
    FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
                                    CK_FloatingRealToComplex);

  return result;
}

/// Handle arithmethic conversion with floating point types.  Helper
/// function of UsualArithmeticConversions()
static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
                                      ExprResult &RHS, QualType LHSType,
                                      QualType RHSType, bool IsCompAssign) {
  bool LHSFloat = LHSType->isRealFloatingType();
  bool RHSFloat = RHSType->isRealFloatingType();

  // FIXME: Implement floating to fixed point conversion.(Bug 46268)
  // Reference N1169 4.1.4 (Type conversion, usual arithmetic conversions).
  if ((LHSType->isFixedPointType() && RHSFloat) ||
      (LHSFloat && RHSType->isFixedPointType()))
    return QualType();
  // If we have two real floating types, convert the smaller operand
  // to the bigger result.
  if (LHSFloat && RHSFloat) {
    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
    if (order > 0) {
      RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
      return LHSType;
    }

    assert(order < 0 && "illegal float comparison");
    if (!IsCompAssign)
      LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
    return RHSType;
  }

  if (LHSFloat) {
    // Half FP has to be promoted to float unless it is natively supported
    if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
      LHSType = S.Context.FloatTy;

    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
                                      /*ConvertFloat=*/!IsCompAssign,
                                      /*ConvertInt=*/ true);
  }
  assert(RHSFloat);
  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
                                    /*ConvertFloat=*/ true,
                                    /*ConvertInt=*/!IsCompAssign);
}

/// Diagnose attempts to convert between __float128 and long double if
/// there is no support for such conversion. Helper function of
/// UsualArithmeticConversions().
static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
                                      QualType RHSType) {
  /*  No issue converting if at least one of the types is not a floating point
      type or the two types have the same rank.
  */
  if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
      S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
    return false;

  assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
         "The remaining types must be floating point types.");

  auto *LHSComplex = LHSType->getAs<ComplexType>();
  auto *RHSComplex = RHSType->getAs<ComplexType>();

  QualType LHSElemType = LHSComplex ?
    LHSComplex->getElementType() : LHSType;
  QualType RHSElemType = RHSComplex ?
    RHSComplex->getElementType() : RHSType;

  // No issue if the two types have the same representation
  if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
      &S.Context.getFloatTypeSemantics(RHSElemType))
    return false;

  bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
                                RHSElemType == S.Context.LongDoubleTy);
  Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
                            RHSElemType == S.Context.Float128Ty);

  // We've handled the situation where __float128 and long double have the same
  // representation. We allow all conversions for all possible long double types
  // except PPC's double double.
  return Float128AndLongDouble &&
    (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
     &llvm::APFloat::PPCDoubleDouble());
}

typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);

namespace {
/// These helper callbacks are placed in an anonymous namespace to
/// permit their use as function template parameters.
ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
  return S.ImpCastExprToType(op, toType, CK_IntegralCast);
}

ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
  return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
                             CK_IntegralComplexCast);
}
}

/// Handle integer arithmetic conversions.  Helper function of
/// UsualArithmeticConversions()
template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
                                        ExprResult &RHS, QualType LHSType,
                                        QualType RHSType, bool IsCompAssign) {
  // The rules for this case are in C99 6.3.1.8
  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
  if (LHSSigned == RHSSigned) {
    // Same signedness; use the higher-ranked type
    if (order >= 0) {
      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
      return LHSType;
    } else if (!IsCompAssign)
      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
    return RHSType;
  } else if (order != (LHSSigned ? 1 : -1)) {
    // The unsigned type has greater than or equal rank to the
    // signed type, so use the unsigned type
    if (RHSSigned) {
      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
      return LHSType;
    } else if (!IsCompAssign)
      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
    return RHSType;
  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
    // The two types are different widths; if we are here, that
    // means the signed type is larger than the unsigned type, so
    // use the signed type.
    if (LHSSigned) {
      RHS = (*doRHSCast)(S, RHS.get(), LHSType);
      return LHSType;
    } else if (!IsCompAssign)
      LHS = (*doLHSCast)(S, LHS.get(), RHSType);
    return RHSType;
  } else {
    // The signed type is higher-ranked than the unsigned type,
    // but isn't actually any bigger (like unsigned int and long
    // on most 32-bit systems).  Use the unsigned type corresponding
    // to the signed type.
    QualType result =
      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
    RHS = (*doRHSCast)(S, RHS.get(), result);
    if (!IsCompAssign)
      LHS = (*doLHSCast)(S, LHS.get(), result);
    return result;
  }
}

/// Handle conversions with GCC complex int extension.  Helper function
/// of UsualArithmeticConversions()
static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
                                           ExprResult &RHS, QualType LHSType,
                                           QualType RHSType,
                                           bool IsCompAssign) {
  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();

  if (LHSComplexInt && RHSComplexInt) {
    QualType LHSEltType = LHSComplexInt->getElementType();
    QualType RHSEltType = RHSComplexInt->getElementType();
    QualType ScalarType =
      handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
        (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);

    return S.Context.getComplexType(ScalarType);
  }

  if (LHSComplexInt) {
    QualType LHSEltType = LHSComplexInt->getElementType();
    QualType ScalarType =
      handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
        (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
    QualType ComplexType = S.Context.getComplexType(ScalarType);
    RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
                              CK_IntegralRealToComplex);

    return ComplexType;
  }

  assert(RHSComplexInt);

  QualType RHSEltType = RHSComplexInt->getElementType();
  QualType ScalarType =
    handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
      (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
  QualType ComplexType = S.Context.getComplexType(ScalarType);

  if (!IsCompAssign)
    LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
                              CK_IntegralRealToComplex);
  return ComplexType;
}

/// Return the rank of a given fixed point or integer type. The value itself
/// doesn't matter, but the values must be increasing with proper increasing
/// rank as described in N1169 4.1.1.
static unsigned GetFixedPointRank(QualType Ty) {
  const auto *BTy = Ty->getAs<BuiltinType>();
  assert(BTy && "Expected a builtin type.");

  switch (BTy->getKind()) {
  case BuiltinType::ShortFract:
  case BuiltinType::UShortFract:
  case BuiltinType::SatShortFract:
  case BuiltinType::SatUShortFract:
    return 1;
  case BuiltinType::Fract:
  case BuiltinType::UFract:
  case BuiltinType::SatFract:
  case BuiltinType::SatUFract:
    return 2;
  case BuiltinType::LongFract:
  case BuiltinType::ULongFract:
  case BuiltinType::SatLongFract:
  case BuiltinType::SatULongFract:
    return 3;
  case BuiltinType::ShortAccum:
  case BuiltinType::UShortAccum:
  case BuiltinType::SatShortAccum:
  case BuiltinType::SatUShortAccum:
    return 4;
  case BuiltinType::Accum:
  case BuiltinType::UAccum:
  case BuiltinType::SatAccum:
  case BuiltinType::SatUAccum:
    return 5;
  case BuiltinType::LongAccum:
  case BuiltinType::ULongAccum:
  case BuiltinType::SatLongAccum:
  case BuiltinType::SatULongAccum:
    return 6;
  default:
    if (BTy->isInteger())
      return 0;
    llvm_unreachable("Unexpected fixed point or integer type");
  }
}

/// handleFixedPointConversion - Fixed point operations between fixed
/// point types and integers or other fixed point types do not fall under
/// usual arithmetic conversion since these conversions could result in loss
/// of precsision (N1169 4.1.4). These operations should be calculated with
/// the full precision of their result type (N1169 4.1.6.2.1).
static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
                                           QualType RHSTy) {
  assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
         "Expected at least one of the operands to be a fixed point type");
  assert((LHSTy->isFixedPointOrIntegerType() ||
          RHSTy->isFixedPointOrIntegerType()) &&
         "Special fixed point arithmetic operation conversions are only "
         "applied to ints or other fixed point types");

  // If one operand has signed fixed-point type and the other operand has
  // unsigned fixed-point type, then the unsigned fixed-point operand is
  // converted to its corresponding signed fixed-point type and the resulting
  // type is the type of the converted operand.
  if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
    LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
  else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
    RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);

  // The result type is the type with the highest rank, whereby a fixed-point
  // conversion rank is always greater than an integer conversion rank; if the
  // type of either of the operands is a saturating fixedpoint type, the result
  // type shall be the saturating fixed-point type corresponding to the type
  // with the highest rank; the resulting value is converted (taking into
  // account rounding and overflow) to the precision of the resulting type.
  // Same ranks between signed and unsigned types are resolved earlier, so both
  // types are either signed or both unsigned at this point.
  unsigned LHSTyRank = GetFixedPointRank(LHSTy);
  unsigned RHSTyRank = GetFixedPointRank(RHSTy);

  QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;

  if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
    ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);

  return ResultTy;
}

/// Check that the usual arithmetic conversions can be performed on this pair of
/// expressions that might be of enumeration type.
static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
                                           SourceLocation Loc,
                                           Sema::ArithConvKind ACK) {
  // C++2a [expr.arith.conv]p1:
  //   If one operand is of enumeration type and the other operand is of a
  //   different enumeration type or a floating-point type, this behavior is
  //   deprecated ([depr.arith.conv.enum]).
  //
  // Warn on this in all language modes. Produce a deprecation warning in C++20.
  // Eventually we will presumably reject these cases (in C++23 onwards?).
  QualType L = LHS->getType(), R = RHS->getType();
  bool LEnum = L->isUnscopedEnumerationType(),
       REnum = R->isUnscopedEnumerationType();
  bool IsCompAssign = ACK == Sema::ACK_CompAssign;
  if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
      (REnum && L->isFloatingType())) {
    S.Diag(Loc, S.getLangOpts().CPlusPlus20
                    ? diag::warn_arith_conv_enum_float_cxx20
                    : diag::warn_arith_conv_enum_float)
        << LHS->getSourceRange() << RHS->getSourceRange()
        << (int)ACK << LEnum << L << R;
  } else if (!IsCompAssign && LEnum && REnum &&
             !S.Context.hasSameUnqualifiedType(L, R)) {
    unsigned DiagID;
    if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
        !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
      // If either enumeration type is unnamed, it's less likely that the
      // user cares about this, but this situation is still deprecated in
      // C++2a. Use a different warning group.
      DiagID = S.getLangOpts().CPlusPlus20
                    ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
                    : diag::warn_arith_conv_mixed_anon_enum_types;
    } else if (ACK == Sema::ACK_Conditional) {
      // Conditional expressions are separated out because they have
      // historically had a different warning flag.
      DiagID = S.getLangOpts().CPlusPlus20
                   ? diag::warn_conditional_mixed_enum_types_cxx20
                   : diag::warn_conditional_mixed_enum_types;
    } else if (ACK == Sema::ACK_Comparison) {
      // Comparison expressions are separated out because they have
      // historically had a different warning flag.
      DiagID = S.getLangOpts().CPlusPlus20
                   ? diag::warn_comparison_mixed_enum_types_cxx20
                   : diag::warn_comparison_mixed_enum_types;
    } else {
      DiagID = S.getLangOpts().CPlusPlus20
                   ? diag::warn_arith_conv_mixed_enum_types_cxx20
                   : diag::warn_arith_conv_mixed_enum_types;
    }
    S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
                        << (int)ACK << L << R;
  }
}

/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
/// responsible for emitting appropriate error diagnostics.
QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
                                          SourceLocation Loc,
                                          ArithConvKind ACK) {
  checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);

  if (ACK != ACK_CompAssign) {
    LHS = UsualUnaryConversions(LHS.get());
    if (LHS.isInvalid())
      return QualType();
  }

  RHS = UsualUnaryConversions(RHS.get());
  if (RHS.isInvalid())
    return QualType();

  // For conversion purposes, we ignore any qualifiers.
  // For example, "const float" and "float" are equivalent.
  QualType LHSType =
    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
  QualType RHSType =
    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();

  // For conversion purposes, we ignore any atomic qualifier on the LHS.
  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
    LHSType = AtomicLHS->getValueType();

  // If both types are identical, no conversion is needed.
  if (LHSType == RHSType)
    return LHSType;

  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
  // The caller can deal with this (e.g. pointer + int).
  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
    return QualType();

  // Apply unary and bitfield promotions to the LHS's type.
  QualType LHSUnpromotedType = LHSType;
  if (LHSType->isPromotableIntegerType())
    LHSType = Context.getPromotedIntegerType(LHSType);
  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
  if (!LHSBitfieldPromoteTy.isNull())
    LHSType = LHSBitfieldPromoteTy;
  if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
    LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);

  // If both types are identical, no conversion is needed.
  if (LHSType == RHSType)
    return LHSType;

  // ExtInt types aren't subject to conversions between them or normal integers,
  // so this fails.
  if(LHSType->isExtIntType() || RHSType->isExtIntType())
    return QualType();

  // At this point, we have two different arithmetic types.

  // Diagnose attempts to convert between __float128 and long double where
  // such conversions currently can't be handled.
  if (unsupportedTypeConversion(*this, LHSType, RHSType))
    return QualType();

  // Handle complex types first (C99 6.3.1.8p1).
  if (LHSType->isComplexType() || RHSType->isComplexType())
    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
                                        ACK == ACK_CompAssign);

  // Now handle "real" floating types (i.e. float, double, long double).
  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
                                 ACK == ACK_CompAssign);

  // Handle GCC complex int extension.
  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
                                      ACK == ACK_CompAssign);

  if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
    return handleFixedPointConversion(*this, LHSType, RHSType);

  // Finally, we have two differing integer types.
  return handleIntegerConversion<doIntegralCast, doIntegralCast>
           (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
}

//===----------------------------------------------------------------------===//
//  Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//


ExprResult
Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
                                SourceLocation DefaultLoc,
                                SourceLocation RParenLoc,
                                Expr *ControllingExpr,
                                ArrayRef<ParsedType> ArgTypes,
                                ArrayRef<Expr *> ArgExprs) {
  unsigned NumAssocs = ArgTypes.size();
  assert(NumAssocs == ArgExprs.size());

  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
  for (unsigned i = 0; i < NumAssocs; ++i) {
    if (ArgTypes[i])
      (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
    else
      Types[i] = nullptr;
  }

  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
                                             ControllingExpr,
                                             llvm::makeArrayRef(Types, NumAssocs),
                                             ArgExprs);
  delete [] Types;
  return ER;
}

ExprResult
Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
                                 SourceLocation DefaultLoc,
                                 SourceLocation RParenLoc,
                                 Expr *ControllingExpr,
                                 ArrayRef<TypeSourceInfo *> Types,
                                 ArrayRef<Expr *> Exprs) {
  unsigned NumAssocs = Types.size();
  assert(NumAssocs == Exprs.size());

  // Decay and strip qualifiers for the controlling expression type, and handle
  // placeholder type replacement. See committee discussion from WG14 DR423.
  {
    EnterExpressionEvaluationContext Unevaluated(
        *this, Sema::ExpressionEvaluationContext::Unevaluated);
    ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
    if (R.isInvalid())
      return ExprError();
    ControllingExpr = R.get();
  }

  // The controlling expression is an unevaluated operand, so side effects are
  // likely unintended.
  if (!inTemplateInstantiation() &&
      ControllingExpr->HasSideEffects(Context, false))
    Diag(ControllingExpr->getExprLoc(),
         diag::warn_side_effects_unevaluated_context);

  bool TypeErrorFound = false,
       IsResultDependent = ControllingExpr->isTypeDependent(),
       ContainsUnexpandedParameterPack
         = ControllingExpr->containsUnexpandedParameterPack();

  for (unsigned i = 0; i < NumAssocs; ++i) {
    if (Exprs[i]->containsUnexpandedParameterPack())
      ContainsUnexpandedParameterPack = true;

    if (Types[i]) {
      if (Types[i]->getType()->containsUnexpandedParameterPack())
        ContainsUnexpandedParameterPack = true;

      if (Types[i]->getType()->isDependentType()) {
        IsResultDependent = true;
      } else {
        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
        // complete object type other than a variably modified type."
        unsigned D = 0;
        if (Types[i]->getType()->isIncompleteType())
          D = diag::err_assoc_type_incomplete;
        else if (!Types[i]->getType()->isObjectType())
          D = diag::err_assoc_type_nonobject;
        else if (Types[i]->getType()->isVariablyModifiedType())
          D = diag::err_assoc_type_variably_modified;

        if (D != 0) {
          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
            << Types[i]->getTypeLoc().getSourceRange()
            << Types[i]->getType();
          TypeErrorFound = true;
        }

        // C11 6.5.1.1p2 "No two generic associations in the same generic
        // selection shall specify compatible types."
        for (unsigned j = i+1; j < NumAssocs; ++j)
          if (Types[j] && !Types[j]->getType()->isDependentType() &&
              Context.typesAreCompatible(Types[i]->getType(),
                                         Types[j]->getType())) {
            Diag(Types[j]->getTypeLoc().getBeginLoc(),
                 diag::err_assoc_compatible_types)
              << Types[j]->getTypeLoc().getSourceRange()
              << Types[j]->getType()
              << Types[i]->getType();
            Diag(Types[i]->getTypeLoc().getBeginLoc(),
                 diag::note_compat_assoc)
              << Types[i]->getTypeLoc().getSourceRange()
              << Types[i]->getType();
            TypeErrorFound = true;
          }
      }
    }
  }
  if (TypeErrorFound)
    return ExprError();

  // If we determined that the generic selection is result-dependent, don't
  // try to compute the result expression.
  if (IsResultDependent)
    return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
                                        Exprs, DefaultLoc, RParenLoc,
                                        ContainsUnexpandedParameterPack);

  SmallVector<unsigned, 1> CompatIndices;
  unsigned DefaultIndex = -1U;
  for (unsigned i = 0; i < NumAssocs; ++i) {
    if (!Types[i])
      DefaultIndex = i;
    else if (Context.typesAreCompatible(ControllingExpr->getType(),
                                        Types[i]->getType()))
      CompatIndices.push_back(i);
  }

  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
  // type compatible with at most one of the types named in its generic
  // association list."
  if (CompatIndices.size() > 1) {
    // We strip parens here because the controlling expression is typically
    // parenthesized in macro definitions.
    ControllingExpr = ControllingExpr->IgnoreParens();
    Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
        << ControllingExpr->getSourceRange() << ControllingExpr->getType()
        << (unsigned)CompatIndices.size();
    for (unsigned I : CompatIndices) {
      Diag(Types[I]->getTypeLoc().getBeginLoc(),
           diag::note_compat_assoc)
        << Types[I]->getTypeLoc().getSourceRange()
        << Types[I]->getType();
    }
    return ExprError();
  }

  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
  // its controlling expression shall have type compatible with exactly one of
  // the types named in its generic association list."
  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
    // We strip parens here because the controlling expression is typically
    // parenthesized in macro definitions.
    ControllingExpr = ControllingExpr->IgnoreParens();
    Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
        << ControllingExpr->getSourceRange() << ControllingExpr->getType();
    return ExprError();
  }

  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
  // type name that is compatible with the type of the controlling expression,
  // then the result expression of the generic selection is the expression
  // in that generic association. Otherwise, the result expression of the
  // generic selection is the expression in the default generic association."
  unsigned ResultIndex =
    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;

  return GenericSelectionExpr::Create(
      Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
      ContainsUnexpandedParameterPack, ResultIndex);
}

/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
/// location of the token and the offset of the ud-suffix within it.
static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
                                     unsigned Offset) {
  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
                                        S.getLangOpts());
}

/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
/// the corresponding cooked (non-raw) literal operator, and build a call to it.
static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
                                                 IdentifierInfo *UDSuffix,
                                                 SourceLocation UDSuffixLoc,
                                                 ArrayRef<Expr*> Args,
                                                 SourceLocation LitEndLoc) {
  assert(Args.size() <= 2 && "too many arguments for literal operator");

  QualType ArgTy[2];
  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
    if (ArgTy[ArgIdx]->isArrayType())
      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
  }

  DeclarationName OpName =
    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);

  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
                              /*AllowRaw*/ false, /*AllowTemplate*/ false,
                              /*AllowStringTemplate*/ false,
                              /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
    return ExprError();

  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
}

/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens.  However, the common case is that StringToks points to one
/// string.
///
ExprResult
Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
  assert(!StringToks.empty() && "Must have at least one string!");

  StringLiteralParser Literal(StringToks, PP);
  if (Literal.hadError)
    return ExprError();

  SmallVector<SourceLocation, 4> StringTokLocs;
  for (const Token &Tok : StringToks)
    StringTokLocs.push_back(Tok.getLocation());

  QualType CharTy = Context.CharTy;
  StringLiteral::StringKind Kind = StringLiteral::Ascii;
  if (Literal.isWide()) {
    CharTy = Context.getWideCharType();
    Kind = StringLiteral::Wide;
  } else if (Literal.isUTF8()) {
    if (getLangOpts().Char8)
      CharTy = Context.Char8Ty;
    Kind = StringLiteral::UTF8;
  } else if (Literal.isUTF16()) {
    CharTy = Context.Char16Ty;
    Kind = StringLiteral::UTF16;
  } else if (Literal.isUTF32()) {
    CharTy = Context.Char32Ty;
    Kind = StringLiteral::UTF32;
  } else if (Literal.isPascal()) {
    CharTy = Context.UnsignedCharTy;
  }

  // Warn on initializing an array of char from a u8 string literal; this
  // becomes ill-formed in C++2a.
  if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
      !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
    Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);

    // Create removals for all 'u8' prefixes in the string literal(s). This
    // ensures C++2a compatibility (but may change the program behavior when
    // built by non-Clang compilers for which the execution character set is
    // not always UTF-8).
    auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
    SourceLocation RemovalDiagLoc;
    for (const Token &Tok : StringToks) {
      if (Tok.getKind() == tok::utf8_string_literal) {
        if (RemovalDiagLoc.isInvalid())
          RemovalDiagLoc = Tok.getLocation();
        RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
            Tok.getLocation(),
            Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
                                           getSourceManager(), getLangOpts())));
      }
    }
    Diag(RemovalDiagLoc, RemovalDiag);
  }

  QualType StrTy =
      Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());

  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
                                             Kind, Literal.Pascal, StrTy,
                                             &StringTokLocs[0],
                                             StringTokLocs.size());
  if (Literal.getUDSuffix().empty())
    return Lit;

  // We're building a user-defined literal.
  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
  SourceLocation UDSuffixLoc =
    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
                   Literal.getUDSuffixOffset());

  // Make sure we're allowed user-defined literals here.
  if (!UDLScope)
    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));

  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
  //   operator "" X (str, len)
  QualType SizeType = Context.getSizeType();

  DeclarationName OpName =
    Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);

  QualType ArgTy[] = {
    Context.getArrayDecayedType(StrTy), SizeType
  };

  LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
  switch (LookupLiteralOperator(UDLScope, R, ArgTy,
                                /*AllowRaw*/ false, /*AllowTemplate*/ false,
                                /*AllowStringTemplate*/ true,
                                /*DiagnoseMissing*/ true)) {

  case LOLR_Cooked: {
    llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
    IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
                                                    StringTokLocs[0]);
    Expr *Args[] = { Lit, LenArg };

    return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
  }

  case LOLR_StringTemplate: {
    TemplateArgumentListInfo ExplicitArgs;

    unsigned CharBits = Context.getIntWidth(CharTy);
    bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
    llvm::APSInt Value(CharBits, CharIsUnsigned);

    TemplateArgument TypeArg(CharTy);
    TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
    ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));

    for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
      Value = Lit->getCodeUnit(I);
      TemplateArgument Arg(Context, Value, CharTy);
      TemplateArgumentLocInfo ArgInfo;
      ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
    }
    return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
                                    &ExplicitArgs);
  }
  case LOLR_Raw:
  case LOLR_Template:
  case LOLR_ErrorNoDiagnostic:
    llvm_unreachable("unexpected literal operator lookup result");
  case LOLR_Error:
    return ExprError();
  }
  llvm_unreachable("unexpected literal operator lookup result");
}

DeclRefExpr *
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
                       SourceLocation Loc,
                       const CXXScopeSpec *SS) {
  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
}

DeclRefExpr *
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
                       const DeclarationNameInfo &NameInfo,
                       const CXXScopeSpec *SS, NamedDecl *FoundD,
                       SourceLocation TemplateKWLoc,
                       const TemplateArgumentListInfo *TemplateArgs) {
  NestedNameSpecifierLoc NNS =
      SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
  return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
                          TemplateArgs);
}

NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
  // A declaration named in an unevaluated operand never constitutes an odr-use.
  if (isUnevaluatedContext())
    return NOUR_Unevaluated;

  // C++2a [basic.def.odr]p4:
  //   A variable x whose name appears as a potentially-evaluated expression e
  //   is odr-used by e unless [...] x is a reference that is usable in
  //   constant expressions.
  if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
    if (VD->getType()->isReferenceType() &&
        !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
        VD->isUsableInConstantExpressions(Context))
      return NOUR_Constant;
  }

  // All remaining non-variable cases constitute an odr-use. For variables, we
  // need to wait and see how the expression is used.
  return NOUR_None;
}

/// BuildDeclRefExpr - Build an expression that references a
/// declaration that does not require a closure capture.
DeclRefExpr *
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
                       const DeclarationNameInfo &NameInfo,
                       NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
                       SourceLocation TemplateKWLoc,
                       const TemplateArgumentListInfo *TemplateArgs) {
  bool RefersToCapturedVariable =
      isa<VarDecl>(D) &&
      NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());

  DeclRefExpr *E = DeclRefExpr::Create(
      Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
      VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
  MarkDeclRefReferenced(E);

  // C++ [except.spec]p17:
  //   An exception-specification is considered to be needed when:
  //   - in an expression, the function is the unique lookup result or
  //     the selected member of a set of overloaded functions.
  //
  // We delay doing this until after we've built the function reference and
  // marked it as used so that:
  //  a) if the function is defaulted, we get errors from defining it before /
  //     instead of errors from computing its exception specification, and
  //  b) if the function is a defaulted comparison, we can use the body we
  //     build when defining it as input to the exception specification
  //     computation rather than computing a new body.
  if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
    if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
      if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
        E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
    }
  }

  if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
      Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
    getCurFunction()->recordUseOfWeak(E);

  FieldDecl *FD = dyn_cast<FieldDecl>(D);
  if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
    FD = IFD->getAnonField();
  if (FD) {
    UnusedPrivateFields.remove(FD);
    // Just in case we're building an illegal pointer-to-member.
    if (FD->isBitField())
      E->setObjectKind(OK_BitField);
  }

  // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
  // designates a bit-field.
  if (auto *BD = dyn_cast<BindingDecl>(D))
    if (auto *BE = BD->getBinding())
      E->setObjectKind(BE->getObjectKind());

  return E;
}

/// Decomposes the given name into a DeclarationNameInfo, its location, and
/// possibly a list of template arguments.
///
/// If this produces template arguments, it is permitted to call
/// DecomposeTemplateName.
///
/// This actually loses a lot of source location information for
/// non-standard name kinds; we should consider preserving that in
/// some way.
void
Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
                             TemplateArgumentListInfo &Buffer,
                             DeclarationNameInfo &NameInfo,
                             const TemplateArgumentListInfo *&TemplateArgs) {
  if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);

    ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
                                       Id.TemplateId->NumArgs);
    translateTemplateArguments(TemplateArgsPtr, Buffer);

    TemplateName TName = Id.TemplateId->Template.get();
    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
    TemplateArgs = &Buffer;
  } else {
    NameInfo = GetNameFromUnqualifiedId(Id);
    TemplateArgs = nullptr;
  }
}

static void emitEmptyLookupTypoDiagnostic(
    const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
    DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
    unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
  DeclContext *Ctx =
      SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
  if (!TC) {
    // Emit a special diagnostic for failed member lookups.
    // FIXME: computing the declaration context might fail here (?)
    if (Ctx)
      SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
                                                 << SS.getRange();
    else
      SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
    return;
  }

  std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
  bool DroppedSpecifier =
      TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
  unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
                        ? diag::note_implicit_param_decl
                        : diag::note_previous_decl;
  if (!Ctx)
    SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
                         SemaRef.PDiag(NoteID));
  else
    SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
                                 << Typo << Ctx << DroppedSpecifier
                                 << SS.getRange(),
                         SemaRef.PDiag(NoteID));
}

/// Diagnose an empty lookup.
///
/// \return false if new lookup candidates were found
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
                               CorrectionCandidateCallback &CCC,
                               TemplateArgumentListInfo *ExplicitTemplateArgs,
                               ArrayRef<Expr *> Args, TypoExpr **Out) {
  DeclarationName Name = R.getLookupName();

  unsigned diagnostic = diag::err_undeclared_var_use;
  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
    diagnostic = diag::err_undeclared_use;
    diagnostic_suggest = diag::err_undeclared_use_suggest;
  }

  // If the original lookup was an unqualified lookup, fake an
  // unqualified lookup.  This is useful when (for example) the
  // original lookup would not have found something because it was a
  // dependent name.
  DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
  while (DC) {
    if (isa<CXXRecordDecl>(DC)) {
      LookupQualifiedName(R, DC);

      if (!R.empty()) {
        // Don't give errors about ambiguities in this lookup.
        R.suppressDiagnostics();

        // During a default argument instantiation the CurContext points
        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
        // function parameter list, hence add an explicit check.
        bool isDefaultArgument =
            !CodeSynthesisContexts.empty() &&
            CodeSynthesisContexts.back().Kind ==
                CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
        bool isInstance = CurMethod &&
                          CurMethod->isInstance() &&
                          DC == CurMethod->getParent() && !isDefaultArgument;

        // Give a code modification hint to insert 'this->'.
        // TODO: fixit for inserting 'Base<T>::' in the other cases.
        // Actually quite difficult!
        if (getLangOpts().MSVCCompat)
          diagnostic = diag::ext_found_via_dependent_bases_lookup;
        if (isInstance) {
          Diag(R.getNameLoc(), diagnostic) << Name
            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
          CheckCXXThisCapture(R.getNameLoc());
        } else {
          Diag(R.getNameLoc(), diagnostic) << Name;
        }

        // Do we really want to note all of these?
        for (NamedDecl *D : R)
          Diag(D->getLocation(), diag::note_dependent_var_use);

        // Return true if we are inside a default argument instantiation
        // and the found name refers to an instance member function, otherwise
        // the function calling DiagnoseEmptyLookup will try to create an
        // implicit member call and this is wrong for default argument.
        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
          Diag(R.getNameLoc(), diag::err_member_call_without_object);
          return true;
        }

        // Tell the callee to try to recover.
        return false;
      }

      R.clear();
    }

    DC = DC->getLookupParent();
  }

  // We didn't find anything, so try to correct for a typo.
  TypoCorrection Corrected;
  if (S && Out) {
    SourceLocation TypoLoc = R.getNameLoc();
    assert(!ExplicitTemplateArgs &&
           "Diagnosing an empty lookup with explicit template args!");
    *Out = CorrectTypoDelayed(
        R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
        [=](const TypoCorrection &TC) {
          emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
                                        diagnostic, diagnostic_suggest);
        },
        nullptr, CTK_ErrorRecovery);
    if (*Out)
      return true;
  } else if (S &&
             (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
                                      S, &SS, CCC, CTK_ErrorRecovery))) {
    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    bool DroppedSpecifier =
        Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
    R.setLookupName(Corrected.getCorrection());

    bool AcceptableWithRecovery = false;
    bool AcceptableWithoutRecovery = false;
    NamedDecl *ND = Corrected.getFoundDecl();
    if (ND) {
      if (Corrected.isOverloaded()) {
        OverloadCandidateSet OCS(R.getNameLoc(),
                                 OverloadCandidateSet::CSK_Normal);
        OverloadCandidateSet::iterator Best;
        for (NamedDecl *CD : Corrected) {
          if (FunctionTemplateDecl *FTD =
                   dyn_cast<FunctionTemplateDecl>(CD))
            AddTemplateOverloadCandidate(
                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
                Args, OCS);
          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
                                   Args, OCS);
        }
        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
        case OR_Success:
          ND = Best->FoundDecl;
          Corrected.setCorrectionDecl(ND);
          break;
        default:
          // FIXME: Arbitrarily pick the first declaration for the note.
          Corrected.setCorrectionDecl(ND);
          break;
        }
      }
      R.addDecl(ND);
      if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
        CXXRecordDecl *Record = nullptr;
        if (Corrected.getCorrectionSpecifier()) {
          const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
          Record = Ty->getAsCXXRecordDecl();
        }
        if (!Record)
          Record = cast<CXXRecordDecl>(
              ND->getDeclContext()->getRedeclContext());
        R.setNamingClass(Record);
      }

      auto *UnderlyingND = ND->getUnderlyingDecl();
      AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
                               isa<FunctionTemplateDecl>(UnderlyingND);
      // FIXME: If we ended up with a typo for a type name or
      // Objective-C class name, we're in trouble because the parser
      // is in the wrong place to recover. Suggest the typo
      // correction, but don't make it a fix-it since we're not going
      // to recover well anyway.
      AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
                                  getAsTypeTemplateDecl(UnderlyingND) ||
                                  isa<ObjCInterfaceDecl>(UnderlyingND);
    } else {
      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
      // because we aren't able to recover.
      AcceptableWithoutRecovery = true;
    }

    if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
      unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
                            ? diag::note_implicit_param_decl
                            : diag::note_previous_decl;
      if (SS.isEmpty())
        diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
                     PDiag(NoteID), AcceptableWithRecovery);
      else
        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
                                  << Name << computeDeclContext(SS, false)
                                  << DroppedSpecifier << SS.getRange(),
                     PDiag(NoteID), AcceptableWithRecovery);

      // Tell the callee whether to try to recover.
      return !AcceptableWithRecovery;
    }
  }
  R.clear();

  // Emit a special diagnostic for failed member lookups.
  // FIXME: computing the declaration context might fail here (?)
  if (!SS.isEmpty()) {
    Diag(R.getNameLoc(), diag::err_no_member)
      << Name << computeDeclContext(SS, false)
      << SS.getRange();
    return true;
  }

  // Give up, we can't recover.
  Diag(R.getNameLoc(), diagnostic) << Name;
  return true;
}

/// In Microsoft mode, if we are inside a template class whose parent class has
/// dependent base classes, and we can't resolve an unqualified identifier, then
/// assume the identifier is a member of a dependent base class.  We can only
/// recover successfully in static methods, instance methods, and other contexts
/// where 'this' is available.  This doesn't precisely match MSVC's
/// instantiation model, but it's close enough.
static Expr *
recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
                               DeclarationNameInfo &NameInfo,
                               SourceLocation TemplateKWLoc,
                               const TemplateArgumentListInfo *TemplateArgs) {
  // Only try to recover from lookup into dependent bases in static methods or
  // contexts where 'this' is available.
  QualType ThisType = S.getCurrentThisType();
  const CXXRecordDecl *RD = nullptr;
  if (!ThisType.isNull())
    RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
  else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
    RD = MD->getParent();
  if (!RD || !RD->hasAnyDependentBases())
    return nullptr;

  // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
  // is available, suggest inserting 'this->' as a fixit.
  SourceLocation Loc = NameInfo.getLoc();
  auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
  DB << NameInfo.getName() << RD;

  if (!ThisType.isNull()) {
    DB << FixItHint::CreateInsertion(Loc, "this->");
    return CXXDependentScopeMemberExpr::Create(
        Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
        /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
        /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
  }

  // Synthesize a fake NNS that points to the derived class.  This will
  // perform name lookup during template instantiation.
  CXXScopeSpec SS;
  auto *NNS =
      NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
  SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
  return DependentScopeDeclRefExpr::Create(
      Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
      TemplateArgs);
}

ExprResult
Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
                        SourceLocation TemplateKWLoc, UnqualifiedId &Id,
                        bool HasTrailingLParen, bool IsAddressOfOperand,
                        CorrectionCandidateCallback *CCC,
                        bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
         "cannot be direct & operand and have a trailing lparen");
  if (SS.isInvalid())
    return ExprError();

  TemplateArgumentListInfo TemplateArgsBuffer;

  // Decompose the UnqualifiedId into the following data.
  DeclarationNameInfo NameInfo;
  const TemplateArgumentListInfo *TemplateArgs;
  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);

  DeclarationName Name = NameInfo.getName();
  IdentifierInfo *II = Name.getAsIdentifierInfo();
  SourceLocation NameLoc = NameInfo.getLoc();

  if (II && II->isEditorPlaceholder()) {
    // FIXME: When typed placeholders are supported we can create a typed
    // placeholder expression node.
    return ExprError();
  }

  // C++ [temp.dep.expr]p3:
  //   An id-expression is type-dependent if it contains:
  //     -- an identifier that was declared with a dependent type,
  //        (note: handled after lookup)
  //     -- a template-id that is dependent,
  //        (note: handled in BuildTemplateIdExpr)
  //     -- a conversion-function-id that specifies a dependent type,
  //     -- a nested-name-specifier that contains a class-name that
  //        names a dependent type.
  // Determine whether this is a member of an unknown specialization;
  // we need to handle these differently.
  bool DependentID = false;
  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
      Name.getCXXNameType()->isDependentType()) {
    DependentID = true;
  } else if (SS.isSet()) {
    if (DeclContext *DC = computeDeclContext(SS, false)) {
      if (RequireCompleteDeclContext(SS, DC))
        return ExprError();
    } else {
      DependentID = true;
    }
  }

  if (DependentID)
    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
                                      IsAddressOfOperand, TemplateArgs);

  // Perform the required lookup.
  LookupResult R(*this, NameInfo,
                 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
                     ? LookupObjCImplicitSelfParam
                     : LookupOrdinaryName);
  if (TemplateKWLoc.isValid() || TemplateArgs) {
    // Lookup the template name again to correctly establish the context in
    // which it was found. This is really unfortunate as we already did the
    // lookup to determine that it was a template name in the first place. If
    // this becomes a performance hit, we can work harder to preserve those
    // results until we get here but it's likely not worth it.
    bool MemberOfUnknownSpecialization;
    AssumedTemplateKind AssumedTemplate;
    if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
                           MemberOfUnknownSpecialization, TemplateKWLoc,
                           &AssumedTemplate))
      return ExprError();

    if (MemberOfUnknownSpecialization ||
        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
                                        IsAddressOfOperand, TemplateArgs);
  } else {
    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);

    // If the result might be in a dependent base class, this is a dependent
    // id-expression.
    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
                                        IsAddressOfOperand, TemplateArgs);

    // If this reference is in an Objective-C method, then we need to do
    // some special Objective-C lookup, too.
    if (IvarLookupFollowUp) {
      ExprResult E(LookupInObjCMethod(R, S, II, true));
      if (E.isInvalid())
        return ExprError();

      if (Expr *Ex = E.getAs<Expr>())
        return Ex;
    }
  }

  if (R.isAmbiguous())
    return ExprError();

  // This could be an implicitly declared function reference (legal in C90,
  // extension in C99, forbidden in C++).
  if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
    NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
    if (D) R.addDecl(D);
  }

  // Determine whether this name might be a candidate for
  // argument-dependent lookup.
  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);

  if (R.empty() && !ADL) {
    if (SS.isEmpty() && getLangOpts().MSVCCompat) {
      if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
                                                   TemplateKWLoc, TemplateArgs))
        return E;
    }

    // Don't diagnose an empty lookup for inline assembly.
    if (IsInlineAsmIdentifier)
      return ExprError();

    // If this name wasn't predeclared and if this is not a function
    // call, diagnose the problem.
    TypoExpr *TE = nullptr;
    DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
                                                       : nullptr);
    DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
    assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
           "Typo correction callback misconfigured");
    if (CCC) {
      // Make sure the callback knows what the typo being diagnosed is.
      CCC->setTypoName(II);
      if (SS.isValid())
        CCC->setTypoNNS(SS.getScopeRep());
    }
    // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
    // a template name, but we happen to have always already looked up the name
    // before we get here if it must be a template name.
    if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
                            None, &TE)) {
      if (TE && KeywordReplacement) {
        auto &State = getTypoExprState(TE);
        auto BestTC = State.Consumer->getNextCorrection();
        if (BestTC.isKeyword()) {
          auto *II = BestTC.getCorrectionAsIdentifierInfo();
          if (State.DiagHandler)
            State.DiagHandler(BestTC);
          KeywordReplacement->startToken();
          KeywordReplacement->setKind(II->getTokenID());
          KeywordReplacement->setIdentifierInfo(II);
          KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
          // Clean up the state associated with the TypoExpr, since it has
          // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
          clearDelayedTypo(TE);
          // Signal that a correction to a keyword was performed by returning a
          // valid-but-null ExprResult.
          return (Expr*)nullptr;
        }
        State.Consumer->resetCorrectionStream();
      }
      return TE ? TE : ExprError();
    }

    assert(!R.empty() &&
           "DiagnoseEmptyLookup returned false but added no results");

    // If we found an Objective-C instance variable, let
    // LookupInObjCMethod build the appropriate expression to
    // reference the ivar.
    if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
      R.clear();
      ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
      // In a hopelessly buggy code, Objective-C instance variable
      // lookup fails and no expression will be built to reference it.
      if (!E.isInvalid() && !E.get())
        return ExprError();
      return E;
    }
  }

  // This is guaranteed from this point on.
  assert(!R.empty() || ADL);

  // Check whether this might be a C++ implicit instance member access.
  // C++ [class.mfct.non-static]p3:
  //   When an id-expression that is not part of a class member access
  //   syntax and not used to form a pointer to member is used in the
  //   body of a non-static member function of class X, if name lookup
  //   resolves the name in the id-expression to a non-static non-type
  //   member of some class C, the id-expression is transformed into a
  //   class member access expression using (*this) as the
  //   postfix-expression to the left of the . operator.
  //
  // But we don't actually need to do this for '&' operands if R
  // resolved to a function or overloaded function set, because the
  // expression is ill-formed if it actually works out to be a
  // non-static member function:
  //
  // C++ [expr.ref]p4:
  //   Otherwise, if E1.E2 refers to a non-static member function. . .
  //   [t]he expression can be used only as the left-hand operand of a
  //   member function call.
  //
  // There are other safeguards against such uses, but it's important
  // to get this right here so that we don't end up making a
  // spuriously dependent expression if we're inside a dependent
  // instance method.
  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
    bool MightBeImplicitMember;
    if (!IsAddressOfOperand)
      MightBeImplicitMember = true;
    else if (!SS.isEmpty())
      MightBeImplicitMember = false;
    else if (R.isOverloadedResult())
      MightBeImplicitMember = false;
    else if (R.isUnresolvableResult())
      MightBeImplicitMember = true;
    else
      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
                              isa<IndirectFieldDecl>(R.getFoundDecl()) ||
                              isa<MSPropertyDecl>(R.getFoundDecl());

    if (MightBeImplicitMember)
      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
                                             R, TemplateArgs, S);
  }

  if (TemplateArgs || TemplateKWLoc.isValid()) {

    // In C++1y, if this is a variable template id, then check it
    // in BuildTemplateIdExpr().
    // The single lookup result must be a variable template declaration.
    if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
        Id.TemplateId->Kind == TNK_Var_template) {
      assert(R.getAsSingle<VarTemplateDecl>() &&
             "There should only be one declaration found.");
    }

    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
  }

  return BuildDeclarationNameExpr(SS, R, ADL);
}

/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
/// declaration name, generally during template instantiation.
/// There's a large number of things which don't need to be done along
/// this path.
ExprResult Sema::BuildQualifiedDeclarationNameExpr(
    CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
    bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
  DeclContext *DC = computeDeclContext(SS, false);
  if (!DC)
    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
                                     NameInfo, /*TemplateArgs=*/nullptr);

  if (RequireCompleteDeclContext(SS, DC))
    return ExprError();

  LookupResult R(*this, NameInfo, LookupOrdinaryName);
  LookupQualifiedName(R, DC);

  if (R.isAmbiguous())
    return ExprError();

  if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
                                     NameInfo, /*TemplateArgs=*/nullptr);

  if (R.empty()) {
    // Don't diagnose problems with invalid record decl, the secondary no_member
    // diagnostic during template instantiation is likely bogus, e.g. if a class
    // is invalid because it's derived from an invalid base class, then missing
    // members were likely supposed to be inherited.
    if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
      if (CD->isInvalidDecl())
        return ExprError();
    Diag(NameInfo.getLoc(), diag::err_no_member)
      << NameInfo.getName() << DC << SS.getRange();
    return ExprError();
  }

  if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
    // Diagnose a missing typename if this resolved unambiguously to a type in
    // a dependent context.  If we can recover with a type, downgrade this to
    // a warning in Microsoft compatibility mode.
    unsigned DiagID = diag::err_typename_missing;
    if (RecoveryTSI && getLangOpts().MSVCCompat)
      DiagID = diag::ext_typename_missing;
    SourceLocation Loc = SS.getBeginLoc();
    auto D = Diag(Loc, DiagID);
    D << SS.getScopeRep() << NameInfo.getName().getAsString()
      << SourceRange(Loc, NameInfo.getEndLoc());

    // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
    // context.
    if (!RecoveryTSI)
      return ExprError();

    // Only issue the fixit if we're prepared to recover.
    D << FixItHint::CreateInsertion(Loc, "typename ");

    // Recover by pretending this was an elaborated type.
    QualType Ty = Context.getTypeDeclType(TD);
    TypeLocBuilder TLB;
    TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());

    QualType ET = getElaboratedType(ETK_None, SS, Ty);
    ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
    QTL.setElaboratedKeywordLoc(SourceLocation());
    QTL.setQualifierLoc(SS.getWithLocInContext(Context));

    *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);

    return ExprEmpty();
  }

  // Defend against this resolving to an implicit member access. We usually
  // won't get here if this might be a legitimate a class member (we end up in
  // BuildMemberReferenceExpr instead), but this can be valid if we're forming
  // a pointer-to-member or in an unevaluated context in C++11.
  if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
    return BuildPossibleImplicitMemberExpr(SS,
                                           /*TemplateKWLoc=*/SourceLocation(),
                                           R, /*TemplateArgs=*/nullptr, S);

  return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
}

/// The parser has read a name in, and Sema has detected that we're currently
/// inside an ObjC method. Perform some additional checks and determine if we
/// should form a reference to an ivar.
///
/// Ideally, most of this would be done by lookup, but there's
/// actually quite a lot of extra work involved.
DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
                                        IdentifierInfo *II) {
  SourceLocation Loc = Lookup.getNameLoc();
  ObjCMethodDecl *CurMethod = getCurMethodDecl();

  // Check for error condition which is already reported.
  if (!CurMethod)
    return DeclResult(true);

  // There are two cases to handle here.  1) scoped lookup could have failed,
  // in which case we should look for an ivar.  2) scoped lookup could have
  // found a decl, but that decl is outside the current instance method (i.e.
  // a global variable).  In these two cases, we do a lookup for an ivar with
  // this name, if the lookup sucedes, we replace it our current decl.

  // If we're in a class method, we don't normally want to look for
  // ivars.  But if we don't find anything else, and there's an
  // ivar, that's an error.
  bool IsClassMethod = CurMethod->isClassMethod();

  bool LookForIvars;
  if (Lookup.empty())
    LookForIvars = true;
  else if (IsClassMethod)
    LookForIvars = false;
  else
    LookForIvars = (Lookup.isSingleResult() &&
                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
  ObjCInterfaceDecl *IFace = nullptr;
  if (LookForIvars) {
    IFace = CurMethod->getClassInterface();
    ObjCInterfaceDecl *ClassDeclared;
    ObjCIvarDecl *IV = nullptr;
    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
      // Diagnose using an ivar in a class method.
      if (IsClassMethod) {
        Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
        return DeclResult(true);
      }

      // Diagnose the use of an ivar outside of the declaring class.
      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
          !declaresSameEntity(ClassDeclared, IFace) &&
          !getLangOpts().DebuggerSupport)
        Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();

      // Success.
      return IV;
    }
  } else if (CurMethod->isInstanceMethod()) {
    // We should warn if a local variable hides an ivar.
    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
      ObjCInterfaceDecl *ClassDeclared;
      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
            declaresSameEntity(IFace, ClassDeclared))
          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
      }
    }
  } else if (Lookup.isSingleResult() &&
             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
    // If accessing a stand-alone ivar in a class method, this is an error.
    if (const ObjCIvarDecl *IV =
            dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
      Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
      return DeclResult(true);
    }
  }

  // Didn't encounter an error, didn't find an ivar.
  return DeclResult(false);
}

ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
                                  ObjCIvarDecl *IV) {
  ObjCMethodDecl *CurMethod = getCurMethodDecl();
  assert(CurMethod && CurMethod->isInstanceMethod() &&
         "should not reference ivar from this context");

  ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
  assert(IFace && "should not reference ivar from this context");

  // If we're referencing an invalid decl, just return this as a silent
  // error node.  The error diagnostic was already emitted on the decl.
  if (IV->isInvalidDecl())
    return ExprError();

  // Check if referencing a field with __attribute__((deprecated)).
  if (DiagnoseUseOfDecl(IV, Loc))
    return ExprError();

  // FIXME: This should use a new expr for a direct reference, don't
  // turn this into Self->ivar, just return a BareIVarExpr or something.
  IdentifierInfo &II = Context.Idents.get("self");
  UnqualifiedId SelfName;
  SelfName.setIdentifier(&II, SourceLocation());
  SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
  CXXScopeSpec SelfScopeSpec;
  SourceLocation TemplateKWLoc;
  ExprResult SelfExpr =
      ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
                        /*HasTrailingLParen=*/false,
                        /*IsAddressOfOperand=*/false);
  if (SelfExpr.isInvalid())
    return ExprError();

  SelfExpr = DefaultLvalueConversion(SelfExpr.get());
  if (SelfExpr.isInvalid())
    return ExprError();

  MarkAnyDeclReferenced(Loc, IV, true);

  ObjCMethodFamily MF = CurMethod->getMethodFamily();
  if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
      !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
    Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();

  ObjCIvarRefExpr *Result = new (Context)
      ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
                      IV->getLocation(), SelfExpr.get(), true, true);

  if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
    if (!isUnevaluatedContext() &&
        !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
      getCurFunction()->recordUseOfWeak(Result);
  }
  if (getLangOpts().ObjCAutoRefCount)
    if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
      ImplicitlyRetainedSelfLocs.push_back({Loc, BD});

  return Result;
}

/// The parser has read a name in, and Sema has detected that we're currently
/// inside an ObjC method. Perform some additional checks and determine if we
/// should form a reference to an ivar. If so, build an expression referencing
/// that ivar.
ExprResult
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
                         IdentifierInfo *II, bool AllowBuiltinCreation) {
  // FIXME: Integrate this lookup step into LookupParsedName.
  DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
  if (Ivar.isInvalid())
    return ExprError();
  if (Ivar.isUsable())
    return BuildIvarRefExpr(S, Lookup.getNameLoc(),
                            cast<ObjCIvarDecl>(Ivar.get()));

  if (Lookup.empty() && II && AllowBuiltinCreation)
    LookupBuiltin(Lookup);

  // Sentinel value saying that we didn't do anything special.
  return ExprResult(false);
}

/// Cast a base object to a member's actual type.
///
/// Logically this happens in three phases:
///
/// * First we cast from the base type to the naming class.
///   The naming class is the class into which we were looking
///   when we found the member;  it's the qualifier type if a
///   qualifier was provided, and otherwise it's the base type.
///
/// * Next we cast from the naming class to the declaring class.
///   If the member we found was brought into a class's scope by
///   a using declaration, this is that class;  otherwise it's
///   the class declaring the member.
///
/// * Finally we cast from the declaring class to the "true"
///   declaring class of the member.  This conversion does not
///   obey access control.
ExprResult
Sema::PerformObjectMemberConversion(Expr *From,
                                    NestedNameSpecifier *Qualifier,
                                    NamedDecl *FoundDecl,
                                    NamedDecl *Member) {
  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
  if (!RD)
    return From;

  QualType DestRecordType;
  QualType DestType;
  QualType FromRecordType;
  QualType FromType = From->getType();
  bool PointerConversions = false;
  if (isa<FieldDecl>(Member)) {
    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
    auto FromPtrType = FromType->getAs<PointerType>();
    DestRecordType = Context.getAddrSpaceQualType(
        DestRecordType, FromPtrType
                            ? FromType->getPointeeType().getAddressSpace()
                            : FromType.getAddressSpace());

    if (FromPtrType) {
      DestType = Context.getPointerType(DestRecordType);
      FromRecordType = FromPtrType->getPointeeType();
      PointerConversions = true;
    } else {
      DestType = DestRecordType;
      FromRecordType = FromType;
    }
  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
    if (Method->isStatic())
      return From;

    DestType = Method->getThisType();
    DestRecordType = DestType->getPointeeType();

    if (FromType->getAs<PointerType>()) {
      FromRecordType = FromType->getPointeeType();
      PointerConversions = true;
    } else {
      FromRecordType = FromType;
      DestType = DestRecordType;
    }

    LangAS FromAS = FromRecordType.getAddressSpace();
    LangAS DestAS = DestRecordType.getAddressSpace();
    if (FromAS != DestAS) {
      QualType FromRecordTypeWithoutAS =
          Context.removeAddrSpaceQualType(FromRecordType);
      QualType FromTypeWithDestAS =
          Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
      if (PointerConversions)
        FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
      From = ImpCastExprToType(From, FromTypeWithDestAS,
                               CK_AddressSpaceConversion, From->getValueKind())
                 .get();
    }
  } else {
    // No conversion necessary.
    return From;
  }

  if (DestType->isDependentType() || FromType->isDependentType())
    return From;

  // If the unqualified types are the same, no conversion is necessary.
  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
    return From;

  SourceRange FromRange = From->getSourceRange();
  SourceLocation FromLoc = FromRange.getBegin();

  ExprValueKind VK = From->getValueKind();

  // C++ [class.member.lookup]p8:
  //   [...] Ambiguities can often be resolved by qualifying a name with its
  //   class name.
  //
  // If the member was a qualified name and the qualified referred to a
  // specific base subobject type, we'll cast to that intermediate type
  // first and then to the object in which the member is declared. That allows
  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
  //
  //   class Base { public: int x; };
  //   class Derived1 : public Base { };
  //   class Derived2 : public Base { };
  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
  //
  //   void VeryDerived::f() {
  //     x = 17; // error: ambiguous base subobjects
  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
  //   }
  if (Qualifier && Qualifier->getAsType()) {
    QualType QType = QualType(Qualifier->getAsType(), 0);
    assert(QType->isRecordType() && "lookup done with non-record type");

    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);

    // In C++98, the qualifier type doesn't actually have to be a base
    // type of the object type, in which case we just ignore it.
    // Otherwise build the appropriate casts.
    if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
      CXXCastPath BasePath;
      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
                                       FromLoc, FromRange, &BasePath))
        return ExprError();

      if (PointerConversions)
        QType = Context.getPointerType(QType);
      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
                               VK, &BasePath).get();

      FromType = QType;
      FromRecordType = QRecordType;

      // If the qualifier type was the same as the destination type,
      // we're done.
      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
        return From;
    }
  }

  bool IgnoreAccess = false;

  // If we actually found the member through a using declaration, cast
  // down to the using declaration's type.
  //
  // Pointer equality is fine here because only one declaration of a
  // class ever has member declarations.
  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
    assert(isa<UsingShadowDecl>(FoundDecl));
    QualType URecordType = Context.getTypeDeclType(
                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));

    // We only need to do this if the naming-class to declaring-class
    // conversion is non-trivial.
    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
      assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
      CXXCastPath BasePath;
      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
                                       FromLoc, FromRange, &BasePath))
        return ExprError();

      QualType UType = URecordType;
      if (PointerConversions)
        UType = Context.getPointerType(UType);
      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
                               VK, &BasePath).get();
      FromType = UType;
      FromRecordType = URecordType;
    }

    // We don't do access control for the conversion from the
    // declaring class to the true declaring class.
    IgnoreAccess = true;
  }

  CXXCastPath BasePath;
  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
                                   FromLoc, FromRange, &BasePath,
                                   IgnoreAccess))
    return ExprError();

  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
                           VK, &BasePath);
}

bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
                                      const LookupResult &R,
                                      bool HasTrailingLParen) {
  // Only when used directly as the postfix-expression of a call.
  if (!HasTrailingLParen)
    return false;

  // Never if a scope specifier was provided.
  if (SS.isSet())
    return false;

  // Only in C++ or ObjC++.
  if (!getLangOpts().CPlusPlus)
    return false;

  // Turn off ADL when we find certain kinds of declarations during
  // normal lookup:
  for (NamedDecl *D : R) {
    // C++0x [basic.lookup.argdep]p3:
    //     -- a declaration of a class member
    // Since using decls preserve this property, we check this on the
    // original decl.
    if (D->isCXXClassMember())
      return false;

    // C++0x [basic.lookup.argdep]p3:
    //     -- a block-scope function declaration that is not a
    //        using-declaration
    // NOTE: we also trigger this for function templates (in fact, we
    // don't check the decl type at all, since all other decl types
    // turn off ADL anyway).
    if (isa<UsingShadowDecl>(D))
      D = cast<UsingShadowDecl>(D)->getTargetDecl();
    else if (D->getLexicalDeclContext()->isFunctionOrMethod())
      return false;

    // C++0x [basic.lookup.argdep]p3:
    //     -- a declaration that is neither a function or a function
    //        template
    // And also for builtin functions.
    if (isa<FunctionDecl>(D)) {
      FunctionDecl *FDecl = cast<FunctionDecl>(D);

      // But also builtin functions.
      if (FDecl->getBuiltinID() && FDecl->isImplicit())
        return false;
    } else if (!isa<FunctionTemplateDecl>(D))
      return false;
  }

  return true;
}


/// Diagnoses obvious problems with the use of the given declaration
/// as an expression.  This is only actually called for lookups that
/// were not overloaded, and it doesn't promise that the declaration
/// will in fact be used.
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
  if (D->isInvalidDecl())
    return true;

  if (isa<TypedefNameDecl>(D)) {
    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
    return true;
  }

  if (isa<ObjCInterfaceDecl>(D)) {
    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
    return true;
  }

  if (isa<NamespaceDecl>(D)) {
    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
    return true;
  }

  return false;
}

// Certain multiversion types should be treated as overloaded even when there is
// only one result.
static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
  assert(R.isSingleResult() && "Expected only a single result");
  const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
  return FD &&
         (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
}

ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
                                          LookupResult &R, bool NeedsADL,
                                          bool AcceptInvalidDecl) {
  // If this is a single, fully-resolved result and we don't need ADL,
  // just build an ordinary singleton decl ref.
  if (!NeedsADL && R.isSingleResult() &&
      !R.getAsSingle<FunctionTemplateDecl>() &&
      !ShouldLookupResultBeMultiVersionOverload(R))
    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
                                    R.getRepresentativeDecl(), nullptr,
                                    AcceptInvalidDecl);

  // We only need to check the declaration if there's exactly one
  // result, because in the overloaded case the results can only be
  // functions and function templates.
  if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
    return ExprError();

  // Otherwise, just build an unresolved lookup expression.  Suppress
  // any lookup-related diagnostics; we'll hash these out later, when
  // we've picked a target.
  R.suppressDiagnostics();

  UnresolvedLookupExpr *ULE
    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
                                   SS.getWithLocInContext(Context),
                                   R.getLookupNameInfo(),
                                   NeedsADL, R.isOverloadedResult(),
                                   R.begin(), R.end());

  return ULE;
}

static void
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
                                   ValueDecl *var, DeclContext *DC);

/// Complete semantic analysis for a reference to the given declaration.
ExprResult Sema::BuildDeclarationNameExpr(
    const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
    NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
    bool AcceptInvalidDecl) {
  assert(D && "Cannot refer to a NULL declaration");
  assert(!isa<FunctionTemplateDecl>(D) &&
         "Cannot refer unambiguously to a function template");

  SourceLocation Loc = NameInfo.getLoc();
  if (CheckDeclInExpr(*this, Loc, D))
    return ExprError();

  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
    // Specifically diagnose references to class templates that are missing
    // a template argument list.
    diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
    return ExprError();
  }

  // Make sure that we're referring to a value.
  ValueDecl *VD = dyn_cast<ValueDecl>(D);
  if (!VD) {
    Diag(Loc, diag::err_ref_non_value)
      << D << SS.getRange();
    Diag(D->getLocation(), diag::note_declared_at);
    return ExprError();
  }

  // Check whether this declaration can be used. Note that we suppress
  // this check when we're going to perform argument-dependent lookup
  // on this function name, because this might not be the function
  // that overload resolution actually selects.
  if (DiagnoseUseOfDecl(VD, Loc))
    return ExprError();

  // Only create DeclRefExpr's for valid Decl's.
  if (VD->isInvalidDecl() && !AcceptInvalidDecl)
    return ExprError();

  // Handle members of anonymous structs and unions.  If we got here,
  // and the reference is to a class member indirect field, then this
  // must be the subject of a pointer-to-member expression.
  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
    if (!indirectField->isCXXClassMember())
      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
                                                      indirectField);

  {
    QualType type = VD->getType();
    if (type.isNull())
      return ExprError();
    ExprValueKind valueKind = VK_RValue;

    // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
    // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
    // is expanded by some outer '...' in the context of the use.
    type = type.getNonPackExpansionType();

    switch (D->getKind()) {
    // Ignore all the non-ValueDecl kinds.
#define ABSTRACT_DECL(kind)
#define VALUE(type, base)
#define DECL(type, base) \
    case Decl::type:
#include "clang/AST/DeclNodes.inc"
      llvm_unreachable("invalid value decl kind");

    // These shouldn't make it here.
    case Decl::ObjCAtDefsField:
      llvm_unreachable("forming non-member reference to ivar?");

    // Enum constants are always r-values and never references.
    // Unresolved using declarations are dependent.
    case Decl::EnumConstant:
    case Decl::UnresolvedUsingValue:
    case Decl::OMPDeclareReduction:
    case Decl::OMPDeclareMapper:
      valueKind = VK_RValue;
      break;

    // Fields and indirect fields that got here must be for
    // pointer-to-member expressions; we just call them l-values for
    // internal consistency, because this subexpression doesn't really
    // exist in the high-level semantics.
    case Decl::Field:
    case Decl::IndirectField:
    case Decl::ObjCIvar:
      assert(getLangOpts().CPlusPlus &&
             "building reference to field in C?");

      // These can't have reference type in well-formed programs, but
      // for internal consistency we do this anyway.
      type = type.getNonReferenceType();
      valueKind = VK_LValue;
      break;

    // Non-type template parameters are either l-values or r-values
    // depending on the type.
    case Decl::NonTypeTemplateParm: {
      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
        type = reftype->getPointeeType();
        valueKind = VK_LValue; // even if the parameter is an r-value reference
        break;
      }

      // For non-references, we need to strip qualifiers just in case
      // the template parameter was declared as 'const int' or whatever.
      valueKind = VK_RValue;
      type = type.getUnqualifiedType();
      break;
    }

    case Decl::Var:
    case Decl::VarTemplateSpecialization:
    case Decl::VarTemplatePartialSpecialization:
    case Decl::Decomposition:
    case Decl::OMPCapturedExpr:
      // In C, "extern void blah;" is valid and is an r-value.
      if (!getLangOpts().CPlusPlus &&
          !type.hasQualifiers() &&
          type->isVoidType()) {
        valueKind = VK_RValue;
        break;
      }
      LLVM_FALLTHROUGH;

    case Decl::ImplicitParam:
    case Decl::ParmVar: {
      // These are always l-values.
      valueKind = VK_LValue;
      type = type.getNonReferenceType();

      // FIXME: Does the addition of const really only apply in
      // potentially-evaluated contexts? Since the variable isn't actually
      // captured in an unevaluated context, it seems that the answer is no.
      if (!isUnevaluatedContext()) {
        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
        if (!CapturedType.isNull())
          type = CapturedType;
      }

      break;
    }

    case Decl::Binding: {
      // These are always lvalues.
      valueKind = VK_LValue;
      type = type.getNonReferenceType();
      // FIXME: Support lambda-capture of BindingDecls, once CWG actually
      // decides how that's supposed to work.
      auto *BD = cast<BindingDecl>(VD);
      if (BD->getDeclContext() != CurContext) {
        auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
        if (DD && DD->hasLocalStorage())
          diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
      }
      break;
    }

    case Decl::Function: {
      if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
        if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
          type = Context.BuiltinFnTy;
          valueKind = VK_RValue;
          break;
        }
      }

      const FunctionType *fty = type->castAs<FunctionType>();

      // If we're referring to a function with an __unknown_anytype
      // result type, make the entire expression __unknown_anytype.
      if (fty->getReturnType() == Context.UnknownAnyTy) {
        type = Context.UnknownAnyTy;
        valueKind = VK_RValue;
        break;
      }

      // Functions are l-values in C++.
      if (getLangOpts().CPlusPlus) {
        valueKind = VK_LValue;
        break;
      }

      // C99 DR 316 says that, if a function type comes from a
      // function definition (without a prototype), that type is only
      // used for checking compatibility. Therefore, when referencing
      // the function, we pretend that we don't have the full function
      // type.
      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
          isa<FunctionProtoType>(fty))
        type = Context.getFunctionNoProtoType(fty->getReturnType(),
                                              fty->getExtInfo());

      // Functions are r-values in C.
      valueKind = VK_RValue;
      break;
    }

    case Decl::CXXDeductionGuide:
      llvm_unreachable("building reference to deduction guide");

    case Decl::MSProperty:
    case Decl::MSGuid:
      // FIXME: Should MSGuidDecl be subject to capture in OpenMP,
      // or duplicated between host and device?
      valueKind = VK_LValue;
      break;

    case Decl::CXXMethod:
      // If we're referring to a method with an __unknown_anytype
      // result type, make the entire expression __unknown_anytype.
      // This should only be possible with a type written directly.
      if (const FunctionProtoType *proto
            = dyn_cast<FunctionProtoType>(VD->getType()))
        if (proto->getReturnType() == Context.UnknownAnyTy) {
          type = Context.UnknownAnyTy;
          valueKind = VK_RValue;
          break;
        }

      // C++ methods are l-values if static, r-values if non-static.
      if (cast<CXXMethodDecl>(VD)->isStatic()) {
        valueKind = VK_LValue;
        break;
      }
      LLVM_FALLTHROUGH;

    case Decl::CXXConversion:
    case Decl::CXXDestructor:
    case Decl::CXXConstructor:
      valueKind = VK_RValue;
      break;
    }

    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
                            /*FIXME: TemplateKWLoc*/ SourceLocation(),
                            TemplateArgs);
  }
}

static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
                                    SmallString<32> &Target) {
  Target.resize(CharByteWidth * (Source.size() + 1));
  char *ResultPtr = &Target[0];
  const llvm::UTF8 *ErrorPtr;
  bool success =
      llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
  (void)success;
  assert(success);
  Target.resize(ResultPtr - &Target[0]);
}

ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
                                     PredefinedExpr::IdentKind IK) {
  // Pick the current block, lambda, captured statement or function.
  Decl *currentDecl = nullptr;
  if (const BlockScopeInfo *BSI = getCurBlock())
    currentDecl = BSI->TheDecl;
  else if (const LambdaScopeInfo *LSI = getCurLambda())
    currentDecl = LSI->CallOperator;
  else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
    currentDecl = CSI->TheCapturedDecl;
  else
    currentDecl = getCurFunctionOrMethodDecl();

  if (!currentDecl) {
    Diag(Loc, diag::ext_predef_outside_function);
    currentDecl = Context.getTranslationUnitDecl();
  }

  QualType ResTy;
  StringLiteral *SL = nullptr;
  if (cast<DeclContext>(currentDecl)->isDependentContext())
    ResTy = Context.DependentTy;
  else {
    // Pre-defined identifiers are of type char[x], where x is the length of
    // the string.
    auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
    unsigned Length = Str.length();

    llvm::APInt LengthI(32, Length + 1);
    if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
      ResTy =
          Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
      SmallString<32> RawChars;
      ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
                              Str, RawChars);
      ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
                                           ArrayType::Normal,
                                           /*IndexTypeQuals*/ 0);
      SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
                                 /*Pascal*/ false, ResTy, Loc);
    } else {
      ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
      ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
                                           ArrayType::Normal,
                                           /*IndexTypeQuals*/ 0);
      SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
                                 /*Pascal*/ false, ResTy, Loc);
    }
  }

  return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
}

static std::pair<QualType, StringLiteral *>
GetUniqueStableNameInfo(ASTContext &Context, QualType OpType,
                        SourceLocation OpLoc, PredefinedExpr::IdentKind K) {
  std::pair<QualType, StringLiteral*> Result{{}, nullptr};

  if (OpType->isDependentType()) {
      Result.first = Context.DependentTy;
      return Result;
  }

  std::string Str = PredefinedExpr::ComputeName(Context, K, OpType);
  llvm::APInt Length(32, Str.length() + 1);
  Result.first =
      Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
  Result.first = Context.getConstantArrayType(
      Result.first, Length, nullptr, ArrayType::Normal, /*IndexTypeQuals*/ 0);
  Result.second = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
                                        /*Pascal*/ false, Result.first, OpLoc);
  return Result;
}

ExprResult Sema::BuildUniqueStableName(SourceLocation OpLoc,
                                       TypeSourceInfo *Operand) {
  QualType ResultTy;
  StringLiteral *SL;
  std::tie(ResultTy, SL) = GetUniqueStableNameInfo(
      Context, Operand->getType(), OpLoc, PredefinedExpr::UniqueStableNameType);

  return PredefinedExpr::Create(Context, OpLoc, ResultTy,
                                PredefinedExpr::UniqueStableNameType, SL,
                                Operand);
}

ExprResult Sema::BuildUniqueStableName(SourceLocation OpLoc,
                                       Expr *E) {
  QualType ResultTy;
  StringLiteral *SL;
  std::tie(ResultTy, SL) = GetUniqueStableNameInfo(
      Context, E->getType(), OpLoc, PredefinedExpr::UniqueStableNameExpr);

  return PredefinedExpr::Create(Context, OpLoc, ResultTy,
                                PredefinedExpr::UniqueStableNameExpr, SL, E);
}

ExprResult Sema::ActOnUniqueStableNameExpr(SourceLocation OpLoc,
                                           SourceLocation L, SourceLocation R,
                                           ParsedType Ty) {
  TypeSourceInfo *TInfo = nullptr;
  QualType T = GetTypeFromParser(Ty, &TInfo);

  if (T.isNull())
    return ExprError();
  if (!TInfo)
    TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);

  return BuildUniqueStableName(OpLoc, TInfo);
}

ExprResult Sema::ActOnUniqueStableNameExpr(SourceLocation OpLoc,
                                           SourceLocation L, SourceLocation R,
                                           Expr *E) {
  return BuildUniqueStableName(OpLoc, E);
}

ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
  PredefinedExpr::IdentKind IK;

  switch (Kind) {
  default: llvm_unreachable("Unknown simple primary expr!");
  case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
  case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
  case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
  case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
  case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
  case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
  case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
  }

  return BuildPredefinedExpr(Loc, IK);
}

ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
  SmallString<16> CharBuffer;
  bool Invalid = false;
  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
  if (Invalid)
    return ExprError();

  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
                            PP, Tok.getKind());
  if (Literal.hadError())
    return ExprError();

  QualType Ty;
  if (Literal.isWide())
    Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
  else if (Literal.isUTF8() && getLangOpts().Char8)
    Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
  else if (Literal.isUTF16())
    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
  else if (Literal.isUTF32())
    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
  else
    Ty = Context.CharTy;  // 'x' -> char in C++

  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
  if (Literal.isWide())
    Kind = CharacterLiteral::Wide;
  else if (Literal.isUTF16())
    Kind = CharacterLiteral::UTF16;
  else if (Literal.isUTF32())
    Kind = CharacterLiteral::UTF32;
  else if (Literal.isUTF8())
    Kind = CharacterLiteral::UTF8;

  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
                                             Tok.getLocation());

  if (Literal.getUDSuffix().empty())
    return Lit;

  // We're building a user-defined literal.
  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
  SourceLocation UDSuffixLoc =
    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());

  // Make sure we're allowed user-defined literals here.
  if (!UDLScope)
    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));

  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
  //   operator "" X (ch)
  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
                                        Lit, Tok.getLocation());
}

ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
  unsigned IntSize = Context.getTargetInfo().getIntWidth();
  return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
                                Context.IntTy, Loc);
}

static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
                                  QualType Ty, SourceLocation Loc) {
  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);

  using llvm::APFloat;
  APFloat Val(Format);

  APFloat::opStatus result = Literal.GetFloatValue(Val);

  // Overflow is always an error, but underflow is only an error if
  // we underflowed to zero (APFloat reports denormals as underflow).
  if ((result & APFloat::opOverflow) ||
      ((result & APFloat::opUnderflow) && Val.isZero())) {
    unsigned diagnostic;
    SmallString<20> buffer;
    if (result & APFloat::opOverflow) {
      diagnostic = diag::warn_float_overflow;
      APFloat::getLargest(Format).toString(buffer);
    } else {
      diagnostic = diag::warn_float_underflow;
      APFloat::getSmallest(Format).toString(buffer);
    }

    S.Diag(Loc, diagnostic)
      << Ty
      << StringRef(buffer.data(), buffer.size());
  }

  bool isExact = (result == APFloat::opOK);
  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
}

bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
  assert(E && "Invalid expression");

  if (E->isValueDependent())
    return false;

  QualType QT = E->getType();
  if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
    Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
    return true;
  }

  llvm::APSInt ValueAPS;
  ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);

  if (R.isInvalid())
    return true;

  bool ValueIsPositive = ValueAPS.isStrictlyPositive();
  if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
    Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
        << ValueAPS.toString(10) << ValueIsPositive;
    return true;
  }

  return false;
}

ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
  // Fast path for a single digit (which is quite common).  A single digit
  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
  if (Tok.getLength() == 1) {
    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
  }

  SmallString<128> SpellingBuffer;
  // NumericLiteralParser wants to overread by one character.  Add padding to
  // the buffer in case the token is copied to the buffer.  If getSpelling()
  // returns a StringRef to the memory buffer, it should have a null char at
  // the EOF, so it is also safe.
  SpellingBuffer.resize(Tok.getLength() + 1);

  // Get the spelling of the token, which eliminates trigraphs, etc.
  bool Invalid = false;
  StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
  if (Invalid)
    return ExprError();

  NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
                               PP.getSourceManager(), PP.getLangOpts(),
                               PP.getTargetInfo(), PP.getDiagnostics());
  if (Literal.hadError)
    return ExprError();

  if (Literal.hasUDSuffix()) {
    // We're building a user-defined literal.
    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
    SourceLocation UDSuffixLoc =
      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());

    // Make sure we're allowed user-defined literals here.
    if (!UDLScope)
      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));

    QualType CookedTy;
    if (Literal.isFloatingLiteral()) {
      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
      // long double, the literal is treated as a call of the form
      //   operator "" X (f L)
      CookedTy = Context.LongDoubleTy;
    } else {
      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
      // unsigned long long, the literal is treated as a call of the form
      //   operator "" X (n ULL)
      CookedTy = Context.UnsignedLongLongTy;
    }

    DeclarationName OpName =
      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);

    SourceLocation TokLoc = Tok.getLocation();

    // Perform literal operator lookup to determine if we're building a raw
    // literal or a cooked one.
    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
    switch (LookupLiteralOperator(UDLScope, R, CookedTy,
                                  /*AllowRaw*/ true, /*AllowTemplate*/ true,
                                  /*AllowStringTemplate*/ false,
                                  /*DiagnoseMissing*/ !Literal.isImaginary)) {
    case LOLR_ErrorNoDiagnostic:
      // Lookup failure for imaginary constants isn't fatal, there's still the
      // GNU extension producing _Complex types.
      break;
    case LOLR_Error:
      return ExprError();
    case LOLR_Cooked: {
      Expr *Lit;
      if (Literal.isFloatingLiteral()) {
        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
      } else {
        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
        if (Literal.GetIntegerValue(ResultVal))
          Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
              << /* Unsigned */ 1;
        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
                                     Tok.getLocation());
      }
      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
    }

    case LOLR_Raw: {
      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
      // literal is treated as a call of the form
      //   operator "" X ("n")
      unsigned Length = Literal.getUDSuffixOffset();
      QualType StrTy = Context.getConstantArrayType(
          Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
          llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
      Expr *Lit = StringLiteral::Create(
          Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
          /*Pascal*/false, StrTy, &TokLoc, 1);
      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
    }

    case LOLR_Template: {
      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
      // template), L is treated as a call fo the form
      //   operator "" X <'c1', 'c2', ... 'ck'>()
      // where n is the source character sequence c1 c2 ... ck.
      TemplateArgumentListInfo ExplicitArgs;
      unsigned CharBits = Context.getIntWidth(Context.CharTy);
      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
      llvm::APSInt Value(CharBits, CharIsUnsigned);
      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
        Value = TokSpelling[I];
        TemplateArgument Arg(Context, Value, Context.CharTy);
        TemplateArgumentLocInfo ArgInfo;
        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
      }
      return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
                                      &ExplicitArgs);
    }
    case LOLR_StringTemplate:
      llvm_unreachable("unexpected literal operator lookup result");
    }
  }

  Expr *Res;

  if (Literal.isFixedPointLiteral()) {
    QualType Ty;

    if (Literal.isAccum) {
      if (Literal.isHalf) {
        Ty = Context.ShortAccumTy;
      } else if (Literal.isLong) {
        Ty = Context.LongAccumTy;
      } else {
        Ty = Context.AccumTy;
      }
    } else if (Literal.isFract) {
      if (Literal.isHalf) {
        Ty = Context.ShortFractTy;
      } else if (Literal.isLong) {
        Ty = Context.LongFractTy;
      } else {
        Ty = Context.FractTy;
      }
    }

    if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);

    bool isSigned = !Literal.isUnsigned;
    unsigned scale = Context.getFixedPointScale(Ty);
    unsigned bit_width = Context.getTypeInfo(Ty).Width;

    llvm::APInt Val(bit_width, 0, isSigned);
    bool Overflowed = Literal.GetFixedPointValue(Val, scale);
    bool ValIsZero = Val.isNullValue() && !Overflowed;

    auto MaxVal = Context.getFixedPointMax(Ty).getValue();
    if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
      // Clause 6.4.4 - The value of a constant shall be in the range of
      // representable values for its type, with exception for constants of a
      // fract type with a value of exactly 1; such a constant shall denote
      // the maximal value for the type.
      --Val;
    else if (Val.ugt(MaxVal) || Overflowed)
      Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);

    Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
                                              Tok.getLocation(), scale);
  } else if (Literal.isFloatingLiteral()) {
    QualType Ty;
    if (Literal.isHalf){
      if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
        Ty = Context.HalfTy;
      else {
        Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
        return ExprError();
      }
    } else if (Literal.isFloat)
      Ty = Context.FloatTy;
    else if (Literal.isLong)
      Ty = Context.LongDoubleTy;
    else if (Literal.isFloat16)
      Ty = Context.Float16Ty;
    else if (Literal.isFloat128)
      Ty = Context.Float128Ty;
    else
      Ty = Context.DoubleTy;

    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());

    if (Ty == Context.DoubleTy) {
      if (getLangOpts().SinglePrecisionConstants) {
        const BuiltinType *BTy = Ty->getAs<BuiltinType>();
        if (BTy->getKind() != BuiltinType::Float) {
          Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
        }
      } else if (getLangOpts().OpenCL &&
                 !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
        // Impose single-precision float type when cl_khr_fp64 is not enabled.
        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
      }
    }
  } else if (!Literal.isIntegerLiteral()) {
    return ExprError();
  } else {
    QualType Ty;

    // 'long long' is a C99 or C++11 feature.
    if (!getLangOpts().C99 && Literal.isLongLong) {
      if (getLangOpts().CPlusPlus)
        Diag(Tok.getLocation(),
             getLangOpts().CPlusPlus11 ?
             diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
      else
        Diag(Tok.getLocation(), diag::ext_c99_longlong);
    }

    // Get the value in the widest-possible width.
    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
    llvm::APInt ResultVal(MaxWidth, 0);

    if (Literal.GetIntegerValue(ResultVal)) {
      // If this value didn't fit into uintmax_t, error and force to ull.
      Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
          << /* Unsigned */ 1;
      Ty = Context.UnsignedLongLongTy;
      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
             "long long is not intmax_t?");
    } else {
      // If this value fits into a ULL, try to figure out what else it fits into
      // according to the rules of C99 6.4.4.1p5.

      // Octal, Hexadecimal, and integers with a U suffix are allowed to
      // be an unsigned int.
      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;

      // Check from smallest to largest, picking the smallest type we can.
      unsigned Width = 0;

      // Microsoft specific integer suffixes are explicitly sized.
      if (Literal.MicrosoftInteger) {
        if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
          Width = 8;
          Ty = Context.CharTy;
        } else {
          Width = Literal.MicrosoftInteger;
          Ty = Context.getIntTypeForBitwidth(Width,
                                             /*Signed=*/!Literal.isUnsigned);
        }
      }

      if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
        // Are int/unsigned possibilities?
        unsigned IntSize = Context.getTargetInfo().getIntWidth();

        // Does it fit in a unsigned int?
        if (ResultVal.isIntN(IntSize)) {
          // Does it fit in a signed int?
          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
            Ty = Context.IntTy;
          else if (AllowUnsigned)
            Ty = Context.UnsignedIntTy;
          Width = IntSize;
        }
      }

      // Are long/unsigned long possibilities?
      if (Ty.isNull() && !Literal.isLongLong) {
        unsigned LongSize = Context.getTargetInfo().getLongWidth();

        // Does it fit in a unsigned long?
        if (ResultVal.isIntN(LongSize)) {
          // Does it fit in a signed long?
          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
            Ty = Context.LongTy;
          else if (AllowUnsigned)
            Ty = Context.UnsignedLongTy;
          // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
          // is compatible.
          else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
            const unsigned LongLongSize =
                Context.getTargetInfo().getLongLongWidth();
            Diag(Tok.getLocation(),
                 getLangOpts().CPlusPlus
                     ? Literal.isLong
                           ? diag::warn_old_implicitly_unsigned_long_cxx
                           : /*C++98 UB*/ diag::
                                 ext_old_implicitly_unsigned_long_cxx
                     : diag::warn_old_implicitly_unsigned_long)
                << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
                                            : /*will be ill-formed*/ 1);
            Ty = Context.UnsignedLongTy;
          }
          Width = LongSize;
        }
      }

      // Check long long if needed.
      if (Ty.isNull()) {
        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();

        // Does it fit in a unsigned long long?
        if (ResultVal.isIntN(LongLongSize)) {
          // Does it fit in a signed long long?
          // To be compatible with MSVC, hex integer literals ending with the
          // LL or i64 suffix are always signed in Microsoft mode.
          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
              (getLangOpts().MSVCCompat && Literal.isLongLong)))
            Ty = Context.LongLongTy;
          else if (AllowUnsigned)
            Ty = Context.UnsignedLongLongTy;
          Width = LongLongSize;
        }
      }

      // If we still couldn't decide a type, we probably have something that
      // does not fit in a signed long long, but has no U suffix.
      if (Ty.isNull()) {
        Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
        Ty = Context.UnsignedLongLongTy;
        Width = Context.getTargetInfo().getLongLongWidth();
      }

      if (ResultVal.getBitWidth() != Width)
        ResultVal = ResultVal.trunc(Width);
    }
    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
  }

  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
  if (Literal.isImaginary) {
    Res = new (Context) ImaginaryLiteral(Res,
                                        Context.getComplexType(Res->getType()));

    Diag(Tok.getLocation(), diag::ext_imaginary_constant);
  }
  return Res;
}

ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
  assert(E && "ActOnParenExpr() missing expr");
  return new (Context) ParenExpr(L, R, E);
}

static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
                                         SourceLocation Loc,
                                         SourceRange ArgRange) {
  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
  // scalar or vector data type argument..."
  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
  // type (C99 6.2.5p18) or void.
  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
      << T << ArgRange;
    return true;
  }

  assert((T->isVoidType() || !T->isIncompleteType()) &&
         "Scalar types should always be complete");
  return false;
}

static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
                                           SourceLocation Loc,
                                           SourceRange ArgRange,
                                           UnaryExprOrTypeTrait TraitKind) {
  // Invalid types must be hard errors for SFINAE in C++.
  if (S.LangOpts.CPlusPlus)
    return true;

  // C99 6.5.3.4p1:
  if (T->isFunctionType() &&
      (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
       TraitKind == UETT_PreferredAlignOf)) {
    // sizeof(function)/alignof(function) is allowed as an extension.
    S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
        << getTraitSpelling(TraitKind) << ArgRange;
    return false;
  }

  // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
  // this is an error (OpenCL v1.1 s6.3.k)
  if (T->isVoidType()) {
    unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
                                        : diag::ext_sizeof_alignof_void_type;
    S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
    return false;
  }

  return true;
}

static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
                                             SourceLocation Loc,
                                             SourceRange ArgRange,
                                             UnaryExprOrTypeTrait TraitKind) {
  // Reject sizeof(interface) and sizeof(interface<proto>) if the
  // runtime doesn't allow it.
  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
      << T << (TraitKind == UETT_SizeOf)
      << ArgRange;
    return true;
  }

  return false;
}

/// Check whether E is a pointer from a decayed array type (the decayed
/// pointer type is equal to T) and emit a warning if it is.
static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
                                     Expr *E) {
  // Don't warn if the operation changed the type.
  if (T != E->getType())
    return;

  // Now look for array decays.
  ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
  if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
    return;

  S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
                                             << ICE->getType()
                                             << ICE->getSubExpr()->getType();
}

/// Check the constraints on expression operands to unary type expression
/// and type traits.
///
/// Completes any types necessary and validates the constraints on the operand
/// expression. The logic mostly mirrors the type-based overload, but may modify
/// the expression as it completes the type for that expression through template
/// instantiation, etc.
bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
                                            UnaryExprOrTypeTrait ExprKind) {
  QualType ExprTy = E->getType();
  assert(!ExprTy->isReferenceType());

  bool IsUnevaluatedOperand =
      (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
       ExprKind == UETT_PreferredAlignOf);
  if (IsUnevaluatedOperand) {
    ExprResult Result = CheckUnevaluatedOperand(E);
    if (Result.isInvalid())
      return true;
    E = Result.get();
  }

  if (ExprKind == UETT_VecStep)
    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
                                        E->getSourceRange());

  // Explicitly list some types as extensions.
  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
                                      E->getSourceRange(), ExprKind))
    return false;

  // 'alignof' applied to an expression only requires the base element type of
  // the expression to be complete. 'sizeof' requires the expression's type to
  // be complete (and will attempt to complete it if it's an array of unknown
  // bound).
  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
    if (RequireCompleteSizedType(
            E->getExprLoc(), Context.getBaseElementType(E->getType()),
            diag::err_sizeof_alignof_incomplete_or_sizeless_type,
            getTraitSpelling(ExprKind), E->getSourceRange()))
      return true;
  } else {
    if (RequireCompleteSizedExprType(
            E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
            getTraitSpelling(ExprKind), E->getSourceRange()))
      return true;
  }

  // Completing the expression's type may have changed it.
  ExprTy = E->getType();
  assert(!ExprTy->isReferenceType());

  if (ExprTy->isFunctionType()) {
    Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
        << getTraitSpelling(ExprKind) << E->getSourceRange();
    return true;
  }

  // The operand for sizeof and alignof is in an unevaluated expression context,
  // so side effects could result in unintended consequences.
  if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
      E->HasSideEffects(Context, false))
    Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);

  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
                                       E->getSourceRange(), ExprKind))
    return true;

  if (ExprKind == UETT_SizeOf) {
    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
        QualType OType = PVD->getOriginalType();
        QualType Type = PVD->getType();
        if (Type->isPointerType() && OType->isArrayType()) {
          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
            << Type << OType;
          Diag(PVD->getLocation(), diag::note_declared_at);
        }
      }
    }

    // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
    // decays into a pointer and returns an unintended result. This is most
    // likely a typo for "sizeof(array) op x".
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
                               BO->getLHS());
      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
                               BO->getRHS());
    }
  }

  return false;
}

/// Check the constraints on operands to unary expression and type
/// traits.
///
/// This will complete any types necessary, and validate the various constraints
/// on those operands.
///
/// The UsualUnaryConversions() function is *not* called by this routine.
/// C99 6.3.2.1p[2-4] all state:
///   Except when it is the operand of the sizeof operator ...
///
/// C++ [expr.sizeof]p4
///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
///   standard conversions are not applied to the operand of sizeof.
///
/// This policy is followed for all of the unary trait expressions.
bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
                                            SourceLocation OpLoc,
                                            SourceRange ExprRange,
                                            UnaryExprOrTypeTrait ExprKind) {
  if (ExprType->isDependentType())
    return false;

  // C++ [expr.sizeof]p2:
  //     When applied to a reference or a reference type, the result
  //     is the size of the referenced type.
  // C++11 [expr.alignof]p3:
  //     When alignof is applied to a reference type, the result
  //     shall be the alignment of the referenced type.
  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
    ExprType = Ref->getPointeeType();

  // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
  //   When alignof or _Alignof is applied to an array type, the result
  //   is the alignment of the element type.
  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
      ExprKind == UETT_OpenMPRequiredSimdAlign)
    ExprType = Context.getBaseElementType(ExprType);

  if (ExprKind == UETT_VecStep)
    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);

  // Explicitly list some types as extensions.
  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
                                      ExprKind))
    return false;

  if (RequireCompleteSizedType(
          OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
          getTraitSpelling(ExprKind), ExprRange))
    return true;

  if (ExprType->isFunctionType()) {
    Diag(OpLoc, diag::err_sizeof_alignof_function_type)
        << getTraitSpelling(ExprKind) << ExprRange;
    return true;
  }

  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
                                       ExprKind))
    return true;

  return false;
}

static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
  // Cannot know anything else if the expression is dependent.
  if (E->isTypeDependent())
    return false;

  if (E->getObjectKind() == OK_BitField) {
    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
       << 1 << E->getSourceRange();
    return true;
  }

  ValueDecl *D = nullptr;
  Expr *Inner = E->IgnoreParens();
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
    D = DRE->getDecl();
  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
    D = ME->getMemberDecl();
  }

  // If it's a field, require the containing struct to have a
  // complete definition so that we can compute the layout.
  //
  // This can happen in C++11 onwards, either by naming the member
  // in a way that is not transformed into a member access expression
  // (in an unevaluated operand, for instance), or by naming the member
  // in a trailing-return-type.
  //
  // For the record, since __alignof__ on expressions is a GCC
  // extension, GCC seems to permit this but always gives the
  // nonsensical answer 0.
  //
  // We don't really need the layout here --- we could instead just
  // directly check for all the appropriate alignment-lowing
  // attributes --- but that would require duplicating a lot of
  // logic that just isn't worth duplicating for such a marginal
  // use-case.
  if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
    // Fast path this check, since we at least know the record has a
    // definition if we can find a member of it.
    if (!FD->getParent()->isCompleteDefinition()) {
      S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
        << E->getSourceRange();
      return true;
    }

    // Otherwise, if it's a field, and the field doesn't have
    // reference type, then it must have a complete type (or be a
    // flexible array member, which we explicitly want to
    // white-list anyway), which makes the following checks trivial.
    if (!FD->getType()->isReferenceType())
      return false;
  }

  return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
}

bool Sema::CheckVecStepExpr(Expr *E) {
  E = E->IgnoreParens();

  // Cannot know anything else if the expression is dependent.
  if (E->isTypeDependent())
    return false;

  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
}

static void captureVariablyModifiedType(ASTContext &Context, QualType T,
                                        CapturingScopeInfo *CSI) {
  assert(T->isVariablyModifiedType());
  assert(CSI != nullptr);

  // We're going to walk down into the type and look for VLA expressions.
  do {
    const Type *Ty = T.getTypePtr();
    switch (Ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.inc"
      T = QualType();
      break;
    // These types are never variably-modified.
    case Type::Builtin:
    case Type::Complex:
    case Type::Vector:
    case Type::ExtVector:
    case Type::ConstantMatrix:
    case Type::Record:
    case Type::Enum:
    case Type::Elaborated:
    case Type::TemplateSpecialization:
    case Type::ObjCObject:
    case Type::ObjCInterface:
    case Type::ObjCObjectPointer:
    case Type::ObjCTypeParam:
    case Type::Pipe:
    case Type::ExtInt:
      llvm_unreachable("type class is never variably-modified!");
    case Type::Adjusted:
      T = cast<AdjustedType>(Ty)->getOriginalType();
      break;
    case Type::Decayed:
      T = cast<DecayedType>(Ty)->getPointeeType();
      break;
    case Type::Pointer:
      T = cast<PointerType>(Ty)->getPointeeType();
      break;
    case Type::BlockPointer:
      T = cast<BlockPointerType>(Ty)->getPointeeType();
      break;
    case Type::LValueReference:
    case Type::RValueReference:
      T = cast<ReferenceType>(Ty)->getPointeeType();
      break;
    case Type::MemberPointer:
      T = cast<MemberPointerType>(Ty)->getPointeeType();
      break;
    case Type::ConstantArray:
    case Type::IncompleteArray:
      // Losing element qualification here is fine.
      T = cast<ArrayType>(Ty)->getElementType();
      break;
    case Type::VariableArray: {
      // Losing element qualification here is fine.
      const VariableArrayType *VAT = cast<VariableArrayType>(Ty);

      // Unknown size indication requires no size computation.
      // Otherwise, evaluate and record it.
      auto Size = VAT->getSizeExpr();
      if (Size && !CSI->isVLATypeCaptured(VAT) &&
          (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
        CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());

      T = VAT->getElementType();
      break;
    }
    case Type::FunctionProto:
    case Type::FunctionNoProto:
      T = cast<FunctionType>(Ty)->getReturnType();
      break;
    case Type::Paren:
    case Type::TypeOf:
    case Type::UnaryTransform:
    case Type::Attributed:
    case Type::SubstTemplateTypeParm:
    case Type::MacroQualified:
      // Keep walking after single level desugaring.
      T = T.getSingleStepDesugaredType(Context);
      break;
    case Type::Typedef:
      T = cast<TypedefType>(Ty)->desugar();
      break;
    case Type::Decltype:
      T = cast<DecltypeType>(Ty)->desugar();
      break;
    case Type::Auto:
    case Type::DeducedTemplateSpecialization:
      T = cast<DeducedType>(Ty)->getDeducedType();
      break;
    case Type::TypeOfExpr:
      T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
      break;
    case Type::Atomic:
      T = cast<AtomicType>(Ty)->getValueType();
      break;
    }
  } while (!T.isNull() && T->isVariablyModifiedType());
}

/// Build a sizeof or alignof expression given a type operand.
ExprResult
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
                                     SourceLocation OpLoc,
                                     UnaryExprOrTypeTrait ExprKind,
                                     SourceRange R) {
  if (!TInfo)
    return ExprError();

  QualType T = TInfo->getType();

  if (!T->isDependentType() &&
      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
    return ExprError();

  if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
    if (auto *TT = T->getAs<TypedefType>()) {
      for (auto I = FunctionScopes.rbegin(),
                E = std::prev(FunctionScopes.rend());
           I != E; ++I) {
        auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
        if (CSI == nullptr)
          break;
        DeclContext *DC = nullptr;
        if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
          DC = LSI->CallOperator;
        else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
          DC = CRSI->TheCapturedDecl;
        else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
          DC = BSI->TheDecl;
        if (DC) {
          if (DC->containsDecl(TT->getDecl()))
            break;
          captureVariablyModifiedType(Context, T, CSI);
        }
      }
    }
  }

  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
  return new (Context) UnaryExprOrTypeTraitExpr(
      ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
}

/// Build a sizeof or alignof expression given an expression
/// operand.
ExprResult
Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
                                     UnaryExprOrTypeTrait ExprKind) {
  ExprResult PE = CheckPlaceholderExpr(E);
  if (PE.isInvalid())
    return ExprError();

  E = PE.get();

  // Verify that the operand is valid.
  bool isInvalid = false;
  if (E->isTypeDependent()) {
    // Delay type-checking for type-dependent expressions.
  } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
    isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
  } else if (ExprKind == UETT_VecStep) {
    isInvalid = CheckVecStepExpr(E);
  } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
      Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
      isInvalid = true;
  } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
    Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
    isInvalid = true;
  } else {
    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
  }

  if (isInvalid)
    return ExprError();

  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
    PE = TransformToPotentiallyEvaluated(E);
    if (PE.isInvalid()) return ExprError();
    E = PE.get();
  }

  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
  return new (Context) UnaryExprOrTypeTraitExpr(
      ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
}

/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
/// expr and the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
ExprResult
Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
                                    void *TyOrEx, SourceRange ArgRange) {
  // If error parsing type, ignore.
  if (!TyOrEx) return ExprError();

  if (IsType) {
    TypeSourceInfo *TInfo;
    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
  }

  Expr *ArgEx = (Expr *)TyOrEx;
  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
  return Result;
}

static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
                                     bool IsReal) {
  if (V.get()->isTypeDependent())
    return S.Context.DependentTy;

  // _Real and _Imag are only l-values for normal l-values.
  if (V.get()->getObjectKind() != OK_Ordinary) {
    V = S.DefaultLvalueConversion(V.get());
    if (V.isInvalid())
      return QualType();
  }

  // These operators return the element type of a complex type.
  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
    return CT->getElementType();

  // Otherwise they pass through real integer and floating point types here.
  if (V.get()->getType()->isArithmeticType())
    return V.get()->getType();

  // Test for placeholders.
  ExprResult PR = S.CheckPlaceholderExpr(V.get());
  if (PR.isInvalid()) return QualType();
  if (PR.get() != V.get()) {
    V = PR;
    return CheckRealImagOperand(S, V, Loc, IsReal);
  }

  // Reject anything else.
  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
    << (IsReal ? "__real" : "__imag");
  return QualType();
}



ExprResult
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
                          tok::TokenKind Kind, Expr *Input) {
  UnaryOperatorKind Opc;
  switch (Kind) {
  default: llvm_unreachable("Unknown unary op!");
  case tok::plusplus:   Opc = UO_PostInc; break;
  case tok::minusminus: Opc = UO_PostDec; break;
  }

  // Since this might is a postfix expression, get rid of ParenListExprs.
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
  if (Result.isInvalid()) return ExprError();
  Input = Result.get();

  return BuildUnaryOp(S, OpLoc, Opc, Input);
}

/// Diagnose if arithmetic on the given ObjC pointer is illegal.
///
/// \return true on error
static bool checkArithmeticOnObjCPointer(Sema &S,
                                         SourceLocation opLoc,
                                         Expr *op) {
  assert(op->getType()->isObjCObjectPointerType());
  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
      !S.LangOpts.ObjCSubscriptingLegacyRuntime)
    return false;

  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
    << op->getSourceRange();
  return true;
}

static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
  auto *BaseNoParens = Base->IgnoreParens();
  if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
    return MSProp->getPropertyDecl()->getType()->isArrayType();
  return isa<MSPropertySubscriptExpr>(BaseNoParens);
}

ExprResult
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
                              Expr *idx, SourceLocation rbLoc) {
  if (base && !base->getType().isNull() &&
      base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
    return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
                                    SourceLocation(), /*Length*/ nullptr,
                                    /*Stride=*/nullptr, rbLoc);

  // Since this might be a postfix expression, get rid of ParenListExprs.
  if (isa<ParenListExpr>(base)) {
    ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
    if (result.isInvalid()) return ExprError();
    base = result.get();
  }

  // Check if base and idx form a MatrixSubscriptExpr.
  //
  // Helper to check for comma expressions, which are not allowed as indices for
  // matrix subscript expressions.
  auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
    if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
      Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
          << SourceRange(base->getBeginLoc(), rbLoc);
      return true;
    }
    return false;
  };
  // The matrix subscript operator ([][])is considered a single operator.
  // Separating the index expressions by parenthesis is not allowed.
  if (base->getType()->isSpecificPlaceholderType(
          BuiltinType::IncompleteMatrixIdx) &&
      !isa<MatrixSubscriptExpr>(base)) {
    Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
        << SourceRange(base->getBeginLoc(), rbLoc);
    return ExprError();
  }
  // If the base is a MatrixSubscriptExpr, try to create a new
  // MatrixSubscriptExpr.
  auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
  if (matSubscriptE) {
    if (CheckAndReportCommaError(idx))
      return ExprError();

    assert(matSubscriptE->isIncomplete() &&
           "base has to be an incomplete matrix subscript");
    return CreateBuiltinMatrixSubscriptExpr(
        matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc);
  }

  // Handle any non-overload placeholder types in the base and index
  // expressions.  We can't handle overloads here because the other
  // operand might be an overloadable type, in which case the overload
  // resolution for the operator overload should get the first crack
  // at the overload.
  bool IsMSPropertySubscript = false;
  if (base->getType()->isNonOverloadPlaceholderType()) {
    IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
    if (!IsMSPropertySubscript) {
      ExprResult result = CheckPlaceholderExpr(base);
      if (result.isInvalid())
        return ExprError();
      base = result.get();
    }
  }

  // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
  if (base->getType()->isMatrixType()) {
    if (CheckAndReportCommaError(idx))
      return ExprError();

    return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc);
  }

  // A comma-expression as the index is deprecated in C++2a onwards.
  if (getLangOpts().CPlusPlus20 &&
      ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
       (isa<CXXOperatorCallExpr>(idx) &&
        cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
    Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
        << SourceRange(base->getBeginLoc(), rbLoc);
  }

  if (idx->getType()->isNonOverloadPlaceholderType()) {
    ExprResult result = CheckPlaceholderExpr(idx);
    if (result.isInvalid()) return ExprError();
    idx = result.get();
  }

  // Build an unanalyzed expression if either operand is type-dependent.
  if (getLangOpts().CPlusPlus &&
      (base->isTypeDependent() || idx->isTypeDependent())) {
    return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
                                            VK_LValue, OK_Ordinary, rbLoc);
  }

  // MSDN, property (C++)
  // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
  // This attribute can also be used in the declaration of an empty array in a
  // class or structure definition. For example:
  // __declspec(property(get=GetX, put=PutX)) int x[];
  // The above statement indicates that x[] can be used with one or more array
  // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
  // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
  if (IsMSPropertySubscript) {
    // Build MS property subscript expression if base is MS property reference
    // or MS property subscript.
    return new (Context) MSPropertySubscriptExpr(
        base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
  }

  // Use C++ overloaded-operator rules if either operand has record
  // type.  The spec says to do this if either type is *overloadable*,
  // but enum types can't declare subscript operators or conversion
  // operators, so there's nothing interesting for overload resolution
  // to do if there aren't any record types involved.
  //
  // ObjC pointers have their own subscripting logic that is not tied
  // to overload resolution and so should not take this path.
  if (getLangOpts().CPlusPlus &&
      (base->getType()->isRecordType() ||
       (!base->getType()->isObjCObjectPointerType() &&
        idx->getType()->isRecordType()))) {
    return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
  }

  ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);

  if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
    CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));

  return Res;
}

ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
  InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
  InitializationKind Kind =
      InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
  InitializationSequence InitSeq(*this, Entity, Kind, E);
  return InitSeq.Perform(*this, Entity, Kind, E);
}

ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
                                                  Expr *ColumnIdx,
                                                  SourceLocation RBLoc) {
  ExprResult BaseR = CheckPlaceholderExpr(Base);
  if (BaseR.isInvalid())
    return BaseR;
  Base = BaseR.get();

  ExprResult RowR = CheckPlaceholderExpr(RowIdx);
  if (RowR.isInvalid())
    return RowR;
  RowIdx = RowR.get();

  if (!ColumnIdx)
    return new (Context) MatrixSubscriptExpr(
        Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);

  // Build an unanalyzed expression if any of the operands is type-dependent.
  if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
      ColumnIdx->isTypeDependent())
    return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
                                             Context.DependentTy, RBLoc);

  ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
  if (ColumnR.isInvalid())
    return ColumnR;
  ColumnIdx = ColumnR.get();

  // Check that IndexExpr is an integer expression. If it is a constant
  // expression, check that it is less than Dim (= the number of elements in the
  // corresponding dimension).
  auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
                          bool IsColumnIdx) -> Expr * {
    if (!IndexExpr->getType()->isIntegerType() &&
        !IndexExpr->isTypeDependent()) {
      Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
          << IsColumnIdx;
      return nullptr;
    }

    if (Optional<llvm::APSInt> Idx =
            IndexExpr->getIntegerConstantExpr(Context)) {
      if ((*Idx < 0 || *Idx >= Dim)) {
        Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
            << IsColumnIdx << Dim;
        return nullptr;
      }
    }

    ExprResult ConvExpr =
        tryConvertExprToType(IndexExpr, Context.getSizeType());
    assert(!ConvExpr.isInvalid() &&
           "should be able to convert any integer type to size type");
    return ConvExpr.get();
  };

  auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
  RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
  ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
  if (!RowIdx || !ColumnIdx)
    return ExprError();

  return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
                                           MTy->getElementType(), RBLoc);
}

void Sema::CheckAddressOfNoDeref(const Expr *E) {
  ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
  const Expr *StrippedExpr = E->IgnoreParenImpCasts();

  // For expressions like `&(*s).b`, the base is recorded and what should be
  // checked.
  const MemberExpr *Member = nullptr;
  while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
    StrippedExpr = Member->getBase()->IgnoreParenImpCasts();

  LastRecord.PossibleDerefs.erase(StrippedExpr);
}

void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
  QualType ResultTy = E->getType();
  ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();

  // Bail if the element is an array since it is not memory access.
  if (isa<ArrayType>(ResultTy))
    return;

  if (ResultTy->hasAttr(attr::NoDeref)) {
    LastRecord.PossibleDerefs.insert(E);
    return;
  }

  // Check if the base type is a pointer to a member access of a struct
  // marked with noderef.
  const Expr *Base = E->getBase();
  QualType BaseTy = Base->getType();
  if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
    // Not a pointer access
    return;

  const MemberExpr *Member = nullptr;
  while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
         Member->isArrow())
    Base = Member->getBase();

  if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
    if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
      LastRecord.PossibleDerefs.insert(E);
  }
}

ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
                                          Expr *LowerBound,
                                          SourceLocation ColonLocFirst,
                                          SourceLocation ColonLocSecond,
                                          Expr *Length, Expr *Stride,
                                          SourceLocation RBLoc) {
  if (Base->getType()->isPlaceholderType() &&
      !Base->getType()->isSpecificPlaceholderType(
          BuiltinType::OMPArraySection)) {
    ExprResult Result = CheckPlaceholderExpr(Base);
    if (Result.isInvalid())
      return ExprError();
    Base = Result.get();
  }
  if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
    ExprResult Result = CheckPlaceholderExpr(LowerBound);
    if (Result.isInvalid())
      return ExprError();
    Result = DefaultLvalueConversion(Result.get());
    if (Result.isInvalid())
      return ExprError();
    LowerBound = Result.get();
  }
  if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
    ExprResult Result = CheckPlaceholderExpr(Length);
    if (Result.isInvalid())
      return ExprError();
    Result = DefaultLvalueConversion(Result.get());
    if (Result.isInvalid())
      return ExprError();
    Length = Result.get();
  }
  if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
    ExprResult Result = CheckPlaceholderExpr(Stride);
    if (Result.isInvalid())
      return ExprError();
    Result = DefaultLvalueConversion(Result.get());
    if (Result.isInvalid())
      return ExprError();
    Stride = Result.get();
  }

  // Build an unanalyzed expression if either operand is type-dependent.
  if (Base->isTypeDependent() ||
      (LowerBound &&
       (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
      (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
      (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
    return new (Context) OMPArraySectionExpr(
        Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
        OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
  }

  // Perform default conversions.
  QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
  QualType ResultTy;
  if (OriginalTy->isAnyPointerType()) {
    ResultTy = OriginalTy->getPointeeType();
  } else if (OriginalTy->isArrayType()) {
    ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
  } else {
    return ExprError(
        Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
        << Base->getSourceRange());
  }
  // C99 6.5.2.1p1
  if (LowerBound) {
    auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
                                                      LowerBound);
    if (Res.isInvalid())
      return ExprError(Diag(LowerBound->getExprLoc(),
                            diag::err_omp_typecheck_section_not_integer)
                       << 0 << LowerBound->getSourceRange());
    LowerBound = Res.get();

    if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
        LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
      Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
          << 0 << LowerBound->getSourceRange();
  }
  if (Length) {
    auto Res =
        PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
    if (Res.isInvalid())
      return ExprError(Diag(Length->getExprLoc(),
                            diag::err_omp_typecheck_section_not_integer)
                       << 1 << Length->getSourceRange());
    Length = Res.get();

    if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
        Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
      Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
          << 1 << Length->getSourceRange();
  }
  if (Stride) {
    ExprResult Res =
        PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
    if (Res.isInvalid())
      return ExprError(Diag(Stride->getExprLoc(),
                            diag::err_omp_typecheck_section_not_integer)
                       << 1 << Stride->getSourceRange());
    Stride = Res.get();

    if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
        Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
      Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
          << 1 << Stride->getSourceRange();
  }

  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
  // type. Note that functions are not objects, and that (in C99 parlance)
  // incomplete types are not object types.
  if (ResultTy->isFunctionType()) {
    Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
        << ResultTy << Base->getSourceRange();
    return ExprError();
  }

  if (RequireCompleteType(Base->getExprLoc(), ResultTy,
                          diag::err_omp_section_incomplete_type, Base))
    return ExprError();

  if (LowerBound && !OriginalTy->isAnyPointerType()) {
    Expr::EvalResult Result;
    if (LowerBound->EvaluateAsInt(Result, Context)) {
      // OpenMP 5.0, [2.1.5 Array Sections]
      // The array section must be a subset of the original array.
      llvm::APSInt LowerBoundValue = Result.Val.getInt();
      if (LowerBoundValue.isNegative()) {
        Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
            << LowerBound->getSourceRange();
        return ExprError();
      }
    }
  }

  if (Length) {
    Expr::EvalResult Result;
    if (Length->EvaluateAsInt(Result, Context)) {
      // OpenMP 5.0, [2.1.5 Array Sections]
      // The length must evaluate to non-negative integers.
      llvm::APSInt LengthValue = Result.Val.getInt();
      if (LengthValue.isNegative()) {
        Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
            << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
            << Length->getSourceRange();
        return ExprError();
      }
    }
  } else if (ColonLocFirst.isValid() &&
             (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
                                      !OriginalTy->isVariableArrayType()))) {
    // OpenMP 5.0, [2.1.5 Array Sections]
    // When the size of the array dimension is not known, the length must be
    // specified explicitly.
    Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
        << (!OriginalTy.isNull() && OriginalTy->isArrayType());
    return ExprError();
  }

  if (Stride) {
    Expr::EvalResult Result;
    if (Stride->EvaluateAsInt(Result, Context)) {
      // OpenMP 5.0, [2.1.5 Array Sections]
      // The stride must evaluate to a positive integer.
      llvm::APSInt StrideValue = Result.Val.getInt();
      if (!StrideValue.isStrictlyPositive()) {
        Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
            << StrideValue.toString(/*Radix=*/10, /*Signed=*/true)
            << Stride->getSourceRange();
        return ExprError();
      }
    }
  }

  if (!Base->getType()->isSpecificPlaceholderType(
          BuiltinType::OMPArraySection)) {
    ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
    if (Result.isInvalid())
      return ExprError();
    Base = Result.get();
  }
  return new (Context) OMPArraySectionExpr(
      Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
      OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
}

ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
                                          SourceLocation RParenLoc,
                                          ArrayRef<Expr *> Dims,
                                          ArrayRef<SourceRange> Brackets) {
  if (Base->getType()->isPlaceholderType()) {
    ExprResult Result = CheckPlaceholderExpr(Base);
    if (Result.isInvalid())
      return ExprError();
    Result = DefaultLvalueConversion(Result.get());
    if (Result.isInvalid())
      return ExprError();
    Base = Result.get();
  }
  QualType BaseTy = Base->getType();
  // Delay analysis of the types/expressions if instantiation/specialization is
  // required.
  if (!BaseTy->isPointerType() && Base->isTypeDependent())
    return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
                                       LParenLoc, RParenLoc, Dims, Brackets);
  if (!BaseTy->isPointerType() ||
      (!Base->isTypeDependent() &&
       BaseTy->getPointeeType()->isIncompleteType()))
    return ExprError(Diag(Base->getExprLoc(),
                          diag::err_omp_non_pointer_type_array_shaping_base)
                     << Base->getSourceRange());

  SmallVector<Expr *, 4> NewDims;
  bool ErrorFound = false;
  for (Expr *Dim : Dims) {
    if (Dim->getType()->isPlaceholderType()) {
      ExprResult Result = CheckPlaceholderExpr(Dim);
      if (Result.isInvalid()) {
        ErrorFound = true;
        continue;
      }
      Result = DefaultLvalueConversion(Result.get());
      if (Result.isInvalid()) {
        ErrorFound = true;
        continue;
      }
      Dim = Result.get();
    }
    if (!Dim->isTypeDependent()) {
      ExprResult Result =
          PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
      if (Result.isInvalid()) {
        ErrorFound = true;
        Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
            << Dim->getSourceRange();
        continue;
      }
      Dim = Result.get();
      Expr::EvalResult EvResult;
      if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
        // OpenMP 5.0, [2.1.4 Array Shaping]
        // Each si is an integral type expression that must evaluate to a
        // positive integer.
        llvm::APSInt Value = EvResult.Val.getInt();
        if (!Value.isStrictlyPositive()) {
          Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
              << Value.toString(/*Radix=*/10, /*Signed=*/true)
              << Dim->getSourceRange();
          ErrorFound = true;
          continue;
        }
      }
    }
    NewDims.push_back(Dim);
  }
  if (ErrorFound)
    return ExprError();
  return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
                                     LParenLoc, RParenLoc, NewDims, Brackets);
}

ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
                                      SourceLocation LLoc, SourceLocation RLoc,
                                      ArrayRef<OMPIteratorData> Data) {
  SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
  bool IsCorrect = true;
  for (const OMPIteratorData &D : Data) {
    TypeSourceInfo *TInfo = nullptr;
    SourceLocation StartLoc;
    QualType DeclTy;
    if (!D.Type.getAsOpaquePtr()) {
      // OpenMP 5.0, 2.1.6 Iterators
      // In an iterator-specifier, if the iterator-type is not specified then
      // the type of that iterator is of int type.
      DeclTy = Context.IntTy;
      StartLoc = D.DeclIdentLoc;
    } else {
      DeclTy = GetTypeFromParser(D.Type, &TInfo);
      StartLoc = TInfo->getTypeLoc().getBeginLoc();
    }

    bool IsDeclTyDependent = DeclTy->isDependentType() ||
                             DeclTy->containsUnexpandedParameterPack() ||
                             DeclTy->isInstantiationDependentType();
    if (!IsDeclTyDependent) {
      if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
        // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
        // The iterator-type must be an integral or pointer type.
        Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
            << DeclTy;
        IsCorrect = false;
        continue;
      }
      if (DeclTy.isConstant(Context)) {
        // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
        // The iterator-type must not be const qualified.
        Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
            << DeclTy;
        IsCorrect = false;
        continue;
      }
    }

    // Iterator declaration.
    assert(D.DeclIdent && "Identifier expected.");
    // Always try to create iterator declarator to avoid extra error messages
    // about unknown declarations use.
    auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
                               D.DeclIdent, DeclTy, TInfo, SC_None);
    VD->setImplicit();
    if (S) {
      // Check for conflicting previous declaration.
      DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
      LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
                            ForVisibleRedeclaration);
      Previous.suppressDiagnostics();
      LookupName(Previous, S);

      FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
                           /*AllowInlineNamespace=*/false);
      if (!Previous.empty()) {
        NamedDecl *Old = Previous.getRepresentativeDecl();
        Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
        Diag(Old->getLocation(), diag::note_previous_definition);
      } else {
        PushOnScopeChains(VD, S);
      }
    } else {
      CurContext->addDecl(VD);
    }
    Expr *Begin = D.Range.Begin;
    if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
      ExprResult BeginRes =
          PerformImplicitConversion(Begin, DeclTy, AA_Converting);
      Begin = BeginRes.get();
    }
    Expr *End = D.Range.End;
    if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
      ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
      End = EndRes.get();
    }
    Expr *Step = D.Range.Step;
    if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
      if (!Step->getType()->isIntegralType(Context)) {
        Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
            << Step << Step->getSourceRange();
        IsCorrect = false;
        continue;
      }
      Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
      // OpenMP 5.0, 2.1.6 Iterators, Restrictions
      // If the step expression of a range-specification equals zero, the
      // behavior is unspecified.
      if (Result && Result->isNullValue()) {
        Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
            << Step << Step->getSourceRange();
        IsCorrect = false;
        continue;
      }
    }
    if (!Begin || !End || !IsCorrect) {
      IsCorrect = false;
      continue;
    }
    OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
    IDElem.IteratorDecl = VD;
    IDElem.AssignmentLoc = D.AssignLoc;
    IDElem.Range.Begin = Begin;
    IDElem.Range.End = End;
    IDElem.Range.Step = Step;
    IDElem.ColonLoc = D.ColonLoc;
    IDElem.SecondColonLoc = D.SecColonLoc;
  }
  if (!IsCorrect) {
    // Invalidate all created iterator declarations if error is found.
    for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
      if (Decl *ID = D.IteratorDecl)
        ID->setInvalidDecl();
    }
    return ExprError();
  }
  SmallVector<OMPIteratorHelperData, 4> Helpers;
  if (!CurContext->isDependentContext()) {
    // Build number of ityeration for each iteration range.
    // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
    // ((Begini-Stepi-1-Endi) / -Stepi);
    for (OMPIteratorExpr::IteratorDefinition &D : ID) {
      // (Endi - Begini)
      ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
                                          D.Range.Begin);
      if(!Res.isUsable()) {
        IsCorrect = false;
        continue;
      }
      ExprResult St, St1;
      if (D.Range.Step) {
        St = D.Range.Step;
        // (Endi - Begini) + Stepi
        Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
        if (!Res.isUsable()) {
          IsCorrect = false;
          continue;
        }
        // (Endi - Begini) + Stepi - 1
        Res =
            CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
                               ActOnIntegerConstant(D.AssignmentLoc, 1).get());
        if (!Res.isUsable()) {
          IsCorrect = false;
          continue;
        }
        // ((Endi - Begini) + Stepi - 1) / Stepi
        Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
        if (!Res.isUsable()) {
          IsCorrect = false;
          continue;
        }
        St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
        // (Begini - Endi)
        ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
                                             D.Range.Begin, D.Range.End);
        if (!Res1.isUsable()) {
          IsCorrect = false;
          continue;
        }
        // (Begini - Endi) - Stepi
        Res1 =
            CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
        if (!Res1.isUsable()) {
          IsCorrect = false;
          continue;
        }
        // (Begini - Endi) - Stepi - 1
        Res1 =
            CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
                               ActOnIntegerConstant(D.AssignmentLoc, 1).get());
        if (!Res1.isUsable()) {
          IsCorrect = false;
          continue;
        }
        // ((Begini - Endi) - Stepi - 1) / (-Stepi)
        Res1 =
            CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
        if (!Res1.isUsable()) {
          IsCorrect = false;
          continue;
        }
        // Stepi > 0.
        ExprResult CmpRes =
            CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
                               ActOnIntegerConstant(D.AssignmentLoc, 0).get());
        if (!CmpRes.isUsable()) {
          IsCorrect = false;
          continue;
        }
        Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
                                 Res.get(), Res1.get());
        if (!Res.isUsable()) {
          IsCorrect = false;
          continue;
        }
      }
      Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
      if (!Res.isUsable()) {
        IsCorrect = false;
        continue;
      }

      // Build counter update.
      // Build counter.
      auto *CounterVD =
          VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
                          D.IteratorDecl->getBeginLoc(), nullptr,
                          Res.get()->getType(), nullptr, SC_None);
      CounterVD->setImplicit();
      ExprResult RefRes =
          BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
                           D.IteratorDecl->getBeginLoc());
      // Build counter update.
      // I = Begini + counter * Stepi;
      ExprResult UpdateRes;
      if (D.Range.Step) {
        UpdateRes = CreateBuiltinBinOp(
            D.AssignmentLoc, BO_Mul,
            DefaultLvalueConversion(RefRes.get()).get(), St.get());
      } else {
        UpdateRes = DefaultLvalueConversion(RefRes.get());
      }
      if (!UpdateRes.isUsable()) {
        IsCorrect = false;
        continue;
      }
      UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
                                     UpdateRes.get());
      if (!UpdateRes.isUsable()) {
        IsCorrect = false;
        continue;
      }
      ExprResult VDRes =
          BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
                           cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
                           D.IteratorDecl->getBeginLoc());
      UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
                                     UpdateRes.get());
      if (!UpdateRes.isUsable()) {
        IsCorrect = false;
        continue;
      }
      UpdateRes =
          ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
      if (!UpdateRes.isUsable()) {
        IsCorrect = false;
        continue;
      }
      ExprResult CounterUpdateRes =
          CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
      if (!CounterUpdateRes.isUsable()) {
        IsCorrect = false;
        continue;
      }
      CounterUpdateRes =
          ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
      if (!CounterUpdateRes.isUsable()) {
        IsCorrect = false;
        continue;
      }
      OMPIteratorHelperData &HD = Helpers.emplace_back();
      HD.CounterVD = CounterVD;
      HD.Upper = Res.get();
      HD.Update = UpdateRes.get();
      HD.CounterUpdate = CounterUpdateRes.get();
    }
  } else {
    Helpers.assign(ID.size(), {});
  }
  if (!IsCorrect) {
    // Invalidate all created iterator declarations if error is found.
    for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
      if (Decl *ID = D.IteratorDecl)
        ID->setInvalidDecl();
    }
    return ExprError();
  }
  return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
                                 LLoc, RLoc, ID, Helpers);
}

ExprResult
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
                                      Expr *Idx, SourceLocation RLoc) {
  Expr *LHSExp = Base;
  Expr *RHSExp = Idx;

  ExprValueKind VK = VK_LValue;
  ExprObjectKind OK = OK_Ordinary;

  // Per C++ core issue 1213, the result is an xvalue if either operand is
  // a non-lvalue array, and an lvalue otherwise.
  if (getLangOpts().CPlusPlus11) {
    for (auto *Op : {LHSExp, RHSExp}) {
      Op = Op->IgnoreImplicit();
      if (Op->getType()->isArrayType() && !Op->isLValue())
        VK = VK_XValue;
    }
  }

  // Perform default conversions.
  if (!LHSExp->getType()->getAs<VectorType>()) {
    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
    if (Result.isInvalid())
      return ExprError();
    LHSExp = Result.get();
  }
  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
  if (Result.isInvalid())
    return ExprError();
  RHSExp = Result.get();

  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();

  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
  // in the subscript position. As a result, we need to derive the array base
  // and index from the expression types.
  Expr *BaseExpr, *IndexExpr;
  QualType ResultType;
  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
    BaseExpr = LHSExp;
    IndexExpr = RHSExp;
    ResultType = Context.DependentTy;
  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
    BaseExpr = LHSExp;
    IndexExpr = RHSExp;
    ResultType = PTy->getPointeeType();
  } else if (const ObjCObjectPointerType *PTy =
               LHSTy->getAs<ObjCObjectPointerType>()) {
    BaseExpr = LHSExp;
    IndexExpr = RHSExp;

    // Use custom logic if this should be the pseudo-object subscript
    // expression.
    if (!LangOpts.isSubscriptPointerArithmetic())
      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
                                          nullptr);

    ResultType = PTy->getPointeeType();
  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
     // Handle the uncommon case of "123[Ptr]".
    BaseExpr = RHSExp;
    IndexExpr = LHSExp;
    ResultType = PTy->getPointeeType();
  } else if (const ObjCObjectPointerType *PTy =
               RHSTy->getAs<ObjCObjectPointerType>()) {
     // Handle the uncommon case of "123[Ptr]".
    BaseExpr = RHSExp;
    IndexExpr = LHSExp;
    ResultType = PTy->getPointeeType();
    if (!LangOpts.isSubscriptPointerArithmetic()) {
      Diag(LLoc, diag::err_subscript_nonfragile_interface)
        << ResultType << BaseExpr->getSourceRange();
      return ExprError();
    }
  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
    BaseExpr = LHSExp;    // vectors: V[123]
    IndexExpr = RHSExp;
    // We apply C++ DR1213 to vector subscripting too.
    if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
      ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
      if (Materialized.isInvalid())
        return ExprError();
      LHSExp = Materialized.get();
    }
    VK = LHSExp->getValueKind();
    if (VK != VK_RValue)
      OK = OK_VectorComponent;

    ResultType = VTy->getElementType();
    QualType BaseType = BaseExpr->getType();
    Qualifiers BaseQuals = BaseType.getQualifiers();
    Qualifiers MemberQuals = ResultType.getQualifiers();
    Qualifiers Combined = BaseQuals + MemberQuals;
    if (Combined != MemberQuals)
      ResultType = Context.getQualifiedType(ResultType, Combined);
  } else if (LHSTy->isArrayType()) {
    // If we see an array that wasn't promoted by
    // DefaultFunctionArrayLvalueConversion, it must be an array that
    // wasn't promoted because of the C90 rule that doesn't
    // allow promoting non-lvalue arrays.  Warn, then
    // force the promotion here.
    Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
        << LHSExp->getSourceRange();
    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
                               CK_ArrayToPointerDecay).get();
    LHSTy = LHSExp->getType();

    BaseExpr = LHSExp;
    IndexExpr = RHSExp;
    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
  } else if (RHSTy->isArrayType()) {
    // Same as previous, except for 123[f().a] case
    Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
        << RHSExp->getSourceRange();
    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
                               CK_ArrayToPointerDecay).get();
    RHSTy = RHSExp->getType();

    BaseExpr = RHSExp;
    IndexExpr = LHSExp;
    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
  } else {
    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
  }
  // C99 6.5.2.1p1
  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
                     << IndexExpr->getSourceRange());

  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
         && !IndexExpr->isTypeDependent())
    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();

  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
  // type. Note that Functions are not objects, and that (in C99 parlance)
  // incomplete types are not object types.
  if (ResultType->isFunctionType()) {
    Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
        << ResultType << BaseExpr->getSourceRange();
    return ExprError();
  }

  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
    // GNU extension: subscripting on pointer to void
    Diag(LLoc, diag::ext_gnu_subscript_void_type)
      << BaseExpr->getSourceRange();

    // C forbids expressions of unqualified void type from being l-values.
    // See IsCForbiddenLValueType.
    if (!ResultType.hasQualifiers()) VK = VK_RValue;
  } else if (!ResultType->isDependentType() &&
             RequireCompleteSizedType(
                 LLoc, ResultType,
                 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
    return ExprError();

  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
         !ResultType.isCForbiddenLValueType());

  if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
      FunctionScopes.size() > 1) {
    if (auto *TT =
            LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
      for (auto I = FunctionScopes.rbegin(),
                E = std::prev(FunctionScopes.rend());
           I != E; ++I) {
        auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
        if (CSI == nullptr)
          break;
        DeclContext *DC = nullptr;
        if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
          DC = LSI->CallOperator;
        else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
          DC = CRSI->TheCapturedDecl;
        else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
          DC = BSI->TheDecl;
        if (DC) {
          if (DC->containsDecl(TT->getDecl()))
            break;
          captureVariablyModifiedType(
              Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
        }
      }
    }
  }

  return new (Context)
      ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
}

bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
                                  ParmVarDecl *Param) {
  if (Param->hasUnparsedDefaultArg()) {
    // If we've already cleared out the location for the default argument,
    // that means we're parsing it right now.
    if (!UnparsedDefaultArgLocs.count(Param)) {
      Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
      Diag(CallLoc, diag::note_recursive_default_argument_used_here);
      Param->setInvalidDecl();
      return true;
    }

    Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
        << FD << cast<CXXRecordDecl>(FD->getDeclContext());
    Diag(UnparsedDefaultArgLocs[Param],
         diag::note_default_argument_declared_here);
    return true;
  }

  if (Param->hasUninstantiatedDefaultArg() &&
      InstantiateDefaultArgument(CallLoc, FD, Param))
    return true;

  assert(Param->hasInit() && "default argument but no initializer?");

  // If the default expression creates temporaries, we need to
  // push them to the current stack of expression temporaries so they'll
  // be properly destroyed.
  // FIXME: We should really be rebuilding the default argument with new
  // bound temporaries; see the comment in PR5810.
  // We don't need to do that with block decls, though, because
  // blocks in default argument expression can never capture anything.
  if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
    // Set the "needs cleanups" bit regardless of whether there are
    // any explicit objects.
    Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());

    // Append all the objects to the cleanup list.  Right now, this
    // should always be a no-op, because blocks in default argument
    // expressions should never be able to capture anything.
    assert(!Init->getNumObjects() &&
           "default argument expression has capturing blocks?");
  }

  // We already type-checked the argument, so we know it works.
  // Just mark all of the declarations in this potentially-evaluated expression
  // as being "referenced".
  EnterExpressionEvaluationContext EvalContext(
      *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
                                   /*SkipLocalVariables=*/true);
  return false;
}

ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
                                        FunctionDecl *FD, ParmVarDecl *Param) {
  assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
  if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
    return ExprError();
  return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
}

Sema::VariadicCallType
Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
                          Expr *Fn) {
  if (Proto && Proto->isVariadic()) {
    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
      return VariadicConstructor;
    else if (Fn && Fn->getType()->isBlockPointerType())
      return VariadicBlock;
    else if (FDecl) {
      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
        if (Method->isInstance())
          return VariadicMethod;
    } else if (Fn && Fn->getType() == Context.BoundMemberTy)
      return VariadicMethod;
    return VariadicFunction;
  }
  return VariadicDoesNotApply;
}

namespace {
class FunctionCallCCC final : public FunctionCallFilterCCC {
public:
  FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
                  unsigned NumArgs, MemberExpr *ME)
      : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
        FunctionName(FuncName) {}

  bool ValidateCandidate(const TypoCorrection &candidate) override {
    if (!candidate.getCorrectionSpecifier() ||
        candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
      return false;
    }

    return FunctionCallFilterCCC::ValidateCandidate(candidate);
  }

  std::unique_ptr<CorrectionCandidateCallback> clone() override {
    return std::make_unique<FunctionCallCCC>(*this);
  }

private:
  const IdentifierInfo *const FunctionName;
};
}

static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
                                               FunctionDecl *FDecl,
                                               ArrayRef<Expr *> Args) {
  MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
  DeclarationName FuncName = FDecl->getDeclName();
  SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();

  FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
  if (TypoCorrection Corrected = S.CorrectTypo(
          DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
          S.getScopeForContext(S.CurContext), nullptr, CCC,
          Sema::CTK_ErrorRecovery)) {
    if (NamedDecl *ND = Corrected.getFoundDecl()) {
      if (Corrected.isOverloaded()) {
        OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
        OverloadCandidateSet::iterator Best;
        for (NamedDecl *CD : Corrected) {
          if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
            S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
                                   OCS);
        }
        switch (OCS.BestViableFunction(S, NameLoc, Best)) {
        case OR_Success:
          ND = Best->FoundDecl;
          Corrected.setCorrectionDecl(ND);
          break;
        default:
          break;
        }
      }
      ND = ND->getUnderlyingDecl();
      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
        return Corrected;
    }
  }
  return TypoCorrection();
}

/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
/// Fn is the function expression. For a C++ member function, this
/// routine does not attempt to convert the object argument. Returns
/// true if the call is ill-formed.
bool
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
                              FunctionDecl *FDecl,
                              const FunctionProtoType *Proto,
                              ArrayRef<Expr *> Args,
                              SourceLocation RParenLoc,
                              bool IsExecConfig) {
  // Bail out early if calling a builtin with custom typechecking.
  if (FDecl)
    if (unsigned ID = FDecl->getBuiltinID())
      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
        return false;

  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
  // assignment, to the types of the corresponding parameter, ...
  unsigned NumParams = Proto->getNumParams();
  bool Invalid = false;
  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
  unsigned FnKind = Fn->getType()->isBlockPointerType()
                       ? 1 /* block */
                       : (IsExecConfig ? 3 /* kernel function (exec config) */
                                       : 0 /* function */);

  // If too few arguments are available (and we don't have default
  // arguments for the remaining parameters), don't make the call.
  if (Args.size() < NumParams) {
    if (Args.size() < MinArgs) {
      TypoCorrection TC;
      if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
        unsigned diag_id =
            MinArgs == NumParams && !Proto->isVariadic()
                ? diag::err_typecheck_call_too_few_args_suggest
                : diag::err_typecheck_call_too_few_args_at_least_suggest;
        diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
                                        << static_cast<unsigned>(Args.size())
                                        << TC.getCorrectionRange());
      } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
        Diag(RParenLoc,
             MinArgs == NumParams && !Proto->isVariadic()
                 ? diag::err_typecheck_call_too_few_args_one
                 : diag::err_typecheck_call_too_few_args_at_least_one)
            << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
      else
        Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
                            ? diag::err_typecheck_call_too_few_args
                            : diag::err_typecheck_call_too_few_args_at_least)
            << FnKind << MinArgs << static_cast<unsigned>(Args.size())
            << Fn->getSourceRange();

      // Emit the location of the prototype.
      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
        Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;

      return true;
    }
    // We reserve space for the default arguments when we create
    // the call expression, before calling ConvertArgumentsForCall.
    assert((Call->getNumArgs() == NumParams) &&
           "We should have reserved space for the default arguments before!");
  }

  // If too many are passed and not variadic, error on the extras and drop
  // them.
  if (Args.size() > NumParams) {
    if (!Proto->isVariadic()) {
      TypoCorrection TC;
      if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
        unsigned diag_id =
            MinArgs == NumParams && !Proto->isVariadic()
                ? diag::err_typecheck_call_too_many_args_suggest
                : diag::err_typecheck_call_too_many_args_at_most_suggest;
        diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
                                        << static_cast<unsigned>(Args.size())
                                        << TC.getCorrectionRange());
      } else if (NumParams == 1 && FDecl &&
                 FDecl->getParamDecl(0)->getDeclName())
        Diag(Args[NumParams]->getBeginLoc(),
             MinArgs == NumParams
                 ? diag::err_typecheck_call_too_many_args_one
                 : diag::err_typecheck_call_too_many_args_at_most_one)
            << FnKind << FDecl->getParamDecl(0)
            << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
            << SourceRange(Args[NumParams]->getBeginLoc(),
                           Args.back()->getEndLoc());
      else
        Diag(Args[NumParams]->getBeginLoc(),
             MinArgs == NumParams
                 ? diag::err_typecheck_call_too_many_args
                 : diag::err_typecheck_call_too_many_args_at_most)
            << FnKind << NumParams << static_cast<unsigned>(Args.size())
            << Fn->getSourceRange()
            << SourceRange(Args[NumParams]->getBeginLoc(),
                           Args.back()->getEndLoc());

      // Emit the location of the prototype.
      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
        Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;

      // This deletes the extra arguments.
      Call->shrinkNumArgs(NumParams);
      return true;
    }
  }
  SmallVector<Expr *, 8> AllArgs;
  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);

  Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
                                   AllArgs, CallType);
  if (Invalid)
    return true;
  unsigned TotalNumArgs = AllArgs.size();
  for (unsigned i = 0; i < TotalNumArgs; ++i)
    Call->setArg(i, AllArgs[i]);

  return false;
}

bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
                                  const FunctionProtoType *Proto,
                                  unsigned FirstParam, ArrayRef<Expr *> Args,
                                  SmallVectorImpl<Expr *> &AllArgs,
                                  VariadicCallType CallType, bool AllowExplicit,
                                  bool IsListInitialization) {
  unsigned NumParams = Proto->getNumParams();
  bool Invalid = false;
  size_t ArgIx = 0;
  // Continue to check argument types (even if we have too few/many args).
  for (unsigned i = FirstParam; i < NumParams; i++) {
    QualType ProtoArgType = Proto->getParamType(i);

    Expr *Arg;
    ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
    if (ArgIx < Args.size()) {
      Arg = Args[ArgIx++];

      if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
                              diag::err_call_incomplete_argument, Arg))
        return true;

      // Strip the unbridged-cast placeholder expression off, if applicable.
      bool CFAudited = false;
      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
          (!Param || !Param->hasAttr<CFConsumedAttr>()))
        Arg = stripARCUnbridgedCast(Arg);
      else if (getLangOpts().ObjCAutoRefCount &&
               FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
               (!Param || !Param->hasAttr<CFConsumedAttr>()))
        CFAudited = true;

      if (Proto->getExtParameterInfo(i).isNoEscape())
        if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
          BE->getBlockDecl()->setDoesNotEscape();

      InitializedEntity Entity =
          Param ? InitializedEntity::InitializeParameter(Context, Param,
                                                         ProtoArgType)
                : InitializedEntity::InitializeParameter(
                      Context, ProtoArgType, Proto->isParamConsumed(i));

      // Remember that parameter belongs to a CF audited API.
      if (CFAudited)
        Entity.setParameterCFAudited();

      ExprResult ArgE = PerformCopyInitialization(
          Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
      if (ArgE.isInvalid())
        return true;

      Arg = ArgE.getAs<Expr>();
    } else {
      assert(Param && "can't use default arguments without a known callee");

      ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
      if (ArgExpr.isInvalid())
        return true;

      Arg = ArgExpr.getAs<Expr>();
    }

    // Check for array bounds violations for each argument to the call. This
    // check only triggers warnings when the argument isn't a more complex Expr
    // with its own checking, such as a BinaryOperator.
    CheckArrayAccess(Arg);

    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
    CheckStaticArrayArgument(CallLoc, Param, Arg);

    AllArgs.push_back(Arg);
  }

  // If this is a variadic call, handle args passed through "...".
  if (CallType != VariadicDoesNotApply) {
    // Assume that extern "C" functions with variadic arguments that
    // return __unknown_anytype aren't *really* variadic.
    if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
        FDecl->isExternC()) {
      for (Expr *A : Args.slice(ArgIx)) {
        QualType paramType; // ignored
        ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
        Invalid |= arg.isInvalid();
        AllArgs.push_back(arg.get());
      }

    // Otherwise do argument promotion, (C99 6.5.2.2p7).
    } else {
      for (Expr *A : Args.slice(ArgIx)) {
        ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
        Invalid |= Arg.isInvalid();
        AllArgs.push_back(Arg.get());
      }
    }

    // Check for array bounds violations.
    for (Expr *A : Args.slice(ArgIx))
      CheckArrayAccess(A);
  }
  return Invalid;
}

static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
  if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
    TL = DTL.getOriginalLoc();
  if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
      << ATL.getLocalSourceRange();
}

/// CheckStaticArrayArgument - If the given argument corresponds to a static
/// array parameter, check that it is non-null, and that if it is formed by
/// array-to-pointer decay, the underlying array is sufficiently large.
///
/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
/// array type derivation, then for each call to the function, the value of the
/// corresponding actual argument shall provide access to the first element of
/// an array with at least as many elements as specified by the size expression.
void
Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
                               ParmVarDecl *Param,
                               const Expr *ArgExpr) {
  // Static array parameters are not supported in C++.
  if (!Param || getLangOpts().CPlusPlus)
    return;

  QualType OrigTy = Param->getOriginalType();

  const ArrayType *AT = Context.getAsArrayType(OrigTy);
  if (!AT || AT->getSizeModifier() != ArrayType::Static)
    return;

  if (ArgExpr->isNullPointerConstant(Context,
                                     Expr::NPC_NeverValueDependent)) {
    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
    DiagnoseCalleeStaticArrayParam(*this, Param);
    return;
  }

  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
  if (!CAT)
    return;

  const ConstantArrayType *ArgCAT =
    Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
  if (!ArgCAT)
    return;

  if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
                                             ArgCAT->getElementType())) {
    if (ArgCAT->getSize().ult(CAT->getSize())) {
      Diag(CallLoc, diag::warn_static_array_too_small)
          << ArgExpr->getSourceRange()
          << (unsigned)ArgCAT->getSize().getZExtValue()
          << (unsigned)CAT->getSize().getZExtValue() << 0;
      DiagnoseCalleeStaticArrayParam(*this, Param);
    }
    return;
  }

  Optional<CharUnits> ArgSize =
      getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
  Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
  if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
    Diag(CallLoc, diag::warn_static_array_too_small)
        << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
        << (unsigned)ParmSize->getQuantity() << 1;
    DiagnoseCalleeStaticArrayParam(*this, Param);
  }
}

/// Given a function expression of unknown-any type, try to rebuild it
/// to have a function type.
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);

/// Is the given type a placeholder that we need to lower out
/// immediately during argument processing?
static bool isPlaceholderToRemoveAsArg(QualType type) {
  // Placeholders are never sugared.
  const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
  if (!placeholder) return false;

  switch (placeholder->getKind()) {
  // Ignore all the non-placeholder types.
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
  case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
  case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
  // In practice we'll never use this, since all SVE types are sugared
  // via TypedefTypes rather than exposed directly as BuiltinTypes.
#define SVE_TYPE(Name, Id, SingletonId) \
  case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
#include "clang/AST/BuiltinTypes.def"
    return false;

  // We cannot lower out overload sets; they might validly be resolved
  // by the call machinery.
  case BuiltinType::Overload:
    return false;

  // Unbridged casts in ARC can be handled in some call positions and
  // should be left in place.
  case BuiltinType::ARCUnbridgedCast:
    return false;

  // Pseudo-objects should be converted as soon as possible.
  case BuiltinType::PseudoObject:
    return true;

  // The debugger mode could theoretically but currently does not try
  // to resolve unknown-typed arguments based on known parameter types.
  case BuiltinType::UnknownAny:
    return true;

  // These are always invalid as call arguments and should be reported.
  case BuiltinType::BoundMember:
  case BuiltinType::BuiltinFn:
  case BuiltinType::IncompleteMatrixIdx:
  case BuiltinType::OMPArraySection:
  case BuiltinType::OMPArrayShaping:
  case BuiltinType::OMPIterator:
    return true;

  }
  llvm_unreachable("bad builtin type kind");
}

/// Check an argument list for placeholders that we won't try to
/// handle later.
static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
  // Apply this processing to all the arguments at once instead of
  // dying at the first failure.
  bool hasInvalid = false;
  for (size_t i = 0, e = args.size(); i != e; i++) {
    if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
      ExprResult result = S.CheckPlaceholderExpr(args[i]);
      if (result.isInvalid()) hasInvalid = true;
      else args[i] = result.get();
    }
  }
  return hasInvalid;
}

/// If a builtin function has a pointer argument with no explicit address
/// space, then it should be able to accept a pointer to any address
/// space as input.  In order to do this, we need to replace the
/// standard builtin declaration with one that uses the same address space
/// as the call.
///
/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
///                  it does not contain any pointer arguments without
///                  an address space qualifer.  Otherwise the rewritten
///                  FunctionDecl is returned.
/// TODO: Handle pointer return types.
static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
                                                FunctionDecl *FDecl,
                                                MultiExprArg ArgExprs) {

  QualType DeclType = FDecl->getType();
  const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);

  if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
      ArgExprs.size() < FT->getNumParams())
    return nullptr;

  bool NeedsNewDecl = false;
  unsigned i = 0;
  SmallVector<QualType, 8> OverloadParams;

  for (QualType ParamType : FT->param_types()) {

    // Convert array arguments to pointer to simplify type lookup.
    ExprResult ArgRes =
        Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
    if (ArgRes.isInvalid())
      return nullptr;
    Expr *Arg = ArgRes.get();
    QualType ArgType = Arg->getType();
    if (!ParamType->isPointerType() ||
        ParamType.hasAddressSpace() ||
        !ArgType->isPointerType() ||
        !ArgType->getPointeeType().hasAddressSpace()) {
      OverloadParams.push_back(ParamType);
      continue;
    }

    QualType PointeeType = ParamType->getPointeeType();
    if (PointeeType.hasAddressSpace())
      continue;

    NeedsNewDecl = true;
    LangAS AS = ArgType->getPointeeType().getAddressSpace();

    PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
    OverloadParams.push_back(Context.getPointerType(PointeeType));
  }

  if (!NeedsNewDecl)
    return nullptr;

  FunctionProtoType::ExtProtoInfo EPI;
  EPI.Variadic = FT->isVariadic();
  QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
                                                OverloadParams, EPI);
  DeclContext *Parent = FDecl->getParent();
  FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
                                                    FDecl->getLocation(),
                                                    FDecl->getLocation(),
                                                    FDecl->getIdentifier(),
                                                    OverloadTy,
                                                    /*TInfo=*/nullptr,
                                                    SC_Extern, false,
                                                    /*hasPrototype=*/true);
  SmallVector<ParmVarDecl*, 16> Params;
  FT = cast<FunctionProtoType>(OverloadTy);
  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
    QualType ParamType = FT->getParamType(i);
    ParmVarDecl *Parm =
        ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
                                SourceLocation(), nullptr, ParamType,
                                /*TInfo=*/nullptr, SC_None, nullptr);
    Parm->setScopeInfo(0, i);
    Params.push_back(Parm);
  }
  OverloadDecl->setParams(Params);
  Sema->mergeDeclAttributes(OverloadDecl, FDecl);
  return OverloadDecl;
}

static void checkDirectCallValidity(Sema &S, const Expr *Fn,
                                    FunctionDecl *Callee,
                                    MultiExprArg ArgExprs) {
  // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
  // similar attributes) really don't like it when functions are called with an
  // invalid number of args.
  if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
                         /*PartialOverloading=*/false) &&
      !Callee->isVariadic())
    return;
  if (Callee->getMinRequiredArguments() > ArgExprs.size())
    return;

  if (const EnableIfAttr *Attr =
          S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
    S.Diag(Fn->getBeginLoc(),
           isa<CXXMethodDecl>(Callee)
               ? diag::err_ovl_no_viable_member_function_in_call
               : diag::err_ovl_no_viable_function_in_call)
        << Callee << Callee->getSourceRange();
    S.Diag(Callee->getLocation(),
           diag::note_ovl_candidate_disabled_by_function_cond_attr)
        << Attr->getCond()->getSourceRange() << Attr->getMessage();
    return;
  }
}

static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
    const UnresolvedMemberExpr *const UME, Sema &S) {

  const auto GetFunctionLevelDCIfCXXClass =
      [](Sema &S) -> const CXXRecordDecl * {
    const DeclContext *const DC = S.getFunctionLevelDeclContext();
    if (!DC || !DC->getParent())
      return nullptr;

    // If the call to some member function was made from within a member
    // function body 'M' return return 'M's parent.
    if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
      return MD->getParent()->getCanonicalDecl();
    // else the call was made from within a default member initializer of a
    // class, so return the class.
    if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
      return RD->getCanonicalDecl();
    return nullptr;
  };
  // If our DeclContext is neither a member function nor a class (in the
  // case of a lambda in a default member initializer), we can't have an
  // enclosing 'this'.

  const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
  if (!CurParentClass)
    return false;

  // The naming class for implicit member functions call is the class in which
  // name lookup starts.
  const CXXRecordDecl *const NamingClass =
      UME->getNamingClass()->getCanonicalDecl();
  assert(NamingClass && "Must have naming class even for implicit access");

  // If the unresolved member functions were found in a 'naming class' that is
  // related (either the same or derived from) to the class that contains the
  // member function that itself contained the implicit member access.

  return CurParentClass == NamingClass ||
         CurParentClass->isDerivedFrom(NamingClass);
}

static void
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
    Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {

  if (!UME)
    return;

  LambdaScopeInfo *const CurLSI = S.getCurLambda();
  // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
  // already been captured, or if this is an implicit member function call (if
  // it isn't, an attempt to capture 'this' should already have been made).
  if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
      !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
    return;

  // Check if the naming class in which the unresolved members were found is
  // related (same as or is a base of) to the enclosing class.

  if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
    return;


  DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
  // If the enclosing function is not dependent, then this lambda is
  // capture ready, so if we can capture this, do so.
  if (!EnclosingFunctionCtx->isDependentContext()) {
    // If the current lambda and all enclosing lambdas can capture 'this' -
    // then go ahead and capture 'this' (since our unresolved overload set
    // contains at least one non-static member function).
    if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
      S.CheckCXXThisCapture(CallLoc);
  } else if (S.CurContext->isDependentContext()) {
    // ... since this is an implicit member reference, that might potentially
    // involve a 'this' capture, mark 'this' for potential capture in
    // enclosing lambdas.
    if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
      CurLSI->addPotentialThisCapture(CallLoc);
  }
}

ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
                               MultiExprArg ArgExprs, SourceLocation RParenLoc,
                               Expr *ExecConfig) {
  ExprResult Call =
      BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
  if (Call.isInvalid())
    return Call;

  // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
  // language modes.
  if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
    if (ULE->hasExplicitTemplateArgs() &&
        ULE->decls_begin() == ULE->decls_end()) {
      Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
                                 ? diag::warn_cxx17_compat_adl_only_template_id
                                 : diag::ext_adl_only_template_id)
          << ULE->getName();
    }
  }

  if (LangOpts.OpenMP)
    Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
                           ExecConfig);

  return Call;
}

/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
                               MultiExprArg ArgExprs, SourceLocation RParenLoc,
                               Expr *ExecConfig, bool IsExecConfig) {
  // Since this might be a postfix expression, get rid of ParenListExprs.
  ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
  if (Result.isInvalid()) return ExprError();
  Fn = Result.get();

  if (checkArgsForPlaceholders(*this, ArgExprs))
    return ExprError();

  if (getLangOpts().CPlusPlus) {
    // If this is a pseudo-destructor expression, build the call immediately.
    if (isa<CXXPseudoDestructorExpr>(Fn)) {
      if (!ArgExprs.empty()) {
        // Pseudo-destructor calls should not have any arguments.
        Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
            << FixItHint::CreateRemoval(
                   SourceRange(ArgExprs.front()->getBeginLoc(),
                               ArgExprs.back()->getEndLoc()));
      }

      return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
                              VK_RValue, RParenLoc, CurFPFeatureOverrides());
    }
    if (Fn->getType() == Context.PseudoObjectTy) {
      ExprResult result = CheckPlaceholderExpr(Fn);
      if (result.isInvalid()) return ExprError();
      Fn = result.get();
    }

    // Determine whether this is a dependent call inside a C++ template,
    // in which case we won't do any semantic analysis now.
    if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
      if (ExecConfig) {
        return CUDAKernelCallExpr::Create(
            Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
            Context.DependentTy, VK_RValue, RParenLoc, CurFPFeatureOverrides());
      } else {

        tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
            *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
            Fn->getBeginLoc());

        return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
                                VK_RValue, RParenLoc, CurFPFeatureOverrides());
      }
    }

    // Determine whether this is a call to an object (C++ [over.call.object]).
    if (Fn->getType()->isRecordType())
      return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
                                          RParenLoc);

    if (Fn->getType() == Context.UnknownAnyTy) {
      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
      if (result.isInvalid()) return ExprError();
      Fn = result.get();
    }

    if (Fn->getType() == Context.BoundMemberTy) {
      return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
                                       RParenLoc);
    }
  }

  // Check for overloaded calls.  This can happen even in C due to extensions.
  if (Fn->getType() == Context.OverloadTy) {
    OverloadExpr::FindResult find = OverloadExpr::find(Fn);

    // We aren't supposed to apply this logic if there's an '&' involved.
    if (!find.HasFormOfMemberPointer) {
      if (Expr::hasAnyTypeDependentArguments(ArgExprs))
        return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
                                VK_RValue, RParenLoc, CurFPFeatureOverrides());
      OverloadExpr *ovl = find.Expression;
      if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
        return BuildOverloadedCallExpr(
            Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
            /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
      return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
                                       RParenLoc);
    }
  }

  // If we're directly calling a function, get the appropriate declaration.
  if (Fn->getType() == Context.UnknownAnyTy) {
    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
    if (result.isInvalid()) return ExprError();
    Fn = result.get();
  }

  Expr *NakedFn = Fn->IgnoreParens();

  bool CallingNDeclIndirectly = false;
  NamedDecl *NDecl = nullptr;
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
    if (UnOp->getOpcode() == UO_AddrOf) {
      CallingNDeclIndirectly = true;
      NakedFn = UnOp->getSubExpr()->IgnoreParens();
    }
  }

  if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
    NDecl = DRE->getDecl();

    FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
    if (FDecl && FDecl->getBuiltinID()) {
      // Rewrite the function decl for this builtin by replacing parameters
      // with no explicit address space with the address space of the arguments
      // in ArgExprs.
      if ((FDecl =
               rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
        NDecl = FDecl;
        Fn = DeclRefExpr::Create(
            Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
            SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
            nullptr, DRE->isNonOdrUse());
      }
    }
  } else if (isa<MemberExpr>(NakedFn))
    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();

  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
    if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
                                      FD, /*Complain=*/true, Fn->getBeginLoc()))
      return ExprError();

    if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
      return ExprError();

    checkDirectCallValidity(*this, Fn, FD, ArgExprs);
  }

  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
                               ExecConfig, IsExecConfig);
}

/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
///
/// __builtin_astype( value, dst type )
///
ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
                                 SourceLocation BuiltinLoc,
                                 SourceLocation RParenLoc) {
  ExprValueKind VK = VK_RValue;
  ExprObjectKind OK = OK_Ordinary;
  QualType DstTy = GetTypeFromParser(ParsedDestTy);
  QualType SrcTy = E->getType();
  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
    return ExprError(Diag(BuiltinLoc,
                          diag::err_invalid_astype_of_different_size)
                     << DstTy
                     << SrcTy
                     << E->getSourceRange());
  return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
}

/// ActOnConvertVectorExpr - create a new convert-vector expression from the
/// provided arguments.
///
/// __builtin_convertvector( value, dst type )
///
ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
                                        SourceLocation BuiltinLoc,
                                        SourceLocation RParenLoc) {
  TypeSourceInfo *TInfo;
  GetTypeFromParser(ParsedDestTy, &TInfo);
  return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
}

/// BuildResolvedCallExpr - Build a call to a resolved expression,
/// i.e. an expression not of \p OverloadTy.  The expression should
/// unary-convert to an expression of function-pointer or
/// block-pointer type.
///
/// \param NDecl the declaration being called, if available
ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
                                       SourceLocation LParenLoc,
                                       ArrayRef<Expr *> Args,
                                       SourceLocation RParenLoc, Expr *Config,
                                       bool IsExecConfig, ADLCallKind UsesADL) {
  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);

  // Functions with 'interrupt' attribute cannot be called directly.
  if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
    Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
    return ExprError();
  }

  // Interrupt handlers don't save off the VFP regs automatically on ARM,
  // so there's some risk when calling out to non-interrupt handler functions
  // that the callee might not preserve them. This is easy to diagnose here,
  // but can be very challenging to debug.
  if (auto *Caller = getCurFunctionDecl())
    if (Caller->hasAttr<ARMInterruptAttr>()) {
      bool VFP = Context.getTargetInfo().hasFeature("vfp");
      if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
        Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
    }

  // Promote the function operand.
  // We special-case function promotion here because we only allow promoting
  // builtin functions to function pointers in the callee of a call.
  ExprResult Result;
  QualType ResultTy;
  if (BuiltinID &&
      Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
    // Extract the return type from the (builtin) function pointer type.
    // FIXME Several builtins still have setType in
    // Sema::CheckBuiltinFunctionCall. One should review their definitions in
    // Builtins.def to ensure they are correct before removing setType calls.
    QualType FnPtrTy = Context.getPointerType(FDecl->getType());
    Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
    ResultTy = FDecl->getCallResultType();
  } else {
    Result = CallExprUnaryConversions(Fn);
    ResultTy = Context.BoolTy;
  }
  if (Result.isInvalid())
    return ExprError();
  Fn = Result.get();

  // Check for a valid function type, but only if it is not a builtin which
  // requires custom type checking. These will be handled by
  // CheckBuiltinFunctionCall below just after creation of the call expression.
  const FunctionType *FuncT = nullptr;
  if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
  retry:
    if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
      // C99 6.5.2.2p1 - "The expression that denotes the called function shall
      // have type pointer to function".
      FuncT = PT->getPointeeType()->getAs<FunctionType>();
      if (!FuncT)
        return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
                         << Fn->getType() << Fn->getSourceRange());
    } else if (const BlockPointerType *BPT =
                   Fn->getType()->getAs<BlockPointerType>()) {
      FuncT = BPT->getPointeeType()->castAs<FunctionType>();
    } else {
      // Handle calls to expressions of unknown-any type.
      if (Fn->getType() == Context.UnknownAnyTy) {
        ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
        if (rewrite.isInvalid())
          return ExprError();
        Fn = rewrite.get();
        goto retry;
      }

      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
                       << Fn->getType() << Fn->getSourceRange());
    }
  }

  // Get the number of parameters in the function prototype, if any.
  // We will allocate space for max(Args.size(), NumParams) arguments
  // in the call expression.
  const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
  unsigned NumParams = Proto ? Proto->getNumParams() : 0;

  CallExpr *TheCall;
  if (Config) {
    assert(UsesADL == ADLCallKind::NotADL &&
           "CUDAKernelCallExpr should not use ADL");
    TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
                                         Args, ResultTy, VK_RValue, RParenLoc,
                                         CurFPFeatureOverrides(), NumParams);
  } else {
    TheCall =
        CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
                         CurFPFeatureOverrides(), NumParams, UsesADL);
  }

  if (!getLangOpts().CPlusPlus) {
    // Forget about the nulled arguments since typo correction
    // do not handle them well.
    TheCall->shrinkNumArgs(Args.size());
    // C cannot always handle TypoExpr nodes in builtin calls and direct
    // function calls as their argument checking don't necessarily handle
    // dependent types properly, so make sure any TypoExprs have been
    // dealt with.
    ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
    if (!Result.isUsable()) return ExprError();
    CallExpr *TheOldCall = TheCall;
    TheCall = dyn_cast<CallExpr>(Result.get());
    bool CorrectedTypos = TheCall != TheOldCall;
    if (!TheCall) return Result;
    Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());

    // A new call expression node was created if some typos were corrected.
    // However it may not have been constructed with enough storage. In this
    // case, rebuild the node with enough storage. The waste of space is
    // immaterial since this only happens when some typos were corrected.
    if (CorrectedTypos && Args.size() < NumParams) {
      if (Config)
        TheCall = CUDAKernelCallExpr::Create(
            Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
            RParenLoc, CurFPFeatureOverrides(), NumParams);
      else
        TheCall =
            CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
                             CurFPFeatureOverrides(), NumParams, UsesADL);
    }
    // We can now handle the nulled arguments for the default arguments.
    TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
  }

  // Bail out early if calling a builtin with custom type checking.
  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
    return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);

  if (getLangOpts().CUDA) {
    if (Config) {
      // CUDA: Kernel calls must be to global functions
      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
            << FDecl << Fn->getSourceRange());

      // CUDA: Kernel function must have 'void' return type
      if (!FuncT->getReturnType()->isVoidType() &&
          !FuncT->getReturnType()->getAs<AutoType>() &&
          !FuncT->getReturnType()->isInstantiationDependentType())
        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
            << Fn->getType() << Fn->getSourceRange());
    } else {
      // CUDA: Calls to global functions must be configured
      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
            << FDecl << Fn->getSourceRange());
    }
  }

  // Check for a valid return type
  if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
                          FDecl))
    return ExprError();

  // We know the result type of the call, set it.
  TheCall->setType(FuncT->getCallResultType(Context));
  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));

  if (Proto) {
    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
                                IsExecConfig))
      return ExprError();
  } else {
    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");

    if (FDecl) {
      // Check if we have too few/too many template arguments, based
      // on our knowledge of the function definition.
      const FunctionDecl *Def = nullptr;
      if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
        Proto = Def->getType()->getAs<FunctionProtoType>();
       if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
          << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
      }

      // If the function we're calling isn't a function prototype, but we have
      // a function prototype from a prior declaratiom, use that prototype.
      if (!FDecl->hasPrototype())
        Proto = FDecl->getType()->getAs<FunctionProtoType>();
    }

    // Promote the arguments (C99 6.5.2.2p6).
    for (unsigned i = 0, e = Args.size(); i != e; i++) {
      Expr *Arg = Args[i];

      if (Proto && i < Proto->getNumParams()) {
        InitializedEntity Entity = InitializedEntity::InitializeParameter(
            Context, Proto->getParamType(i), Proto->isParamConsumed(i));
        ExprResult ArgE =
            PerformCopyInitialization(Entity, SourceLocation(), Arg);
        if (ArgE.isInvalid())
          return true;

        Arg = ArgE.getAs<Expr>();

      } else {
        ExprResult ArgE = DefaultArgumentPromotion(Arg);

        if (ArgE.isInvalid())
          return true;

        Arg = ArgE.getAs<Expr>();
      }

      if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
                              diag::err_call_incomplete_argument, Arg))
        return ExprError();

      TheCall->setArg(i, Arg);
    }
  }

  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
    if (!Method->isStatic())
      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
        << Fn->getSourceRange());

  // Check for sentinels
  if (NDecl)
    DiagnoseSentinelCalls(NDecl, LParenLoc, Args);

  // Warn for unions passing across security boundary (CMSE).
  if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
    for (unsigned i = 0, e = Args.size(); i != e; i++) {
      if (const auto *RT =
              dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
        if (RT->getDecl()->isOrContainsUnion())
          Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
              << 0 << i;
      }
    }
  }

  // Do special checking on direct calls to functions.
  if (FDecl) {
    if (CheckFunctionCall(FDecl, TheCall, Proto))
      return ExprError();

    checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);

    if (BuiltinID)
      return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
  } else if (NDecl) {
    if (CheckPointerCall(NDecl, TheCall, Proto))
      return ExprError();
  } else {
    if (CheckOtherCall(TheCall, Proto))
      return ExprError();
  }

  return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
}

ExprResult
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
                           SourceLocation RParenLoc, Expr *InitExpr) {
  assert(Ty && "ActOnCompoundLiteral(): missing type");
  assert(InitExpr && "ActOnCompoundLiteral(): missing expression");

  TypeSourceInfo *TInfo;
  QualType literalType = GetTypeFromParser(Ty, &TInfo);
  if (!TInfo)
    TInfo = Context.getTrivialTypeSourceInfo(literalType);

  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
}

ExprResult
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
                               SourceLocation RParenLoc, Expr *LiteralExpr) {
  QualType literalType = TInfo->getType();

  if (literalType->isArrayType()) {
    if (RequireCompleteSizedType(
            LParenLoc, Context.getBaseElementType(literalType),
            diag::err_array_incomplete_or_sizeless_type,
            SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
      return ExprError();
    if (literalType->isVariableArrayType())
      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
  } else if (!literalType->isDependentType() &&
             RequireCompleteType(LParenLoc, literalType,
               diag::err_typecheck_decl_incomplete_type,
               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
    return ExprError();

  InitializedEntity Entity
    = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
  InitializationKind Kind
    = InitializationKind::CreateCStyleCast(LParenLoc,
                                           SourceRange(LParenLoc, RParenLoc),
                                           /*InitList=*/true);
  InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
                                      &literalType);
  if (Result.isInvalid())
    return ExprError();
  LiteralExpr = Result.get();

  bool isFileScope = !CurContext->isFunctionOrMethod();

  // In C, compound literals are l-values for some reason.
  // For GCC compatibility, in C++, file-scope array compound literals with
  // constant initializers are also l-values, and compound literals are
  // otherwise prvalues.
  //
  // (GCC also treats C++ list-initialized file-scope array prvalues with
  // constant initializers as l-values, but that's non-conforming, so we don't
  // follow it there.)
  //
  // FIXME: It would be better to handle the lvalue cases as materializing and
  // lifetime-extending a temporary object, but our materialized temporaries
  // representation only supports lifetime extension from a variable, not "out
  // of thin air".
  // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
  // is bound to the result of applying array-to-pointer decay to the compound
  // literal.
  // FIXME: GCC supports compound literals of reference type, which should
  // obviously have a value kind derived from the kind of reference involved.
  ExprValueKind VK =
      (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
          ? VK_RValue
          : VK_LValue;

  if (isFileScope)
    if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
      for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
        Expr *Init = ILE->getInit(i);
        ILE->setInit(i, ConstantExpr::Create(Context, Init));
      }

  auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
                                              VK, LiteralExpr, isFileScope);
  if (isFileScope) {
    if (!LiteralExpr->isTypeDependent() &&
        !LiteralExpr->isValueDependent() &&
        !literalType->isDependentType()) // C99 6.5.2.5p3
      if (CheckForConstantInitializer(LiteralExpr, literalType))
        return ExprError();
  } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
             literalType.getAddressSpace() != LangAS::Default) {
    // Embedded-C extensions to C99 6.5.2.5:
    //   "If the compound literal occurs inside the body of a function, the
    //   type name shall not be qualified by an address-space qualifier."
    Diag(LParenLoc, diag::err_compound_literal_with_address_space)
      << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
    return ExprError();
  }

  if (!isFileScope && !getLangOpts().CPlusPlus) {
    // Compound literals that have automatic storage duration are destroyed at
    // the end of the scope in C; in C++, they're just temporaries.

    // Emit diagnostics if it is or contains a C union type that is non-trivial
    // to destruct.
    if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
      checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
                            NTCUC_CompoundLiteral, NTCUK_Destruct);

    // Diagnose jumps that enter or exit the lifetime of the compound literal.
    if (literalType.isDestructedType()) {
      Cleanup.setExprNeedsCleanups(true);
      ExprCleanupObjects.push_back(E);
      getCurFunction()->setHasBranchProtectedScope();
    }
  }

  if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
      E->getType().hasNonTrivialToPrimitiveCopyCUnion())
    checkNonTrivialCUnionInInitializer(E->getInitializer(),
                                       E->getInitializer()->getExprLoc());

  return MaybeBindToTemporary(E);
}

ExprResult
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
                    SourceLocation RBraceLoc) {
  // Only produce each kind of designated initialization diagnostic once.
  SourceLocation FirstDesignator;
  bool DiagnosedArrayDesignator = false;
  bool DiagnosedNestedDesignator = false;
  bool DiagnosedMixedDesignator = false;

  // Check that any designated initializers are syntactically valid in the
  // current language mode.
  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
    if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
      if (FirstDesignator.isInvalid())
        FirstDesignator = DIE->getBeginLoc();

      if (!getLangOpts().CPlusPlus)
        break;

      if (!DiagnosedNestedDesignator && DIE->size() > 1) {
        DiagnosedNestedDesignator = true;
        Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
          << DIE->getDesignatorsSourceRange();
      }

      for (auto &Desig : DIE->designators()) {
        if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
          DiagnosedArrayDesignator = true;
          Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
            << Desig.getSourceRange();
        }
      }

      if (!DiagnosedMixedDesignator &&
          !isa<DesignatedInitExpr>(InitArgList[0])) {
        DiagnosedMixedDesignator = true;
        Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
          << DIE->getSourceRange();
        Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
          << InitArgList[0]->getSourceRange();
      }
    } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
               isa<DesignatedInitExpr>(InitArgList[0])) {
      DiagnosedMixedDesignator = true;
      auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
      Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
        << DIE->getSourceRange();
      Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
        << InitArgList[I]->getSourceRange();
    }
  }

  if (FirstDesignator.isValid()) {
    // Only diagnose designated initiaization as a C++20 extension if we didn't
    // already diagnose use of (non-C++20) C99 designator syntax.
    if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
        !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
      Diag(FirstDesignator, getLangOpts().CPlusPlus20
                                ? diag::warn_cxx17_compat_designated_init
                                : diag::ext_cxx_designated_init);
    } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
      Diag(FirstDesignator, diag::ext_designated_init);
    }
  }

  return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
}

ExprResult
Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
                    SourceLocation RBraceLoc) {
  // Semantic analysis for initializers is done by ActOnDeclarator() and
  // CheckInitializer() - it requires knowledge of the object being initialized.

  // Immediately handle non-overload placeholders.  Overloads can be
  // resolved contextually, but everything else here can't.
  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
    if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
      ExprResult result = CheckPlaceholderExpr(InitArgList[I]);

      // Ignore failures; dropping the entire initializer list because
      // of one failure would be terrible for indexing/etc.
      if (result.isInvalid()) continue;

      InitArgList[I] = result.get();
    }
  }

  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
                                               RBraceLoc);
  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
  return E;
}

/// Do an explicit extend of the given block pointer if we're in ARC.
void Sema::maybeExtendBlockObject(ExprResult &E) {
  assert(E.get()->getType()->isBlockPointerType());
  assert(E.get()->isRValue());

  // Only do this in an r-value context.
  if (!getLangOpts().ObjCAutoRefCount) return;

  E = ImplicitCastExpr::Create(
      Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
      /*base path*/ nullptr, VK_RValue, FPOptionsOverride());
  Cleanup.setExprNeedsCleanups(true);
}

/// Prepare a conversion of the given expression to an ObjC object
/// pointer type.
CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
  QualType type = E.get()->getType();
  if (type->isObjCObjectPointerType()) {
    return CK_BitCast;
  } else if (type->isBlockPointerType()) {
    maybeExtendBlockObject(E);
    return CK_BlockPointerToObjCPointerCast;
  } else {
    assert(type->isPointerType());
    return CK_CPointerToObjCPointerCast;
  }
}

/// Prepares for a scalar cast, performing all the necessary stages
/// except the final cast and returning the kind required.
CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
  // Also, callers should have filtered out the invalid cases with
  // pointers.  Everything else should be possible.

  QualType SrcTy = Src.get()->getType();
  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
    return CK_NoOp;

  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
  case Type::STK_MemberPointer:
    llvm_unreachable("member pointer type in C");

  case Type::STK_CPointer:
  case Type::STK_BlockPointer:
  case Type::STK_ObjCObjectPointer:
    switch (DestTy->getScalarTypeKind()) {
    case Type::STK_CPointer: {
      LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
      LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
      if (SrcAS != DestAS)
        return CK_AddressSpaceConversion;
      if (Context.hasCvrSimilarType(SrcTy, DestTy))
        return CK_NoOp;
      return CK_BitCast;
    }
    case Type::STK_BlockPointer:
      return (SrcKind == Type::STK_BlockPointer
                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
    case Type::STK_ObjCObjectPointer:
      if (SrcKind == Type::STK_ObjCObjectPointer)
        return CK_BitCast;
      if (SrcKind == Type::STK_CPointer)
        return CK_CPointerToObjCPointerCast;
      maybeExtendBlockObject(Src);
      return CK_BlockPointerToObjCPointerCast;
    case Type::STK_Bool:
      return CK_PointerToBoolean;
    case Type::STK_Integral:
      return CK_PointerToIntegral;
    case Type::STK_Floating:
    case Type::STK_FloatingComplex:
    case Type::STK_IntegralComplex:
    case Type::STK_MemberPointer:
    case Type::STK_FixedPoint:
      llvm_unreachable("illegal cast from pointer");
    }
    llvm_unreachable("Should have returned before this");

  case Type::STK_FixedPoint:
    switch (DestTy->getScalarTypeKind()) {
    case Type::STK_FixedPoint:
      return CK_FixedPointCast;
    case Type::STK_Bool:
      return CK_FixedPointToBoolean;
    case Type::STK_Integral:
      return CK_FixedPointToIntegral;
    case Type::STK_Floating:
    case Type::STK_IntegralComplex:
    case Type::STK_FloatingComplex:
      Diag(Src.get()->getExprLoc(),
           diag::err_unimplemented_conversion_with_fixed_point_type)
          << DestTy;
      return CK_IntegralCast;
    case Type::STK_CPointer:
    case Type::STK_ObjCObjectPointer:
    case Type::STK_BlockPointer:
    case Type::STK_MemberPointer:
      llvm_unreachable("illegal cast to pointer type");
    }
    llvm_unreachable("Should have returned before this");

  case Type::STK_Bool: // casting from bool is like casting from an integer
  case Type::STK_Integral:
    switch (DestTy->getScalarTypeKind()) {
    case Type::STK_CPointer:
    case Type::STK_ObjCObjectPointer:
    case Type::STK_BlockPointer:
      if (Src.get()->isNullPointerConstant(Context,
                                           Expr::NPC_ValueDependentIsNull))
        return CK_NullToPointer;
      return CK_IntegralToPointer;
    case Type::STK_Bool:
      return CK_IntegralToBoolean;
    case Type::STK_Integral:
      return CK_IntegralCast;
    case Type::STK_Floating:
      return CK_IntegralToFloating;
    case Type::STK_IntegralComplex:
      Src = ImpCastExprToType(Src.get(),
                      DestTy->castAs<ComplexType>()->getElementType(),
                      CK_IntegralCast);
      return CK_IntegralRealToComplex;
    case Type::STK_FloatingComplex:
      Src = ImpCastExprToType(Src.get(),
                      DestTy->castAs<ComplexType>()->getElementType(),
                      CK_IntegralToFloating);
      return CK_FloatingRealToComplex;
    case Type::STK_MemberPointer:
      llvm_unreachable("member pointer type in C");
    case Type::STK_FixedPoint:
      return CK_IntegralToFixedPoint;
    }
    llvm_unreachable("Should have returned before this");

  case Type::STK_Floating:
    switch (DestTy->getScalarTypeKind()) {
    case Type::STK_Floating:
      return CK_FloatingCast;
    case Type::STK_Bool:
      return CK_FloatingToBoolean;
    case Type::STK_Integral:
      return CK_FloatingToIntegral;
    case Type::STK_FloatingComplex:
      Src = ImpCastExprToType(Src.get(),
                              DestTy->castAs<ComplexType>()->getElementType(),
                              CK_FloatingCast);
      return CK_FloatingRealToComplex;
    case Type::STK_IntegralComplex:
      Src = ImpCastExprToType(Src.get(),
                              DestTy->castAs<ComplexType>()->getElementType(),
                              CK_FloatingToIntegral);
      return CK_IntegralRealToComplex;
    case Type::STK_CPointer:
    case Type::STK_ObjCObjectPointer:
    case Type::STK_BlockPointer:
      llvm_unreachable("valid float->pointer cast?");
    case Type::STK_MemberPointer:
      llvm_unreachable("member pointer type in C");
    case Type::STK_FixedPoint:
      Diag(Src.get()->getExprLoc(),
           diag::err_unimplemented_conversion_with_fixed_point_type)
          << SrcTy;
      return CK_IntegralCast;
    }
    llvm_unreachable("Should have returned before this");

  case Type::STK_FloatingComplex:
    switch (DestTy->getScalarTypeKind()) {
    case Type::STK_FloatingComplex:
      return CK_FloatingComplexCast;
    case Type::STK_IntegralComplex:
      return CK_FloatingComplexToIntegralComplex;
    case Type::STK_Floating: {
      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
      if (Context.hasSameType(ET, DestTy))
        return CK_FloatingComplexToReal;
      Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
      return CK_FloatingCast;
    }
    case Type::STK_Bool:
      return CK_FloatingComplexToBoolean;
    case Type::STK_Integral:
      Src = ImpCastExprToType(Src.get(),
                              SrcTy->castAs<ComplexType>()->getElementType(),
                              CK_FloatingComplexToReal);
      return CK_FloatingToIntegral;
    case Type::STK_CPointer:
    case Type::STK_ObjCObjectPointer:
    case Type::STK_BlockPointer:
      llvm_unreachable("valid complex float->pointer cast?");
    case Type::STK_MemberPointer:
      llvm_unreachable("member pointer type in C");
    case Type::STK_FixedPoint:
      Diag(Src.get()->getExprLoc(),
           diag::err_unimplemented_conversion_with_fixed_point_type)
          << SrcTy;
      return CK_IntegralCast;
    }
    llvm_unreachable("Should have returned before this");

  case Type::STK_IntegralComplex:
    switch (DestTy->getScalarTypeKind()) {
    case Type::STK_FloatingComplex:
      return CK_IntegralComplexToFloatingComplex;
    case Type::STK_IntegralComplex:
      return CK_IntegralComplexCast;
    case Type::STK_Integral: {
      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
      if (Context.hasSameType(ET, DestTy))
        return CK_IntegralComplexToReal;
      Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
      return CK_IntegralCast;
    }
    case Type::STK_Bool:
      return CK_IntegralComplexToBoolean;
    case Type::STK_Floating:
      Src = ImpCastExprToType(Src.get(),
                              SrcTy->castAs<ComplexType>()->getElementType(),
                              CK_IntegralComplexToReal);
      return CK_IntegralToFloating;
    case Type::STK_CPointer:
    case Type::STK_ObjCObjectPointer:
    case Type::STK_BlockPointer:
      llvm_unreachable("valid complex int->pointer cast?");
    case Type::STK_MemberPointer:
      llvm_unreachable("member pointer type in C");
    case Type::STK_FixedPoint:
      Diag(Src.get()->getExprLoc(),
           diag::err_unimplemented_conversion_with_fixed_point_type)
          << SrcTy;
      return CK_IntegralCast;
    }
    llvm_unreachable("Should have returned before this");
  }

  llvm_unreachable("Unhandled scalar cast");
}

static bool breakDownVectorType(QualType type, uint64_t &len,
                                QualType &eltType) {
  // Vectors are simple.
  if (const VectorType *vecType = type->getAs<VectorType>()) {
    len = vecType->getNumElements();
    eltType = vecType->getElementType();
    assert(eltType->isScalarType());
    return true;
  }

  // We allow lax conversion to and from non-vector types, but only if
  // they're real types (i.e. non-complex, non-pointer scalar types).
  if (!type->isRealType()) return false;

  len = 1;
  eltType = type;
  return true;
}

/// Are the two types lax-compatible vector types?  That is, given
/// that one of them is a vector, do they have equal storage sizes,
/// where the storage size is the number of elements times the element
/// size?
///
/// This will also return false if either of the types is neither a
/// vector nor a real type.
bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
  assert(destTy->isVectorType() || srcTy->isVectorType());

  // Disallow lax conversions between scalars and ExtVectors (these
  // conversions are allowed for other vector types because common headers
  // depend on them).  Most scalar OP ExtVector cases are handled by the
  // splat path anyway, which does what we want (convert, not bitcast).
  // What this rules out for ExtVectors is crazy things like char4*float.
  if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
  if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;

  uint64_t srcLen, destLen;
  QualType srcEltTy, destEltTy;
  if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
  if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;

  // ASTContext::getTypeSize will return the size rounded up to a
  // power of 2, so instead of using that, we need to use the raw
  // element size multiplied by the element count.
  uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
  uint64_t destEltSize = Context.getTypeSize(destEltTy);

  return (srcLen * srcEltSize == destLen * destEltSize);
}

/// Is this a legal conversion between two types, one of which is
/// known to be a vector type?
bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
  assert(destTy->isVectorType() || srcTy->isVectorType());

  switch (Context.getLangOpts().getLaxVectorConversions()) {
  case LangOptions::LaxVectorConversionKind::None:
    return false;

  case LangOptions::LaxVectorConversionKind::Integer:
    if (!srcTy->isIntegralOrEnumerationType()) {
      auto *Vec = srcTy->getAs<VectorType>();
      if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
        return false;
    }
    if (!destTy->isIntegralOrEnumerationType()) {
      auto *Vec = destTy->getAs<VectorType>();
      if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
        return false;
    }
    // OK, integer (vector) -> integer (vector) bitcast.
    break;

    case LangOptions::LaxVectorConversionKind::All:
    break;
  }

  return areLaxCompatibleVectorTypes(srcTy, destTy);
}

bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
                           CastKind &Kind) {
  assert(VectorTy->isVectorType() && "Not a vector type!");

  if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
    if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
      return Diag(R.getBegin(),
                  Ty->isVectorType() ?
                  diag::err_invalid_conversion_between_vectors :
                  diag::err_invalid_conversion_between_vector_and_integer)
        << VectorTy << Ty << R;
  } else
    return Diag(R.getBegin(),
                diag::err_invalid_conversion_between_vector_and_scalar)
      << VectorTy << Ty << R;

  Kind = CK_BitCast;
  return false;
}

ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
  QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();

  if (DestElemTy == SplattedExpr->getType())
    return SplattedExpr;

  assert(DestElemTy->isFloatingType() ||
         DestElemTy->isIntegralOrEnumerationType());

  CastKind CK;
  if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
    // OpenCL requires that we convert `true` boolean expressions to -1, but
    // only when splatting vectors.
    if (DestElemTy->isFloatingType()) {
      // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
      // in two steps: boolean to signed integral, then to floating.
      ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
                                                 CK_BooleanToSignedIntegral);
      SplattedExpr = CastExprRes.get();
      CK = CK_IntegralToFloating;
    } else {
      CK = CK_BooleanToSignedIntegral;
    }
  } else {
    ExprResult CastExprRes = SplattedExpr;
    CK = PrepareScalarCast(CastExprRes, DestElemTy);
    if (CastExprRes.isInvalid())
      return ExprError();
    SplattedExpr = CastExprRes.get();
  }
  return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
}

ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
                                    Expr *CastExpr, CastKind &Kind) {
  assert(DestTy->isExtVectorType() && "Not an extended vector type!");

  QualType SrcTy = CastExpr->getType();

  // If SrcTy is a VectorType, the total size must match to explicitly cast to
  // an ExtVectorType.
  // In OpenCL, casts between vectors of different types are not allowed.
  // (See OpenCL 6.2).
  if (SrcTy->isVectorType()) {
    if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
        (getLangOpts().OpenCL &&
         !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
        << DestTy << SrcTy << R;
      return ExprError();
    }
    Kind = CK_BitCast;
    return CastExpr;
  }

  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
  // conversion will take place first from scalar to elt type, and then
  // splat from elt type to vector.
  if (SrcTy->isPointerType())
    return Diag(R.getBegin(),
                diag::err_invalid_conversion_between_vector_and_scalar)
      << DestTy << SrcTy << R;

  Kind = CK_VectorSplat;
  return prepareVectorSplat(DestTy, CastExpr);
}

ExprResult
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
                    Declarator &D, ParsedType &Ty,
                    SourceLocation RParenLoc, Expr *CastExpr) {
  assert(!D.isInvalidType() && (CastExpr != nullptr) &&
         "ActOnCastExpr(): missing type or expr");

  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
  if (D.isInvalidType())
    return ExprError();

  if (getLangOpts().CPlusPlus) {
    // Check that there are no default arguments (C++ only).
    CheckExtraCXXDefaultArguments(D);
  } else {
    // Make sure any TypoExprs have been dealt with.
    ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
    if (!Res.isUsable())
      return ExprError();
    CastExpr = Res.get();
  }

  checkUnusedDeclAttributes(D);

  QualType castType = castTInfo->getType();
  Ty = CreateParsedType(castType, castTInfo);

  bool isVectorLiteral = false;

  // Check for an altivec or OpenCL literal,
  // i.e. all the elements are integer constants.
  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
  if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
       && castType->isVectorType() && (PE || PLE)) {
    if (PLE && PLE->getNumExprs() == 0) {
      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
      return ExprError();
    }
    if (PE || PLE->getNumExprs() == 1) {
      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
      if (!E->isTypeDependent() && !E->getType()->isVectorType())
        isVectorLiteral = true;
    }
    else
      isVectorLiteral = true;
  }

  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
  // then handle it as such.
  if (isVectorLiteral)
    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);

  // If the Expr being casted is a ParenListExpr, handle it specially.
  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
  // sequence of BinOp comma operators.
  if (isa<ParenListExpr>(CastExpr)) {
    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
    if (Result.isInvalid()) return ExprError();
    CastExpr = Result.get();
  }

  if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
      !getSourceManager().isInSystemMacro(LParenLoc))
    Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();

  CheckTollFreeBridgeCast(castType, CastExpr);

  CheckObjCBridgeRelatedCast(castType, CastExpr);

  DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);

  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
}

ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
                                    SourceLocation RParenLoc, Expr *E,
                                    TypeSourceInfo *TInfo) {
  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
         "Expected paren or paren list expression");

  Expr **exprs;
  unsigned numExprs;
  Expr *subExpr;
  SourceLocation LiteralLParenLoc, LiteralRParenLoc;
  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
    LiteralLParenLoc = PE->getLParenLoc();
    LiteralRParenLoc = PE->getRParenLoc();
    exprs = PE->getExprs();
    numExprs = PE->getNumExprs();
  } else { // isa<ParenExpr> by assertion at function entrance
    LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
    LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
    subExpr = cast<ParenExpr>(E)->getSubExpr();
    exprs = &subExpr;
    numExprs = 1;
  }

  QualType Ty = TInfo->getType();
  assert(Ty->isVectorType() && "Expected vector type");

  SmallVector<Expr *, 8> initExprs;
  const VectorType *VTy = Ty->castAs<VectorType>();
  unsigned numElems = VTy->getNumElements();

  // '(...)' form of vector initialization in AltiVec: the number of
  // initializers must be one or must match the size of the vector.
  // If a single value is specified in the initializer then it will be
  // replicated to all the components of the vector
  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
    // The number of initializers must be one or must match the size of the
    // vector. If a single value is specified in the initializer then it will
    // be replicated to all the components of the vector
    if (numExprs == 1) {
      QualType ElemTy = VTy->getElementType();
      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
      if (Literal.isInvalid())
        return ExprError();
      Literal = ImpCastExprToType(Literal.get(), ElemTy,
                                  PrepareScalarCast(Literal, ElemTy));
      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
    }
    else if (numExprs < numElems) {
      Diag(E->getExprLoc(),
           diag::err_incorrect_number_of_vector_initializers);
      return ExprError();
    }
    else
      initExprs.append(exprs, exprs + numExprs);
  }
  else {
    // For OpenCL, when the number of initializers is a single value,
    // it will be replicated to all components of the vector.
    if (getLangOpts().OpenCL &&
        VTy->getVectorKind() == VectorType::GenericVector &&
        numExprs == 1) {
        QualType ElemTy = VTy->getElementType();
        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
        if (Literal.isInvalid())
          return ExprError();
        Literal = ImpCastExprToType(Literal.get(), ElemTy,
                                    PrepareScalarCast(Literal, ElemTy));
        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
    }

    initExprs.append(exprs, exprs + numExprs);
  }
  // FIXME: This means that pretty-printing the final AST will produce curly
  // braces instead of the original commas.
  InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
                                                   initExprs, LiteralRParenLoc);
  initE->setType(Ty);
  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
}

/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
/// the ParenListExpr into a sequence of comma binary operators.
ExprResult
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
  if (!E)
    return OrigExpr;

  ExprResult Result(E->getExpr(0));

  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
                        E->getExpr(i));

  if (Result.isInvalid()) return ExprError();

  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
}

ExprResult Sema::ActOnParenListExpr(SourceLocation L,
                                    SourceLocation R,
                                    MultiExprArg Val) {
  return ParenListExpr::Create(Context, L, Val, R);
}

/// Emit a specialized diagnostic when one expression is a null pointer
/// constant and the other is not a pointer.  Returns true if a diagnostic is
/// emitted.
bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
                                      SourceLocation QuestionLoc) {
  Expr *NullExpr = LHSExpr;
  Expr *NonPointerExpr = RHSExpr;
  Expr::NullPointerConstantKind NullKind =
      NullExpr->isNullPointerConstant(Context,
                                      Expr::NPC_ValueDependentIsNotNull);

  if (NullKind == Expr::NPCK_NotNull) {
    NullExpr = RHSExpr;
    NonPointerExpr = LHSExpr;
    NullKind =
        NullExpr->isNullPointerConstant(Context,
                                        Expr::NPC_ValueDependentIsNotNull);
  }

  if (NullKind == Expr::NPCK_NotNull)
    return false;

  if (NullKind == Expr::NPCK_ZeroExpression)
    return false;

  if (NullKind == Expr::NPCK_ZeroLiteral) {
    // In this case, check to make sure that we got here from a "NULL"
    // string in the source code.
    NullExpr = NullExpr->IgnoreParenImpCasts();
    SourceLocation loc = NullExpr->getExprLoc();
    if (!findMacroSpelling(loc, "NULL"))
      return false;
  }

  int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
      << NonPointerExpr->getType() << DiagType
      << NonPointerExpr->getSourceRange();
  return true;
}

/// Return false if the condition expression is valid, true otherwise.
static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
  QualType CondTy = Cond->getType();

  // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
  if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
      << CondTy << Cond->getSourceRange();
    return true;
  }

  // C99 6.5.15p2
  if (CondTy->isScalarType()) return false;

  S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
    << CondTy << Cond->getSourceRange();
  return true;
}

/// Handle when one or both operands are void type.
static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
                                         ExprResult &RHS) {
    Expr *LHSExpr = LHS.get();
    Expr *RHSExpr = RHS.get();

    if (!LHSExpr->getType()->isVoidType())
      S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
          << RHSExpr->getSourceRange();
    if (!RHSExpr->getType()->isVoidType())
      S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
          << LHSExpr->getSourceRange();
    LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
    RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
    return S.Context.VoidTy;
}

/// Return false if the NullExpr can be promoted to PointerTy,
/// true otherwise.
static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
                                        QualType PointerTy) {
  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
      !NullExpr.get()->isNullPointerConstant(S.Context,
                                            Expr::NPC_ValueDependentIsNull))
    return true;

  NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
  return false;
}

/// Checks compatibility between two pointers and return the resulting
/// type.
static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
                                                     ExprResult &RHS,
                                                     SourceLocation Loc) {
  QualType LHSTy = LHS.get()->getType();
  QualType RHSTy = RHS.get()->getType();

  if (S.Context.hasSameType(LHSTy, RHSTy)) {
    // Two identical pointers types are always compatible.
    return LHSTy;
  }

  QualType lhptee, rhptee;

  // Get the pointee types.
  bool IsBlockPointer = false;
  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
    lhptee = LHSBTy->getPointeeType();
    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
    IsBlockPointer = true;
  } else {
    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
  }

  // C99 6.5.15p6: If both operands are pointers to compatible types or to
  // differently qualified versions of compatible types, the result type is
  // a pointer to an appropriately qualified version of the composite
  // type.

  // Only CVR-qualifiers exist in the standard, and the differently-qualified
  // clause doesn't make sense for our extensions. E.g. address space 2 should
  // be incompatible with address space 3: they may live on different devices or
  // anything.
  Qualifiers lhQual = lhptee.getQualifiers();
  Qualifiers rhQual = rhptee.getQualifiers();

  LangAS ResultAddrSpace = LangAS::Default;
  LangAS LAddrSpace = lhQual.getAddressSpace();
  LangAS RAddrSpace = rhQual.getAddressSpace();

  // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
  // spaces is disallowed.
  if (lhQual.isAddressSpaceSupersetOf(rhQual))
    ResultAddrSpace = LAddrSpace;
  else if (rhQual.isAddressSpaceSupersetOf(lhQual))
    ResultAddrSpace = RAddrSpace;
  else {
    S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
        << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
        << RHS.get()->getSourceRange();
    return QualType();
  }

  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
  auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
  lhQual.removeCVRQualifiers();
  rhQual.removeCVRQualifiers();

  // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
  // (C99 6.7.3) for address spaces. We assume that the check should behave in
  // the same manner as it's defined for CVR qualifiers, so for OpenCL two
  // qual types are compatible iff
  //  * corresponded types are compatible
  //  * CVR qualifiers are equal
  //  * address spaces are equal
  // Thus for conditional operator we merge CVR and address space unqualified
  // pointees and if there is a composite type we return a pointer to it with
  // merged qualifiers.
  LHSCastKind =
      LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
  RHSCastKind =
      RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
  lhQual.removeAddressSpace();
  rhQual.removeAddressSpace();

  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);

  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);

  if (CompositeTy.isNull()) {
    // In this situation, we assume void* type. No especially good
    // reason, but this is what gcc does, and we do have to pick
    // to get a consistent AST.
    QualType incompatTy;
    incompatTy = S.Context.getPointerType(
        S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
    LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
    RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);

    // FIXME: For OpenCL the warning emission and cast to void* leaves a room
    // for casts between types with incompatible address space qualifiers.
    // For the following code the compiler produces casts between global and
    // local address spaces of the corresponded innermost pointees:
    // local int *global *a;
    // global int *global *b;
    // a = (0 ? a : b); // see C99 6.5.16.1.p1.
    S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
        << LHSTy << RHSTy << LHS.get()->getSourceRange()
        << RHS.get()->getSourceRange();

    return incompatTy;
  }

  // The pointer types are compatible.
  // In case of OpenCL ResultTy should have the address space qualifier
  // which is a superset of address spaces of both the 2nd and the 3rd
  // operands of the conditional operator.
  QualType ResultTy = [&, ResultAddrSpace]() {
    if (S.getLangOpts().OpenCL) {
      Qualifiers CompositeQuals = CompositeTy.getQualifiers();
      CompositeQuals.setAddressSpace(ResultAddrSpace);
      return S.Context
          .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
          .withCVRQualifiers(MergedCVRQual);
    }
    return CompositeTy.withCVRQualifiers(MergedCVRQual);
  }();
  if (IsBlockPointer)
    ResultTy = S.Context.getBlockPointerType(ResultTy);
  else
    ResultTy = S.Context.getPointerType(ResultTy);

  LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
  RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
  return ResultTy;
}

/// Return the resulting type when the operands are both block pointers.
static QualType checkConditionalBlockPointerCompatibility(Sema &S,
                                                          ExprResult &LHS,
                                                          ExprResult &RHS,
                                                          SourceLocation Loc) {
  QualType LHSTy = LHS.get()->getType();
  QualType RHSTy = RHS.get()->getType();

  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
      LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
      RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
      return destType;
    }
    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
      << LHSTy << RHSTy << LHS.get()->getSourceRange()
      << RHS.get()->getSourceRange();
    return QualType();
  }

  // We have 2 block pointer types.
  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
}

/// Return the resulting type when the operands are both pointers.
static QualType
checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
                                            ExprResult &RHS,
                                            SourceLocation Loc) {
  // get the pointer types
  QualType LHSTy = LHS.get()->getType();
  QualType RHSTy = RHS.get()->getType();

  // get the "pointed to" types
  QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
  QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();

  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
    // Figure out necessary qualifiers (C99 6.5.15p6)
    QualType destPointee
      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
    QualType destType = S.Context.getPointerType(destPointee);
    // Add qualifiers if necessary.
    LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
    // Promote to void*.
    RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
    return destType;
  }
  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
    QualType destPointee
      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
    QualType destType = S.Context.getPointerType(destPointee);
    // Add qualifiers if necessary.
    RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
    // Promote to void*.
    LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
    return destType;
  }

  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
}

/// Return false if the first expression is not an integer and the second
/// expression is not a pointer, true otherwise.
static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
                                        Expr* PointerExpr, SourceLocation Loc,
                                        bool IsIntFirstExpr) {
  if (!PointerExpr->getType()->isPointerType() ||
      !Int.get()->getType()->isIntegerType())
    return false;

  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();

  S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
    << Expr1->getType() << Expr2->getType()
    << Expr1->getSourceRange() << Expr2->getSourceRange();
  Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
                            CK_IntegralToPointer);
  return true;
}

/// Simple conversion between integer and floating point types.
///
/// Used when handling the OpenCL conditional operator where the
/// condition is a vector while the other operands are scalar.
///
/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
/// types are either integer or floating type. Between the two
/// operands, the type with the higher rank is defined as the "result
/// type". The other operand needs to be promoted to the same type. No
/// other type promotion is allowed. We cannot use
/// UsualArithmeticConversions() for this purpose, since it always
/// promotes promotable types.
static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
                                            ExprResult &RHS,
                                            SourceLocation QuestionLoc) {
  LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
  if (LHS.isInvalid())
    return QualType();
  RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
  if (RHS.isInvalid())
    return QualType();

  // For conversion purposes, we ignore any qualifiers.
  // For example, "const float" and "float" are equivalent.
  QualType LHSType =
    S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
  QualType RHSType =
    S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();

  if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
      << LHSType << LHS.get()->getSourceRange();
    return QualType();
  }

  if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
    S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
      << RHSType << RHS.get()->getSourceRange();
    return QualType();
  }

  // If both types are identical, no conversion is needed.
  if (LHSType == RHSType)
    return LHSType;

  // Now handle "real" floating types (i.e. float, double, long double).
  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
    return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
                                 /*IsCompAssign = */ false);

  // Finally, we have two differing integer types.
  return handleIntegerConversion<doIntegralCast, doIntegralCast>
  (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
}

/// Convert scalar operands to a vector that matches the
///        condition in length.
///
/// Used when handling the OpenCL conditional operator where the
/// condition is a vector while the other operands are scalar.
///
/// We first compute the "result type" for the scalar operands
/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
/// into a vector of that type where the length matches the condition
/// vector type. s6.11.6 requires that the element types of the result
/// and the condition must have the same number of bits.
static QualType
OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
                              QualType CondTy, SourceLocation QuestionLoc) {
  QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
  if (ResTy.isNull()) return QualType();

  const VectorType *CV = CondTy->getAs<VectorType>();
  assert(CV);

  // Determine the vector result type
  unsigned NumElements = CV->getNumElements();
  QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);

  // Ensure that all types have the same number of bits
  if (S.Context.getTypeSize(CV->getElementType())
      != S.Context.getTypeSize(ResTy)) {
    // Since VectorTy is created internally, it does not pretty print
    // with an OpenCL name. Instead, we just print a description.
    std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
    SmallString<64> Str;
    llvm::raw_svector_ostream OS(Str);
    OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
    S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
      << CondTy << OS.str();
    return QualType();
  }

  // Convert operands to the vector result type
  LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
  RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);

  return VectorTy;
}

/// Return false if this is a valid OpenCL condition vector
static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
                                       SourceLocation QuestionLoc) {
  // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
  // integral type.
  const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
  assert(CondTy);
  QualType EleTy = CondTy->getElementType();
  if (EleTy->isIntegerType()) return false;

  S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
    << Cond->getType() << Cond->getSourceRange();
  return true;
}

/// Return false if the vector condition type and the vector
///        result type are compatible.
///
/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
/// number of elements, and their element types have the same number
/// of bits.
static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
                              SourceLocation QuestionLoc) {
  const VectorType *CV = CondTy->getAs<VectorType>();
  const VectorType *RV = VecResTy->getAs<VectorType>();
  assert(CV && RV);

  if (CV->getNumElements() != RV->getNumElements()) {
    S.Diag(QuestionLoc, diag::err_conditional_vector_size)
      << CondTy << VecResTy;
    return true;
  }

  QualType CVE = CV->getElementType();
  QualType RVE = RV->getElementType();

  if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
    S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
      << CondTy << VecResTy;
    return true;
  }

  return false;
}

/// Return the resulting type for the conditional operator in
///        OpenCL (aka "ternary selection operator", OpenCL v1.1
///        s6.3.i) when the condition is a vector type.
static QualType
OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
                             ExprResult &LHS, ExprResult &RHS,
                             SourceLocation QuestionLoc) {
  Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
  if (Cond.isInvalid())
    return QualType();
  QualType CondTy = Cond.get()->getType();

  if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
    return QualType();

  // If either operand is a vector then find the vector type of the
  // result as specified in OpenCL v1.1 s6.3.i.
  if (LHS.get()->getType()->isVectorType() ||
      RHS.get()->getType()->isVectorType()) {
    QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
                                              /*isCompAssign*/false,
                                              /*AllowBothBool*/true,
                                              /*AllowBoolConversions*/false);
    if (VecResTy.isNull()) return QualType();
    // The result type must match the condition type as specified in
    // OpenCL v1.1 s6.11.6.
    if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
      return QualType();
    return VecResTy;
  }

  // Both operands are scalar.
  return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
}

/// Return true if the Expr is block type
static bool checkBlockType(Sema &S, const Expr *E) {
  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    QualType Ty = CE->getCallee()->getType();
    if (Ty->isBlockPointerType()) {
      S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
      return true;
    }
  }
  return false;
}

/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, LHS = cond.
/// C99 6.5.15
QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
                                        ExprResult &RHS, ExprValueKind &VK,
                                        ExprObjectKind &OK,
                                        SourceLocation QuestionLoc) {

  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
  if (!LHSResult.isUsable()) return QualType();
  LHS = LHSResult;

  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
  if (!RHSResult.isUsable()) return QualType();
  RHS = RHSResult;

  // C++ is sufficiently different to merit its own checker.
  if (getLangOpts().CPlusPlus)
    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);

  VK = VK_RValue;
  OK = OK_Ordinary;

  // The OpenCL operator with a vector condition is sufficiently
  // different to merit its own checker.
  if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
      Cond.get()->getType()->isExtVectorType())
    return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);

  // First, check the condition.
  Cond = UsualUnaryConversions(Cond.get());
  if (Cond.isInvalid())
    return QualType();
  if (checkCondition(*this, Cond.get(), QuestionLoc))
    return QualType();

  // Now check the two expressions.
  if (LHS.get()->getType()->isVectorType() ||
      RHS.get()->getType()->isVectorType())
    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
                               /*AllowBothBool*/true,
                               /*AllowBoolConversions*/false);

  QualType ResTy =
      UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();

  QualType LHSTy = LHS.get()->getType();
  QualType RHSTy = RHS.get()->getType();

  // Diagnose attempts to convert between __float128 and long double where
  // such conversions currently can't be handled.
  if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
    Diag(QuestionLoc,
         diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
    return QualType();
  }

  // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
  // selection operator (?:).
  if (getLangOpts().OpenCL &&
      (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
    return QualType();
  }

  // If both operands have arithmetic type, do the usual arithmetic conversions
  // to find a common type: C99 6.5.15p3,5.
  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
    // Disallow invalid arithmetic conversions, such as those between ExtInts of
    // different sizes, or between ExtInts and other types.
    if (ResTy.isNull() && (LHSTy->isExtIntType() || RHSTy->isExtIntType())) {
      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
          << LHSTy << RHSTy << LHS.get()->getSourceRange()
          << RHS.get()->getSourceRange();
      return QualType();
    }

    LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
    RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));

    return ResTy;
  }

  // And if they're both bfloat (which isn't arithmetic), that's fine too.
  if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
    return LHSTy;
  }

  // If both operands are the same structure or union type, the result is that
  // type.
  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
      if (LHSRT->getDecl() == RHSRT->getDecl())
        // "If both the operands have structure or union type, the result has
        // that type."  This implies that CV qualifiers are dropped.
        return LHSTy.getUnqualifiedType();
    // FIXME: Type of conditional expression must be complete in C mode.
  }

  // C99 6.5.15p5: "If both operands have void type, the result has void type."
  // The following || allows only one side to be void (a GCC-ism).
  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
    return checkConditionalVoidType(*this, LHS, RHS);
  }

  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
  // the type of the other operand."
  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;

  // All objective-c pointer type analysis is done here.
  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
                                                        QuestionLoc);
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();
  if (!compositeType.isNull())
    return compositeType;


  // Handle block pointer types.
  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
                                                     QuestionLoc);

  // Check constraints for C object pointers types (C99 6.5.15p3,6).
  if (LHSTy->isPointerType() && RHSTy->isPointerType())
    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
                                                       QuestionLoc);

  // GCC compatibility: soften pointer/integer mismatch.  Note that
  // null pointers have been filtered out by this point.
  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
      /*IsIntFirstExpr=*/true))
    return RHSTy;
  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
      /*IsIntFirstExpr=*/false))
    return LHSTy;

  // Allow ?: operations in which both operands have the same
  // built-in sizeless type.
  if (LHSTy->isSizelessBuiltinType() && LHSTy == RHSTy)
    return LHSTy;

  // Emit a better diagnostic if one of the expressions is a null pointer
  // constant and the other is not a pointer type. In this case, the user most
  // likely forgot to take the address of the other expression.
  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
    return QualType();

  // Otherwise, the operands are not compatible.
  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
    << LHSTy << RHSTy << LHS.get()->getSourceRange()
    << RHS.get()->getSourceRange();
  return QualType();
}

/// FindCompositeObjCPointerType - Helper method to find composite type of
/// two objective-c pointer types of the two input expressions.
QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
                                            SourceLocation QuestionLoc) {
  QualType LHSTy = LHS.get()->getType();
  QualType RHSTy = RHS.get()->getType();

  // Handle things like Class and struct objc_class*.  Here we case the result
  // to the pseudo-builtin, because that will be implicitly cast back to the
  // redefinition type if an attempt is made to access its fields.
  if (LHSTy->isObjCClassType() &&
      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
    return LHSTy;
  }
  if (RHSTy->isObjCClassType() &&
      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
    return RHSTy;
  }
  // And the same for struct objc_object* / id
  if (LHSTy->isObjCIdType() &&
      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
    return LHSTy;
  }
  if (RHSTy->isObjCIdType() &&
      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
    return RHSTy;
  }
  // And the same for struct objc_selector* / SEL
  if (Context.isObjCSelType(LHSTy) &&
      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
    RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
    return LHSTy;
  }
  if (Context.isObjCSelType(RHSTy) &&
      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
    LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
    return RHSTy;
  }
  // Check constraints for Objective-C object pointers types.
  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {

    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
      // Two identical object pointer types are always compatible.
      return LHSTy;
    }
    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
    QualType compositeType = LHSTy;

    // If both operands are interfaces and either operand can be
    // assigned to the other, use that type as the composite
    // type. This allows
    //   xxx ? (A*) a : (B*) b
    // where B is a subclass of A.
    //
    // Additionally, as for assignment, if either type is 'id'
    // allow silent coercion. Finally, if the types are
    // incompatible then make sure to use 'id' as the composite
    // type so the result is acceptable for sending messages to.

    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
    // It could return the composite type.
    if (!(compositeType =
          Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
      // Nothing more to do.
    } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
    } else if ((LHSOPT->isObjCQualifiedIdType() ||
                RHSOPT->isObjCQualifiedIdType()) &&
               Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
                                                         true)) {
      // Need to handle "id<xx>" explicitly.
      // GCC allows qualified id and any Objective-C type to devolve to
      // id. Currently localizing to here until clear this should be
      // part of ObjCQualifiedIdTypesAreCompatible.
      compositeType = Context.getObjCIdType();
    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
      compositeType = Context.getObjCIdType();
    } else {
      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
      << LHSTy << RHSTy
      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
      QualType incompatTy = Context.getObjCIdType();
      LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
      RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
      return incompatTy;
    }
    // The object pointer types are compatible.
    LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
    RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
    return compositeType;
  }
  // Check Objective-C object pointer types and 'void *'
  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
    if (getLangOpts().ObjCAutoRefCount) {
      // ARC forbids the implicit conversion of object pointers to 'void *',
      // so these types are not compatible.
      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
      LHS = RHS = true;
      return QualType();
    }
    QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
    QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
    QualType destPointee
    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
    QualType destType = Context.getPointerType(destPointee);
    // Add qualifiers if necessary.
    LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
    // Promote to void*.
    RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
    return destType;
  }
  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
    if (getLangOpts().ObjCAutoRefCount) {
      // ARC forbids the implicit conversion of object pointers to 'void *',
      // so these types are not compatible.
      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
      LHS = RHS = true;
      return QualType();
    }
    QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
    QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
    QualType destPointee
    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
    QualType destType = Context.getPointerType(destPointee);
    // Add qualifiers if necessary.
    RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
    // Promote to void*.
    LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
    return destType;
  }
  return QualType();
}

/// SuggestParentheses - Emit a note with a fixit hint that wraps
/// ParenRange in parentheses.
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
                               const PartialDiagnostic &Note,
                               SourceRange ParenRange) {
  SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
      EndLoc.isValid()) {
    Self.Diag(Loc, Note)
      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
      << FixItHint::CreateInsertion(EndLoc, ")");
  } else {
    // We can't display the parentheses, so just show the bare note.
    Self.Diag(Loc, Note) << ParenRange;
  }
}

static bool IsArithmeticOp(BinaryOperatorKind Opc) {
  return BinaryOperator::isAdditiveOp(Opc) ||
         BinaryOperator::isMultiplicativeOp(Opc) ||
         BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
  // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
  // not any of the logical operators.  Bitwise-xor is commonly used as a
  // logical-xor because there is no logical-xor operator.  The logical
  // operators, including uses of xor, have a high false positive rate for
  // precedence warnings.
}

/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
/// expression, either using a built-in or overloaded operator,
/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
/// expression.
static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
                                   Expr **RHSExprs) {
  // Don't strip parenthesis: we should not warn if E is in parenthesis.
  E = E->IgnoreImpCasts();
  E = E->IgnoreConversionOperatorSingleStep();
  E = E->IgnoreImpCasts();
  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
    E = MTE->getSubExpr();
    E = E->IgnoreImpCasts();
  }

  // Built-in binary operator.
  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
    if (IsArithmeticOp(OP->getOpcode())) {
      *Opcode = OP->getOpcode();
      *RHSExprs = OP->getRHS();
      return true;
    }
  }

  // Overloaded operator.
  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
    if (Call->getNumArgs() != 2)
      return false;

    // Make sure this is really a binary operator that is safe to pass into
    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
    OverloadedOperatorKind OO = Call->getOperator();
    if (OO < OO_Plus || OO > OO_Arrow ||
        OO == OO_PlusPlus || OO == OO_MinusMinus)
      return false;

    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
    if (IsArithmeticOp(OpKind)) {
      *Opcode = OpKind;
      *RHSExprs = Call->getArg(1);
      return true;
    }
  }

  return false;
}

/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
/// or is a logical expression such as (x==y) which has int type, but is
/// commonly interpreted as boolean.
static bool ExprLooksBoolean(Expr *E) {
  E = E->IgnoreParenImpCasts();

  if (E->getType()->isBooleanType())
    return true;
  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
    return OP->isComparisonOp() || OP->isLogicalOp();
  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
    return OP->getOpcode() == UO_LNot;
  if (E->getType()->isPointerType())
    return true;
  // FIXME: What about overloaded operator calls returning "unspecified boolean
  // type"s (commonly pointer-to-members)?

  return false;
}

/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
/// and binary operator are mixed in a way that suggests the programmer assumed
/// the conditional operator has higher precedence, for example:
/// "int x = a + someBinaryCondition ? 1 : 2".
static void DiagnoseConditionalPrecedence(Sema &Self,
                                          SourceLocation OpLoc,
                                          Expr *Condition,
                                          Expr *LHSExpr,
                                          Expr *RHSExpr) {
  BinaryOperatorKind CondOpcode;
  Expr *CondRHS;

  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
    return;
  if (!ExprLooksBoolean(CondRHS))
    return;

  // The condition is an arithmetic binary expression, with a right-
  // hand side that looks boolean, so warn.

  unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
                        ? diag::warn_precedence_bitwise_conditional
                        : diag::warn_precedence_conditional;

  Self.Diag(OpLoc, DiagID)
      << Condition->getSourceRange()
      << BinaryOperator::getOpcodeStr(CondOpcode);

  SuggestParentheses(
      Self, OpLoc,
      Self.PDiag(diag::note_precedence_silence)
          << BinaryOperator::getOpcodeStr(CondOpcode),
      SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));

  SuggestParentheses(Self, OpLoc,
                     Self.PDiag(diag::note_precedence_conditional_first),
                     SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
}

/// Compute the nullability of a conditional expression.
static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
                                              QualType LHSTy, QualType RHSTy,
                                              ASTContext &Ctx) {
  if (!ResTy->isAnyPointerType())
    return ResTy;

  auto GetNullability = [&Ctx](QualType Ty) {
    Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
    if (Kind)
      return *Kind;
    return NullabilityKind::Unspecified;
  };

  auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
  NullabilityKind MergedKind;

  // Compute nullability of a binary conditional expression.
  if (IsBin) {
    if (LHSKind == NullabilityKind::NonNull)
      MergedKind = NullabilityKind::NonNull;
    else
      MergedKind = RHSKind;
  // Compute nullability of a normal conditional expression.
  } else {
    if (LHSKind == NullabilityKind::Nullable ||
        RHSKind == NullabilityKind::Nullable)
      MergedKind = NullabilityKind::Nullable;
    else if (LHSKind == NullabilityKind::NonNull)
      MergedKind = RHSKind;
    else if (RHSKind == NullabilityKind::NonNull)
      MergedKind = LHSKind;
    else
      MergedKind = NullabilityKind::Unspecified;
  }

  // Return if ResTy already has the correct nullability.
  if (GetNullability(ResTy) == MergedKind)
    return ResTy;

  // Strip all nullability from ResTy.
  while (ResTy->getNullability(Ctx))
    ResTy = ResTy.getSingleStepDesugaredType(Ctx);

  // Create a new AttributedType with the new nullability kind.
  auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
  return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
}

/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
                                    SourceLocation ColonLoc,
                                    Expr *CondExpr, Expr *LHSExpr,
                                    Expr *RHSExpr) {
  if (!getLangOpts().CPlusPlus) {
    // C cannot handle TypoExpr nodes in the condition because it
    // doesn't handle dependent types properly, so make sure any TypoExprs have
    // been dealt with before checking the operands.
    ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
    ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
    ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);

    if (!CondResult.isUsable())
      return ExprError();

    if (LHSExpr) {
      if (!LHSResult.isUsable())
        return ExprError();
    }

    if (!RHSResult.isUsable())
      return ExprError();

    CondExpr = CondResult.get();
    LHSExpr = LHSResult.get();
    RHSExpr = RHSResult.get();
  }

  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
  // was the condition.
  OpaqueValueExpr *opaqueValue = nullptr;
  Expr *commonExpr = nullptr;
  if (!LHSExpr) {
    commonExpr = CondExpr;
    // Lower out placeholder types first.  This is important so that we don't
    // try to capture a placeholder. This happens in few cases in C++; such
    // as Objective-C++'s dictionary subscripting syntax.
    if (commonExpr->hasPlaceholderType()) {
      ExprResult result = CheckPlaceholderExpr(commonExpr);
      if (!result.isUsable()) return ExprError();
      commonExpr = result.get();
    }
    // We usually want to apply unary conversions *before* saving, except
    // in the special case of a C++ l-value conditional.
    if (!(getLangOpts().CPlusPlus
          && !commonExpr->isTypeDependent()
          && commonExpr->getValueKind() == RHSExpr->getValueKind()
          && commonExpr->isGLValue()
          && commonExpr->isOrdinaryOrBitFieldObject()
          && RHSExpr->isOrdinaryOrBitFieldObject()
          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
      ExprResult commonRes = UsualUnaryConversions(commonExpr);
      if (commonRes.isInvalid())
        return ExprError();
      commonExpr = commonRes.get();
    }

    // If the common expression is a class or array prvalue, materialize it
    // so that we can safely refer to it multiple times.
    if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
                                   commonExpr->getType()->isArrayType())) {
      ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
      if (MatExpr.isInvalid())
        return ExprError();
      commonExpr = MatExpr.get();
    }

    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
                                                commonExpr->getType(),
                                                commonExpr->getValueKind(),
                                                commonExpr->getObjectKind(),
                                                commonExpr);
    LHSExpr = CondExpr = opaqueValue;
  }

  QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
  ExprValueKind VK = VK_RValue;
  ExprObjectKind OK = OK_Ordinary;
  ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
                                             VK, OK, QuestionLoc);
  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
      RHS.isInvalid())
    return ExprError();

  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
                                RHS.get());

  CheckBoolLikeConversion(Cond.get(), QuestionLoc);

  result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
                                         Context);

  if (!commonExpr)
    return new (Context)
        ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
                            RHS.get(), result, VK, OK);

  return new (Context) BinaryConditionalOperator(
      commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
      ColonLoc, result, VK, OK);
}

// Check if we have a conversion between incompatible cmse function pointer
// types, that is, a conversion between a function pointer with the
// cmse_nonsecure_call attribute and one without.
static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
                                          QualType ToType) {
  if (const auto *ToFn =
          dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
    if (const auto *FromFn =
            dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
      FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
      FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();

      return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
    }
  }
  return false;
}

// checkPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
  assert(LHSType.isCanonical() && "LHS not canonicalized!");
  assert(RHSType.isCanonical() && "RHS not canonicalized!");

  // get the "pointed to" type (ignoring qualifiers at the top level)
  const Type *lhptee, *rhptee;
  Qualifiers lhq, rhq;
  std::tie(lhptee, lhq) =
      cast<PointerType>(LHSType)->getPointeeType().split().asPair();
  std::tie(rhptee, rhq) =
      cast<PointerType>(RHSType)->getPointeeType().split().asPair();

  Sema::AssignConvertType ConvTy = Sema::Compatible;

  // C99 6.5.16.1p1: This following citation is common to constraints
  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
  // qualifiers of the type *pointed to* by the right;

  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
      lhq.compatiblyIncludesObjCLifetime(rhq)) {
    // Ignore lifetime for further calculation.
    lhq.removeObjCLifetime();
    rhq.removeObjCLifetime();
  }

  if (!lhq.compatiblyIncludes(rhq)) {
    // Treat address-space mismatches as fatal.
    if (!lhq.isAddressSpaceSupersetOf(rhq))
      return Sema::IncompatiblePointerDiscardsQualifiers;

    // It's okay to add or remove GC or lifetime qualifiers when converting to
    // and from void*.
    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
                        .compatiblyIncludes(
                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
             && (lhptee->isVoidType() || rhptee->isVoidType()))
      ; // keep old

    // Treat lifetime mismatches as fatal.
    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;

    // For GCC/MS compatibility, other qualifier mismatches are treated
    // as still compatible in C.
    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
  }

  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
  // incomplete type and the other is a pointer to a qualified or unqualified
  // version of void...
  if (lhptee->isVoidType()) {
    if (rhptee->isIncompleteOrObjectType())
      return ConvTy;

    // As an extension, we allow cast to/from void* to function pointer.
    assert(rhptee->isFunctionType());
    return Sema::FunctionVoidPointer;
  }

  if (rhptee->isVoidType()) {
    if (lhptee->isIncompleteOrObjectType())
      return ConvTy;

    // As an extension, we allow cast to/from void* to function pointer.
    assert(lhptee->isFunctionType());
    return Sema::FunctionVoidPointer;
  }

  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
  // unqualified versions of compatible types, ...
  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
    // Check if the pointee types are compatible ignoring the sign.
    // We explicitly check for char so that we catch "char" vs
    // "unsigned char" on systems where "char" is unsigned.
    if (lhptee->isCharType())
      ltrans = S.Context.UnsignedCharTy;
    else if (lhptee->hasSignedIntegerRepresentation())
      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);

    if (rhptee->isCharType())
      rtrans = S.Context.UnsignedCharTy;
    else if (rhptee->hasSignedIntegerRepresentation())
      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);

    if (ltrans == rtrans) {
      // Types are compatible ignoring the sign. Qualifier incompatibility
      // takes priority over sign incompatibility because the sign
      // warning can be disabled.
      if (ConvTy != Sema::Compatible)
        return ConvTy;

      return Sema::IncompatiblePointerSign;
    }

    // If we are a multi-level pointer, it's possible that our issue is simply
    // one of qualification - e.g. char ** -> const char ** is not allowed. If
    // the eventual target type is the same and the pointers have the same
    // level of indirection, this must be the issue.
    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
      do {
        std::tie(lhptee, lhq) =
          cast<PointerType>(lhptee)->getPointeeType().split().asPair();
        std::tie(rhptee, rhq) =
          cast<PointerType>(rhptee)->getPointeeType().split().asPair();

        // Inconsistent address spaces at this point is invalid, even if the
        // address spaces would be compatible.
        // FIXME: This doesn't catch address space mismatches for pointers of
        // different nesting levels, like:
        //   __local int *** a;
        //   int ** b = a;
        // It's not clear how to actually determine when such pointers are
        // invalidly incompatible.
        if (lhq.getAddressSpace() != rhq.getAddressSpace())
          return Sema::IncompatibleNestedPointerAddressSpaceMismatch;

      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));

      if (lhptee == rhptee)
        return Sema::IncompatibleNestedPointerQualifiers;
    }

    // General pointer incompatibility takes priority over qualifiers.
    if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
      return Sema::IncompatibleFunctionPointer;
    return Sema::IncompatiblePointer;
  }
  if (!S.getLangOpts().CPlusPlus &&
      S.IsFunctionConversion(ltrans, rtrans, ltrans))
    return Sema::IncompatibleFunctionPointer;
  if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
    return Sema::IncompatibleFunctionPointer;
  return ConvTy;
}

/// checkBlockPointerTypesForAssignment - This routine determines whether two
/// block pointer types are compatible or whether a block and normal pointer
/// are compatible. It is more restrict than comparing two function pointer
// types.
static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
                                    QualType RHSType) {
  assert(LHSType.isCanonical() && "LHS not canonicalized!");
  assert(RHSType.isCanonical() && "RHS not canonicalized!");

  QualType lhptee, rhptee;

  // get the "pointed to" type (ignoring qualifiers at the top level)
  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();

  // In C++, the types have to match exactly.
  if (S.getLangOpts().CPlusPlus)
    return Sema::IncompatibleBlockPointer;

  Sema::AssignConvertType ConvTy = Sema::Compatible;

  // For blocks we enforce that qualifiers are identical.
  Qualifiers LQuals = lhptee.getLocalQualifiers();
  Qualifiers RQuals = rhptee.getLocalQualifiers();
  if (S.getLangOpts().OpenCL) {
    LQuals.removeAddressSpace();
    RQuals.removeAddressSpace();
  }
  if (LQuals != RQuals)
    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;

  // FIXME: OpenCL doesn't define the exact compile time semantics for a block
  // assignment.
  // The current behavior is similar to C++ lambdas. A block might be
  // assigned to a variable iff its return type and parameters are compatible
  // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
  // an assignment. Presumably it should behave in way that a function pointer
  // assignment does in C, so for each parameter and return type:
  //  * CVR and address space of LHS should be a superset of CVR and address
  //  space of RHS.
  //  * unqualified types should be compatible.
  if (S.getLangOpts().OpenCL) {
    if (!S.Context.typesAreBlockPointerCompatible(
            S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
            S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
      return Sema::IncompatibleBlockPointer;
  } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
    return Sema::IncompatibleBlockPointer;

  return ConvTy;
}

/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
/// for assignment compatibility.
static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
                                   QualType RHSType) {
  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
  assert(RHSType.isCanonical() && "RHS was not canonicalized!");

  if (LHSType->isObjCBuiltinType()) {
    // Class is not compatible with ObjC object pointers.
    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
        !RHSType->isObjCQualifiedClassType())
      return Sema::IncompatiblePointer;
    return Sema::Compatible;
  }
  if (RHSType->isObjCBuiltinType()) {
    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
        !LHSType->isObjCQualifiedClassType())
      return Sema::IncompatiblePointer;
    return Sema::Compatible;
  }
  QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
  QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();

  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
      // make an exception for id<P>
      !LHSType->isObjCQualifiedIdType())
    return Sema::CompatiblePointerDiscardsQualifiers;

  if (S.Context.typesAreCompatible(LHSType, RHSType))
    return Sema::Compatible;
  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
    return Sema::IncompatibleObjCQualifiedId;
  return Sema::IncompatiblePointer;
}

Sema::AssignConvertType
Sema::CheckAssignmentConstraints(SourceLocation Loc,
                                 QualType LHSType, QualType RHSType) {
  // Fake up an opaque expression.  We don't actually care about what
  // cast operations are required, so if CheckAssignmentConstraints
  // adds casts to this they'll be wasted, but fortunately that doesn't
  // usually happen on valid code.
  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
  ExprResult RHSPtr = &RHSExpr;
  CastKind K;

  return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
}

/// This helper function returns true if QT is a vector type that has element
/// type ElementType.
static bool isVector(QualType QT, QualType ElementType) {
  if (const VectorType *VT = QT->getAs<VectorType>())
    return VT->getElementType().getCanonicalType() == ElementType;
  return false;
}

/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
/// has code to accommodate several GCC extensions when type checking
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
///  int a, *pint;
///  short *pshort;
///  struct foo *pfoo;
///
///  pint = pshort; // warning: assignment from incompatible pointer type
///  a = pint; // warning: assignment makes integer from pointer without a cast
///  pint = a; // warning: assignment makes pointer from integer without a cast
///  pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
///
/// Sets 'Kind' for any result kind except Incompatible.
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
                                 CastKind &Kind, bool ConvertRHS) {
  QualType RHSType = RHS.get()->getType();
  QualType OrigLHSType = LHSType;

  // Get canonical types.  We're not formatting these types, just comparing
  // them.
  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();

  // Common case: no conversion required.
  if (LHSType == RHSType) {
    Kind = CK_NoOp;
    return Compatible;
  }

  // If we have an atomic type, try a non-atomic assignment, then just add an
  // atomic qualification step.
  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
    Sema::AssignConvertType result =
      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
    if (result != Compatible)
      return result;
    if (Kind != CK_NoOp && ConvertRHS)
      RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
    Kind = CK_NonAtomicToAtomic;
    return Compatible;
  }

  // If the left-hand side is a reference type, then we are in a
  // (rare!) case where we've allowed the use of references in C,
  // e.g., as a parameter type in a built-in function. In this case,
  // just make sure that the type referenced is compatible with the
  // right-hand side type. The caller is responsible for adjusting
  // LHSType so that the resulting expression does not have reference
  // type.
  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
      Kind = CK_LValueBitCast;
      return Compatible;
    }
    return Incompatible;
  }

  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
  // to the same ExtVector type.
  if (LHSType->isExtVectorType()) {
    if (RHSType->isExtVectorType())
      return Incompatible;
    if (RHSType->isArithmeticType()) {
      // CK_VectorSplat does T -> vector T, so first cast to the element type.
      if (ConvertRHS)
        RHS = prepareVectorSplat(LHSType, RHS.get());
      Kind = CK_VectorSplat;
      return Compatible;
    }
  }

  // Conversions to or from vector type.
  if (LHSType->isVectorType() || RHSType->isVectorType()) {
    if (LHSType->isVectorType() && RHSType->isVectorType()) {
      // Allow assignments of an AltiVec vector type to an equivalent GCC
      // vector type and vice versa
      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
        Kind = CK_BitCast;
        return Compatible;
      }

      // If we are allowing lax vector conversions, and LHS and RHS are both
      // vectors, the total size only needs to be the same. This is a bitcast;
      // no bits are changed but the result type is different.
      if (isLaxVectorConversion(RHSType, LHSType)) {
        Kind = CK_BitCast;
        return IncompatibleVectors;
      }
    }

    // When the RHS comes from another lax conversion (e.g. binops between
    // scalars and vectors) the result is canonicalized as a vector. When the
    // LHS is also a vector, the lax is allowed by the condition above. Handle
    // the case where LHS is a scalar.
    if (LHSType->isScalarType()) {
      const VectorType *VecType = RHSType->getAs<VectorType>();
      if (VecType && VecType->getNumElements() == 1 &&
          isLaxVectorConversion(RHSType, LHSType)) {
        ExprResult *VecExpr = &RHS;
        *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
        Kind = CK_BitCast;
        return Compatible;
      }
    }

    // Allow assignments between fixed-length and sizeless SVE vectors.
    if (((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
         (LHSType->isVectorType() && RHSType->isSizelessBuiltinType())) &&
        Context.areCompatibleSveTypes(LHSType, RHSType)) {
      Kind = CK_BitCast;
      return Compatible;
    }

    return Incompatible;
  }

  // Diagnose attempts to convert between __float128 and long double where
  // such conversions currently can't be handled.
  if (unsupportedTypeConversion(*this, LHSType, RHSType))
    return Incompatible;

  // Disallow assigning a _Complex to a real type in C++ mode since it simply
  // discards the imaginary part.
  if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
      !LHSType->getAs<ComplexType>())
    return Incompatible;

  // Arithmetic conversions.
  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
    if (ConvertRHS)
      Kind = PrepareScalarCast(RHS, LHSType);
    return Compatible;
  }

  // Conversions to normal pointers.
  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
    // U* -> T*
    if (isa<PointerType>(RHSType)) {
      LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
      LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
      if (AddrSpaceL != AddrSpaceR)
        Kind = CK_AddressSpaceConversion;
      else if (Context.hasCvrSimilarType(RHSType, LHSType))
        Kind = CK_NoOp;
      else
        Kind = CK_BitCast;
      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
    }

    // int -> T*
    if (RHSType->isIntegerType()) {
      Kind = CK_IntegralToPointer; // FIXME: null?
      return IntToPointer;
    }

    // C pointers are not compatible with ObjC object pointers,
    // with two exceptions:
    if (isa<ObjCObjectPointerType>(RHSType)) {
      //  - conversions to void*
      if (LHSPointer->getPointeeType()->isVoidType()) {
        Kind = CK_BitCast;
        return Compatible;
      }

      //  - conversions from 'Class' to the redefinition type
      if (RHSType->isObjCClassType() &&
          Context.hasSameType(LHSType,
                              Context.getObjCClassRedefinitionType())) {
        Kind = CK_BitCast;
        return Compatible;
      }

      Kind = CK_BitCast;
      return IncompatiblePointer;
    }

    // U^ -> void*
    if (RHSType->getAs<BlockPointerType>()) {
      if (LHSPointer->getPointeeType()->isVoidType()) {
        LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
        LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
                                ->getPointeeType()
                                .getAddressSpace();
        Kind =
            AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
        return Compatible;
      }
    }

    return Incompatible;
  }

  // Conversions to block pointers.
  if (isa<BlockPointerType>(LHSType)) {
    // U^ -> T^
    if (RHSType->isBlockPointerType()) {
      LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
                              ->getPointeeType()
                              .getAddressSpace();
      LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
                              ->getPointeeType()
                              .getAddressSpace();
      Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
    }

    // int or null -> T^
    if (RHSType->isIntegerType()) {
      Kind = CK_IntegralToPointer; // FIXME: null
      return IntToBlockPointer;
    }

    // id -> T^
    if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
      Kind = CK_AnyPointerToBlockPointerCast;
      return Compatible;
    }

    // void* -> T^
    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
      if (RHSPT->getPointeeType()->isVoidType()) {
        Kind = CK_AnyPointerToBlockPointerCast;
        return Compatible;
      }

    return Incompatible;
  }

  // Conversions to Objective-C pointers.
  if (isa<ObjCObjectPointerType>(LHSType)) {
    // A* -> B*
    if (RHSType->isObjCObjectPointerType()) {
      Kind = CK_BitCast;
      Sema::AssignConvertType result =
        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
      if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
          result == Compatible &&
          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
        result = IncompatibleObjCWeakRef;
      return result;
    }

    // int or null -> A*
    if (RHSType->isIntegerType()) {
      Kind = CK_IntegralToPointer; // FIXME: null
      return IntToPointer;
    }

    // In general, C pointers are not compatible with ObjC object pointers,
    // with two exceptions:
    if (isa<PointerType>(RHSType)) {
      Kind = CK_CPointerToObjCPointerCast;

      //  - conversions from 'void*'
      if (RHSType->isVoidPointerType()) {
        return Compatible;
      }

      //  - conversions to 'Class' from its redefinition type
      if (LHSType->isObjCClassType() &&
          Context.hasSameType(RHSType,
                              Context.getObjCClassRedefinitionType())) {
        return Compatible;
      }

      return IncompatiblePointer;
    }

    // Only under strict condition T^ is compatible with an Objective-C pointer.
    if (RHSType->isBlockPointerType() &&
        LHSType->isBlockCompatibleObjCPointerType(Context)) {
      if (ConvertRHS)
        maybeExtendBlockObject(RHS);
      Kind = CK_BlockPointerToObjCPointerCast;
      return Compatible;
    }

    return Incompatible;
  }

  // Conversions from pointers that are not covered by the above.
  if (isa<PointerType>(RHSType)) {
    // T* -> _Bool
    if (LHSType == Context.BoolTy) {
      Kind = CK_PointerToBoolean;
      return Compatible;
    }

    // T* -> int
    if (LHSType->isIntegerType()) {
      Kind = CK_PointerToIntegral;
      return PointerToInt;
    }

    return Incompatible;
  }

  // Conversions from Objective-C pointers that are not covered by the above.
  if (isa<ObjCObjectPointerType>(RHSType)) {
    // T* -> _Bool
    if (LHSType == Context.BoolTy) {
      Kind = CK_PointerToBoolean;
      return Compatible;
    }

    // T* -> int
    if (LHSType->isIntegerType()) {
      Kind = CK_PointerToIntegral;
      return PointerToInt;
    }

    return Incompatible;
  }

  // struct A -> struct B
  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
    if (Context.typesAreCompatible(LHSType, RHSType)) {
      Kind = CK_NoOp;
      return Compatible;
    }
  }

  if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
    Kind = CK_IntToOCLSampler;
    return Compatible;
  }

  return Incompatible;
}

/// Constructs a transparent union from an expression that is
/// used to initialize the transparent union.
static void ConstructTransparentUnion(Sema &S, ASTContext &C,
                                      ExprResult &EResult, QualType UnionType,
                                      FieldDecl *Field) {
  // Build an initializer list that designates the appropriate member
  // of the transparent union.
  Expr *E = EResult.get();
  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
                                                   E, SourceLocation());
  Initializer->setType(UnionType);
  Initializer->setInitializedFieldInUnion(Field);

  // Build a compound literal constructing a value of the transparent
  // union type from this initializer list.
  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
  EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
                                        VK_RValue, Initializer, false);
}

Sema::AssignConvertType
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
                                               ExprResult &RHS) {
  QualType RHSType = RHS.get()->getType();

  // If the ArgType is a Union type, we want to handle a potential
  // transparent_union GCC extension.
  const RecordType *UT = ArgType->getAsUnionType();
  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
    return Incompatible;

  // The field to initialize within the transparent union.
  RecordDecl *UD = UT->getDecl();
  FieldDecl *InitField = nullptr;
  // It's compatible if the expression matches any of the fields.
  for (auto *it : UD->fields()) {
    if (it->getType()->isPointerType()) {
      // If the transparent union contains a pointer type, we allow:
      // 1) void pointer
      // 2) null pointer constant
      if (RHSType->isPointerType())
        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
          RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
          InitField = it;
          break;
        }

      if (RHS.get()->isNullPointerConstant(Context,
                                           Expr::NPC_ValueDependentIsNull)) {
        RHS = ImpCastExprToType(RHS.get(), it->getType(),
                                CK_NullToPointer);
        InitField = it;
        break;
      }
    }

    CastKind Kind;
    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
          == Compatible) {
      RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
      InitField = it;
      break;
    }
  }

  if (!InitField)
    return Incompatible;

  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
  return Compatible;
}

Sema::AssignConvertType
Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
                                       bool Diagnose,
                                       bool DiagnoseCFAudited,
                                       bool ConvertRHS) {
  // We need to be able to tell the caller whether we diagnosed a problem, if
  // they ask us to issue diagnostics.
  assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");

  // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
  // we can't avoid *all* modifications at the moment, so we need some somewhere
  // to put the updated value.
  ExprResult LocalRHS = CallerRHS;
  ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;

  if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
    if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
      if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
          !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
        Diag(RHS.get()->getExprLoc(),
             diag::warn_noderef_to_dereferenceable_pointer)
            << RHS.get()->getSourceRange();
      }
    }
  }

  if (getLangOpts().CPlusPlus) {
    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
      // C++ 5.17p3: If the left operand is not of class type, the
      // expression is implicitly converted (C++ 4) to the
      // cv-unqualified type of the left operand.
      QualType RHSType = RHS.get()->getType();
      if (Diagnose) {
        RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
                                        AA_Assigning);
      } else {
        ImplicitConversionSequence ICS =
            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
                                  /*SuppressUserConversions=*/false,
                                  AllowedExplicit::None,
                                  /*InOverloadResolution=*/false,
                                  /*CStyle=*/false,
                                  /*AllowObjCWritebackConversion=*/false);
        if (ICS.isFailure())
          return Incompatible;
        RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
                                        ICS, AA_Assigning);
      }
      if (RHS.isInvalid())
        return Incompatible;
      Sema::AssignConvertType result = Compatible;
      if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
          !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
        result = IncompatibleObjCWeakRef;
      return result;
    }

    // FIXME: Currently, we fall through and treat C++ classes like C
    // structures.
    // FIXME: We also fall through for atomics; not sure what should
    // happen there, though.
  } else if (RHS.get()->getType() == Context.OverloadTy) {
    // As a set of extensions to C, we support overloading on functions. These
    // functions need to be resolved here.
    DeclAccessPair DAP;
    if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
            RHS.get(), LHSType, /*Complain=*/false, DAP))
      RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
    else
      return Incompatible;
  }

  // C99 6.5.16.1p1: the left operand is a pointer and the right is
  // a null pointer constant.
  if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
       LHSType->isBlockPointerType()) &&
      RHS.get()->isNullPointerConstant(Context,
                                       Expr::NPC_ValueDependentIsNull)) {
    if (Diagnose || ConvertRHS) {
      CastKind Kind;
      CXXCastPath Path;
      CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
                             /*IgnoreBaseAccess=*/false, Diagnose);
      if (ConvertRHS)
        RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
    }
    return Compatible;
  }

  // OpenCL queue_t type assignment.
  if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
                                 Context, Expr::NPC_ValueDependentIsNull)) {
    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
    return Compatible;
  }

  // This check seems unnatural, however it is necessary to ensure the proper
  // conversion of functions/arrays. If the conversion were done for all
  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
  // expressions that suppress this implicit conversion (&, sizeof).
  //
  // Suppress this for references: C++ 8.5.3p5.
  if (!LHSType->isReferenceType()) {
    // FIXME: We potentially allocate here even if ConvertRHS is false.
    RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
    if (RHS.isInvalid())
      return Incompatible;
  }
  CastKind Kind;
  Sema::AssignConvertType result =
    CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);

  // C99 6.5.16.1p2: The value of the right operand is converted to the
  // type of the assignment expression.
  // CheckAssignmentConstraints allows the left-hand side to be a reference,
  // so that we can use references in built-in functions even in C.
  // The getNonReferenceType() call makes sure that the resulting expression
  // does not have reference type.
  if (result != Incompatible && RHS.get()->getType() != LHSType) {
    QualType Ty = LHSType.getNonLValueExprType(Context);
    Expr *E = RHS.get();

    // Check for various Objective-C errors. If we are not reporting
    // diagnostics and just checking for errors, e.g., during overload
    // resolution, return Incompatible to indicate the failure.
    if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
        CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
                            Diagnose, DiagnoseCFAudited) != ACR_okay) {
      if (!Diagnose)
        return Incompatible;
    }
    if (getLangOpts().ObjC &&
        (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
                                           E->getType(), E, Diagnose) ||
         CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
      if (!Diagnose)
        return Incompatible;
      // Replace the expression with a corrected version and continue so we
      // can find further errors.
      RHS = E;
      return Compatible;
    }

    if (ConvertRHS)
      RHS = ImpCastExprToType(E, Ty, Kind);
  }

  return result;
}

namespace {
/// The original operand to an operator, prior to the application of the usual
/// arithmetic conversions and converting the arguments of a builtin operator
/// candidate.
struct OriginalOperand {
  explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
    if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
      Op = MTE->getSubExpr();
    if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
      Op = BTE->getSubExpr();
    if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
      Orig = ICE->getSubExprAsWritten();
      Conversion = ICE->getConversionFunction();
    }
  }

  QualType getType() const { return Orig->getType(); }

  Expr *Orig;
  NamedDecl *Conversion;
};
}

QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
                               ExprResult &RHS) {
  OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());

  Diag(Loc, diag::err_typecheck_invalid_operands)
    << OrigLHS.getType() << OrigRHS.getType()
    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();

  // If a user-defined conversion was applied to either of the operands prior
  // to applying the built-in operator rules, tell the user about it.
  if (OrigLHS.Conversion) {
    Diag(OrigLHS.Conversion->getLocation(),
         diag::note_typecheck_invalid_operands_converted)
      << 0 << LHS.get()->getType();
  }
  if (OrigRHS.Conversion) {
    Diag(OrigRHS.Conversion->getLocation(),
         diag::note_typecheck_invalid_operands_converted)
      << 1 << RHS.get()->getType();
  }

  return QualType();
}

// Diagnose cases where a scalar was implicitly converted to a vector and
// diagnose the underlying types. Otherwise, diagnose the error
// as invalid vector logical operands for non-C++ cases.
QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
                                            ExprResult &RHS) {
  QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
  QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();

  bool LHSNatVec = LHSType->isVectorType();
  bool RHSNatVec = RHSType->isVectorType();

  if (!(LHSNatVec && RHSNatVec)) {
    Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
    Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
    Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
        << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
        << Vector->getSourceRange();
    return QualType();
  }

  Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
      << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
      << RHS.get()->getSourceRange();

  return QualType();
}

/// Try to convert a value of non-vector type to a vector type by converting
/// the type to the element type of the vector and then performing a splat.
/// If the language is OpenCL, we only use conversions that promote scalar
/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
/// for float->int.
///
/// OpenCL V2.0 6.2.6.p2:
/// An error shall occur if any scalar operand type has greater rank
/// than the type of the vector element.
///
/// \param scalar - if non-null, actually perform the conversions
/// \return true if the operation fails (but without diagnosing the failure)
static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
                                     QualType scalarTy,
                                     QualType vectorEltTy,
                                     QualType vectorTy,
                                     unsigned &DiagID) {
  // The conversion to apply to the scalar before splatting it,
  // if necessary.
  CastKind scalarCast = CK_NoOp;

  if (vectorEltTy->isIntegralType(S.Context)) {
    if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
        (scalarTy->isIntegerType() &&
         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
      DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
      return true;
    }
    if (!scalarTy->isIntegralType(S.Context))
      return true;
    scalarCast = CK_IntegralCast;
  } else if (vectorEltTy->isRealFloatingType()) {
    if (scalarTy->isRealFloatingType()) {
      if (S.getLangOpts().OpenCL &&
          S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
        DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
        return true;
      }
      scalarCast = CK_FloatingCast;
    }
    else if (scalarTy->isIntegralType(S.Context))
      scalarCast = CK_IntegralToFloating;
    else
      return true;
  } else {
    return true;
  }

  // Adjust scalar if desired.
  if (scalar) {
    if (scalarCast != CK_NoOp)
      *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
    *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
  }
  return false;
}

/// Convert vector E to a vector with the same number of elements but different
/// element type.
static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
  const auto *VecTy = E->getType()->getAs<VectorType>();
  assert(VecTy && "Expression E must be a vector");
  QualType NewVecTy = S.Context.getVectorType(ElementType,
                                              VecTy->getNumElements(),
                                              VecTy->getVectorKind());

  // Look through the implicit cast. Return the subexpression if its type is
  // NewVecTy.
  if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
    if (ICE->getSubExpr()->getType() == NewVecTy)
      return ICE->getSubExpr();

  auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
  return S.ImpCastExprToType(E, NewVecTy, Cast);
}

/// Test if a (constant) integer Int can be casted to another integer type
/// IntTy without losing precision.
static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
                                      QualType OtherIntTy) {
  QualType IntTy = Int->get()->getType().getUnqualifiedType();

  // Reject cases where the value of the Int is unknown as that would
  // possibly cause truncation, but accept cases where the scalar can be
  // demoted without loss of precision.
  Expr::EvalResult EVResult;
  bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
  int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
  bool IntSigned = IntTy->hasSignedIntegerRepresentation();
  bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();

  if (CstInt) {
    // If the scalar is constant and is of a higher order and has more active
    // bits that the vector element type, reject it.
    llvm::APSInt Result = EVResult.Val.getInt();
    unsigned NumBits = IntSigned
                           ? (Result.isNegative() ? Result.getMinSignedBits()
                                                  : Result.getActiveBits())
                           : Result.getActiveBits();
    if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
      return true;

    // If the signedness of the scalar type and the vector element type
    // differs and the number of bits is greater than that of the vector
    // element reject it.
    return (IntSigned != OtherIntSigned &&
            NumBits > S.Context.getIntWidth(OtherIntTy));
  }

  // Reject cases where the value of the scalar is not constant and it's
  // order is greater than that of the vector element type.
  return (Order < 0);
}

/// Test if a (constant) integer Int can be casted to floating point type
/// FloatTy without losing precision.
static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
                                     QualType FloatTy) {
  QualType IntTy = Int->get()->getType().getUnqualifiedType();

  // Determine if the integer constant can be expressed as a floating point
  // number of the appropriate type.
  Expr::EvalResult EVResult;
  bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);

  uint64_t Bits = 0;
  if (CstInt) {
    // Reject constants that would be truncated if they were converted to
    // the floating point type. Test by simple to/from conversion.
    // FIXME: Ideally the conversion to an APFloat and from an APFloat
    //        could be avoided if there was a convertFromAPInt method
    //        which could signal back if implicit truncation occurred.
    llvm::APSInt Result = EVResult.Val.getInt();
    llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
    Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
                           llvm::APFloat::rmTowardZero);
    llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
                             !IntTy->hasSignedIntegerRepresentation());
    bool Ignored = false;
    Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
                           &Ignored);
    if (Result != ConvertBack)
      return true;
  } else {
    // Reject types that cannot be fully encoded into the mantissa of
    // the float.
    Bits = S.Context.getTypeSize(IntTy);
    unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
        S.Context.getFloatTypeSemantics(FloatTy));
    if (Bits > FloatPrec)
      return true;
  }

  return false;
}

/// Attempt to convert and splat Scalar into a vector whose types matches
/// Vector following GCC conversion rules. The rule is that implicit
/// conversion can occur when Scalar can be casted to match Vector's element
/// type without causing truncation of Scalar.
static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
                                        ExprResult *Vector) {
  QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
  QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
  const VectorType *VT = VectorTy->getAs<VectorType>();

  assert(!isa<ExtVectorType>(VT) &&
         "ExtVectorTypes should not be handled here!");

  QualType VectorEltTy = VT->getElementType();

  // Reject cases where the vector element type or the scalar element type are
  // not integral or floating point types.
  if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
    return true;

  // The conversion to apply to the scalar before splatting it,
  // if necessary.
  CastKind ScalarCast = CK_NoOp;

  // Accept cases where the vector elements are integers and the scalar is
  // an integer.
  // FIXME: Notionally if the scalar was a floating point value with a precise
  //        integral representation, we could cast it to an appropriate integer
  //        type and then perform the rest of the checks here. GCC will perform
  //        this conversion in some cases as determined by the input language.
  //        We should accept it on a language independent basis.
  if (VectorEltTy->isIntegralType(S.Context) &&
      ScalarTy->isIntegralType(S.Context) &&
      S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {

    if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
      return true;

    ScalarCast = CK_IntegralCast;
  } else if (VectorEltTy->isIntegralType(S.Context) &&
             ScalarTy->isRealFloatingType()) {
    if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
      ScalarCast = CK_FloatingToIntegral;
    else
      return true;
  } else if (VectorEltTy->isRealFloatingType()) {
    if (ScalarTy->isRealFloatingType()) {

      // Reject cases where the scalar type is not a constant and has a higher
      // Order than the vector element type.
      llvm::APFloat Result(0.0);

      // Determine whether this is a constant scalar. In the event that the
      // value is dependent (and thus cannot be evaluated by the constant
      // evaluator), skip the evaluation. This will then diagnose once the
      // expression is instantiated.
      bool CstScalar = Scalar->get()->isValueDependent() ||
                       Scalar->get()->EvaluateAsFloat(Result, S.Context);
      int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
      if (!CstScalar && Order < 0)
        return true;

      // If the scalar cannot be safely casted to the vector element type,
      // reject it.
      if (CstScalar) {
        bool Truncated = false;
        Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
                       llvm::APFloat::rmNearestTiesToEven, &Truncated);
        if (Truncated)
          return true;
      }

      ScalarCast = CK_FloatingCast;
    } else if (ScalarTy->isIntegralType(S.Context)) {
      if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
        return true;

      ScalarCast = CK_IntegralToFloating;
    } else
      return true;
  } else if (ScalarTy->isEnumeralType())
    return true;

  // Adjust scalar if desired.
  if (Scalar) {
    if (ScalarCast != CK_NoOp)
      *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
    *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
  }
  return false;
}

QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
                                   SourceLocation Loc, bool IsCompAssign,
                                   bool AllowBothBool,
                                   bool AllowBoolConversions) {
  if (!IsCompAssign) {
    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
    if (LHS.isInvalid())
      return QualType();
  }
  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
  if (RHS.isInvalid())
    return QualType();

  // For conversion purposes, we ignore any qualifiers.
  // For example, "const float" and "float" are equivalent.
  QualType LHSType = LHS.get()->getType().getUnqualifiedType();
  QualType RHSType = RHS.get()->getType().getUnqualifiedType();

  const VectorType *LHSVecType = LHSType->getAs<VectorType>();
  const VectorType *RHSVecType = RHSType->getAs<VectorType>();
  assert(LHSVecType || RHSVecType);

  if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
      (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
    return InvalidOperands(Loc, LHS, RHS);

  // AltiVec-style "vector bool op vector bool" combinations are allowed
  // for some operators but not others.
  if (!AllowBothBool &&
      LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
      RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
    return InvalidOperands(Loc, LHS, RHS);

  // If the vector types are identical, return.
  if (Context.hasSameType(LHSType, RHSType))
    return LHSType;

  // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
  if (LHSVecType && RHSVecType &&
      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
    if (isa<ExtVectorType>(LHSVecType)) {
      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
      return LHSType;
    }

    if (!IsCompAssign)
      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
    return RHSType;
  }

  // AllowBoolConversions says that bool and non-bool AltiVec vectors
  // can be mixed, with the result being the non-bool type.  The non-bool
  // operand must have integer element type.
  if (AllowBoolConversions && LHSVecType && RHSVecType &&
      LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
      (Context.getTypeSize(LHSVecType->getElementType()) ==
       Context.getTypeSize(RHSVecType->getElementType()))) {
    if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
        LHSVecType->getElementType()->isIntegerType() &&
        RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
      return LHSType;
    }
    if (!IsCompAssign &&
        LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
        RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
        RHSVecType->getElementType()->isIntegerType()) {
      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
      return RHSType;
    }
  }

  // If there's a vector type and a scalar, try to convert the scalar to
  // the vector element type and splat.
  unsigned DiagID = diag::err_typecheck_vector_not_convertable;
  if (!RHSVecType) {
    if (isa<ExtVectorType>(LHSVecType)) {
      if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
                                    LHSVecType->getElementType(), LHSType,
                                    DiagID))
        return LHSType;
    } else {
      if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
        return LHSType;
    }
  }
  if (!LHSVecType) {
    if (isa<ExtVectorType>(RHSVecType)) {
      if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
                                    LHSType, RHSVecType->getElementType(),
                                    RHSType, DiagID))
        return RHSType;
    } else {
      if (LHS.get()->getValueKind() == VK_LValue ||
          !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
        return RHSType;
    }
  }

  // FIXME: The code below also handles conversion between vectors and
  // non-scalars, we should break this down into fine grained specific checks
  // and emit proper diagnostics.
  QualType VecType = LHSVecType ? LHSType : RHSType;
  const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
  QualType OtherType = LHSVecType ? RHSType : LHSType;
  ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
  if (isLaxVectorConversion(OtherType, VecType)) {
    // If we're allowing lax vector conversions, only the total (data) size
    // needs to be the same. For non compound assignment, if one of the types is
    // scalar, the result is always the vector type.
    if (!IsCompAssign) {
      *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
      return VecType;
    // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
    // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
    // type. Note that this is already done by non-compound assignments in
    // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
    // <1 x T> -> T. The result is also a vector type.
    } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
               (OtherType->isScalarType() && VT->getNumElements() == 1)) {
      ExprResult *RHSExpr = &RHS;
      *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
      return VecType;
    }
  }

  // Okay, the expression is invalid.

  // Returns true if the operands are SVE VLA and VLS types.
  auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
    const VectorType *VecType = SecondType->getAs<VectorType>();
    return FirstType->isSizelessBuiltinType() && VecType &&
           (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
            VecType->getVectorKind() ==
                VectorType::SveFixedLengthPredicateVector);
  };

  // If there's a sizeless and fixed-length operand, diagnose that.
  if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
    Diag(Loc, diag::err_typecheck_vector_not_convertable_sizeless)
        << LHSType << RHSType;
    return QualType();
  }

  // If there's a non-vector, non-real operand, diagnose that.
  if ((!RHSVecType && !RHSType->isRealType()) ||
      (!LHSVecType && !LHSType->isRealType())) {
    Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
      << LHSType << RHSType
      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
    return QualType();
  }

  // OpenCL V1.1 6.2.6.p1:
  // If the operands are of more than one vector type, then an error shall
  // occur. Implicit conversions between vector types are not permitted, per
  // section 6.2.1.
  if (getLangOpts().OpenCL &&
      RHSVecType && isa<ExtVectorType>(RHSVecType) &&
      LHSVecType && isa<ExtVectorType>(LHSVecType)) {
    Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
                                                           << RHSType;
    return QualType();
  }


  // If there is a vector type that is not a ExtVector and a scalar, we reach
  // this point if scalar could not be converted to the vector's element type
  // without truncation.
  if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
      (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
    QualType Scalar = LHSVecType ? RHSType : LHSType;
    QualType Vector = LHSVecType ? LHSType : RHSType;
    unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
    Diag(Loc,
         diag::err_typecheck_vector_not_convertable_implict_truncation)
        << ScalarOrVector << Scalar << Vector;

    return QualType();
  }

  // Otherwise, use the generic diagnostic.
  Diag(Loc, DiagID)
    << LHSType << RHSType
    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
  return QualType();
}

// checkArithmeticNull - Detect when a NULL constant is used improperly in an
// expression.  These are mainly cases where the null pointer is used as an
// integer instead of a pointer.
static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
                                SourceLocation Loc, bool IsCompare) {
  // The canonical way to check for a GNU null is with isNullPointerConstant,
  // but we use a bit of a hack here for speed; this is a relatively
  // hot path, and isNullPointerConstant is slow.
  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());

  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();

  // Avoid analyzing cases where the result will either be invalid (and
  // diagnosed as such) or entirely valid and not something to warn about.
  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
    return;

  // Comparison operations would not make sense with a null pointer no matter
  // what the other expression is.
  if (!IsCompare) {
    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
    return;
  }

  // The rest of the operations only make sense with a null pointer
  // if the other expression is a pointer.
  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
      NonNullType->canDecayToPointerType())
    return;

  S.Diag(Loc, diag::warn_null_in_comparison_operation)
      << LHSNull /* LHS is NULL */ << NonNullType
      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
}

static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
                                          SourceLocation Loc) {
  const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
  const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
  if (!LUE || !RUE)
    return;
  if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
      RUE->getKind() != UETT_SizeOf)
    return;

  const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
  QualType LHSTy = LHSArg->getType();
  QualType RHSTy;

  if (RUE->isArgumentType())
    RHSTy = RUE->getArgumentType();
  else
    RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();

  if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
    if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
      return;

    S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
    if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
      if (const ValueDecl *LHSArgDecl = DRE->getDecl())
        S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
            << LHSArgDecl;
    }
  } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
    QualType ArrayElemTy = ArrayTy->getElementType();
    if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
        ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
        RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
        S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
      return;
    S.Diag(Loc, diag::warn_division_sizeof_array)
        << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
    if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
      if (const ValueDecl *LHSArgDecl = DRE->getDecl())
        S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
            << LHSArgDecl;
    }

    S.Diag(Loc, diag::note_precedence_silence) << RHS;
  }
}

static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
                                               ExprResult &RHS,
                                               SourceLocation Loc, bool IsDiv) {
  // Check for division/remainder by zero.
  Expr::EvalResult RHSValue;
  if (!RHS.get()->isValueDependent() &&
      RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
      RHSValue.Val.getInt() == 0)
    S.DiagRuntimeBehavior(Loc, RHS.get(),
                          S.PDiag(diag::warn_remainder_division_by_zero)
                            << IsDiv << RHS.get()->getSourceRange());
}

QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
                                           SourceLocation Loc,
                                           bool IsCompAssign, bool IsDiv) {
  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);

  if (LHS.get()->getType()->isVectorType() ||
      RHS.get()->getType()->isVectorType())
    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
                               /*AllowBothBool*/getLangOpts().AltiVec,
                               /*AllowBoolConversions*/false);
  if (!IsDiv && (LHS.get()->getType()->isConstantMatrixType() ||
                 RHS.get()->getType()->isConstantMatrixType()))
    return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);

  QualType compType = UsualArithmeticConversions(
      LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();


  if (compType.isNull() || !compType->isArithmeticType())
    return InvalidOperands(Loc, LHS, RHS);
  if (IsDiv) {
    DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
    DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
  }
  return compType;
}

QualType Sema::CheckRemainderOperands(
  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);

  if (LHS.get()->getType()->isVectorType() ||
      RHS.get()->getType()->isVectorType()) {
    if (LHS.get()->getType()->hasIntegerRepresentation() &&
        RHS.get()->getType()->hasIntegerRepresentation())
      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
                                 /*AllowBothBool*/getLangOpts().AltiVec,
                                 /*AllowBoolConversions*/false);
    return InvalidOperands(Loc, LHS, RHS);
  }

  QualType compType = UsualArithmeticConversions(
      LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();

  if (compType.isNull() || !compType->isIntegerType())
    return InvalidOperands(Loc, LHS, RHS);
  DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
  return compType;
}

/// Diagnose invalid arithmetic on two void pointers.
static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
                                                Expr *LHSExpr, Expr *RHSExpr) {
  S.Diag(Loc, S.getLangOpts().CPlusPlus
                ? diag::err_typecheck_pointer_arith_void_type
                : diag::ext_gnu_void_ptr)
    << 1 /* two pointers */ << LHSExpr->getSourceRange()
                            << RHSExpr->getSourceRange();
}

/// Diagnose invalid arithmetic on a void pointer.
static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
                                            Expr *Pointer) {
  S.Diag(Loc, S.getLangOpts().CPlusPlus
                ? diag::err_typecheck_pointer_arith_void_type
                : diag::ext_gnu_void_ptr)
    << 0 /* one pointer */ << Pointer->getSourceRange();
}

/// Diagnose invalid arithmetic on a null pointer.
///
/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
/// idiom, which we recognize as a GNU extension.
///
static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
                                            Expr *Pointer, bool IsGNUIdiom) {
  if (IsGNUIdiom)
    S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
      << Pointer->getSourceRange();
  else
    S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
      << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
}

/// Diagnose invalid arithmetic on two function pointers.
static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
                                                    Expr *LHS, Expr *RHS) {
  assert(LHS->getType()->isAnyPointerType());
  assert(RHS->getType()->isAnyPointerType());
  S.Diag(Loc, S.getLangOpts().CPlusPlus
                ? diag::err_typecheck_pointer_arith_function_type
                : diag::ext_gnu_ptr_func_arith)
    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
    // We only show the second type if it differs from the first.
    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
                                                   RHS->getType())
    << RHS->getType()->getPointeeType()
    << LHS->getSourceRange() << RHS->getSourceRange();
}

/// Diagnose invalid arithmetic on a function pointer.
static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
                                                Expr *Pointer) {
  assert(Pointer->getType()->isAnyPointerType());
  S.Diag(Loc, S.getLangOpts().CPlusPlus
                ? diag::err_typecheck_pointer_arith_function_type
                : diag::ext_gnu_ptr_func_arith)
    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
    << 0 /* one pointer, so only one type */
    << Pointer->getSourceRange();
}

/// Emit error if Operand is incomplete pointer type
///
/// \returns True if pointer has incomplete type
static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
                                                 Expr *Operand) {
  QualType ResType = Operand->getType();
  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
    ResType = ResAtomicType->getValueType();

  assert(ResType->isAnyPointerType() && !ResType->isDependentType());
  QualType PointeeTy = ResType->getPointeeType();
  return S.RequireCompleteSizedType(
      Loc, PointeeTy,
      diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
      Operand->getSourceRange());
}

/// Check the validity of an arithmetic pointer operand.
///
/// If the operand has pointer type, this code will check for pointer types
/// which are invalid in arithmetic operations. These will be diagnosed
/// appropriately, including whether or not the use is supported as an
/// extension.
///
/// \returns True when the operand is valid to use (even if as an extension).
static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
                                            Expr *Operand) {
  QualType ResType = Operand->getType();
  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
    ResType = ResAtomicType->getValueType();

  if (!ResType->isAnyPointerType()) return true;

  QualType PointeeTy = ResType->getPointeeType();
  if (PointeeTy->isVoidType()) {
    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
    return !S.getLangOpts().CPlusPlus;
  }
  if (PointeeTy->isFunctionType()) {
    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
    return !S.getLangOpts().CPlusPlus;
  }

  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;

  return true;
}

/// Check the validity of a binary arithmetic operation w.r.t. pointer
/// operands.
///
/// This routine will diagnose any invalid arithmetic on pointer operands much
/// like \see checkArithmeticOpPointerOperand. However, it has special logic
/// for emitting a single diagnostic even for operations where both LHS and RHS
/// are (potentially problematic) pointers.
///
/// \returns True when the operand is valid to use (even if as an extension).
static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
                                                Expr *LHSExpr, Expr *RHSExpr) {
  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
  if (!isLHSPointer && !isRHSPointer) return true;

  QualType LHSPointeeTy, RHSPointeeTy;
  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();

  // if both are pointers check if operation is valid wrt address spaces
  if (isLHSPointer && isRHSPointer) {
    if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
      S.Diag(Loc,
             diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
          << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
          << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
      return false;
    }
  }

  // Check for arithmetic on pointers to incomplete types.
  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
  if (isLHSVoidPtr || isRHSVoidPtr) {
    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);

    return !S.getLangOpts().CPlusPlus;
  }

  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
  if (isLHSFuncPtr || isRHSFuncPtr) {
    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
                                                                RHSExpr);
    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);

    return !S.getLangOpts().CPlusPlus;
  }

  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
    return false;
  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
    return false;

  return true;
}

/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
/// literal.
static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
                                  Expr *LHSExpr, Expr *RHSExpr) {
  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
  Expr* IndexExpr = RHSExpr;
  if (!StrExpr) {
    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
    IndexExpr = LHSExpr;
  }

  bool IsStringPlusInt = StrExpr &&
      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
  if (!IsStringPlusInt || IndexExpr->isValueDependent())
    return;

  SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
  Self.Diag(OpLoc, diag::warn_string_plus_int)
      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();

  // Only print a fixit for "str" + int, not for int + "str".
  if (IndexExpr == RHSExpr) {
    SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
        << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
        << FixItHint::CreateInsertion(EndLoc, "]");
  } else
    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
}

/// Emit a warning when adding a char literal to a string.
static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
                                   Expr *LHSExpr, Expr *RHSExpr) {
  const Expr *StringRefExpr = LHSExpr;
  const CharacterLiteral *CharExpr =
      dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());

  if (!CharExpr) {
    CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
    StringRefExpr = RHSExpr;
  }

  if (!CharExpr || !StringRefExpr)
    return;

  const QualType StringType = StringRefExpr->getType();

  // Return if not a PointerType.
  if (!StringType->isAnyPointerType())
    return;

  // Return if not a CharacterType.
  if (!StringType->getPointeeType()->isAnyCharacterType())
    return;

  ASTContext &Ctx = Self.getASTContext();
  SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());

  const QualType CharType = CharExpr->getType();
  if (!CharType->isAnyCharacterType() &&
      CharType->isIntegerType() &&
      llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
    Self.Diag(OpLoc, diag::warn_string_plus_char)
        << DiagRange << Ctx.CharTy;
  } else {
    Self.Diag(OpLoc, diag::warn_string_plus_char)
        << DiagRange << CharExpr->getType();
  }

  // Only print a fixit for str + char, not for char + str.
  if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
    SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
        << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
        << FixItHint::CreateInsertion(EndLoc, "]");
  } else {
    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
  }
}

/// Emit error when two pointers are incompatible.
static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
                                           Expr *LHSExpr, Expr *RHSExpr) {
  assert(LHSExpr->getType()->isAnyPointerType());
  assert(RHSExpr->getType()->isAnyPointerType());
  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
    << RHSExpr->getSourceRange();
}

// C99 6.5.6
QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
                                     SourceLocation Loc, BinaryOperatorKind Opc,
                                     QualType* CompLHSTy) {
  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);

  if (LHS.get()->getType()->isVectorType() ||
      RHS.get()->getType()->isVectorType()) {
    QualType compType = CheckVectorOperands(
        LHS, RHS, Loc, CompLHSTy,
        /*AllowBothBool*/getLangOpts().AltiVec,
        /*AllowBoolConversions*/getLangOpts().ZVector);
    if (CompLHSTy) *CompLHSTy = compType;
    return compType;
  }

  if (LHS.get()->getType()->isConstantMatrixType() ||
      RHS.get()->getType()->isConstantMatrixType()) {
    return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
  }

  QualType compType = UsualArithmeticConversions(
      LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();

  // Diagnose "string literal" '+' int and string '+' "char literal".
  if (Opc == BO_Add) {
    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
    diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
  }

  // handle the common case first (both operands are arithmetic).
  if (!compType.isNull() && compType->isArithmeticType()) {
    if (CompLHSTy) *CompLHSTy = compType;
    return compType;
  }

  // Type-checking.  Ultimately the pointer's going to be in PExp;
  // note that we bias towards the LHS being the pointer.
  Expr *PExp = LHS.get(), *IExp = RHS.get();

  bool isObjCPointer;
  if (PExp->getType()->isPointerType()) {
    isObjCPointer = false;
  } else if (PExp->getType()->isObjCObjectPointerType()) {
    isObjCPointer = true;
  } else {
    std::swap(PExp, IExp);
    if (PExp->getType()->isPointerType()) {
      isObjCPointer = false;
    } else if (PExp->getType()->isObjCObjectPointerType()) {
      isObjCPointer = true;
    } else {
      return InvalidOperands(Loc, LHS, RHS);
    }
  }
  assert(PExp->getType()->isAnyPointerType());

  if (!IExp->getType()->isIntegerType())
    return InvalidOperands(Loc, LHS, RHS);

  // Adding to a null pointer results in undefined behavior.
  if (PExp->IgnoreParenCasts()->isNullPointerConstant(
          Context, Expr::NPC_ValueDependentIsNotNull)) {
    // In C++ adding zero to a null pointer is defined.
    Expr::EvalResult KnownVal;
    if (!getLangOpts().CPlusPlus ||
        (!IExp->isValueDependent() &&
         (!IExp->EvaluateAsInt(KnownVal, Context) ||
          KnownVal.Val.getInt() != 0))) {
      // Check the conditions to see if this is the 'p = nullptr + n' idiom.
      bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
          Context, BO_Add, PExp, IExp);
      diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
    }
  }

  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
    return QualType();

  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
    return QualType();

  // Check array bounds for pointer arithemtic
  CheckArrayAccess(PExp, IExp);

  if (CompLHSTy) {
    QualType LHSTy = Context.isPromotableBitField(LHS.get());
    if (LHSTy.isNull()) {
      LHSTy = LHS.get()->getType();
      if (LHSTy->isPromotableIntegerType())
        LHSTy = Context.getPromotedIntegerType(LHSTy);
    }
    *CompLHSTy = LHSTy;
  }

  return PExp->getType();
}

// C99 6.5.6
QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
                                        SourceLocation Loc,
                                        QualType* CompLHSTy) {
  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);

  if (LHS.get()->getType()->isVectorType() ||
      RHS.get()->getType()->isVectorType()) {
    QualType compType = CheckVectorOperands(
        LHS, RHS, Loc, CompLHSTy,
        /*AllowBothBool*/getLangOpts().AltiVec,
        /*AllowBoolConversions*/getLangOpts().ZVector);
    if (CompLHSTy) *CompLHSTy = compType;
    return compType;
  }

  if (LHS.get()->getType()->isConstantMatrixType() ||
      RHS.get()->getType()->isConstantMatrixType()) {
    return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
  }

  QualType compType = UsualArithmeticConversions(
      LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();

  // Enforce type constraints: C99 6.5.6p3.

  // Handle the common case first (both operands are arithmetic).
  if (!compType.isNull() && compType->isArithmeticType()) {
    if (CompLHSTy) *CompLHSTy = compType;
    return compType;
  }

  // Either ptr - int   or   ptr - ptr.
  if (LHS.get()->getType()->isAnyPointerType()) {
    QualType lpointee = LHS.get()->getType()->getPointeeType();

    // Diagnose bad cases where we step over interface counts.
    if (LHS.get()->getType()->isObjCObjectPointerType() &&
        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
      return QualType();

    // The result type of a pointer-int computation is the pointer type.
    if (RHS.get()->getType()->isIntegerType()) {
      // Subtracting from a null pointer should produce a warning.
      // The last argument to the diagnose call says this doesn't match the
      // GNU int-to-pointer idiom.
      if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
                                           Expr::NPC_ValueDependentIsNotNull)) {
        // In C++ adding zero to a null pointer is defined.
        Expr::EvalResult KnownVal;
        if (!getLangOpts().CPlusPlus ||
            (!RHS.get()->isValueDependent() &&
             (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
              KnownVal.Val.getInt() != 0))) {
          diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
        }
      }

      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
        return QualType();

      // Check array bounds for pointer arithemtic
      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);

      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
      return LHS.get()->getType();
    }

    // Handle pointer-pointer subtractions.
    if (const PointerType *RHSPTy
          = RHS.get()->getType()->getAs<PointerType>()) {
      QualType rpointee = RHSPTy->getPointeeType();

      if (getLangOpts().CPlusPlus) {
        // Pointee types must be the same: C++ [expr.add]
        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
        }
      } else {
        // Pointee types must be compatible C99 6.5.6p3
        if (!Context.typesAreCompatible(
                Context.getCanonicalType(lpointee).getUnqualifiedType(),
                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
          return QualType();
        }
      }

      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
                                               LHS.get(), RHS.get()))
        return QualType();

      // FIXME: Add warnings for nullptr - ptr.

      // The pointee type may have zero size.  As an extension, a structure or
      // union may have zero size or an array may have zero length.  In this
      // case subtraction does not make sense.
      if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
        CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
        if (ElementSize.isZero()) {
          Diag(Loc,diag::warn_sub_ptr_zero_size_types)
            << rpointee.getUnqualifiedType()
            << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
        }
      }

      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
      return Context.getPointerDiffType();
    }
  }

  return InvalidOperands(Loc, LHS, RHS);
}

static bool isScopedEnumerationType(QualType T) {
  if (const EnumType *ET = T->getAs<EnumType>())
    return ET->getDecl()->isScoped();
  return false;
}

static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
                                   SourceLocation Loc, BinaryOperatorKind Opc,
                                   QualType LHSType) {
  // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
  // so skip remaining warnings as we don't want to modify values within Sema.
  if (S.getLangOpts().OpenCL)
    return;

  // Check right/shifter operand
  Expr::EvalResult RHSResult;
  if (RHS.get()->isValueDependent() ||
      !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
    return;
  llvm::APSInt Right = RHSResult.Val.getInt();

  if (Right.isNegative()) {
    S.DiagRuntimeBehavior(Loc, RHS.get(),
                          S.PDiag(diag::warn_shift_negative)
                            << RHS.get()->getSourceRange());
    return;
  }

  QualType LHSExprType = LHS.get()->getType();
  uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
  if (LHSExprType->isExtIntType())
    LeftSize = S.Context.getIntWidth(LHSExprType);
  else if (LHSExprType->isFixedPointType()) {
    auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
    LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
  }
  llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
  if (Right.uge(LeftBits)) {
    S.DiagRuntimeBehavior(Loc, RHS.get(),
                          S.PDiag(diag::warn_shift_gt_typewidth)
                            << RHS.get()->getSourceRange());
    return;
  }

  // FIXME: We probably need to handle fixed point types specially here.
  if (Opc != BO_Shl || LHSExprType->isFixedPointType())
    return;

  // When left shifting an ICE which is signed, we can check for overflow which
  // according to C++ standards prior to C++2a has undefined behavior
  // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
  // more than the maximum value representable in the result type, so never
  // warn for those. (FIXME: Unsigned left-shift overflow in a constant
  // expression is still probably a bug.)
  Expr::EvalResult LHSResult;
  if (LHS.get()->isValueDependent() ||
      LHSType->hasUnsignedIntegerRepresentation() ||
      !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
    return;
  llvm::APSInt Left = LHSResult.Val.getInt();

  // If LHS does not have a signed type and non-negative value
  // then, the behavior is undefined before C++2a. Warn about it.
  if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
      !S.getLangOpts().CPlusPlus20) {
    S.DiagRuntimeBehavior(Loc, LHS.get(),
                          S.PDiag(diag::warn_shift_lhs_negative)
                            << LHS.get()->getSourceRange());
    return;
  }

  llvm::APInt ResultBits =
      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
  if (LeftBits.uge(ResultBits))
    return;
  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
  Result = Result.shl(Right);

  // Print the bit representation of the signed integer as an unsigned
  // hexadecimal number.
  SmallString<40> HexResult;
  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);

  // If we are only missing a sign bit, this is less likely to result in actual
  // bugs -- if the result is cast back to an unsigned type, it will have the
  // expected value. Thus we place this behind a different warning that can be
  // turned off separately if needed.
  if (LeftBits == ResultBits - 1) {
    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
        << HexResult << LHSType
        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
    return;
  }

  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
    << HexResult.str() << Result.getMinSignedBits() << LHSType
    << Left.getBitWidth() << LHS.get()->getSourceRange()
    << RHS.get()->getSourceRange();
}

/// Return the resulting type when a vector is shifted
///        by a scalar or vector shift amount.
static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
                                 SourceLocation Loc, bool IsCompAssign) {
  // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
  if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
      !LHS.get()->getType()->isVectorType()) {
    S.Diag(Loc, diag::err_shift_rhs_only_vector)
      << RHS.get()->getType() << LHS.get()->getType()
      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
    return QualType();
  }

  if (!IsCompAssign) {
    LHS = S.UsualUnaryConversions(LHS.get());
    if (LHS.isInvalid()) return QualType();
  }

  RHS = S.UsualUnaryConversions(RHS.get());
  if (RHS.isInvalid()) return QualType();

  QualType LHSType = LHS.get()->getType();
  // Note that LHS might be a scalar because the routine calls not only in
  // OpenCL case.
  const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
  QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;

  // Note that RHS might not be a vector.
  QualType RHSType = RHS.get()->getType();
  const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
  QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;

  // The operands need to be integers.
  if (!LHSEleType->isIntegerType()) {
    S.Diag(Loc, diag::err_typecheck_expect_int)
      << LHS.get()->getType() << LHS.get()->getSourceRange();
    return QualType();
  }

  if (!RHSEleType->isIntegerType()) {
    S.Diag(Loc, diag::err_typecheck_expect_int)
      << RHS.get()->getType() << RHS.get()->getSourceRange();
    return QualType();
  }

  if (!LHSVecTy) {
    assert(RHSVecTy);
    if (IsCompAssign)
      return RHSType;
    if (LHSEleType != RHSEleType) {
      LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
      LHSEleType = RHSEleType;
    }
    QualType VecTy =
        S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
    LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
    LHSType = VecTy;
  } else if (RHSVecTy) {
    // OpenCL v1.1 s6.3.j says that for vector types, the operators
    // are applied component-wise. So if RHS is a vector, then ensure
    // that the number of elements is the same as LHS...
    if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
      S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
        << LHS.get()->getType() << RHS.get()->getType()
        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
      return QualType();
    }
    if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
      const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
      const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
      if (LHSBT != RHSBT &&
          S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
        S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
            << LHS.get()->getType() << RHS.get()->getType()
            << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
      }
    }
  } else {
    // ...else expand RHS to match the number of elements in LHS.
    QualType VecTy =
      S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
    RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
  }

  return LHSType;
}

// C99 6.5.7
QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
                                  SourceLocation Loc, BinaryOperatorKind Opc,
                                  bool IsCompAssign) {
  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);

  // Vector shifts promote their scalar inputs to vector type.
  if (LHS.get()->getType()->isVectorType() ||
      RHS.get()->getType()->isVectorType()) {
    if (LangOpts.ZVector) {
      // The shift operators for the z vector extensions work basically
      // like general shifts, except that neither the LHS nor the RHS is
      // allowed to be a "vector bool".
      if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
        if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
          return InvalidOperands(Loc, LHS, RHS);
      if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
        if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
          return InvalidOperands(Loc, LHS, RHS);
    }
    return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
  }

  // Shifts don't perform usual arithmetic conversions, they just do integer
  // promotions on each operand. C99 6.5.7p3

  // For the LHS, do usual unary conversions, but then reset them away
  // if this is a compound assignment.
  ExprResult OldLHS = LHS;
  LHS = UsualUnaryConversions(LHS.get());
  if (LHS.isInvalid())
    return QualType();
  QualType LHSType = LHS.get()->getType();
  if (IsCompAssign) LHS = OldLHS;

  // The RHS is simpler.
  RHS = UsualUnaryConversions(RHS.get());
  if (RHS.isInvalid())
    return QualType();
  QualType RHSType = RHS.get()->getType();

  // C99 6.5.7p2: Each of the operands shall have integer type.
  // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
  if ((!LHSType->isFixedPointOrIntegerType() &&
       !LHSType->hasIntegerRepresentation()) ||
      !RHSType->hasIntegerRepresentation())
    return InvalidOperands(Loc, LHS, RHS);

  // C++0x: Don't allow scoped enums. FIXME: Use something better than
  // hasIntegerRepresentation() above instead of this.
  if (isScopedEnumerationType(LHSType) ||
      isScopedEnumerationType(RHSType)) {
    return InvalidOperands(Loc, LHS, RHS);
  }
  // Sanity-check shift operands
  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);

  // "The type of the result is that of the promoted left operand."
  return LHSType;
}

/// Diagnose bad pointer comparisons.
static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
                                              ExprResult &LHS, ExprResult &RHS,
                                              bool IsError) {
  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
                      : diag::ext_typecheck_comparison_of_distinct_pointers)
    << LHS.get()->getType() << RHS.get()->getType()
    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
}

/// Returns false if the pointers are converted to a composite type,
/// true otherwise.
static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
                                           ExprResult &LHS, ExprResult &RHS) {
  // C++ [expr.rel]p2:
  //   [...] Pointer conversions (4.10) and qualification
  //   conversions (4.4) are performed on pointer operands (or on
  //   a pointer operand and a null pointer constant) to bring
  //   them to their composite pointer type. [...]
  //
  // C++ [expr.eq]p1 uses the same notion for (in)equality
  // comparisons of pointers.

  QualType LHSType = LHS.get()->getType();
  QualType RHSType = RHS.get()->getType();
  assert(LHSType->isPointerType() || RHSType->isPointerType() ||
         LHSType->isMemberPointerType() || RHSType->isMemberPointerType());

  QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
  if (T.isNull()) {
    if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
        (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
      diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
    else
      S.InvalidOperands(Loc, LHS, RHS);
    return true;
  }

  return false;
}

static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
                                                    ExprResult &LHS,
                                                    ExprResult &RHS,
                                                    bool IsError) {
  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
                      : diag::ext_typecheck_comparison_of_fptr_to_void)
    << LHS.get()->getType() << RHS.get()->getType()
    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
}

static bool isObjCObjectLiteral(ExprResult &E) {
  switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
  case Stmt::ObjCArrayLiteralClass:
  case Stmt::ObjCDictionaryLiteralClass:
  case Stmt::ObjCStringLiteralClass:
  case Stmt::ObjCBoxedExprClass:
    return true;
  default:
    // Note that ObjCBoolLiteral is NOT an object literal!
    return false;
  }
}

static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
  const ObjCObjectPointerType *Type =
    LHS->getType()->getAs<ObjCObjectPointerType>();

  // If this is not actually an Objective-C object, bail out.
  if (!Type)
    return false;

  // Get the LHS object's interface type.
  QualType InterfaceType = Type->getPointeeType();

  // If the RHS isn't an Objective-C object, bail out.
  if (!RHS->getType()->isObjCObjectPointerType())
    return false;

  // Try to find the -isEqual: method.
  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
                                                      InterfaceType,
                                                      /*IsInstance=*/true);
  if (!Method) {
    if (Type->isObjCIdType()) {
      // For 'id', just check the global pool.
      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
                                                  /*receiverId=*/true);
    } else {
      // Check protocols.
      Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
                                             /*IsInstance=*/true);
    }
  }

  if (!Method)
    return false;

  QualType T = Method->parameters()[0]->getType();
  if (!T->isObjCObjectPointerType())
    return false;

  QualType R = Method->getReturnType();
  if (!R->isScalarType())
    return false;

  return true;
}

Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
  FromE = FromE->IgnoreParenImpCasts();
  switch (FromE->getStmtClass()) {
    default:
      break;
    case Stmt::ObjCStringLiteralClass:
      // "string literal"
      return LK_String;
    case Stmt::ObjCArrayLiteralClass:
      // "array literal"
      return LK_Array;
    case Stmt::ObjCDictionaryLiteralClass:
      // "dictionary literal"
      return LK_Dictionary;
    case Stmt::BlockExprClass:
      return LK_Block;
    case Stmt::ObjCBoxedExprClass: {
      Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
      switch (Inner->getStmtClass()) {
        case Stmt::IntegerLiteralClass:
        case Stmt::FloatingLiteralClass:
        case Stmt::CharacterLiteralClass:
        case Stmt::ObjCBoolLiteralExprClass:
        case Stmt::CXXBoolLiteralExprClass:
          // "numeric literal"
          return LK_Numeric;
        case Stmt::ImplicitCastExprClass: {
          CastKind CK = cast<CastExpr>(Inner)->getCastKind();
          // Boolean literals can be represented by implicit casts.
          if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
            return LK_Numeric;
          break;
        }
        default:
          break;
      }
      return LK_Boxed;
    }
  }
  return LK_None;
}

static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
                                          ExprResult &LHS, ExprResult &RHS,
                                          BinaryOperator::Opcode Opc){
  Expr *Literal;
  Expr *Other;
  if (isObjCObjectLiteral(LHS)) {
    Literal = LHS.get();
    Other = RHS.get();
  } else {
    Literal = RHS.get();
    Other = LHS.get();
  }

  // Don't warn on comparisons against nil.
  Other = Other->IgnoreParenCasts();
  if (Other->isNullPointerConstant(S.getASTContext(),
                                   Expr::NPC_ValueDependentIsNotNull))
    return;

  // This should be kept in sync with warn_objc_literal_comparison.
  // LK_String should always be after the other literals, since it has its own
  // warning flag.
  Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
  assert(LiteralKind != Sema::LK_Block);
  if (LiteralKind == Sema::LK_None) {
    llvm_unreachable("Unknown Objective-C object literal kind");
  }

  if (LiteralKind == Sema::LK_String)
    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
      << Literal->getSourceRange();
  else
    S.Diag(Loc, diag::warn_objc_literal_comparison)
      << LiteralKind << Literal->getSourceRange();

  if (BinaryOperator::isEqualityOp(Opc) &&
      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
    SourceLocation Start = LHS.get()->getBeginLoc();
    SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
    CharSourceRange OpRange =
      CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));

    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
      << FixItHint::CreateReplacement(OpRange, " isEqual:")
      << FixItHint::CreateInsertion(End, "]");
  }
}

/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
                                           ExprResult &RHS, SourceLocation Loc,
                                           BinaryOperatorKind Opc) {
  // Check that left hand side is !something.
  UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
  if (!UO || UO->getOpcode() != UO_LNot) return;

  // Only check if the right hand side is non-bool arithmetic type.
  if (RHS.get()->isKnownToHaveBooleanValue()) return;

  // Make sure that the something in !something is not bool.
  Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
  if (SubExpr->isKnownToHaveBooleanValue()) return;

  // Emit warning.
  bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
  S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
      << Loc << IsBitwiseOp;

  // First note suggest !(x < y)
  SourceLocation FirstOpen = SubExpr->getBeginLoc();
  SourceLocation FirstClose = RHS.get()->getEndLoc();
  FirstClose = S.getLocForEndOfToken(FirstClose);
  if (FirstClose.isInvalid())
    FirstOpen = SourceLocation();
  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
      << IsBitwiseOp
      << FixItHint::CreateInsertion(FirstOpen, "(")
      << FixItHint::CreateInsertion(FirstClose, ")");

  // Second note suggests (!x) < y
  SourceLocation SecondOpen = LHS.get()->getBeginLoc();
  SourceLocation SecondClose = LHS.get()->getEndLoc();
  SecondClose = S.getLocForEndOfToken(SecondClose);
  if (SecondClose.isInvalid())
    SecondOpen = SourceLocation();
  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
      << FixItHint::CreateInsertion(SecondOpen, "(")
      << FixItHint::CreateInsertion(SecondClose, ")");
}

// Returns true if E refers to a non-weak array.
static bool checkForArray(const Expr *E) {
  const ValueDecl *D = nullptr;
  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
    D = DR->getDecl();
  } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
    if (Mem->isImplicitAccess())
      D = Mem->getMemberDecl();
  }
  if (!D)
    return false;
  return D->getType()->isArrayType() && !D->isWeak();
}

/// Diagnose some forms of syntactically-obvious tautological comparison.
static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
                                           Expr *LHS, Expr *RHS,
                                           BinaryOperatorKind Opc) {
  Expr *LHSStripped = LHS->IgnoreParenImpCasts();
  Expr *RHSStripped = RHS->IgnoreParenImpCasts();

  QualType LHSType = LHS->getType();
  QualType RHSType = RHS->getType();
  if (LHSType->hasFloatingRepresentation() ||
      (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
      S.inTemplateInstantiation())
    return;

  // Comparisons between two array types are ill-formed for operator<=>, so
  // we shouldn't emit any additional warnings about it.
  if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
    return;

  // For non-floating point types, check for self-comparisons of the form
  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
  // often indicate logic errors in the program.
  //
  // NOTE: Don't warn about comparison expressions resulting from macro
  // expansion. Also don't warn about comparisons which are only self
  // comparisons within a template instantiation. The warnings should catch
  // obvious cases in the definition of the template anyways. The idea is to
  // warn when the typed comparison operator will always evaluate to the same
  // result.

  // Used for indexing into %select in warn_comparison_always
  enum {
    AlwaysConstant,
    AlwaysTrue,
    AlwaysFalse,
    AlwaysEqual, // std::strong_ordering::equal from operator<=>
  };

  // C++2a [depr.array.comp]:
  //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
  //   operands of array type are deprecated.
  if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
      RHSStripped->getType()->isArrayType()) {
    S.Diag(Loc, diag::warn_depr_array_comparison)
        << LHS->getSourceRange() << RHS->getSourceRange()
        << LHSStripped->getType() << RHSStripped->getType();
    // Carry on to produce the tautological comparison warning, if this
    // expression is potentially-evaluated, we can resolve the array to a
    // non-weak declaration, and so on.
  }

  if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
    if (Expr::isSameComparisonOperand(LHS, RHS)) {
      unsigned Result;
      switch (Opc) {
      case BO_EQ:
      case BO_LE:
      case BO_GE:
        Result = AlwaysTrue;
        break;
      case BO_NE:
      case BO_LT:
      case BO_GT:
        Result = AlwaysFalse;
        break;
      case BO_Cmp:
        Result = AlwaysEqual;
        break;
      default:
        Result = AlwaysConstant;
        break;
      }
      S.DiagRuntimeBehavior(Loc, nullptr,
                            S.PDiag(diag::warn_comparison_always)
                                << 0 /*self-comparison*/
                                << Result);
    } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
      // What is it always going to evaluate to?
      unsigned Result;
      switch (Opc) {
      case BO_EQ: // e.g. array1 == array2
        Result = AlwaysFalse;
        break;
      case BO_NE: // e.g. array1 != array2
        Result = AlwaysTrue;
        break;
      default: // e.g. array1 <= array2
        // The best we can say is 'a constant'
        Result = AlwaysConstant;
        break;
      }
      S.DiagRuntimeBehavior(Loc, nullptr,
                            S.PDiag(diag::warn_comparison_always)
                                << 1 /*array comparison*/
                                << Result);
    }
  }

  if (isa<CastExpr>(LHSStripped))
    LHSStripped = LHSStripped->IgnoreParenCasts();
  if (isa<CastExpr>(RHSStripped))
    RHSStripped = RHSStripped->IgnoreParenCasts();

  // Warn about comparisons against a string constant (unless the other
  // operand is null); the user probably wants string comparison function.
  Expr *LiteralString = nullptr;
  Expr *LiteralStringStripped = nullptr;
  if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
      !RHSStripped->isNullPointerConstant(S.Context,
                                          Expr::NPC_ValueDependentIsNull)) {
    LiteralString = LHS;
    LiteralStringStripped = LHSStripped;
  } else if ((isa<StringLiteral>(RHSStripped) ||
              isa<ObjCEncodeExpr>(RHSStripped)) &&
             !LHSStripped->isNullPointerConstant(S.Context,
                                          Expr::NPC_ValueDependentIsNull)) {
    LiteralString = RHS;
    LiteralStringStripped = RHSStripped;
  }

  if (LiteralString) {
    S.DiagRuntimeBehavior(Loc, nullptr,
                          S.PDiag(diag::warn_stringcompare)
                              << isa<ObjCEncodeExpr>(LiteralStringStripped)
                              << LiteralString->getSourceRange());
  }
}

static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
  switch (CK) {
  default: {
#ifndef NDEBUG
    llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
                 << "\n";
#endif
    llvm_unreachable("unhandled cast kind");
  }
  case CK_UserDefinedConversion:
    return ICK_Identity;
  case CK_LValueToRValue:
    return ICK_Lvalue_To_Rvalue;
  case CK_ArrayToPointerDecay:
    return ICK_Array_To_Pointer;
  case CK_FunctionToPointerDecay:
    return ICK_Function_To_Pointer;
  case CK_IntegralCast:
    return ICK_Integral_Conversion;
  case CK_FloatingCast:
    return ICK_Floating_Conversion;
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
    return ICK_Floating_Integral;
  case CK_IntegralComplexCast:
  case CK_FloatingComplexCast:
  case CK_FloatingComplexToIntegralComplex:
  case CK_IntegralComplexToFloatingComplex:
    return ICK_Complex_Conversion;
  case CK_FloatingComplexToReal:
  case CK_FloatingRealToComplex:
  case CK_IntegralComplexToReal:
  case CK_IntegralRealToComplex:
    return ICK_Complex_Real;
  }
}

static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
                                             QualType FromType,
                                             SourceLocation Loc) {
  // Check for a narrowing implicit conversion.
  StandardConversionSequence SCS;
  SCS.setAsIdentityConversion();
  SCS.setToType(0, FromType);
  SCS.setToType(1, ToType);
  if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
    SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());

  APValue PreNarrowingValue;
  QualType PreNarrowingType;
  switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
                               PreNarrowingType,
                               /*IgnoreFloatToIntegralConversion*/ true)) {
  case NK_Dependent_Narrowing:
    // Implicit conversion to a narrower type, but the expression is
    // value-dependent so we can't tell whether it's actually narrowing.
  case NK_Not_Narrowing:
    return false;

  case NK_Constant_Narrowing:
    // Implicit conversion to a narrower type, and the value is not a constant
    // expression.
    S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
        << /*Constant*/ 1
        << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
    return true;

  case NK_Variable_Narrowing:
    // Implicit conversion to a narrower type, and the value is not a constant
    // expression.
  case NK_Type_Narrowing:
    S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
        << /*Constant*/ 0 << FromType << ToType;
    // TODO: It's not a constant expression, but what if the user intended it
    // to be? Can we produce notes to help them figure out why it isn't?
    return true;
  }
  llvm_unreachable("unhandled case in switch");
}

static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
                                                         ExprResult &LHS,
                                                         ExprResult &RHS,
                                                         SourceLocation Loc) {
  QualType LHSType = LHS.get()->getType();
  QualType RHSType = RHS.get()->getType();
  // Dig out the original argument type and expression before implicit casts
  // were applied. These are the types/expressions we need to check the
  // [expr.spaceship] requirements against.
  ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
  ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
  QualType LHSStrippedType = LHSStripped.get()->getType();
  QualType RHSStrippedType = RHSStripped.get()->getType();

  // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
  // other is not, the program is ill-formed.
  if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
    S.InvalidOperands(Loc, LHSStripped, RHSStripped);
    return QualType();
  }

  // FIXME: Consider combining this with checkEnumArithmeticConversions.
  int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
                    RHSStrippedType->isEnumeralType();
  if (NumEnumArgs == 1) {
    bool LHSIsEnum = LHSStrippedType->isEnumeralType();
    QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
    if (OtherTy->hasFloatingRepresentation()) {
      S.InvalidOperands(Loc, LHSStripped, RHSStripped);
      return QualType();
    }
  }
  if (NumEnumArgs == 2) {
    // C++2a [expr.spaceship]p5: If both operands have the same enumeration
    // type E, the operator yields the result of converting the operands
    // to the underlying type of E and applying <=> to the converted operands.
    if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
      S.InvalidOperands(Loc, LHS, RHS);
      return QualType();
    }
    QualType IntType =
        LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
    assert(IntType->isArithmeticType());

    // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
    // promote the boolean type, and all other promotable integer types, to
    // avoid this.
    if (IntType->isPromotableIntegerType())
      IntType = S.Context.getPromotedIntegerType(IntType);

    LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
    RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
    LHSType = RHSType = IntType;
  }

  // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
  // usual arithmetic conversions are applied to the operands.
  QualType Type =
      S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();
  if (Type.isNull())
    return S.InvalidOperands(Loc, LHS, RHS);

  Optional<ComparisonCategoryType> CCT =
      getComparisonCategoryForBuiltinCmp(Type);
  if (!CCT)
    return S.InvalidOperands(Loc, LHS, RHS);

  bool HasNarrowing = checkThreeWayNarrowingConversion(
      S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
  HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
                                                   RHS.get()->getBeginLoc());
  if (HasNarrowing)
    return QualType();

  assert(!Type.isNull() && "composite type for <=> has not been set");

  return S.CheckComparisonCategoryType(
      *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
}

static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
                                                 ExprResult &RHS,
                                                 SourceLocation Loc,
                                                 BinaryOperatorKind Opc) {
  if (Opc == BO_Cmp)
    return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);

  // C99 6.5.8p3 / C99 6.5.9p4
  QualType Type =
      S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();
  if (Type.isNull())
    return S.InvalidOperands(Loc, LHS, RHS);
  assert(Type->isArithmeticType() || Type->isEnumeralType());

  if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
    return S.InvalidOperands(Loc, LHS, RHS);

  // Check for comparisons of floating point operands using != and ==.
  if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
    S.CheckFloatComparison(Loc, LHS.get(), RHS.get());

  // The result of comparisons is 'bool' in C++, 'int' in C.
  return S.Context.getLogicalOperationType();
}

void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
  if (!NullE.get()->getType()->isAnyPointerType())
    return;
  int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
  if (!E.get()->getType()->isAnyPointerType() &&
      E.get()->isNullPointerConstant(Context,
                                     Expr::NPC_ValueDependentIsNotNull) ==
        Expr::NPCK_ZeroExpression) {
    if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
      if (CL->getValue() == 0)
        Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
            << NullValue
            << FixItHint::CreateReplacement(E.get()->getExprLoc(),
                                            NullValue ? "NULL" : "(void *)0");
    } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
        TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
        QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
        if (T == Context.CharTy)
          Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
              << NullValue
              << FixItHint::CreateReplacement(E.get()->getExprLoc(),
                                              NullValue ? "NULL" : "(void *)0");
      }
  }
}

// C99 6.5.8, C++ [expr.rel]
QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
                                    SourceLocation Loc,
                                    BinaryOperatorKind Opc) {
  bool IsRelational = BinaryOperator::isRelationalOp(Opc);
  bool IsThreeWay = Opc == BO_Cmp;
  bool IsOrdered = IsRelational || IsThreeWay;
  auto IsAnyPointerType = [](ExprResult E) {
    QualType Ty = E.get()->getType();
    return Ty->isPointerType() || Ty->isMemberPointerType();
  };

  // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
  // type, array-to-pointer, ..., conversions are performed on both operands to
  // bring them to their composite type.
  // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
  // any type-related checks.
  if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
    if (LHS.isInvalid())
      return QualType();
    RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
    if (RHS.isInvalid())
      return QualType();
  } else {
    LHS = DefaultLvalueConversion(LHS.get());
    if (LHS.isInvalid())
      return QualType();
    RHS = DefaultLvalueConversion(RHS.get());
    if (RHS.isInvalid())
      return QualType();
  }

  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
  if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
    CheckPtrComparisonWithNullChar(LHS, RHS);
    CheckPtrComparisonWithNullChar(RHS, LHS);
  }

  // Handle vector comparisons separately.
  if (LHS.get()->getType()->isVectorType() ||
      RHS.get()->getType()->isVectorType())
    return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);

  diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
  diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);

  QualType LHSType = LHS.get()->getType();
  QualType RHSType = RHS.get()->getType();
  if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
      (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
    return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);

  const Expr::NullPointerConstantKind LHSNullKind =
      LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
  const Expr::NullPointerConstantKind RHSNullKind =
      RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
  bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
  bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;

  auto computeResultTy = [&]() {
    if (Opc != BO_Cmp)
      return Context.getLogicalOperationType();
    assert(getLangOpts().CPlusPlus);
    assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));

    QualType CompositeTy = LHS.get()->getType();
    assert(!CompositeTy->isReferenceType());

    Optional<ComparisonCategoryType> CCT =
        getComparisonCategoryForBuiltinCmp(CompositeTy);
    if (!CCT)
      return InvalidOperands(Loc, LHS, RHS);

    if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
      // P0946R0: Comparisons between a null pointer constant and an object
      // pointer result in std::strong_equality, which is ill-formed under
      // P1959R0.
      Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
          << (LHSIsNull ? LHS.get()->getSourceRange()
                        : RHS.get()->getSourceRange());
      return QualType();
    }

    return CheckComparisonCategoryType(
        *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
  };

  if (!IsOrdered && LHSIsNull != RHSIsNull) {
    bool IsEquality = Opc == BO_EQ;
    if (RHSIsNull)
      DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
                                   RHS.get()->getSourceRange());
    else
      DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
                                   LHS.get()->getSourceRange());
  }

  if ((LHSType->isIntegerType() && !LHSIsNull) ||
      (RHSType->isIntegerType() && !RHSIsNull)) {
    // Skip normal pointer conversion checks in this case; we have better
    // diagnostics for this below.
  } else if (getLangOpts().CPlusPlus) {
    // Equality comparison of a function pointer to a void pointer is invalid,
    // but we allow it as an extension.
    // FIXME: If we really want to allow this, should it be part of composite
    // pointer type computation so it works in conditionals too?
    if (!IsOrdered &&
        ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
         (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
      // This is a gcc extension compatibility comparison.
      // In a SFINAE context, we treat this as a hard error to maintain
      // conformance with the C++ standard.
      diagnoseFunctionPointerToVoidComparison(
          *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());

      if (isSFINAEContext())
        return QualType();

      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
      return computeResultTy();
    }

    // C++ [expr.eq]p2:
    //   If at least one operand is a pointer [...] bring them to their
    //   composite pointer type.
    // C++ [expr.spaceship]p6
    //  If at least one of the operands is of pointer type, [...] bring them
    //  to their composite pointer type.
    // C++ [expr.rel]p2:
    //   If both operands are pointers, [...] bring them to their composite
    //   pointer type.
    // For <=>, the only valid non-pointer types are arrays and functions, and
    // we already decayed those, so this is really the same as the relational
    // comparison rule.
    if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
            (IsOrdered ? 2 : 1) &&
        (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
                                         RHSType->isObjCObjectPointerType()))) {
      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
        return QualType();
      return computeResultTy();
    }
  } else if (LHSType->isPointerType() &&
             RHSType->isPointerType()) { // C99 6.5.8p2
    // All of the following pointer-related warnings are GCC extensions, except
    // when handling null pointer constants.
    QualType LCanPointeeTy =
      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
    QualType RCanPointeeTy =
      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();

    // C99 6.5.9p2 and C99 6.5.8p2
    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
                                   RCanPointeeTy.getUnqualifiedType())) {
      if (IsRelational) {
        // Pointers both need to point to complete or incomplete types
        if ((LCanPointeeTy->isIncompleteType() !=
             RCanPointeeTy->isIncompleteType()) &&
            !getLangOpts().C11) {
          Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
              << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
              << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
              << RCanPointeeTy->isIncompleteType();
        }
        if (LCanPointeeTy->isFunctionType()) {
          // Valid unless a relational comparison of function pointers
          Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
              << LHSType << RHSType << LHS.get()->getSourceRange()
              << RHS.get()->getSourceRange();
        }
      }
    } else if (!IsRelational &&
               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
      // Valid unless comparison between non-null pointer and function pointer
      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
          && !LHSIsNull && !RHSIsNull)
        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
                                                /*isError*/false);
    } else {
      // Invalid
      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
    }
    if (LCanPointeeTy != RCanPointeeTy) {
      // Treat NULL constant as a special case in OpenCL.
      if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
        if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
          Diag(Loc,
               diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
              << LHSType << RHSType << 0 /* comparison */
              << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
        }
      }
      LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
      LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
      CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
                                               : CK_BitCast;
      if (LHSIsNull && !RHSIsNull)
        LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
      else
        RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
    }
    return computeResultTy();
  }

  if (getLangOpts().CPlusPlus) {
    // C++ [expr.eq]p4:
    //   Two operands of type std::nullptr_t or one operand of type
    //   std::nullptr_t and the other a null pointer constant compare equal.
    if (!IsOrdered && LHSIsNull && RHSIsNull) {
      if (LHSType->isNullPtrType()) {
        RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
        return computeResultTy();
      }
      if (RHSType->isNullPtrType()) {
        LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
        return computeResultTy();
      }
    }

    // Comparison of Objective-C pointers and block pointers against nullptr_t.
    // These aren't covered by the composite pointer type rules.
    if (!IsOrdered && RHSType->isNullPtrType() &&
        (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
      return computeResultTy();
    }
    if (!IsOrdered && LHSType->isNullPtrType() &&
        (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
      return computeResultTy();
    }

    if (IsRelational &&
        ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
         (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
      // HACK: Relational comparison of nullptr_t against a pointer type is
      // invalid per DR583, but we allow it within std::less<> and friends,
      // since otherwise common uses of it break.
      // FIXME: Consider removing this hack once LWG fixes std::less<> and
      // friends to have std::nullptr_t overload candidates.
      DeclContext *DC = CurContext;
      if (isa<FunctionDecl>(DC))
        DC = DC->getParent();
      if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
        if (CTSD->isInStdNamespace() &&
            llvm::StringSwitch<bool>(CTSD->getName())
                .Cases("less", "less_equal", "greater", "greater_equal", true)
                .Default(false)) {
          if (RHSType->isNullPtrType())
            RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
          else
            LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
          return computeResultTy();
        }
      }
    }

    // C++ [expr.eq]p2:
    //   If at least one operand is a pointer to member, [...] bring them to
    //   their composite pointer type.
    if (!IsOrdered &&
        (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
        return QualType();
      else
        return computeResultTy();
    }
  }

  // Handle block pointer types.
  if (!IsOrdered && LHSType->isBlockPointerType() &&
      RHSType->isBlockPointerType()) {
    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();

    if (!LHSIsNull && !RHSIsNull &&
        !Context.typesAreCompatible(lpointee, rpointee)) {
      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
        << LHSType << RHSType << LHS.get()->getSourceRange()
        << RHS.get()->getSourceRange();
    }
    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
    return computeResultTy();
  }

  // Allow block pointers to be compared with null pointer constants.
  if (!IsOrdered
      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
    if (!LHSIsNull && !RHSIsNull) {
      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
             ->getPointeeType()->isVoidType())
            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
                ->getPointeeType()->isVoidType())))
        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
          << LHSType << RHSType << LHS.get()->getSourceRange()
          << RHS.get()->getSourceRange();
    }
    if (LHSIsNull && !RHSIsNull)
      LHS = ImpCastExprToType(LHS.get(), RHSType,
                              RHSType->isPointerType() ? CK_BitCast
                                : CK_AnyPointerToBlockPointerCast);
    else
      RHS = ImpCastExprToType(RHS.get(), LHSType,
                              LHSType->isPointerType() ? CK_BitCast
                                : CK_AnyPointerToBlockPointerCast);
    return computeResultTy();
  }

  if (LHSType->isObjCObjectPointerType() ||
      RHSType->isObjCObjectPointerType()) {
    const PointerType *LPT = LHSType->getAs<PointerType>();
    const PointerType *RPT = RHSType->getAs<PointerType>();
    if (LPT || RPT) {
      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;

      if (!LPtrToVoid && !RPtrToVoid &&
          !Context.typesAreCompatible(LHSType, RHSType)) {
        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
                                          /*isError*/false);
      }
      // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
      // the RHS, but we have test coverage for this behavior.
      // FIXME: Consider using convertPointersToCompositeType in C++.
      if (LHSIsNull && !RHSIsNull) {
        Expr *E = LHS.get();
        if (getLangOpts().ObjCAutoRefCount)
          CheckObjCConversion(SourceRange(), RHSType, E,
                              CCK_ImplicitConversion);
        LHS = ImpCastExprToType(E, RHSType,
                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
      }
      else {
        Expr *E = RHS.get();
        if (getLangOpts().ObjCAutoRefCount)
          CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
                              /*Diagnose=*/true,
                              /*DiagnoseCFAudited=*/false, Opc);
        RHS = ImpCastExprToType(E, LHSType,
                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
      }
      return computeResultTy();
    }
    if (LHSType->isObjCObjectPointerType() &&
        RHSType->isObjCObjectPointerType()) {
      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
                                          /*isError*/false);
      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);

      if (LHSIsNull && !RHSIsNull)
        LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
      else
        RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
      return computeResultTy();
    }

    if (!IsOrdered && LHSType->isBlockPointerType() &&
        RHSType->isBlockCompatibleObjCPointerType(Context)) {
      LHS = ImpCastExprToType(LHS.get(), RHSType,
                              CK_BlockPointerToObjCPointerCast);
      return computeResultTy();
    } else if (!IsOrdered &&
               LHSType->isBlockCompatibleObjCPointerType(Context) &&
               RHSType->isBlockPointerType()) {
      RHS = ImpCastExprToType(RHS.get(), LHSType,
                              CK_BlockPointerToObjCPointerCast);
      return computeResultTy();
    }
  }
  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
    unsigned DiagID = 0;
    bool isError = false;
    if (LangOpts.DebuggerSupport) {
      // Under a debugger, allow the comparison of pointers to integers,
      // since users tend to want to compare addresses.
    } else if ((LHSIsNull && LHSType->isIntegerType()) ||
               (RHSIsNull && RHSType->isIntegerType())) {
      if (IsOrdered) {
        isError = getLangOpts().CPlusPlus;
        DiagID =
          isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
                  : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
      }
    } else if (getLangOpts().CPlusPlus) {
      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
      isError = true;
    } else if (IsOrdered)
      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
    else
      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;

    if (DiagID) {
      Diag(Loc, DiagID)
        << LHSType << RHSType << LHS.get()->getSourceRange()
        << RHS.get()->getSourceRange();
      if (isError)
        return QualType();
    }

    if (LHSType->isIntegerType())
      LHS = ImpCastExprToType(LHS.get(), RHSType,
                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
    else
      RHS = ImpCastExprToType(RHS.get(), LHSType,
                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
    return computeResultTy();
  }

  // Handle block pointers.
  if (!IsOrdered && RHSIsNull
      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
    RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
    return computeResultTy();
  }
  if (!IsOrdered && LHSIsNull
      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
    LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
    return computeResultTy();
  }

  if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
    if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
      return computeResultTy();
    }

    if (LHSType->isQueueT() && RHSType->isQueueT()) {
      return computeResultTy();
    }

    if (LHSIsNull && RHSType->isQueueT()) {
      LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
      return computeResultTy();
    }

    if (LHSType->isQueueT() && RHSIsNull) {
      RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
      return computeResultTy();
    }
  }

  return InvalidOperands(Loc, LHS, RHS);
}

// Return a signed ext_vector_type that is of identical size and number of
// elements. For floating point vectors, return an integer type of identical
// size and number of elements. In the non ext_vector_type case, search from
// the largest type to the smallest type to avoid cases where long long == long,
// where long gets picked over long long.
QualType Sema::GetSignedVectorType(QualType V) {
  const VectorType *VTy = V->castAs<VectorType>();
  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());

  if (isa<ExtVectorType>(VTy)) {
    if (TypeSize == Context.getTypeSize(Context.CharTy))
      return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
    else if (TypeSize == Context.getTypeSize(Context.ShortTy))
      return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
    else if (TypeSize == Context.getTypeSize(Context.IntTy))
      return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
    else if (TypeSize == Context.getTypeSize(Context.LongTy))
      return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
    assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
           "Unhandled vector element size in vector compare");
    return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
  }

  if (TypeSize == Context.getTypeSize(Context.LongLongTy))
    return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
                                 VectorType::GenericVector);
  else if (TypeSize == Context.getTypeSize(Context.LongTy))
    return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
                                 VectorType::GenericVector);
  else if (TypeSize == Context.getTypeSize(Context.IntTy))
    return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
                                 VectorType::GenericVector);
  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
    return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
                                 VectorType::GenericVector);
  assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
         "Unhandled vector element size in vector compare");
  return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
                               VectorType::GenericVector);
}

/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types.  Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
                                          SourceLocation Loc,
                                          BinaryOperatorKind Opc) {
  if (Opc == BO_Cmp) {
    Diag(Loc, diag::err_three_way_vector_comparison);
    return QualType();
  }

  // Check to make sure we're operating on vectors of the same type and width,
  // Allowing one side to be a scalar of element type.
  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
                              /*AllowBothBool*/true,
                              /*AllowBoolConversions*/getLangOpts().ZVector);
  if (vType.isNull())
    return vType;

  QualType LHSType = LHS.get()->getType();

  // If AltiVec, the comparison results in a numeric type, i.e.
  // bool for C++, int for C
  if (getLangOpts().AltiVec &&
      vType->castAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
    return Context.getLogicalOperationType();

  // For non-floating point types, check for self-comparisons of the form
  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
  // often indicate logic errors in the program.
  diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);

  // Check for comparisons of floating point operands using != and ==.
  if (BinaryOperator::isEqualityOp(Opc) &&
      LHSType->hasFloatingRepresentation()) {
    assert(RHS.get()->getType()->hasFloatingRepresentation());
    CheckFloatComparison(Loc, LHS.get(), RHS.get());
  }

  // Return a signed type for the vector.
  return GetSignedVectorType(vType);
}

static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
                                    const ExprResult &XorRHS,
                                    const SourceLocation Loc) {
  // Do not diagnose macros.
  if (Loc.isMacroID())
    return;

  bool Negative = false;
  bool ExplicitPlus = false;
  const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
  const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());

  if (!LHSInt)
    return;
  if (!RHSInt) {
    // Check negative literals.
    if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
      UnaryOperatorKind Opc = UO->getOpcode();
      if (Opc != UO_Minus && Opc != UO_Plus)
        return;
      RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
      if (!RHSInt)
        return;
      Negative = (Opc == UO_Minus);
      ExplicitPlus = !Negative;
    } else {
      return;
    }
  }

  const llvm::APInt &LeftSideValue = LHSInt->getValue();
  llvm::APInt RightSideValue = RHSInt->getValue();
  if (LeftSideValue != 2 && LeftSideValue != 10)
    return;

  if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
    return;

  CharSourceRange ExprRange = CharSourceRange::getCharRange(
      LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
  llvm::StringRef ExprStr =
      Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());

  CharSourceRange XorRange =
      CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
  llvm::StringRef XorStr =
      Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
  // Do not diagnose if xor keyword/macro is used.
  if (XorStr == "xor")
    return;

  std::string LHSStr = std::string(Lexer::getSourceText(
      CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
      S.getSourceManager(), S.getLangOpts()));
  std::string RHSStr = std::string(Lexer::getSourceText(
      CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
      S.getSourceManager(), S.getLangOpts()));

  if (Negative) {
    RightSideValue = -RightSideValue;
    RHSStr = "-" + RHSStr;
  } else if (ExplicitPlus) {
    RHSStr = "+" + RHSStr;
  }

  StringRef LHSStrRef = LHSStr;
  StringRef RHSStrRef = RHSStr;
  // Do not diagnose literals with digit separators, binary, hexadecimal, octal
  // literals.
  if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
      RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
      LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
      RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
      (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
      (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
      LHSStrRef.find('\'') != StringRef::npos ||
      RHSStrRef.find('\'') != StringRef::npos)
    return;

  bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
  const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
  int64_t RightSideIntValue = RightSideValue.getSExtValue();
  if (LeftSideValue == 2 && RightSideIntValue >= 0) {
    std::string SuggestedExpr = "1 << " + RHSStr;
    bool Overflow = false;
    llvm::APInt One = (LeftSideValue - 1);
    llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
    if (Overflow) {
      if (RightSideIntValue < 64)
        S.Diag(Loc, diag::warn_xor_used_as_pow_base)
            << ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr)
            << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
      else if (RightSideIntValue == 64)
        S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << XorValue.toString(10, true);
      else
        return;
    } else {
      S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
          << ExprStr << XorValue.toString(10, true) << SuggestedExpr
          << PowValue.toString(10, true)
          << FixItHint::CreateReplacement(
                 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
    }

    S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor;
  } else if (LeftSideValue == 10) {
    std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
    S.Diag(Loc, diag::warn_xor_used_as_pow_base)
        << ExprStr << XorValue.toString(10, true) << SuggestedValue
        << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
    S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor;
  }
}

QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
                                          SourceLocation Loc) {
  // Ensure that either both operands are of the same vector type, or
  // one operand is of a vector type and the other is of its element type.
  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
                                       /*AllowBothBool*/true,
                                       /*AllowBoolConversions*/false);
  if (vType.isNull())
    return InvalidOperands(Loc, LHS, RHS);
  if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
      !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
    return InvalidOperands(Loc, LHS, RHS);
  // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
  //        usage of the logical operators && and || with vectors in C. This
  //        check could be notionally dropped.
  if (!getLangOpts().CPlusPlus &&
      !(isa<ExtVectorType>(vType->getAs<VectorType>())))
    return InvalidLogicalVectorOperands(Loc, LHS, RHS);

  return GetSignedVectorType(LHS.get()->getType());
}

QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
                                              SourceLocation Loc,
                                              bool IsCompAssign) {
  if (!IsCompAssign) {
    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
    if (LHS.isInvalid())
      return QualType();
  }
  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
  if (RHS.isInvalid())
    return QualType();

  // For conversion purposes, we ignore any qualifiers.
  // For example, "const float" and "float" are equivalent.
  QualType LHSType = LHS.get()->getType().getUnqualifiedType();
  QualType RHSType = RHS.get()->getType().getUnqualifiedType();

  const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
  const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
  assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");

  if (Context.hasSameType(LHSType, RHSType))
    return LHSType;

  // Type conversion may change LHS/RHS. Keep copies to the original results, in
  // case we have to return InvalidOperands.
  ExprResult OriginalLHS = LHS;
  ExprResult OriginalRHS = RHS;
  if (LHSMatType && !RHSMatType) {
    RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
    if (!RHS.isInvalid())
      return LHSType;

    return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
  }

  if (!LHSMatType && RHSMatType) {
    LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
    if (!LHS.isInvalid())
      return RHSType;
    return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
  }

  return InvalidOperands(Loc, LHS, RHS);
}

QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
                                           SourceLocation Loc,
                                           bool IsCompAssign) {
  if (!IsCompAssign) {
    LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
    if (LHS.isInvalid())
      return QualType();
  }
  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
  if (RHS.isInvalid())
    return QualType();

  auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
  auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
  assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");

  if (LHSMatType && RHSMatType) {
    if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
      return InvalidOperands(Loc, LHS, RHS);

    if (!Context.hasSameType(LHSMatType->getElementType(),
                             RHSMatType->getElementType()))
      return InvalidOperands(Loc, LHS, RHS);

    return Context.getConstantMatrixType(LHSMatType->getElementType(),
                                         LHSMatType->getNumRows(),
                                         RHSMatType->getNumColumns());
  }
  return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
}

inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
                                           SourceLocation Loc,
                                           BinaryOperatorKind Opc) {
  checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);

  bool IsCompAssign =
      Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;

  if (LHS.get()->getType()->isVectorType() ||
      RHS.get()->getType()->isVectorType()) {
    if (LHS.get()->getType()->hasIntegerRepresentation() &&
        RHS.get()->getType()->hasIntegerRepresentation())
      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
                        /*AllowBothBool*/true,
                        /*AllowBoolConversions*/getLangOpts().ZVector);
    return InvalidOperands(Loc, LHS, RHS);
  }

  if (Opc == BO_And)
    diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);

  if (LHS.get()->getType()->hasFloatingRepresentation() ||
      RHS.get()->getType()->hasFloatingRepresentation())
    return InvalidOperands(Loc, LHS, RHS);

  ExprResult LHSResult = LHS, RHSResult = RHS;
  QualType compType = UsualArithmeticConversions(
      LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
  if (LHSResult.isInvalid() || RHSResult.isInvalid())
    return QualType();
  LHS = LHSResult.get();
  RHS = RHSResult.get();

  if (Opc == BO_Xor)
    diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);

  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
    return compType;
  return InvalidOperands(Loc, LHS, RHS);
}

// C99 6.5.[13,14]
inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
                                           SourceLocation Loc,
                                           BinaryOperatorKind Opc) {
  // Check vector operands differently.
  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
    return CheckVectorLogicalOperands(LHS, RHS, Loc);

  bool EnumConstantInBoolContext = false;
  for (const ExprResult &HS : {LHS, RHS}) {
    if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
      const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
      if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
        EnumConstantInBoolContext = true;
    }
  }

  if (EnumConstantInBoolContext)
    Diag(Loc, diag::warn_enum_constant_in_bool_context);

  // Diagnose cases where the user write a logical and/or but probably meant a
  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
  // is a constant.
  if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
      !LHS.get()->getType()->isBooleanType() &&
      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
      // Don't warn in macros or template instantiations.
      !Loc.isMacroID() && !inTemplateInstantiation()) {
    // If the RHS can be constant folded, and if it constant folds to something
    // that isn't 0 or 1 (which indicate a potential logical operation that
    // happened to fold to true/false) then warn.
    // Parens on the RHS are ignored.
    Expr::EvalResult EVResult;
    if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
      llvm::APSInt Result = EVResult.Val.getInt();
      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
           !RHS.get()->getExprLoc().isMacroID()) ||
          (Result != 0 && Result != 1)) {
        Diag(Loc, diag::warn_logical_instead_of_bitwise)
          << RHS.get()->getSourceRange()
          << (Opc == BO_LAnd ? "&&" : "||");
        // Suggest replacing the logical operator with the bitwise version
        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
            << (Opc == BO_LAnd ? "&" : "|")
            << FixItHint::CreateReplacement(SourceRange(
                                                 Loc, getLocForEndOfToken(Loc)),
                                            Opc == BO_LAnd ? "&" : "|");
        if (Opc == BO_LAnd)
          // Suggest replacing "Foo() && kNonZero" with "Foo()"
          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
              << FixItHint::CreateRemoval(
                     SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
                                 RHS.get()->getEndLoc()));
      }
    }
  }

  if (!Context.getLangOpts().CPlusPlus) {
    // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
    // not operate on the built-in scalar and vector float types.
    if (Context.getLangOpts().OpenCL &&
        Context.getLangOpts().OpenCLVersion < 120) {
      if (LHS.get()->getType()->isFloatingType() ||
          RHS.get()->getType()->isFloatingType())
        return InvalidOperands(Loc, LHS, RHS);
    }

    LHS = UsualUnaryConversions(LHS.get());
    if (LHS.isInvalid())
      return QualType();

    RHS = UsualUnaryConversions(RHS.get());
    if (RHS.isInvalid())
      return QualType();

    if (!LHS.get()->getType()->isScalarType() ||
        !RHS.get()->getType()->isScalarType())
      return InvalidOperands(Loc, LHS, RHS);

    return Context.IntTy;
  }

  // The following is safe because we only use this method for
  // non-overloadable operands.

  // C++ [expr.log.and]p1
  // C++ [expr.log.or]p1
  // The operands are both contextually converted to type bool.
  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
  if (LHSRes.isInvalid())
    return InvalidOperands(Loc, LHS, RHS);
  LHS = LHSRes;

  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
  if (RHSRes.isInvalid())
    return InvalidOperands(Loc, LHS, RHS);
  RHS = RHSRes;

  // C++ [expr.log.and]p2
  // C++ [expr.log.or]p2
  // The result is a bool.
  return Context.BoolTy;
}

static bool IsReadonlyMessage(Expr *E, Sema &S) {
  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
  if (!ME) return false;
  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
  ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
      ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
  if (!Base) return false;
  return Base->getMethodDecl() != nullptr;
}

/// Is the given expression (which must be 'const') a reference to a
/// variable which was originally non-const, but which has become
/// 'const' due to being captured within a block?
enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
  assert(E->isLValue() && E->getType().isConstQualified());
  E = E->IgnoreParens();

  // Must be a reference to a declaration from an enclosing scope.
  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
  if (!DRE) return NCCK_None;
  if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;

  // The declaration must be a variable which is not declared 'const'.
  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
  if (!var) return NCCK_None;
  if (var->getType().isConstQualified()) return NCCK_None;
  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");

  // Decide whether the first capture was for a block or a lambda.
  DeclContext *DC = S.CurContext, *Prev = nullptr;
  // Decide whether the first capture was for a block or a lambda.
  while (DC) {
    // For init-capture, it is possible that the variable belongs to the
    // template pattern of the current context.
    if (auto *FD = dyn_cast<FunctionDecl>(DC))
      if (var->isInitCapture() &&
          FD->getTemplateInstantiationPattern() == var->getDeclContext())
        break;
    if (DC == var->getDeclContext())
      break;
    Prev = DC;
    DC = DC->getParent();
  }
  // Unless we have an init-capture, we've gone one step too far.
  if (!var->isInitCapture())
    DC = Prev;
  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
}

static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
  Ty = Ty.getNonReferenceType();
  if (IsDereference && Ty->isPointerType())
    Ty = Ty->getPointeeType();
  return !Ty.isConstQualified();
}

// Update err_typecheck_assign_const and note_typecheck_assign_const
// when this enum is changed.
enum {
  ConstFunction,
  ConstVariable,
  ConstMember,
  ConstMethod,
  NestedConstMember,
  ConstUnknown,  // Keep as last element
};

/// Emit the "read-only variable not assignable" error and print notes to give
/// more information about why the variable is not assignable, such as pointing
/// to the declaration of a const variable, showing that a method is const, or
/// that the function is returning a const reference.
static void DiagnoseConstAssignment(Sema &S, const Expr *E,
                                    SourceLocation Loc) {
  SourceRange ExprRange = E->getSourceRange();

  // Only emit one error on the first const found.  All other consts will emit
  // a note to the error.
  bool DiagnosticEmitted = false;

  // Track if the current expression is the result of a dereference, and if the
  // next checked expression is the result of a dereference.
  bool IsDereference = false;
  bool NextIsDereference = false;

  // Loop to process MemberExpr chains.
  while (true) {
    IsDereference = NextIsDereference;

    E = E->IgnoreImplicit()->IgnoreParenImpCasts();
    if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
      NextIsDereference = ME->isArrow();
      const ValueDecl *VD = ME->getMemberDecl();
      if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
        // Mutable fields can be modified even if the class is const.
        if (Field->isMutable()) {
          assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
          break;
        }

        if (!IsTypeModifiable(Field->getType(), IsDereference)) {
          if (!DiagnosticEmitted) {
            S.Diag(Loc, diag::err_typecheck_assign_const)
                << ExprRange << ConstMember << false /*static*/ << Field
                << Field->getType();
            DiagnosticEmitted = true;
          }
          S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
              << ConstMember << false /*static*/ << Field << Field->getType()
              << Field->getSourceRange();
        }
        E = ME->getBase();
        continue;
      } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
        if (VDecl->getType().isConstQualified()) {
          if (!DiagnosticEmitted) {
            S.Diag(Loc, diag::err_typecheck_assign_const)
                << ExprRange << ConstMember << true /*static*/ << VDecl
                << VDecl->getType();
            DiagnosticEmitted = true;
          }
          S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
              << ConstMember << true /*static*/ << VDecl << VDecl->getType()
              << VDecl->getSourceRange();
        }
        // Static fields do not inherit constness from parents.
        break;
      }
      break; // End MemberExpr
    } else if (const ArraySubscriptExpr *ASE =
                   dyn_cast<ArraySubscriptExpr>(E)) {
      E = ASE->getBase()->IgnoreParenImpCasts();
      continue;
    } else if (const ExtVectorElementExpr *EVE =
                   dyn_cast<ExtVectorElementExpr>(E)) {
      E = EVE->getBase()->IgnoreParenImpCasts();
      continue;
    }
    break;
  }

  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
    // Function calls
    const FunctionDecl *FD = CE->getDirectCallee();
    if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
      if (!DiagnosticEmitted) {
        S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
                                                      << ConstFunction << FD;
        DiagnosticEmitted = true;
      }
      S.Diag(FD->getReturnTypeSourceRange().getBegin(),
             diag::note_typecheck_assign_const)
          << ConstFunction << FD << FD->getReturnType()
          << FD->getReturnTypeSourceRange();
    }
  } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    // Point to variable declaration.
    if (const ValueDecl *VD = DRE->getDecl()) {
      if (!IsTypeModifiable(VD->getType(), IsDereference)) {
        if (!DiagnosticEmitted) {
          S.Diag(Loc, diag::err_typecheck_assign_const)
              << ExprRange << ConstVariable << VD << VD->getType();
          DiagnosticEmitted = true;
        }
        S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
            << ConstVariable << VD << VD->getType() << VD->getSourceRange();
      }
    }
  } else if (isa<CXXThisExpr>(E)) {
    if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
        if (MD->isConst()) {
          if (!DiagnosticEmitted) {
            S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
                                                          << ConstMethod << MD;
            DiagnosticEmitted = true;
          }
          S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
              << ConstMethod << MD << MD->getSourceRange();
        }
      }
    }
  }

  if (DiagnosticEmitted)
    return;

  // Can't determine a more specific message, so display the generic error.
  S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
}

enum OriginalExprKind {
  OEK_Variable,
  OEK_Member,
  OEK_LValue
};

static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
                                         const RecordType *Ty,
                                         SourceLocation Loc, SourceRange Range,
                                         OriginalExprKind OEK,
                                         bool &DiagnosticEmitted) {
  std::vector<const RecordType *> RecordTypeList;
  RecordTypeList.push_back(Ty);
  unsigned NextToCheckIndex = 0;
  // We walk the record hierarchy breadth-first to ensure that we print
  // diagnostics in field nesting order.
  while (RecordTypeList.size() > NextToCheckIndex) {
    bool IsNested = NextToCheckIndex > 0;
    for (const FieldDecl *Field :
         RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
      // First, check every field for constness.
      QualType FieldTy = Field->getType();
      if (FieldTy.isConstQualified()) {
        if (!DiagnosticEmitted) {
          S.Diag(Loc, diag::err_typecheck_assign_const)
              << Range << NestedConstMember << OEK << VD
              << IsNested << Field;
          DiagnosticEmitted = true;
        }
        S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
            << NestedConstMember << IsNested << Field
            << FieldTy << Field->getSourceRange();
      }

      // Then we append it to the list to check next in order.
      FieldTy = FieldTy.getCanonicalType();
      if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
        if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
          RecordTypeList.push_back(FieldRecTy);
      }
    }
    ++NextToCheckIndex;
  }
}

/// Emit an error for the case where a record we are trying to assign to has a
/// const-qualified field somewhere in its hierarchy.
static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
                                         SourceLocation Loc) {
  QualType Ty = E->getType();
  assert(Ty->isRecordType() && "lvalue was not record?");
  SourceRange Range = E->getSourceRange();
  const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
  bool DiagEmitted = false;

  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
    DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
            Range, OEK_Member, DiagEmitted);
  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
            Range, OEK_Variable, DiagEmitted);
  else
    DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
            Range, OEK_LValue, DiagEmitted);
  if (!DiagEmitted)
    DiagnoseConstAssignment(S, E, Loc);
}

/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
/// emit an error and return true.  If so, return false.
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));

  S.CheckShadowingDeclModification(E, Loc);

  SourceLocation OrigLoc = Loc;
  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
                                                              &Loc);
  if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
    IsLV = Expr::MLV_InvalidMessageExpression;
  if (IsLV == Expr::MLV_Valid)
    return false;

  unsigned DiagID = 0;
  bool NeedType = false;
  switch (IsLV) { // C99 6.5.16p2
  case Expr::MLV_ConstQualified:
    // Use a specialized diagnostic when we're assigning to an object
    // from an enclosing function or block.
    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
      if (NCCK == NCCK_Block)
        DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
      else
        DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
      break;
    }

    // In ARC, use some specialized diagnostics for occasions where we
    // infer 'const'.  These are always pseudo-strong variables.
    if (S.getLangOpts().ObjCAutoRefCount) {
      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
      if (declRef && isa<VarDecl>(declRef->getDecl())) {
        VarDecl *var = cast<VarDecl>(declRef->getDecl());

        // Use the normal diagnostic if it's pseudo-__strong but the
        // user actually wrote 'const'.
        if (var->isARCPseudoStrong() &&
            (!var->getTypeSourceInfo() ||
             !var->getTypeSourceInfo()->getType().isConstQualified())) {
          // There are three pseudo-strong cases:
          //  - self
          ObjCMethodDecl *method = S.getCurMethodDecl();
          if (method && var == method->getSelfDecl()) {
            DiagID = method->isClassMethod()
              ? diag::err_typecheck_arc_assign_self_class_method
              : diag::err_typecheck_arc_assign_self;

          //  - Objective-C externally_retained attribute.
          } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
                     isa<ParmVarDecl>(var)) {
            DiagID = diag::err_typecheck_arc_assign_externally_retained;

          //  - fast enumeration variables
          } else {
            DiagID = diag::err_typecheck_arr_assign_enumeration;
          }

          SourceRange Assign;
          if (Loc != OrigLoc)
            Assign = SourceRange(OrigLoc, OrigLoc);
          S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
          // We need to preserve the AST regardless, so migration tool
          // can do its job.
          return false;
        }
      }
    }

    // If none of the special cases above are triggered, then this is a
    // simple const assignment.
    if (DiagID == 0) {
      DiagnoseConstAssignment(S, E, Loc);
      return true;
    }

    break;
  case Expr::MLV_ConstAddrSpace:
    DiagnoseConstAssignment(S, E, Loc);
    return true;
  case Expr::MLV_ConstQualifiedField:
    DiagnoseRecursiveConstFields(S, E, Loc);
    return true;
  case Expr::MLV_ArrayType:
  case Expr::MLV_ArrayTemporary:
    DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
    NeedType = true;
    break;
  case Expr::MLV_NotObjectType:
    DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
    NeedType = true;
    break;
  case Expr::MLV_LValueCast:
    DiagID = diag::err_typecheck_lvalue_casts_not_supported;
    break;
  case Expr::MLV_Valid:
    llvm_unreachable("did not take early return for MLV_Valid");
  case Expr::MLV_InvalidExpression:
  case Expr::MLV_MemberFunction:
  case Expr::MLV_ClassTemporary:
    DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
    break;
  case Expr::MLV_IncompleteType:
  case Expr::MLV_IncompleteVoidType:
    return S.RequireCompleteType(Loc, E->getType(),
             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
  case Expr::MLV_DuplicateVectorComponents:
    DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
    break;
  case Expr::MLV_NoSetterProperty:
    llvm_unreachable("readonly properties should be processed differently");
  case Expr::MLV_InvalidMessageExpression:
    DiagID = diag::err_readonly_message_assignment;
    break;
  case Expr::MLV_SubObjCPropertySetting:
    DiagID = diag::err_no_subobject_property_setting;
    break;
  }

  SourceRange Assign;
  if (Loc != OrigLoc)
    Assign = SourceRange(OrigLoc, OrigLoc);
  if (NeedType)
    S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
  else
    S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
  return true;
}

static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
                                         SourceLocation Loc,
                                         Sema &Sema) {
  if (Sema.inTemplateInstantiation())
    return;
  if (Sema.isUnevaluatedContext())
    return;
  if (Loc.isInvalid() || Loc.isMacroID())
    return;
  if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
    return;

  // C / C++ fields
  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
  if (ML && MR) {
    if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
      return;
    const ValueDecl *LHSDecl =
        cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
    const ValueDecl *RHSDecl =
        cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
    if (LHSDecl != RHSDecl)
      return;
    if (LHSDecl->getType().isVolatileQualified())
      return;
    if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
      if (RefTy->getPointeeType().isVolatileQualified())
        return;

    Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
  }

  // Objective-C instance variables
  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
  if (OL && OR && OL->getDecl() == OR->getDecl()) {
    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
    if (RL && RR && RL->getDecl() == RR->getDecl())
      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
  }
}

// C99 6.5.16.1
QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
                                       SourceLocation Loc,
                                       QualType CompoundType) {
  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));

  // Verify that LHS is a modifiable lvalue, and emit error if not.
  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
    return QualType();

  QualType LHSType = LHSExpr->getType();
  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
                                             CompoundType;
  // OpenCL v1.2 s6.1.1.1 p2:
  // The half data type can only be used to declare a pointer to a buffer that
  // contains half values
  if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
    LHSType->isHalfType()) {
    Diag(Loc, diag::err_opencl_half_load_store) << 1
        << LHSType.getUnqualifiedType();
    return QualType();
  }

  AssignConvertType ConvTy;
  if (CompoundType.isNull()) {
    Expr *RHSCheck = RHS.get();

    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);

    QualType LHSTy(LHSType);
    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
    if (RHS.isInvalid())
      return QualType();
    // Special case of NSObject attributes on c-style pointer types.
    if (ConvTy == IncompatiblePointer &&
        ((Context.isObjCNSObjectType(LHSType) &&
          RHSType->isObjCObjectPointerType()) ||
         (Context.isObjCNSObjectType(RHSType) &&
          LHSType->isObjCObjectPointerType())))
      ConvTy = Compatible;

    if (ConvTy == Compatible &&
        LHSType->isObjCObjectType())
        Diag(Loc, diag::err_objc_object_assignment)
          << LHSType;

    // If the RHS is a unary plus or minus, check to see if they = and + are
    // right next to each other.  If so, the user may have typo'd "x =+ 4"
    // instead of "x += 4".
    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
      RHSCheck = ICE->getSubExpr();
    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
      if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
          // Only if the two operators are exactly adjacent.
          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
          // And there is a space or other character before the subexpr of the
          // unary +/-.  We don't want to warn on "x=-1".
          Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
          UO->getSubExpr()->getBeginLoc().isFileID()) {
        Diag(Loc, diag::warn_not_compound_assign)
          << (UO->getOpcode() == UO_Plus ? "+" : "-")
          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
      }
    }

    if (ConvTy == Compatible) {
      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
        // Warn about retain cycles where a block captures the LHS, but
        // not if the LHS is a simple variable into which the block is
        // being stored...unless that variable can be captured by reference!
        const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
        const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
        if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
          checkRetainCycles(LHSExpr, RHS.get());
      }

      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
          LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
        // It is safe to assign a weak reference into a strong variable.
        // Although this code can still have problems:
        //   id x = self.weakProp;
        //   id y = self.weakProp;
        // we do not warn to warn spuriously when 'x' and 'y' are on separate
        // paths through the function. This should be revisited if
        // -Wrepeated-use-of-weak is made flow-sensitive.
        // For ObjCWeak only, we do not warn if the assign is to a non-weak
        // variable, which will be valid for the current autorelease scope.
        if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
                             RHS.get()->getBeginLoc()))
          getCurFunction()->markSafeWeakUse(RHS.get());

      } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
      }
    }
  } else {
    // Compound assignment "x += y"
    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
  }

  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
                               RHS.get(), AA_Assigning))
    return QualType();

  CheckForNullPointerDereference(*this, LHSExpr);

  if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
    if (CompoundType.isNull()) {
      // C++2a [expr.ass]p5:
      //   A simple-assignment whose left operand is of a volatile-qualified
      //   type is deprecated unless the assignment is either a discarded-value
      //   expression or an unevaluated operand
      ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
    } else {
      // C++2a [expr.ass]p6:
      //   [Compound-assignment] expressions are deprecated if E1 has
      //   volatile-qualified type
      Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
    }
  }

  // C99 6.5.16p3: The type of an assignment expression is the type of the
  // left operand unless the left operand has qualified type, in which case
  // it is the unqualified version of the type of the left operand.
  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
  // is converted to the type of the assignment expression (above).
  // C++ 5.17p1: the type of the assignment expression is that of its left
  // operand.
  return (getLangOpts().CPlusPlus
          ? LHSType : LHSType.getUnqualifiedType());
}

// Only ignore explicit casts to void.
static bool IgnoreCommaOperand(const Expr *E) {
  E = E->IgnoreParens();

  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
    if (CE->getCastKind() == CK_ToVoid) {
      return true;
    }

    // static_cast<void> on a dependent type will not show up as CK_ToVoid.
    if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
        CE->getSubExpr()->getType()->isDependentType()) {
      return true;
    }
  }

  return false;
}

// Look for instances where it is likely the comma operator is confused with
// another operator.  There is an explicit list of acceptable expressions for
// the left hand side of the comma operator, otherwise emit a warning.
void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
  // No warnings in macros
  if (Loc.isMacroID())
    return;

  // Don't warn in template instantiations.
  if (inTemplateInstantiation())
    return;

  // Scope isn't fine-grained enough to explicitly list the specific cases, so
  // instead, skip more than needed, then call back into here with the
  // CommaVisitor in SemaStmt.cpp.
  // The listed locations are the initialization and increment portions
  // of a for loop.  The additional checks are on the condition of
  // if statements, do/while loops, and for loops.
  // Differences in scope flags for C89 mode requires the extra logic.
  const unsigned ForIncrementFlags =
      getLangOpts().C99 || getLangOpts().CPlusPlus
          ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
          : Scope::ContinueScope | Scope::BreakScope;
  const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
  const unsigned ScopeFlags = getCurScope()->getFlags();
  if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
      (ScopeFlags & ForInitFlags) == ForInitFlags)
    return;

  // If there are multiple comma operators used together, get the RHS of the
  // of the comma operator as the LHS.
  while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
    if (BO->getOpcode() != BO_Comma)
      break;
    LHS = BO->getRHS();
  }

  // Only allow some expressions on LHS to not warn.
  if (IgnoreCommaOperand(LHS))
    return;

  Diag(Loc, diag::warn_comma_operator);
  Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
      << LHS->getSourceRange()
      << FixItHint::CreateInsertion(LHS->getBeginLoc(),
                                    LangOpts.CPlusPlus ? "static_cast<void>("
                                                       : "(void)(")
      << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
                                    ")");
}

// C99 6.5.17
static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
                                   SourceLocation Loc) {
  LHS = S.CheckPlaceholderExpr(LHS.get());
  RHS = S.CheckPlaceholderExpr(RHS.get());
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();

  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
  // operands, but not unary promotions.
  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).

  // So we treat the LHS as a ignored value, and in C++ we allow the
  // containing site to determine what should be done with the RHS.
  LHS = S.IgnoredValueConversions(LHS.get());
  if (LHS.isInvalid())
    return QualType();

  S.DiagnoseUnusedExprResult(LHS.get());

  if (!S.getLangOpts().CPlusPlus) {
    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
    if (RHS.isInvalid())
      return QualType();
    if (!RHS.get()->getType()->isVoidType())
      S.RequireCompleteType(Loc, RHS.get()->getType(),
                            diag::err_incomplete_type);
  }

  if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
    S.DiagnoseCommaOperator(LHS.get(), Loc);

  return RHS.get()->getType();
}

/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
                                               ExprValueKind &VK,
                                               ExprObjectKind &OK,
                                               SourceLocation OpLoc,
                                               bool IsInc, bool IsPrefix) {
  if (Op->isTypeDependent())
    return S.Context.DependentTy;

  QualType ResType = Op->getType();
  // Atomic types can be used for increment / decrement where the non-atomic
  // versions can, so ignore the _Atomic() specifier for the purpose of
  // checking.
  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
    ResType = ResAtomicType->getValueType();

  assert(!ResType.isNull() && "no type for increment/decrement expression");

  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
    // Decrement of bool is not allowed.
    if (!IsInc) {
      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
      return QualType();
    }
    // Increment of bool sets it to true, but is deprecated.
    S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
                                              : diag::warn_increment_bool)
      << Op->getSourceRange();
  } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
    // Error on enum increments and decrements in C++ mode
    S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
    return QualType();
  } else if (ResType->isRealType()) {
    // OK!
  } else if (ResType->isPointerType()) {
    // C99 6.5.2.4p2, 6.5.6p2
    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
      return QualType();
  } else if (ResType->isObjCObjectPointerType()) {
    // On modern runtimes, ObjC pointer arithmetic is forbidden.
    // Otherwise, we just need a complete type.
    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
        checkArithmeticOnObjCPointer(S, OpLoc, Op))
      return QualType();
  } else if (ResType->isAnyComplexType()) {
    // C99 does not support ++/-- on complex types, we allow as an extension.
    S.Diag(OpLoc, diag::ext_integer_increment_complex)
      << ResType << Op->getSourceRange();
  } else if (ResType->isPlaceholderType()) {
    ExprResult PR = S.CheckPlaceholderExpr(Op);
    if (PR.isInvalid()) return QualType();
    return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
                                          IsInc, IsPrefix);
  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
  } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
             (ResType->castAs<VectorType>()->getVectorKind() !=
              VectorType::AltiVecBool)) {
    // The z vector extensions allow ++ and -- for non-bool vectors.
  } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
            ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
    // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
  } else {
    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
      << ResType << int(IsInc) << Op->getSourceRange();
    return QualType();
  }
  // At this point, we know we have a real, complex or pointer type.
  // Now make sure the operand is a modifiable lvalue.
  if (CheckForModifiableLvalue(Op, OpLoc, S))
    return QualType();
  if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
    // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
    //   An operand with volatile-qualified type is deprecated
    S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
        << IsInc << ResType;
  }
  // In C++, a prefix increment is the same type as the operand. Otherwise
  // (in C or with postfix), the increment is the unqualified type of the
  // operand.
  if (IsPrefix && S.getLangOpts().CPlusPlus) {
    VK = VK_LValue;
    OK = Op->getObjectKind();
    return ResType;
  } else {
    VK = VK_RValue;
    return ResType.getUnqualifiedType();
  }
}


/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
/// where the declaration is needed for type checking. We only need to
/// handle cases when the expression references a function designator
/// or is an lvalue. Here are some examples:
///  - &(x) => x
///  - &*****f => f for f a function designator.
///  - &s.xx => s
///  - &s.zz[1].yy -> s, if zz is an array
///  - *(x + 1) -> x, if x is an array
///  - &"123"[2] -> 0
///  - & __real__ x -> x
///
/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
/// members.
static ValueDecl *getPrimaryDecl(Expr *E) {
  switch (E->getStmtClass()) {
  case Stmt::DeclRefExprClass:
    return cast<DeclRefExpr>(E)->getDecl();
  case Stmt::MemberExprClass:
    // If this is an arrow operator, the address is an offset from
    // the base's value, so the object the base refers to is
    // irrelevant.
    if (cast<MemberExpr>(E)->isArrow())
      return nullptr;
    // Otherwise, the expression refers to a part of the base
    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
  case Stmt::ArraySubscriptExprClass: {
    // FIXME: This code shouldn't be necessary!  We should catch the implicit
    // promotion of register arrays earlier.
    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
      if (ICE->getSubExpr()->getType()->isArrayType())
        return getPrimaryDecl(ICE->getSubExpr());
    }
    return nullptr;
  }
  case Stmt::UnaryOperatorClass: {
    UnaryOperator *UO = cast<UnaryOperator>(E);

    switch(UO->getOpcode()) {
    case UO_Real:
    case UO_Imag:
    case UO_Extension:
      return getPrimaryDecl(UO->getSubExpr());
    default:
      return nullptr;
    }
  }
  case Stmt::ParenExprClass:
    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
  case Stmt::ImplicitCastExprClass:
    // If the result of an implicit cast is an l-value, we care about
    // the sub-expression; otherwise, the result here doesn't matter.
    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
  case Stmt::CXXUuidofExprClass:
    return cast<CXXUuidofExpr>(E)->getGuidDecl();
  default:
    return nullptr;
  }
}

namespace {
enum {
  AO_Bit_Field = 0,
  AO_Vector_Element = 1,
  AO_Property_Expansion = 2,
  AO_Register_Variable = 3,
  AO_Matrix_Element = 4,
  AO_No_Error = 5
};
}
/// Diagnose invalid operand for address of operations.
///
/// \param Type The type of operand which cannot have its address taken.
static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
                                         Expr *E, unsigned Type) {
  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
}

/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the &
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
/// In C++, the operand might be an overloaded function name, in which case
/// we allow the '&' but retain the overloaded-function type.
QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
    if (PTy->getKind() == BuiltinType::Overload) {
      Expr *E = OrigOp.get()->IgnoreParens();
      if (!isa<OverloadExpr>(E)) {
        assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
          << OrigOp.get()->getSourceRange();
        return QualType();
      }

      OverloadExpr *Ovl = cast<OverloadExpr>(E);
      if (isa<UnresolvedMemberExpr>(Ovl))
        if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
          Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
            << OrigOp.get()->getSourceRange();
          return QualType();
        }

      return Context.OverloadTy;
    }

    if (PTy->getKind() == BuiltinType::UnknownAny)
      return Context.UnknownAnyTy;

    if (PTy->getKind() == BuiltinType::BoundMember) {
      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
        << OrigOp.get()->getSourceRange();
      return QualType();
    }

    OrigOp = CheckPlaceholderExpr(OrigOp.get());
    if (OrigOp.isInvalid()) return QualType();
  }

  if (OrigOp.get()->isTypeDependent())
    return Context.DependentTy;

  assert(!OrigOp.get()->getType()->isPlaceholderType());

  // Make sure to ignore parentheses in subsequent checks
  Expr *op = OrigOp.get()->IgnoreParens();

  // In OpenCL captures for blocks called as lambda functions
  // are located in the private address space. Blocks used in
  // enqueue_kernel can be located in a different address space
  // depending on a vendor implementation. Thus preventing
  // taking an address of the capture to avoid invalid AS casts.
  if (LangOpts.OpenCL) {
    auto* VarRef = dyn_cast<DeclRefExpr>(op);
    if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
      Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
      return QualType();
    }
  }

  if (getLangOpts().C99) {
    // Implement C99-only parts of addressof rules.
    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
      if (uOp->getOpcode() == UO_Deref)
        // Per C99 6.5.3.2, the address of a deref always returns a valid result
        // (assuming the deref expression is valid).
        return uOp->getSubExpr()->getType();
    }
    // Technically, there should be a check for array subscript
    // expressions here, but the result of one is always an lvalue anyway.
  }
  ValueDecl *dcl = getPrimaryDecl(op);

  if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
    if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
                                           op->getBeginLoc()))
      return QualType();

  Expr::LValueClassification lval = op->ClassifyLValue(Context);
  unsigned AddressOfError = AO_No_Error;

  if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
    bool sfinae = (bool)isSFINAEContext();
    Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
                                  : diag::ext_typecheck_addrof_temporary)
      << op->getType() << op->getSourceRange();
    if (sfinae)
      return QualType();
    // Materialize the temporary as an lvalue so that we can take its address.
    OrigOp = op =
        CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
  } else if (isa<ObjCSelectorExpr>(op)) {
    return Context.getPointerType(op->getType());
  } else if (lval == Expr::LV_MemberFunction) {
    // If it's an instance method, make a member pointer.
    // The expression must have exactly the form &A::foo.

    // If the underlying expression isn't a decl ref, give up.
    if (!isa<DeclRefExpr>(op)) {
      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
        << OrigOp.get()->getSourceRange();
      return QualType();
    }
    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());

    // The id-expression was parenthesized.
    if (OrigOp.get() != DRE) {
      Diag(OpLoc, diag::err_parens_pointer_member_function)
        << OrigOp.get()->getSourceRange();

    // The method was named without a qualifier.
    } else if (!DRE->getQualifier()) {
      if (MD->getParent()->getName().empty())
        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
          << op->getSourceRange();
      else {
        SmallString<32> Str;
        StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
          << op->getSourceRange()
          << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
      }
    }

    // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
    if (isa<CXXDestructorDecl>(MD))
      Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();

    QualType MPTy = Context.getMemberPointerType(
        op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
    // Under the MS ABI, lock down the inheritance model now.
    if (Context.getTargetInfo().getCXXABI().isMicrosoft())
      (void)isCompleteType(OpLoc, MPTy);
    return MPTy;
  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
    // C99 6.5.3.2p1
    // The operand must be either an l-value or a function designator
    if (!op->getType()->isFunctionType()) {
      // Use a special diagnostic for loads from property references.
      if (isa<PseudoObjectExpr>(op)) {
        AddressOfError = AO_Property_Expansion;
      } else {
        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
          << op->getType() << op->getSourceRange();
        return QualType();
      }
    }
  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
    // The operand cannot be a bit-field
    AddressOfError = AO_Bit_Field;
  } else if (op->getObjectKind() == OK_VectorComponent) {
    // The operand cannot be an element of a vector
    AddressOfError = AO_Vector_Element;
  } else if (op->getObjectKind() == OK_MatrixComponent) {
    // The operand cannot be an element of a matrix.
    AddressOfError = AO_Matrix_Element;
  } else if (dcl) { // C99 6.5.3.2p1
    // We have an lvalue with a decl. Make sure the decl is not declared
    // with the register storage-class specifier.
    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
      // in C++ it is not error to take address of a register
      // variable (c++03 7.1.1P3)
      if (vd->getStorageClass() == SC_Register &&
          !getLangOpts().CPlusPlus) {
        AddressOfError = AO_Register_Variable;
      }
    } else if (isa<MSPropertyDecl>(dcl)) {
      AddressOfError = AO_Property_Expansion;
    } else if (isa<FunctionTemplateDecl>(dcl)) {
      return Context.OverloadTy;
    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
      // Okay: we can take the address of a field.
      // Could be a pointer to member, though, if there is an explicit
      // scope qualifier for the class.
      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
        DeclContext *Ctx = dcl->getDeclContext();
        if (Ctx && Ctx->isRecord()) {
          if (dcl->getType()->isReferenceType()) {
            Diag(OpLoc,
                 diag::err_cannot_form_pointer_to_member_of_reference_type)
              << dcl->getDeclName() << dcl->getType();
            return QualType();
          }

          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
            Ctx = Ctx->getParent();

          QualType MPTy = Context.getMemberPointerType(
              op->getType(),
              Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
          // Under the MS ABI, lock down the inheritance model now.
          if (Context.getTargetInfo().getCXXABI().isMicrosoft())
            (void)isCompleteType(OpLoc, MPTy);
          return MPTy;
        }
      }
    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
               !isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
      llvm_unreachable("Unknown/unexpected decl type");
  }

  if (AddressOfError != AO_No_Error) {
    diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
    return QualType();
  }

  if (lval == Expr::LV_IncompleteVoidType) {
    // Taking the address of a void variable is technically illegal, but we
    // allow it in cases which are otherwise valid.
    // Example: "extern void x; void* y = &x;".
    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
  }

  // If the operand has type "type", the result has type "pointer to type".
  if (op->getType()->isObjCObjectType())
    return Context.getObjCObjectPointerType(op->getType());

  CheckAddressOfPackedMember(op);

  return Context.getPointerType(op->getType());
}

static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
  if (!DRE)
    return;
  const Decl *D = DRE->getDecl();
  if (!D)
    return;
  const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
  if (!Param)
    return;
  if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
    if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
      return;
  if (FunctionScopeInfo *FD = S.getCurFunction())
    if (!FD->ModifiedNonNullParams.count(Param))
      FD->ModifiedNonNullParams.insert(Param);
}

/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
                                        SourceLocation OpLoc) {
  if (Op->isTypeDependent())
    return S.Context.DependentTy;

  ExprResult ConvResult = S.UsualUnaryConversions(Op);
  if (ConvResult.isInvalid())
    return QualType();
  Op = ConvResult.get();
  QualType OpTy = Op->getType();
  QualType Result;

  if (isa<CXXReinterpretCastExpr>(Op)) {
    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
                                     Op->getSourceRange());
  }

  if (const PointerType *PT = OpTy->getAs<PointerType>())
  {
    Result = PT->getPointeeType();
  }
  else if (const ObjCObjectPointerType *OPT =
             OpTy->getAs<ObjCObjectPointerType>())
    Result = OPT->getPointeeType();
  else {
    ExprResult PR = S.CheckPlaceholderExpr(Op);
    if (PR.isInvalid()) return QualType();
    if (PR.get() != Op)
      return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
  }

  if (Result.isNull()) {
    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
      << OpTy << Op->getSourceRange();
    return QualType();
  }

  // Note that per both C89 and C99, indirection is always legal, even if Result
  // is an incomplete type or void.  It would be possible to warn about
  // dereferencing a void pointer, but it's completely well-defined, and such a
  // warning is unlikely to catch any mistakes. In C++, indirection is not valid
  // for pointers to 'void' but is fine for any other pointer type:
  //
  // C++ [expr.unary.op]p1:
  //   [...] the expression to which [the unary * operator] is applied shall
  //   be a pointer to an object type, or a pointer to a function type
  if (S.getLangOpts().CPlusPlus && Result->isVoidType())
    S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
      << OpTy << Op->getSourceRange();

  // Dereferences are usually l-values...
  VK = VK_LValue;

  // ...except that certain expressions are never l-values in C.
  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
    VK = VK_RValue;

  return Result;
}

BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
  BinaryOperatorKind Opc;
  switch (Kind) {
  default: llvm_unreachable("Unknown binop!");
  case tok::periodstar:           Opc = BO_PtrMemD; break;
  case tok::arrowstar:            Opc = BO_PtrMemI; break;
  case tok::star:                 Opc = BO_Mul; break;
  case tok::slash:                Opc = BO_Div; break;
  case tok::percent:              Opc = BO_Rem; break;
  case tok::plus:                 Opc = BO_Add; break;
  case tok::minus:                Opc = BO_Sub; break;
  case tok::lessless:             Opc = BO_Shl; break;
  case tok::greatergreater:       Opc = BO_Shr; break;
  case tok::lessequal:            Opc = BO_LE; break;
  case tok::less:                 Opc = BO_LT; break;
  case tok::greaterequal:         Opc = BO_GE; break;
  case tok::greater:              Opc = BO_GT; break;
  case tok::exclaimequal:         Opc = BO_NE; break;
  case tok::equalequal:           Opc = BO_EQ; break;
  case tok::spaceship:            Opc = BO_Cmp; break;
  case tok::amp:                  Opc = BO_And; break;
  case tok::caret:                Opc = BO_Xor; break;
  case tok::pipe:                 Opc = BO_Or; break;
  case tok::ampamp:               Opc = BO_LAnd; break;
  case tok::pipepipe:             Opc = BO_LOr; break;
  case tok::equal:                Opc = BO_Assign; break;
  case tok::starequal:            Opc = BO_MulAssign; break;
  case tok::slashequal:           Opc = BO_DivAssign; break;
  case tok::percentequal:         Opc = BO_RemAssign; break;
  case tok::plusequal:            Opc = BO_AddAssign; break;
  case tok::minusequal:           Opc = BO_SubAssign; break;
  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
  case tok::ampequal:             Opc = BO_AndAssign; break;
  case tok::caretequal:           Opc = BO_XorAssign; break;
  case tok::pipeequal:            Opc = BO_OrAssign; break;
  case tok::comma:                Opc = BO_Comma; break;
  }
  return Opc;
}

static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
  tok::TokenKind Kind) {
  UnaryOperatorKind Opc;
  switch (Kind) {
  default: llvm_unreachable("Unknown unary op!");
  case tok::plusplus:     Opc = UO_PreInc; break;
  case tok::minusminus:   Opc = UO_PreDec; break;
  case tok::amp:          Opc = UO_AddrOf; break;
  case tok::star:         Opc = UO_Deref; break;
  case tok::plus:         Opc = UO_Plus; break;
  case tok::minus:        Opc = UO_Minus; break;
  case tok::tilde:        Opc = UO_Not; break;
  case tok::exclaim:      Opc = UO_LNot; break;
  case tok::kw___real:    Opc = UO_Real; break;
  case tok::kw___imag:    Opc = UO_Imag; break;
  case tok::kw___extension__: Opc = UO_Extension; break;
  }
  return Opc;
}

/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
/// This warning suppressed in the event of macro expansions.
static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
                                   SourceLocation OpLoc, bool IsBuiltin) {
  if (S.inTemplateInstantiation())
    return;
  if (S.isUnevaluatedContext())
    return;
  if (OpLoc.isInvalid() || OpLoc.isMacroID())
    return;
  LHSExpr = LHSExpr->IgnoreParenImpCasts();
  RHSExpr = RHSExpr->IgnoreParenImpCasts();
  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
  if (!LHSDeclRef || !RHSDeclRef ||
      LHSDeclRef->getLocation().isMacroID() ||
      RHSDeclRef->getLocation().isMacroID())
    return;
  const ValueDecl *LHSDecl =
    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
  const ValueDecl *RHSDecl =
    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
  if (LHSDecl != RHSDecl)
    return;
  if (LHSDecl->getType().isVolatileQualified())
    return;
  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
    if (RefTy->getPointeeType().isVolatileQualified())
      return;

  S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
                          : diag::warn_self_assignment_overloaded)
      << LHSDeclRef->getType() << LHSExpr->getSourceRange()
      << RHSExpr->getSourceRange();
}

/// Check if a bitwise-& is performed on an Objective-C pointer.  This
/// is usually indicative of introspection within the Objective-C pointer.
static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
                                          SourceLocation OpLoc) {
  if (!S.getLangOpts().ObjC)
    return;

  const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
  const Expr *LHS = L.get();
  const Expr *RHS = R.get();

  if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
    ObjCPointerExpr = LHS;
    OtherExpr = RHS;
  }
  else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
    ObjCPointerExpr = RHS;
    OtherExpr = LHS;
  }

  // This warning is deliberately made very specific to reduce false
  // positives with logic that uses '&' for hashing.  This logic mainly
  // looks for code trying to introspect into tagged pointers, which
  // code should generally never do.
  if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
    unsigned Diag = diag::warn_objc_pointer_masking;
    // Determine if we are introspecting the result of performSelectorXXX.
    const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
    // Special case messages to -performSelector and friends, which
    // can return non-pointer values boxed in a pointer value.
    // Some clients may wish to silence warnings in this subcase.
    if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
      Selector S = ME->getSelector();
      StringRef SelArg0 = S.getNameForSlot(0);
      if (SelArg0.startswith("performSelector"))
        Diag = diag::warn_objc_pointer_masking_performSelector;
    }

    S.Diag(OpLoc, Diag)
      << ObjCPointerExpr->getSourceRange();
  }
}

static NamedDecl *getDeclFromExpr(Expr *E) {
  if (!E)
    return nullptr;
  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
    return DRE->getDecl();
  if (auto *ME = dyn_cast<MemberExpr>(E))
    return ME->getMemberDecl();
  if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
    return IRE->getDecl();
  return nullptr;
}

// This helper function promotes a binary operator's operands (which are of a
// half vector type) to a vector of floats and then truncates the result to
// a vector of either half or short.
static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
                                      BinaryOperatorKind Opc, QualType ResultTy,
                                      ExprValueKind VK, ExprObjectKind OK,
                                      bool IsCompAssign, SourceLocation OpLoc,
                                      FPOptionsOverride FPFeatures) {
  auto &Context = S.getASTContext();
  assert((isVector(ResultTy, Context.HalfTy) ||
          isVector(ResultTy, Context.ShortTy)) &&
         "Result must be a vector of half or short");
  assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
         isVector(RHS.get()->getType(), Context.HalfTy) &&
         "both operands expected to be a half vector");

  RHS = convertVector(RHS.get(), Context.FloatTy, S);
  QualType BinOpResTy = RHS.get()->getType();

  // If Opc is a comparison, ResultType is a vector of shorts. In that case,
  // change BinOpResTy to a vector of ints.
  if (isVector(ResultTy, Context.ShortTy))
    BinOpResTy = S.GetSignedVectorType(BinOpResTy);

  if (IsCompAssign)
    return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
                                          ResultTy, VK, OK, OpLoc, FPFeatures,
                                          BinOpResTy, BinOpResTy);

  LHS = convertVector(LHS.get(), Context.FloatTy, S);
  auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
                                    BinOpResTy, VK, OK, OpLoc, FPFeatures);
  return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
}

static std::pair<ExprResult, ExprResult>
CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
                           Expr *RHSExpr) {
  ExprResult LHS = LHSExpr, RHS = RHSExpr;
  if (!S.getLangOpts().CPlusPlus) {
    // C cannot handle TypoExpr nodes on either side of a binop because it
    // doesn't handle dependent types properly, so make sure any TypoExprs have
    // been dealt with before checking the operands.
    LHS = S.CorrectDelayedTyposInExpr(LHS);
    RHS = S.CorrectDelayedTyposInExpr(
        RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
        [Opc, LHS](Expr *E) {
          if (Opc != BO_Assign)
            return ExprResult(E);
          // Avoid correcting the RHS to the same Expr as the LHS.
          Decl *D = getDeclFromExpr(E);
          return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
        });
  }
  return std::make_pair(LHS, RHS);
}

/// Returns true if conversion between vectors of halfs and vectors of floats
/// is needed.
static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
                                     Expr *E0, Expr *E1 = nullptr) {
  if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
      Ctx.getTargetInfo().useFP16ConversionIntrinsics())
    return false;

  auto HasVectorOfHalfType = [&Ctx](Expr *E) {
    QualType Ty = E->IgnoreImplicit()->getType();

    // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
    // to vectors of floats. Although the element type of the vectors is __fp16,
    // the vectors shouldn't be treated as storage-only types. See the
    // discussion here: https://reviews.llvm.org/rG825235c140e7
    if (const VectorType *VT = Ty->getAs<VectorType>()) {
      if (VT->getVectorKind() == VectorType::NeonVector)
        return false;
      return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
    }
    return false;
  };

  return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
}

/// CreateBuiltinBinOp - Creates a new built-in binary operation with
/// operator @p Opc at location @c TokLoc. This routine only supports
/// built-in operations; ActOnBinOp handles overloaded operators.
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
                                    BinaryOperatorKind Opc,
                                    Expr *LHSExpr, Expr *RHSExpr) {
  if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
    // The syntax only allows initializer lists on the RHS of assignment,
    // so we don't need to worry about accepting invalid code for
    // non-assignment operators.
    // C++11 5.17p9:
    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
    //   of x = {} is x = T().
    InitializationKind Kind = InitializationKind::CreateDirectList(
        RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
    InitializedEntity Entity =
        InitializedEntity::InitializeTemporary(LHSExpr->getType());
    InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
    if (Init.isInvalid())
      return Init;
    RHSExpr = Init.get();
  }

  ExprResult LHS = LHSExpr, RHS = RHSExpr;
  QualType ResultTy;     // Result type of the binary operator.
  // The following two variables are used for compound assignment operators
  QualType CompLHSTy;    // Type of LHS after promotions for computation
  QualType CompResultTy; // Type of computation result
  ExprValueKind VK = VK_RValue;
  ExprObjectKind OK = OK_Ordinary;
  bool ConvertHalfVec = false;

  std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
  if (!LHS.isUsable() || !RHS.isUsable())
    return ExprError();

  if (getLangOpts().OpenCL) {
    QualType LHSTy = LHSExpr->getType();
    QualType RHSTy = RHSExpr->getType();
    // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
    // the ATOMIC_VAR_INIT macro.
    if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
      SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
      if (BO_Assign == Opc)
        Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
      else
        ResultTy = InvalidOperands(OpLoc, LHS, RHS);
      return ExprError();
    }

    // OpenCL special types - image, sampler, pipe, and blocks are to be used
    // only with a builtin functions and therefore should be disallowed here.
    if (LHSTy->isImageType() || RHSTy->isImageType() ||
        LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
        LHSTy->isPipeType() || RHSTy->isPipeType() ||
        LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
      ResultTy = InvalidOperands(OpLoc, LHS, RHS);
      return ExprError();
    }
  }

  switch (Opc) {
  case BO_Assign:
    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
    if (getLangOpts().CPlusPlus &&
        LHS.get()->getObjectKind() != OK_ObjCProperty) {
      VK = LHS.get()->getValueKind();
      OK = LHS.get()->getObjectKind();
    }
    if (!ResultTy.isNull()) {
      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
      DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);

      // Avoid copying a block to the heap if the block is assigned to a local
      // auto variable that is declared in the same scope as the block. This
      // optimization is unsafe if the local variable is declared in an outer
      // scope. For example:
      //
      // BlockTy b;
      // {
      //   b = ^{...};
      // }
      // // It is unsafe to invoke the block here if it wasn't copied to the
      // // heap.
      // b();

      if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
        if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
          if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
            if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
              BE->getBlockDecl()->setCanAvoidCopyToHeap();

      if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
        checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
                              NTCUC_Assignment, NTCUK_Copy);
    }
    RecordModifiableNonNullParam(*this, LHS.get());
    break;
  case BO_PtrMemD:
  case BO_PtrMemI:
    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
                                            Opc == BO_PtrMemI);
    break;
  case BO_Mul:
  case BO_Div:
    ConvertHalfVec = true;
    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
                                           Opc == BO_Div);
    break;
  case BO_Rem:
    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
    break;
  case BO_Add:
    ConvertHalfVec = true;
    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
    break;
  case BO_Sub:
    ConvertHalfVec = true;
    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
    break;
  case BO_Shl:
  case BO_Shr:
    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
    break;
  case BO_LE:
  case BO_LT:
  case BO_GE:
  case BO_GT:
    ConvertHalfVec = true;
    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
    break;
  case BO_EQ:
  case BO_NE:
    ConvertHalfVec = true;
    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
    break;
  case BO_Cmp:
    ConvertHalfVec = true;
    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
    assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
    break;
  case BO_And:
    checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
    LLVM_FALLTHROUGH;
  case BO_Xor:
  case BO_Or:
    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
    break;
  case BO_LAnd:
  case BO_LOr:
    ConvertHalfVec = true;
    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
    break;
  case BO_MulAssign:
  case BO_DivAssign:
    ConvertHalfVec = true;
    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
                                               Opc == BO_DivAssign);
    CompLHSTy = CompResultTy;
    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
    break;
  case BO_RemAssign:
    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
    CompLHSTy = CompResultTy;
    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
    break;
  case BO_AddAssign:
    ConvertHalfVec = true;
    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
    break;
  case BO_SubAssign:
    ConvertHalfVec = true;
    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
    break;
  case BO_ShlAssign:
  case BO_ShrAssign:
    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
    CompLHSTy = CompResultTy;
    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
    break;
  case BO_AndAssign:
  case BO_OrAssign: // fallthrough
    DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
    LLVM_FALLTHROUGH;
  case BO_XorAssign:
    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
    CompLHSTy = CompResultTy;
    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
    break;
  case BO_Comma:
    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
      VK = RHS.get()->getValueKind();
      OK = RHS.get()->getObjectKind();
    }
    break;
  }
  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
    return ExprError();

  // Some of the binary operations require promoting operands of half vector to
  // float vectors and truncating the result back to half vector. For now, we do
  // this only when HalfArgsAndReturn is set (that is, when the target is arm or
  // arm64).
  assert(
      (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
                              isVector(LHS.get()->getType(), Context.HalfTy)) &&
      "both sides are half vectors or neither sides are");
  ConvertHalfVec =
      needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());

  // Check for array bounds violations for both sides of the BinaryOperator
  CheckArrayAccess(LHS.get());
  CheckArrayAccess(RHS.get());

  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
    NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
                                                 &Context.Idents.get("object_setClass"),
                                                 SourceLocation(), LookupOrdinaryName);
    if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
      SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
          << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
                                        "object_setClass(")
          << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
                                          ",")
          << FixItHint::CreateInsertion(RHSLocEnd, ")");
    }
    else
      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
  }
  else if (const ObjCIvarRefExpr *OIRE =
           dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
    DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());

  // Opc is not a compound assignment if CompResultTy is null.
  if (CompResultTy.isNull()) {
    if (ConvertHalfVec)
      return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
                                 OpLoc, CurFPFeatureOverrides());
    return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
                                  VK, OK, OpLoc, CurFPFeatureOverrides());
  }

  // Handle compound assignments.
  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
      OK_ObjCProperty) {
    VK = VK_LValue;
    OK = LHS.get()->getObjectKind();
  }

  // The LHS is not converted to the result type for fixed-point compound
  // assignment as the common type is computed on demand. Reset the CompLHSTy
  // to the LHS type we would have gotten after unary conversions.
  if (CompResultTy->isFixedPointType())
    CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();

  if (ConvertHalfVec)
    return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
                               OpLoc, CurFPFeatureOverrides());

  return CompoundAssignOperator::Create(
      Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
      CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
}

/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
/// operators are mixed in a way that suggests that the programmer forgot that
/// comparison operators have higher precedence. The most typical example of
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
                                      SourceLocation OpLoc, Expr *LHSExpr,
                                      Expr *RHSExpr) {
  BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
  BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);

  // Check that one of the sides is a comparison operator and the other isn't.
  bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
  bool isRightComp = RHSBO && RHSBO->isComparisonOp();
  if (isLeftComp == isRightComp)
    return;

  // Bitwise operations are sometimes used as eager logical ops.
  // Don't diagnose this.
  bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
  bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
  if (isLeftBitwise || isRightBitwise)
    return;

  SourceRange DiagRange = isLeftComp
                              ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
                              : SourceRange(OpLoc, RHSExpr->getEndLoc());
  StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
  SourceRange ParensRange =
      isLeftComp
          ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
          : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());

  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
    << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
  SuggestParentheses(Self, OpLoc,
    Self.PDiag(diag::note_precedence_silence) << OpStr,
    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
  SuggestParentheses(Self, OpLoc,
    Self.PDiag(diag::note_precedence_bitwise_first)
      << BinaryOperator::getOpcodeStr(Opc),
    ParensRange);
}

/// It accepts a '&&' expr that is inside a '||' one.
/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
/// in parentheses.
static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
                                       BinaryOperator *Bop) {
  assert(Bop->getOpcode() == BO_LAnd);
  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
      << Bop->getSourceRange() << OpLoc;
  SuggestParentheses(Self, Bop->getOperatorLoc(),
    Self.PDiag(diag::note_precedence_silence)
      << Bop->getOpcodeStr(),
    Bop->getSourceRange());
}

/// Returns true if the given expression can be evaluated as a constant
/// 'true'.
static bool EvaluatesAsTrue(Sema &S, Expr *E) {
  bool Res;
  return !E->isValueDependent() &&
         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
}

/// Returns true if the given expression can be evaluated as a constant
/// 'false'.
static bool EvaluatesAsFalse(Sema &S, Expr *E) {
  bool Res;
  return !E->isValueDependent() &&
         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
}

/// Look for '&&' in the left hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
                                             Expr *LHSExpr, Expr *RHSExpr) {
  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
    if (Bop->getOpcode() == BO_LAnd) {
      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
      if (EvaluatesAsFalse(S, RHSExpr))
        return;
      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
      if (!EvaluatesAsTrue(S, Bop->getLHS()))
        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
    } else if (Bop->getOpcode() == BO_LOr) {
      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
        // If it's "a || b && 1 || c" we didn't warn earlier for
        // "a || b && 1", but warn now.
        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
      }
    }
  }
}

/// Look for '&&' in the right hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
                                             Expr *LHSExpr, Expr *RHSExpr) {
  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
    if (Bop->getOpcode() == BO_LAnd) {
      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
      if (EvaluatesAsFalse(S, LHSExpr))
        return;
      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
      if (!EvaluatesAsTrue(S, Bop->getRHS()))
        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
    }
  }
}

/// Look for bitwise op in the left or right hand of a bitwise op with
/// lower precedence and emit a diagnostic together with a fixit hint that wraps
/// the '&' expression in parentheses.
static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
                                         SourceLocation OpLoc, Expr *SubExpr) {
  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
    if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
      S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
        << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
        << Bop->getSourceRange() << OpLoc;
      SuggestParentheses(S, Bop->getOperatorLoc(),
        S.PDiag(diag::note_precedence_silence)
          << Bop->getOpcodeStr(),
        Bop->getSourceRange());
    }
  }
}

static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
                                    Expr *SubExpr, StringRef Shift) {
  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
    if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
      StringRef Op = Bop->getOpcodeStr();
      S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
          << Bop->getSourceRange() << OpLoc << Shift << Op;
      SuggestParentheses(S, Bop->getOperatorLoc(),
          S.PDiag(diag::note_precedence_silence) << Op,
          Bop->getSourceRange());
    }
  }
}

static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
                                 Expr *LHSExpr, Expr *RHSExpr) {
  CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
  if (!OCE)
    return;

  FunctionDecl *FD = OCE->getDirectCallee();
  if (!FD || !FD->isOverloadedOperator())
    return;

  OverloadedOperatorKind Kind = FD->getOverloadedOperator();
  if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
    return;

  S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
      << (Kind == OO_LessLess);
  SuggestParentheses(S, OCE->getOperatorLoc(),
                     S.PDiag(diag::note_precedence_silence)
                         << (Kind == OO_LessLess ? "<<" : ">>"),
                     OCE->getSourceRange());
  SuggestParentheses(
      S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
      SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
}

/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
/// precedence.
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
                                    SourceLocation OpLoc, Expr *LHSExpr,
                                    Expr *RHSExpr){
  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
  if (BinaryOperator::isBitwiseOp(Opc))
    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);

  // Diagnose "arg1 & arg2 | arg3"
  if ((Opc == BO_Or || Opc == BO_Xor) &&
      !OpLoc.isMacroID()/* Don't warn in macros. */) {
    DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
    DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
  }

  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
  // We don't warn for 'assert(a || b && "bad")' since this is safe.
  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
  }

  if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
      || Opc == BO_Shr) {
    StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
    DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
    DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
  }

  // Warn on overloaded shift operators and comparisons, such as:
  // cout << 5 == 4;
  if (BinaryOperator::isComparisonOp(Opc))
    DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
}

// Binary Operators.  'Tok' is the token for the operator.
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
                            tok::TokenKind Kind,
                            Expr *LHSExpr, Expr *RHSExpr) {
  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
  assert(LHSExpr && "ActOnBinOp(): missing left expression");
  assert(RHSExpr && "ActOnBinOp(): missing right expression");

  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);

  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
}

void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
                       UnresolvedSetImpl &Functions) {
  OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
  if (OverOp != OO_None && OverOp != OO_Equal)
    LookupOverloadedOperatorName(OverOp, S, Functions);

  // In C++20 onwards, we may have a second operator to look up.
  if (getLangOpts().CPlusPlus20) {
    if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
      LookupOverloadedOperatorName(ExtraOp, S, Functions);
  }
}

/// Build an overloaded binary operator expression in the given scope.
static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
                                       BinaryOperatorKind Opc,
                                       Expr *LHS, Expr *RHS) {
  switch (Opc) {
  case BO_Assign:
  case BO_DivAssign:
  case BO_RemAssign:
  case BO_SubAssign:
  case BO_AndAssign:
  case BO_OrAssign:
  case BO_XorAssign:
    DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
    CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
    break;
  default:
    break;
  }

  // Find all of the overloaded operators visible from this point.
  UnresolvedSet<16> Functions;
  S.LookupBinOp(Sc, OpLoc, Opc, Functions);

  // Build the (potentially-overloaded, potentially-dependent)
  // binary operation.
  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
}

ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
                            BinaryOperatorKind Opc,
                            Expr *LHSExpr, Expr *RHSExpr) {
  ExprResult LHS, RHS;
  std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
  if (!LHS.isUsable() || !RHS.isUsable())
    return ExprError();
  LHSExpr = LHS.get();
  RHSExpr = RHS.get();

  // We want to end up calling one of checkPseudoObjectAssignment
  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
  // both expressions are overloadable or either is type-dependent),
  // or CreateBuiltinBinOp (in any other case).  We also want to get
  // any placeholder types out of the way.

  // Handle pseudo-objects in the LHS.
  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
    // Assignments with a pseudo-object l-value need special analysis.
    if (pty->getKind() == BuiltinType::PseudoObject &&
        BinaryOperator::isAssignmentOp(Opc))
      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);

    // Don't resolve overloads if the other type is overloadable.
    if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
      // We can't actually test that if we still have a placeholder,
      // though.  Fortunately, none of the exceptions we see in that
      // code below are valid when the LHS is an overload set.  Note
      // that an overload set can be dependently-typed, but it never
      // instantiates to having an overloadable type.
      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
      if (resolvedRHS.isInvalid()) return ExprError();
      RHSExpr = resolvedRHS.get();

      if (RHSExpr->isTypeDependent() ||
          RHSExpr->getType()->isOverloadableType())
        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
    }

    // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
    // template, diagnose the missing 'template' keyword instead of diagnosing
    // an invalid use of a bound member function.
    //
    // Note that "A::x < b" might be valid if 'b' has an overloadable type due
    // to C++1z [over.over]/1.4, but we already checked for that case above.
    if (Opc == BO_LT && inTemplateInstantiation() &&
        (pty->getKind() == BuiltinType::BoundMember ||
         pty->getKind() == BuiltinType::Overload)) {
      auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
      if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
          std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
            return isa<FunctionTemplateDecl>(ND);
          })) {
        Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
                                : OE->getNameLoc(),
             diag::err_template_kw_missing)
          << OE->getName().getAsString() << "";
        return ExprError();
      }
    }

    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
    if (LHS.isInvalid()) return ExprError();
    LHSExpr = LHS.get();
  }

  // Handle pseudo-objects in the RHS.
  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
    // An overload in the RHS can potentially be resolved by the type
    // being assigned to.
    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
      if (getLangOpts().CPlusPlus &&
          (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
           LHSExpr->getType()->isOverloadableType()))
        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);

      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
    }

    // Don't resolve overloads if the other type is overloadable.
    if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
        LHSExpr->getType()->isOverloadableType())
      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);

    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
    if (!resolvedRHS.isUsable()) return ExprError();
    RHSExpr = resolvedRHS.get();
  }

  if (getLangOpts().CPlusPlus) {
    // If either expression is type-dependent, always build an
    // overloaded op.
    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);

    // Otherwise, build an overloaded op if either expression has an
    // overloadable type.
    if (LHSExpr->getType()->isOverloadableType() ||
        RHSExpr->getType()->isOverloadableType())
      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
  }

  // Build a built-in binary operation.
  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
}

static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
  if (T.isNull() || T->isDependentType())
    return false;

  if (!T->isPromotableIntegerType())
    return true;

  return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
}

ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
                                      UnaryOperatorKind Opc,
                                      Expr *InputExpr) {
  ExprResult Input = InputExpr;
  ExprValueKind VK = VK_RValue;
  ExprObjectKind OK = OK_Ordinary;
  QualType resultType;
  bool CanOverflow = false;

  bool ConvertHalfVec = false;
  if (getLangOpts().OpenCL) {
    QualType Ty = InputExpr->getType();
    // The only legal unary operation for atomics is '&'.
    if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
    // OpenCL special types - image, sampler, pipe, and blocks are to be used
    // only with a builtin functions and therefore should be disallowed here.
        (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
        || Ty->isBlockPointerType())) {
      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
                       << InputExpr->getType()
                       << Input.get()->getSourceRange());
    }
  }

  switch (Opc) {
  case UO_PreInc:
  case UO_PreDec:
  case UO_PostInc:
  case UO_PostDec:
    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
                                                OpLoc,
                                                Opc == UO_PreInc ||
                                                Opc == UO_PostInc,
                                                Opc == UO_PreInc ||
                                                Opc == UO_PreDec);
    CanOverflow = isOverflowingIntegerType(Context, resultType);
    break;
  case UO_AddrOf:
    resultType = CheckAddressOfOperand(Input, OpLoc);
    CheckAddressOfNoDeref(InputExpr);
    RecordModifiableNonNullParam(*this, InputExpr);
    break;
  case UO_Deref: {
    Input = DefaultFunctionArrayLvalueConversion(Input.get());
    if (Input.isInvalid()) return ExprError();
    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
    break;
  }
  case UO_Plus:
  case UO_Minus:
    CanOverflow = Opc == UO_Minus &&
                  isOverflowingIntegerType(Context, Input.get()->getType());
    Input = UsualUnaryConversions(Input.get());
    if (Input.isInvalid()) return ExprError();
    // Unary plus and minus require promoting an operand of half vector to a
    // float vector and truncating the result back to a half vector. For now, we
    // do this only when HalfArgsAndReturns is set (that is, when the target is
    // arm or arm64).
    ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());

    // If the operand is a half vector, promote it to a float vector.
    if (ConvertHalfVec)
      Input = convertVector(Input.get(), Context.FloatTy, *this);
    resultType = Input.get()->getType();
    if (resultType->isDependentType())
      break;
    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
      break;
    else if (resultType->isVectorType() &&
             // The z vector extensions don't allow + or - with bool vectors.
             (!Context.getLangOpts().ZVector ||
              resultType->castAs<VectorType>()->getVectorKind() !=
              VectorType::AltiVecBool))
      break;
    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
             Opc == UO_Plus &&
             resultType->isPointerType())
      break;

    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
      << resultType << Input.get()->getSourceRange());

  case UO_Not: // bitwise complement
    Input = UsualUnaryConversions(Input.get());
    if (Input.isInvalid())
      return ExprError();
    resultType = Input.get()->getType();
    if (resultType->isDependentType())
      break;
    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
    if (resultType->isComplexType() || resultType->isComplexIntegerType())
      // C99 does not support '~' for complex conjugation.
      Diag(OpLoc, diag::ext_integer_complement_complex)
          << resultType << Input.get()->getSourceRange();
    else if (resultType->hasIntegerRepresentation())
      break;
    else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
      // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
      // on vector float types.
      QualType T = resultType->castAs<ExtVectorType>()->getElementType();
      if (!T->isIntegerType())
        return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
                          << resultType << Input.get()->getSourceRange());
    } else {
      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
                       << resultType << Input.get()->getSourceRange());
    }
    break;

  case UO_LNot: // logical negation
    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
    Input = DefaultFunctionArrayLvalueConversion(Input.get());
    if (Input.isInvalid()) return ExprError();
    resultType = Input.get()->getType();

    // Though we still have to promote half FP to float...
    if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
      Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
      resultType = Context.FloatTy;
    }

    if (resultType->isDependentType())
      break;
    if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
      // C99 6.5.3.3p1: ok, fallthrough;
      if (Context.getLangOpts().CPlusPlus) {
        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
        // operand contextually converted to bool.
        Input = ImpCastExprToType(Input.get(), Context.BoolTy,
                                  ScalarTypeToBooleanCastKind(resultType));
      } else if (Context.getLangOpts().OpenCL &&
                 Context.getLangOpts().OpenCLVersion < 120) {
        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
        // operate on scalar float types.
        if (!resultType->isIntegerType() && !resultType->isPointerType())
          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
                           << resultType << Input.get()->getSourceRange());
      }
    } else if (resultType->isExtVectorType()) {
      if (Context.getLangOpts().OpenCL &&
          Context.getLangOpts().OpenCLVersion < 120 &&
          !Context.getLangOpts().OpenCLCPlusPlus) {
        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
        // operate on vector float types.
        QualType T = resultType->castAs<ExtVectorType>()->getElementType();
        if (!T->isIntegerType())
          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
                           << resultType << Input.get()->getSourceRange());
      }
      // Vector logical not returns the signed variant of the operand type.
      resultType = GetSignedVectorType(resultType);
      break;
    } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
      const VectorType *VTy = resultType->castAs<VectorType>();
      if (VTy->getVectorKind() != VectorType::GenericVector)
        return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
                         << resultType << Input.get()->getSourceRange());

      // Vector logical not returns the signed variant of the operand type.
      resultType = GetSignedVectorType(resultType);
      break;
    } else {
      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
        << resultType << Input.get()->getSourceRange());
    }

    // LNot always has type int. C99 6.5.3.3p5.
    // In C++, it's bool. C++ 5.3.1p8
    resultType = Context.getLogicalOperationType();
    break;
  case UO_Real:
  case UO_Imag:
    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
    // complex l-values to ordinary l-values and all other values to r-values.
    if (Input.isInvalid()) return ExprError();
    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
      if (Input.get()->getValueKind() != VK_RValue &&
          Input.get()->getObjectKind() == OK_Ordinary)
        VK = Input.get()->getValueKind();
    } else if (!getLangOpts().CPlusPlus) {
      // In C, a volatile scalar is read by __imag. In C++, it is not.
      Input = DefaultLvalueConversion(Input.get());
    }
    break;
  case UO_Extension:
    resultType = Input.get()->getType();
    VK = Input.get()->getValueKind();
    OK = Input.get()->getObjectKind();
    break;
  case UO_Coawait:
    // It's unnecessary to represent the pass-through operator co_await in the
    // AST; just return the input expression instead.
    assert(!Input.get()->getType()->isDependentType() &&
                   "the co_await expression must be non-dependant before "
                   "building operator co_await");
    return Input;
  }
  if (resultType.isNull() || Input.isInvalid())
    return ExprError();

  // Check for array bounds violations in the operand of the UnaryOperator,
  // except for the '*' and '&' operators that have to be handled specially
  // by CheckArrayAccess (as there are special cases like &array[arraysize]
  // that are explicitly defined as valid by the standard).
  if (Opc != UO_AddrOf && Opc != UO_Deref)
    CheckArrayAccess(Input.get());

  auto *UO =
      UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
                            OpLoc, CanOverflow, CurFPFeatureOverrides());

  if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
      !isa<ArrayType>(UO->getType().getDesugaredType(Context)))
    ExprEvalContexts.back().PossibleDerefs.insert(UO);

  // Convert the result back to a half vector.
  if (ConvertHalfVec)
    return convertVector(UO, Context.HalfTy, *this);
  return UO;
}

/// Determine whether the given expression is a qualified member
/// access expression, of a form that could be turned into a pointer to member
/// with the address-of operator.
bool Sema::isQualifiedMemberAccess(Expr *E) {
  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    if (!DRE->getQualifier())
      return false;

    ValueDecl *VD = DRE->getDecl();
    if (!VD->isCXXClassMember())
      return false;

    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
      return true;
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
      return Method->isInstance();

    return false;
  }

  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
    if (!ULE->getQualifier())
      return false;

    for (NamedDecl *D : ULE->decls()) {
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
        if (Method->isInstance())
          return true;
      } else {
        // Overload set does not contain methods.
        break;
      }
    }

    return false;
  }

  return false;
}

ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
                              UnaryOperatorKind Opc, Expr *Input) {
  // First things first: handle placeholders so that the
  // overloaded-operator check considers the right type.
  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
    // Increment and decrement of pseudo-object references.
    if (pty->getKind() == BuiltinType::PseudoObject &&
        UnaryOperator::isIncrementDecrementOp(Opc))
      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);

    // extension is always a builtin operator.
    if (Opc == UO_Extension)
      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);

    // & gets special logic for several kinds of placeholder.
    // The builtin code knows what to do.
    if (Opc == UO_AddrOf &&
        (pty->getKind() == BuiltinType::Overload ||
         pty->getKind() == BuiltinType::UnknownAny ||
         pty->getKind() == BuiltinType::BoundMember))
      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);

    // Anything else needs to be handled now.
    ExprResult Result = CheckPlaceholderExpr(Input);
    if (Result.isInvalid()) return ExprError();
    Input = Result.get();
  }

  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
    // Find all of the overloaded operators visible from this point.
    UnresolvedSet<16> Functions;
    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
    if (S && OverOp != OO_None)
      LookupOverloadedOperatorName(OverOp, S, Functions);

    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
  }

  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
}

// Unary Operators.  'Tok' is the token for the operator.
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
                              tok::TokenKind Op, Expr *Input) {
  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
}

/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
                                LabelDecl *TheDecl) {
  TheDecl->markUsed(Context);
  // Create the AST node.  The address of a label always has type 'void*'.
  return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
                                     Context.getPointerType(Context.VoidTy));
}

void Sema::ActOnStartStmtExpr() {
  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
}

void Sema::ActOnStmtExprError() {
  // Note that function is also called by TreeTransform when leaving a
  // StmtExpr scope without rebuilding anything.

  DiscardCleanupsInEvaluationContext();
  PopExpressionEvaluationContext();
}

ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
                               SourceLocation RPLoc) {
  return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
}

ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
                               SourceLocation RPLoc, unsigned TemplateDepth) {
  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);

  if (hasAnyUnrecoverableErrorsInThisFunction())
    DiscardCleanupsInEvaluationContext();
  assert(!Cleanup.exprNeedsCleanups() &&
         "cleanups within StmtExpr not correctly bound!");
  PopExpressionEvaluationContext();

  // FIXME: there are a variety of strange constraints to enforce here, for
  // example, it is not possible to goto into a stmt expression apparently.
  // More semantic analysis is needed.

  // If there are sub-stmts in the compound stmt, take the type of the last one
  // as the type of the stmtexpr.
  QualType Ty = Context.VoidTy;
  bool StmtExprMayBindToTemp = false;
  if (!Compound->body_empty()) {
    // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
    if (const auto *LastStmt =
            dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
      if (const Expr *Value = LastStmt->getExprStmt()) {
        StmtExprMayBindToTemp = true;
        Ty = Value->getType();
      }
    }
  }

  // FIXME: Check that expression type is complete/non-abstract; statement
  // expressions are not lvalues.
  Expr *ResStmtExpr =
      new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
  if (StmtExprMayBindToTemp)
    return MaybeBindToTemporary(ResStmtExpr);
  return ResStmtExpr;
}

ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
  if (ER.isInvalid())
    return ExprError();

  // Do function/array conversion on the last expression, but not
  // lvalue-to-rvalue.  However, initialize an unqualified type.
  ER = DefaultFunctionArrayConversion(ER.get());
  if (ER.isInvalid())
    return ExprError();
  Expr *E = ER.get();

  if (E->isTypeDependent())
    return E;

  // In ARC, if the final expression ends in a consume, splice
  // the consume out and bind it later.  In the alternate case
  // (when dealing with a retainable type), the result
  // initialization will create a produce.  In both cases the
  // result will be +1, and we'll need to balance that out with
  // a bind.
  auto *Cast = dyn_cast<ImplicitCastExpr>(E);
  if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
    return Cast->getSubExpr();

  // FIXME: Provide a better location for the initialization.
  return PerformCopyInitialization(
      InitializedEntity::InitializeStmtExprResult(
          E->getBeginLoc(), E->getType().getUnqualifiedType()),
      SourceLocation(), E);
}

ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
                                      TypeSourceInfo *TInfo,
                                      ArrayRef<OffsetOfComponent> Components,
                                      SourceLocation RParenLoc) {
  QualType ArgTy = TInfo->getType();
  bool Dependent = ArgTy->isDependentType();
  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();

  // We must have at least one component that refers to the type, and the first
  // one is known to be a field designator.  Verify that the ArgTy represents
  // a struct/union/class.
  if (!Dependent && !ArgTy->isRecordType())
    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
                       << ArgTy << TypeRange);

  // Type must be complete per C99 7.17p3 because a declaring a variable
  // with an incomplete type would be ill-formed.
  if (!Dependent
      && RequireCompleteType(BuiltinLoc, ArgTy,
                             diag::err_offsetof_incomplete_type, TypeRange))
    return ExprError();

  bool DidWarnAboutNonPOD = false;
  QualType CurrentType = ArgTy;
  SmallVector<OffsetOfNode, 4> Comps;
  SmallVector<Expr*, 4> Exprs;
  for (const OffsetOfComponent &OC : Components) {
    if (OC.isBrackets) {
      // Offset of an array sub-field.  TODO: Should we allow vector elements?
      if (!CurrentType->isDependentType()) {
        const ArrayType *AT = Context.getAsArrayType(CurrentType);
        if(!AT)
          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
                           << CurrentType);
        CurrentType = AT->getElementType();
      } else
        CurrentType = Context.DependentTy;

      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
      if (IdxRval.isInvalid())
        return ExprError();
      Expr *Idx = IdxRval.get();

      // The expression must be an integral expression.
      // FIXME: An integral constant expression?
      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
          !Idx->getType()->isIntegerType())
        return ExprError(
            Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
            << Idx->getSourceRange());

      // Record this array index.
      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
      Exprs.push_back(Idx);
      continue;
    }

    // Offset of a field.
    if (CurrentType->isDependentType()) {
      // We have the offset of a field, but we can't look into the dependent
      // type. Just record the identifier of the field.
      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
      CurrentType = Context.DependentTy;
      continue;
    }

    // We need to have a complete type to look into.
    if (RequireCompleteType(OC.LocStart, CurrentType,
                            diag::err_offsetof_incomplete_type))
      return ExprError();

    // Look for the designated field.
    const RecordType *RC = CurrentType->getAs<RecordType>();
    if (!RC)
      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
                       << CurrentType);
    RecordDecl *RD = RC->getDecl();

    // C++ [lib.support.types]p5:
    //   The macro offsetof accepts a restricted set of type arguments in this
    //   International Standard. type shall be a POD structure or a POD union
    //   (clause 9).
    // C++11 [support.types]p4:
    //   If type is not a standard-layout class (Clause 9), the results are
    //   undefined.
    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
      bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
      unsigned DiagID =
        LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
                            : diag::ext_offsetof_non_pod_type;

      if (!IsSafe && !DidWarnAboutNonPOD &&
          DiagRuntimeBehavior(BuiltinLoc, nullptr,
                              PDiag(DiagID)
                              << SourceRange(Components[0].LocStart, OC.LocEnd)
                              << CurrentType))
        DidWarnAboutNonPOD = true;
    }

    // Look for the field.
    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
    LookupQualifiedName(R, RD);
    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
    IndirectFieldDecl *IndirectMemberDecl = nullptr;
    if (!MemberDecl) {
      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
        MemberDecl = IndirectMemberDecl->getAnonField();
    }

    if (!MemberDecl)
      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
                                                              OC.LocEnd));

    // C99 7.17p3:
    //   (If the specified member is a bit-field, the behavior is undefined.)
    //
    // We diagnose this as an error.
    if (MemberDecl->isBitField()) {
      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
        << MemberDecl->getDeclName()
        << SourceRange(BuiltinLoc, RParenLoc);
      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
      return ExprError();
    }

    RecordDecl *Parent = MemberDecl->getParent();
    if (IndirectMemberDecl)
      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());

    // If the member was found in a base class, introduce OffsetOfNodes for
    // the base class indirections.
    CXXBasePaths Paths;
    if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
                      Paths)) {
      if (Paths.getDetectedVirtual()) {
        Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
          << MemberDecl->getDeclName()
          << SourceRange(BuiltinLoc, RParenLoc);
        return ExprError();
      }

      CXXBasePath &Path = Paths.front();
      for (const CXXBasePathElement &B : Path)
        Comps.push_back(OffsetOfNode(B.Base));
    }

    if (IndirectMemberDecl) {
      for (auto *FI : IndirectMemberDecl->chain()) {
        assert(isa<FieldDecl>(FI));
        Comps.push_back(OffsetOfNode(OC.LocStart,
                                     cast<FieldDecl>(FI), OC.LocEnd));
      }
    } else
      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));

    CurrentType = MemberDecl->getType().getNonReferenceType();
  }

  return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
                              Comps, Exprs, RParenLoc);
}

ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
                                      SourceLocation BuiltinLoc,
                                      SourceLocation TypeLoc,
                                      ParsedType ParsedArgTy,
                                      ArrayRef<OffsetOfComponent> Components,
                                      SourceLocation RParenLoc) {

  TypeSourceInfo *ArgTInfo;
  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
  if (ArgTy.isNull())
    return ExprError();

  if (!ArgTInfo)
    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);

  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
}


ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
                                 Expr *CondExpr,
                                 Expr *LHSExpr, Expr *RHSExpr,
                                 SourceLocation RPLoc) {
  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");

  ExprValueKind VK = VK_RValue;
  ExprObjectKind OK = OK_Ordinary;
  QualType resType;
  bool CondIsTrue = false;
  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
    resType = Context.DependentTy;
  } else {
    // The conditional expression is required to be a constant expression.
    llvm::APSInt condEval(32);
    ExprResult CondICE
      = VerifyIntegerConstantExpression(CondExpr, &condEval,
          diag::err_typecheck_choose_expr_requires_constant, false);
    if (CondICE.isInvalid())
      return ExprError();
    CondExpr = CondICE.get();
    CondIsTrue = condEval.getZExtValue();

    // If the condition is > zero, then the AST type is the same as the LHSExpr.
    Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;

    resType = ActiveExpr->getType();
    VK = ActiveExpr->getValueKind();
    OK = ActiveExpr->getObjectKind();
  }

  return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
                                  resType, VK, OK, RPLoc, CondIsTrue);
}

//===----------------------------------------------------------------------===//
// Clang Extensions.
//===----------------------------------------------------------------------===//

/// ActOnBlockStart - This callback is invoked when a block literal is started.
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);

  if (LangOpts.CPlusPlus) {
    MangleNumberingContext *MCtx;
    Decl *ManglingContextDecl;
    std::tie(MCtx, ManglingContextDecl) =
        getCurrentMangleNumberContext(Block->getDeclContext());
    if (MCtx) {
      unsigned ManglingNumber = MCtx->getManglingNumber(Block);
      Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
    }
  }

  PushBlockScope(CurScope, Block);
  CurContext->addDecl(Block);
  if (CurScope)
    PushDeclContext(CurScope, Block);
  else
    CurContext = Block;

  getCurBlock()->HasImplicitReturnType = true;

  // Enter a new evaluation context to insulate the block from any
  // cleanups from the enclosing full-expression.
  PushExpressionEvaluationContext(
      ExpressionEvaluationContext::PotentiallyEvaluated);
}

void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
                               Scope *CurScope) {
  assert(ParamInfo.getIdentifier() == nullptr &&
         "block-id should have no identifier!");
  assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext);
  BlockScopeInfo *CurBlock = getCurBlock();

  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
  QualType T = Sig->getType();

  // FIXME: We should allow unexpanded parameter packs here, but that would,
  // in turn, make the block expression contain unexpanded parameter packs.
  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
    // Drop the parameters.
    FunctionProtoType::ExtProtoInfo EPI;
    EPI.HasTrailingReturn = false;
    EPI.TypeQuals.addConst();
    T = Context.getFunctionType(Context.DependentTy, None, EPI);
    Sig = Context.getTrivialTypeSourceInfo(T);
  }

  // GetTypeForDeclarator always produces a function type for a block
  // literal signature.  Furthermore, it is always a FunctionProtoType
  // unless the function was written with a typedef.
  assert(T->isFunctionType() &&
         "GetTypeForDeclarator made a non-function block signature");

  // Look for an explicit signature in that function type.
  FunctionProtoTypeLoc ExplicitSignature;

  if ((ExplicitSignature = Sig->getTypeLoc()
                               .getAsAdjusted<FunctionProtoTypeLoc>())) {

    // Check whether that explicit signature was synthesized by
    // GetTypeForDeclarator.  If so, don't save that as part of the
    // written signature.
    if (ExplicitSignature.getLocalRangeBegin() ==
        ExplicitSignature.getLocalRangeEnd()) {
      // This would be much cheaper if we stored TypeLocs instead of
      // TypeSourceInfos.
      TypeLoc Result = ExplicitSignature.getReturnLoc();
      unsigned Size = Result.getFullDataSize();
      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
      Sig->getTypeLoc().initializeFullCopy(Result, Size);

      ExplicitSignature = FunctionProtoTypeLoc();
    }
  }

  CurBlock->TheDecl->setSignatureAsWritten(Sig);
  CurBlock->FunctionType = T;

  const FunctionType *Fn = T->getAs<FunctionType>();
  QualType RetTy = Fn->getReturnType();
  bool isVariadic =
    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());

  CurBlock->TheDecl->setIsVariadic(isVariadic);

  // Context.DependentTy is used as a placeholder for a missing block
  // return type.  TODO:  what should we do with declarators like:
  //   ^ * { ... }
  // If the answer is "apply template argument deduction"....
  if (RetTy != Context.DependentTy) {
    CurBlock->ReturnType = RetTy;
    CurBlock->TheDecl->setBlockMissingReturnType(false);
    CurBlock->HasImplicitReturnType = false;
  }

  // Push block parameters from the declarator if we had them.
  SmallVector<ParmVarDecl*, 8> Params;
  if (ExplicitSignature) {
    for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
      ParmVarDecl *Param = ExplicitSignature.getParam(I);
      if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
          !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
        // Diagnose this as an extension in C17 and earlier.
        if (!getLangOpts().C2x)
          Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
      }
      Params.push_back(Param);
    }

  // Fake up parameter variables if we have a typedef, like
  //   ^ fntype { ... }
  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
    for (const auto &I : Fn->param_types()) {
      ParmVarDecl *Param = BuildParmVarDeclForTypedef(
          CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
      Params.push_back(Param);
    }
  }

  // Set the parameters on the block decl.
  if (!Params.empty()) {
    CurBlock->TheDecl->setParams(Params);
    CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
                             /*CheckParameterNames=*/false);
  }

  // Finally we can process decl attributes.
  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);

  // Put the parameter variables in scope.
  for (auto AI : CurBlock->TheDecl->parameters()) {
    AI->setOwningFunction(CurBlock->TheDecl);

    // If this has an identifier, add it to the scope stack.
    if (AI->getIdentifier()) {
      CheckShadow(CurBlock->TheScope, AI);

      PushOnScopeChains(AI, CurBlock->TheScope);
    }
  }
}

/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
  // Leave the expression-evaluation context.
  DiscardCleanupsInEvaluationContext();
  PopExpressionEvaluationContext();

  // Pop off CurBlock, handle nested blocks.
  PopDeclContext();
  PopFunctionScopeInfo();
}

/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed.  ^(int x){...}
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
                                    Stmt *Body, Scope *CurScope) {
  // If blocks are disabled, emit an error.
  if (!LangOpts.Blocks)
    Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;

  // Leave the expression-evaluation context.
  if (hasAnyUnrecoverableErrorsInThisFunction())
    DiscardCleanupsInEvaluationContext();
  assert(!Cleanup.exprNeedsCleanups() &&
         "cleanups within block not correctly bound!");
  PopExpressionEvaluationContext();

  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
  BlockDecl *BD = BSI->TheDecl;

  if (BSI->HasImplicitReturnType)
    deduceClosureReturnType(*BSI);

  QualType RetTy = Context.VoidTy;
  if (!BSI->ReturnType.isNull())
    RetTy = BSI->ReturnType;

  bool NoReturn = BD->hasAttr<NoReturnAttr>();
  QualType BlockTy;

  // If the user wrote a function type in some form, try to use that.
  if (!BSI->FunctionType.isNull()) {
    const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();

    FunctionType::ExtInfo Ext = FTy->getExtInfo();
    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);

    // Turn protoless block types into nullary block types.
    if (isa<FunctionNoProtoType>(FTy)) {
      FunctionProtoType::ExtProtoInfo EPI;
      EPI.ExtInfo = Ext;
      BlockTy = Context.getFunctionType(RetTy, None, EPI);

    // Otherwise, if we don't need to change anything about the function type,
    // preserve its sugar structure.
    } else if (FTy->getReturnType() == RetTy &&
               (!NoReturn || FTy->getNoReturnAttr())) {
      BlockTy = BSI->FunctionType;

    // Otherwise, make the minimal modifications to the function type.
    } else {
      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
      EPI.TypeQuals = Qualifiers();
      EPI.ExtInfo = Ext;
      BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
    }

  // If we don't have a function type, just build one from nothing.
  } else {
    FunctionProtoType::ExtProtoInfo EPI;
    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
    BlockTy = Context.getFunctionType(RetTy, None, EPI);
  }

  DiagnoseUnusedParameters(BD->parameters());
  BlockTy = Context.getBlockPointerType(BlockTy);

  // If needed, diagnose invalid gotos and switches in the block.
  if (getCurFunction()->NeedsScopeChecking() &&
      !PP.isCodeCompletionEnabled())
    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));

  BD->setBody(cast<CompoundStmt>(Body));

  if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
    DiagnoseUnguardedAvailabilityViolations(BD);

  // Try to apply the named return value optimization. We have to check again
  // if we can do this, though, because blocks keep return statements around
  // to deduce an implicit return type.
  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
      !BD->isDependentContext())
    computeNRVO(Body, BSI);

  if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
      RetTy.hasNonTrivialToPrimitiveCopyCUnion())
    checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
                          NTCUK_Destruct|NTCUK_Copy);

  PopDeclContext();

  // Pop the block scope now but keep it alive to the end of this function.
  AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);

  // Set the captured variables on the block.
  SmallVector<BlockDecl::Capture, 4> Captures;
  for (Capture &Cap : BSI->Captures) {
    if (Cap.isInvalid() || Cap.isThisCapture())
      continue;

    VarDecl *Var = Cap.getVariable();
    Expr *CopyExpr = nullptr;
    if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
      if (const RecordType *Record =
              Cap.getCaptureType()->getAs<RecordType>()) {
        // The capture logic needs the destructor, so make sure we mark it.
        // Usually this is unnecessary because most local variables have
        // their destructors marked at declaration time, but parameters are
        // an exception because it's technically only the call site that
        // actually requires the destructor.
        if (isa<ParmVarDecl>(Var))
          FinalizeVarWithDestructor(Var, Record);

        // Enter a separate potentially-evaluated context while building block
        // initializers to isolate their cleanups from those of the block
        // itself.
        // FIXME: Is this appropriate even when the block itself occurs in an
        // unevaluated operand?
        EnterExpressionEvaluationContext EvalContext(
            *this, ExpressionEvaluationContext::PotentiallyEvaluated);

        SourceLocation Loc = Cap.getLocation();

        ExprResult Result = BuildDeclarationNameExpr(
            CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);

        // According to the blocks spec, the capture of a variable from
        // the stack requires a const copy constructor.  This is not true
        // of the copy/move done to move a __block variable to the heap.
        if (!Result.isInvalid() &&
            !Result.get()->getType().isConstQualified()) {
          Result = ImpCastExprToType(Result.get(),
                                     Result.get()->getType().withConst(),
                                     CK_NoOp, VK_LValue);
        }

        if (!Result.isInvalid()) {
          Result = PerformCopyInitialization(
              InitializedEntity::InitializeBlock(Var->getLocation(),
                                                 Cap.getCaptureType(), false),
              Loc, Result.get());
        }

        // Build a full-expression copy expression if initialization
        // succeeded and used a non-trivial constructor.  Recover from
        // errors by pretending that the copy isn't necessary.
        if (!Result.isInvalid() &&
            !cast<CXXConstructExpr>(Result.get())->getConstructor()
                ->isTrivial()) {
          Result = MaybeCreateExprWithCleanups(Result);
          CopyExpr = Result.get();
        }
      }
    }

    BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
                              CopyExpr);
    Captures.push_back(NewCap);
  }
  BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);

  BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);

  // If the block isn't obviously global, i.e. it captures anything at
  // all, then we need to do a few things in the surrounding context:
  if (Result->getBlockDecl()->hasCaptures()) {
    // First, this expression has a new cleanup object.
    ExprCleanupObjects.push_back(Result->getBlockDecl());
    Cleanup.setExprNeedsCleanups(true);

    // It also gets a branch-protected scope if any of the captured
    // variables needs destruction.
    for (const auto &CI : Result->getBlockDecl()->captures()) {
      const VarDecl *var = CI.getVariable();
      if (var->getType().isDestructedType() != QualType::DK_none) {
        setFunctionHasBranchProtectedScope();
        break;
      }
    }
  }

  if (getCurFunction())
    getCurFunction()->addBlock(BD);

  return Result;
}

ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
                            SourceLocation RPLoc) {
  TypeSourceInfo *TInfo;
  GetTypeFromParser(Ty, &TInfo);
  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
}

ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
                                Expr *E, TypeSourceInfo *TInfo,
                                SourceLocation RPLoc) {
  Expr *OrigExpr = E;
  bool IsMS = false;

  // CUDA device code does not support varargs.
  if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
    if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
      CUDAFunctionTarget T = IdentifyCUDATarget(F);
      if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
        return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
    }
  }

  // NVPTX does not support va_arg expression.
  if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
      Context.getTargetInfo().getTriple().isNVPTX())
    targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);

  // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
  // as Microsoft ABI on an actual Microsoft platform, where
  // __builtin_ms_va_list and __builtin_va_list are the same.)
  if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
      Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
    QualType MSVaListType = Context.getBuiltinMSVaListType();
    if (Context.hasSameType(MSVaListType, E->getType())) {
      if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
        return ExprError();
      IsMS = true;
    }
  }

  // Get the va_list type
  QualType VaListType = Context.getBuiltinVaListType();
  if (!IsMS) {
    if (VaListType->isArrayType()) {
      // Deal with implicit array decay; for example, on x86-64,
      // va_list is an array, but it's supposed to decay to
      // a pointer for va_arg.
      VaListType = Context.getArrayDecayedType(VaListType);
      // Make sure the input expression also decays appropriately.
      ExprResult Result = UsualUnaryConversions(E);
      if (Result.isInvalid())
        return ExprError();
      E = Result.get();
    } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
      // If va_list is a record type and we are compiling in C++ mode,
      // check the argument using reference binding.
      InitializedEntity Entity = InitializedEntity::InitializeParameter(
          Context, Context.getLValueReferenceType(VaListType), false);
      ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
      if (Init.isInvalid())
        return ExprError();
      E = Init.getAs<Expr>();
    } else {
      // Otherwise, the va_list argument must be an l-value because
      // it is modified by va_arg.
      if (!E->isTypeDependent() &&
          CheckForModifiableLvalue(E, BuiltinLoc, *this))
        return ExprError();
    }
  }

  if (!IsMS && !E->isTypeDependent() &&
      !Context.hasSameType(VaListType, E->getType()))
    return ExprError(
        Diag(E->getBeginLoc(),
             diag::err_first_argument_to_va_arg_not_of_type_va_list)
        << OrigExpr->getType() << E->getSourceRange());

  if (!TInfo->getType()->isDependentType()) {
    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
                            diag::err_second_parameter_to_va_arg_incomplete,
                            TInfo->getTypeLoc()))
      return ExprError();

    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
                               TInfo->getType(),
                               diag::err_second_parameter_to_va_arg_abstract,
                               TInfo->getTypeLoc()))
      return ExprError();

    if (!TInfo->getType().isPODType(Context)) {
      Diag(TInfo->getTypeLoc().getBeginLoc(),
           TInfo->getType()->isObjCLifetimeType()
             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
             : diag::warn_second_parameter_to_va_arg_not_pod)
        << TInfo->getType()
        << TInfo->getTypeLoc().getSourceRange();
    }

    // Check for va_arg where arguments of the given type will be promoted
    // (i.e. this va_arg is guaranteed to have undefined behavior).
    QualType PromoteType;
    if (TInfo->getType()->isPromotableIntegerType()) {
      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
        PromoteType = QualType();
    }
    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
      PromoteType = Context.DoubleTy;
    if (!PromoteType.isNull())
      DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
                  PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
                          << TInfo->getType()
                          << PromoteType
                          << TInfo->getTypeLoc().getSourceRange());
  }

  QualType T = TInfo->getType().getNonLValueExprType(Context);
  return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
}

ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
  // The type of __null will be int or long, depending on the size of
  // pointers on the target.
  QualType Ty;
  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
  if (pw == Context.getTargetInfo().getIntWidth())
    Ty = Context.IntTy;
  else if (pw == Context.getTargetInfo().getLongWidth())
    Ty = Context.LongTy;
  else if (pw == Context.getTargetInfo().getLongLongWidth())
    Ty = Context.LongLongTy;
  else {
    llvm_unreachable("I don't know size of pointer!");
  }

  return new (Context) GNUNullExpr(Ty, TokenLoc);
}

ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
                                    SourceLocation BuiltinLoc,
                                    SourceLocation RPLoc) {
  return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
}

ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
                                    SourceLocation BuiltinLoc,
                                    SourceLocation RPLoc,
                                    DeclContext *ParentContext) {
  return new (Context)
      SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
}

bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
                                        bool Diagnose) {
  if (!getLangOpts().ObjC)
    return false;

  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
  if (!PT)
    return false;
  const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();

  // Ignore any parens, implicit casts (should only be
  // array-to-pointer decays), and not-so-opaque values.  The last is
  // important for making this trigger for property assignments.
  Expr *SrcExpr = Exp->IgnoreParenImpCasts();
  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
    if (OV->getSourceExpr())
      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();

  if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
    if (!PT->isObjCIdType() &&
        !(ID && ID->getIdentifier()->isStr("NSString")))
      return false;
    if (!SL->isAscii())
      return false;

    if (Diagnose) {
      Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
          << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
      Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
    }
    return true;
  }

  if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
      isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
      isa<CXXBoolLiteralExpr>(SrcExpr)) &&
      !SrcExpr->isNullPointerConstant(
          getASTContext(), Expr::NPC_NeverValueDependent)) {
    if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
      return false;
    if (Diagnose) {
      Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
          << /*number*/1
          << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
      Expr *NumLit =
          BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
      if (NumLit)
        Exp = NumLit;
    }
    return true;
  }

  return false;
}

static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
                                              const Expr *SrcExpr) {
  if (!DstType->isFunctionPointerType() ||
      !SrcExpr->getType()->isFunctionType())
    return false;

  auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
  if (!DRE)
    return false;

  auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
  if (!FD)
    return false;

  return !S.checkAddressOfFunctionIsAvailable(FD,
                                              /*Complain=*/true,
                                              SrcExpr->getBeginLoc());
}

bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
                                    SourceLocation Loc,
                                    QualType DstType, QualType SrcType,
                                    Expr *SrcExpr, AssignmentAction Action,
                                    bool *Complained) {
  if (Complained)
    *Complained = false;

  // Decode the result (notice that AST's are still created for extensions).
  bool CheckInferredResultType = false;
  bool isInvalid = false;
  unsigned DiagKind = 0;
  ConversionFixItGenerator ConvHints;
  bool MayHaveConvFixit = false;
  bool MayHaveFunctionDiff = false;
  const ObjCInterfaceDecl *IFace = nullptr;
  const ObjCProtocolDecl *PDecl = nullptr;

  switch (ConvTy) {
  case Compatible:
      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
      return false;

  case PointerToInt:
    if (getLangOpts().CPlusPlus) {
      DiagKind = diag::err_typecheck_convert_pointer_int;
      isInvalid = true;
    } else {
      DiagKind = diag::ext_typecheck_convert_pointer_int;
    }
    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
    MayHaveConvFixit = true;
    break;
  case IntToPointer:
    if (getLangOpts().CPlusPlus) {
      DiagKind = diag::err_typecheck_convert_int_pointer;
      isInvalid = true;
    } else {
      DiagKind = diag::ext_typecheck_convert_int_pointer;
    }
    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
    MayHaveConvFixit = true;
    break;
  case IncompatibleFunctionPointer:
    if (getLangOpts().CPlusPlus) {
      DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
      isInvalid = true;
    } else {
      DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
    }
    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
    MayHaveConvFixit = true;
    break;
  case IncompatiblePointer:
    if (Action == AA_Passing_CFAudited) {
      DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
    } else if (getLangOpts().CPlusPlus) {
      DiagKind = diag::err_typecheck_convert_incompatible_pointer;
      isInvalid = true;
    } else {
      DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
    }
    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
      SrcType->isObjCObjectPointerType();
    if (!CheckInferredResultType) {
      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
    } else if (CheckInferredResultType) {
      SrcType = SrcType.getUnqualifiedType();
      DstType = DstType.getUnqualifiedType();
    }
    MayHaveConvFixit = true;
    break;
  case IncompatiblePointerSign:
    if (getLangOpts().CPlusPlus) {
      DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
      isInvalid = true;
    } else {
      DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
    }
    break;
  case FunctionVoidPointer:
    if (getLangOpts().CPlusPlus) {
      DiagKind = diag::err_typecheck_convert_pointer_void_func;
      isInvalid = true;
    } else {
      DiagKind = diag::ext_typecheck_convert_pointer_void_func;
    }
    break;
  case IncompatiblePointerDiscardsQualifiers: {
    // Perform array-to-pointer decay if necessary.
    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);

    isInvalid = true;

    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
      DiagKind = diag::err_typecheck_incompatible_address_space;
      break;

    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
      DiagKind = diag::err_typecheck_incompatible_ownership;
      break;
    }

    llvm_unreachable("unknown error case for discarding qualifiers!");
    // fallthrough
  }
  case CompatiblePointerDiscardsQualifiers:
    // If the qualifiers lost were because we were applying the
    // (deprecated) C++ conversion from a string literal to a char*
    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
    // Ideally, this check would be performed in
    // checkPointerTypesForAssignment. However, that would require a
    // bit of refactoring (so that the second argument is an
    // expression, rather than a type), which should be done as part
    // of a larger effort to fix checkPointerTypesForAssignment for
    // C++ semantics.
    if (getLangOpts().CPlusPlus &&
        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
      return false;
    if (getLangOpts().CPlusPlus) {
      DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
      isInvalid = true;
    } else {
      DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
    }

    break;
  case IncompatibleNestedPointerQualifiers:
    if (getLangOpts().CPlusPlus) {
      isInvalid = true;
      DiagKind = diag::err_nested_pointer_qualifier_mismatch;
    } else {
      DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
    }
    break;
  case IncompatibleNestedPointerAddressSpaceMismatch:
    DiagKind = diag::err_typecheck_incompatible_nested_address_space;
    isInvalid = true;
    break;
  case IntToBlockPointer:
    DiagKind = diag::err_int_to_block_pointer;
    isInvalid = true;
    break;
  case IncompatibleBlockPointer:
    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
    isInvalid = true;
    break;
  case IncompatibleObjCQualifiedId: {
    if (SrcType->isObjCQualifiedIdType()) {
      const ObjCObjectPointerType *srcOPT =
                SrcType->castAs<ObjCObjectPointerType>();
      for (auto *srcProto : srcOPT->quals()) {
        PDecl = srcProto;
        break;
      }
      if (const ObjCInterfaceType *IFaceT =
            DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
        IFace = IFaceT->getDecl();
    }
    else if (DstType->isObjCQualifiedIdType()) {
      const ObjCObjectPointerType *dstOPT =
        DstType->castAs<ObjCObjectPointerType>();
      for (auto *dstProto : dstOPT->quals()) {
        PDecl = dstProto;
        break;
      }
      if (const ObjCInterfaceType *IFaceT =
            SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
        IFace = IFaceT->getDecl();
    }
    if (getLangOpts().CPlusPlus) {
      DiagKind = diag::err_incompatible_qualified_id;
      isInvalid = true;
    } else {
      DiagKind = diag::warn_incompatible_qualified_id;
    }
    break;
  }
  case IncompatibleVectors:
    if (getLangOpts().CPlusPlus) {
      DiagKind = diag::err_incompatible_vectors;
      isInvalid = true;
    } else {
      DiagKind = diag::warn_incompatible_vectors;
    }
    break;
  case IncompatibleObjCWeakRef:
    DiagKind = diag::err_arc_weak_unavailable_assign;
    isInvalid = true;
    break;
  case Incompatible:
    if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
      if (Complained)
        *Complained = true;
      return true;
    }

    DiagKind = diag::err_typecheck_convert_incompatible;
    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
    MayHaveConvFixit = true;
    isInvalid = true;
    MayHaveFunctionDiff = true;
    break;
  }

  QualType FirstType, SecondType;
  switch (Action) {
  case AA_Assigning:
  case AA_Initializing:
    // The destination type comes first.
    FirstType = DstType;
    SecondType = SrcType;
    break;

  case AA_Returning:
  case AA_Passing:
  case AA_Passing_CFAudited:
  case AA_Converting:
  case AA_Sending:
  case AA_Casting:
    // The source type comes first.
    FirstType = SrcType;
    SecondType = DstType;
    break;
  }

  PartialDiagnostic FDiag = PDiag(DiagKind);
  if (Action == AA_Passing_CFAudited)
    FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
  else
    FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();

  // If we can fix the conversion, suggest the FixIts.
  if (!ConvHints.isNull()) {
    for (FixItHint &H : ConvHints.Hints)
      FDiag << H;
  }

  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }

  if (MayHaveFunctionDiff)
    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);

  Diag(Loc, FDiag);
  if ((DiagKind == diag::warn_incompatible_qualified_id ||
       DiagKind == diag::err_incompatible_qualified_id) &&
      PDecl && IFace && !IFace->hasDefinition())
    Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
        << IFace << PDecl;

  if (SecondType == Context.OverloadTy)
    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
                              FirstType, /*TakingAddress=*/true);

  if (CheckInferredResultType)
    EmitRelatedResultTypeNote(SrcExpr);

  if (Action == AA_Returning && ConvTy == IncompatiblePointer)
    EmitRelatedResultTypeNoteForReturn(DstType);

  if (Complained)
    *Complained = true;
  return isInvalid;
}

ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
                                                 llvm::APSInt *Result) {
  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
  public:
    SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
                                             QualType T) override {
      return S.Diag(Loc, diag::err_ice_not_integral)
             << T << S.LangOpts.CPlusPlus;
    }
    SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
      return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
    }
  } Diagnoser;

  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
}

ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
                                                 llvm::APSInt *Result,
                                                 unsigned DiagID,
                                                 bool AllowFold) {
  class IDDiagnoser : public VerifyICEDiagnoser {
    unsigned DiagID;

  public:
    IDDiagnoser(unsigned DiagID)
      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }

    SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
      return S.Diag(Loc, DiagID);
    }
  } Diagnoser(DiagID);

  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
}

Sema::SemaDiagnosticBuilder
Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
                                             QualType T) {
  return diagnoseNotICE(S, Loc);
}

Sema::SemaDiagnosticBuilder
Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
  return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
}

ExprResult
Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
                                      VerifyICEDiagnoser &Diagnoser,
                                      bool AllowFold) {
  SourceLocation DiagLoc = E->getBeginLoc();

  if (getLangOpts().CPlusPlus11) {
    // C++11 [expr.const]p5:
    //   If an expression of literal class type is used in a context where an
    //   integral constant expression is required, then that class type shall
    //   have a single non-explicit conversion function to an integral or
    //   unscoped enumeration type
    ExprResult Converted;
    class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
      VerifyICEDiagnoser &BaseDiagnoser;
    public:
      CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
          : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
                                BaseDiagnoser.Suppress, true),
            BaseDiagnoser(BaseDiagnoser) {}

      SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
                                           QualType T) override {
        return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
      }

      SemaDiagnosticBuilder diagnoseIncomplete(
          Sema &S, SourceLocation Loc, QualType T) override {
        return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
      }

      SemaDiagnosticBuilder diagnoseExplicitConv(
          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
        return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
      }

      SemaDiagnosticBuilder noteExplicitConv(
          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
                 << ConvTy->isEnumeralType() << ConvTy;
      }

      SemaDiagnosticBuilder diagnoseAmbiguous(
          Sema &S, SourceLocation Loc, QualType T) override {
        return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
      }

      SemaDiagnosticBuilder noteAmbiguous(
          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
                 << ConvTy->isEnumeralType() << ConvTy;
      }

      SemaDiagnosticBuilder diagnoseConversion(
          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
        llvm_unreachable("conversion functions are permitted");
      }
    } ConvertDiagnoser(Diagnoser);

    Converted = PerformContextualImplicitConversion(DiagLoc, E,
                                                    ConvertDiagnoser);
    if (Converted.isInvalid())
      return Converted;
    E = Converted.get();
    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
      return ExprError();
  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
    // An ICE must be of integral or unscoped enumeration type.
    if (!Diagnoser.Suppress)
      Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
          << E->getSourceRange();
    return ExprError();
  }

  ExprResult RValueExpr = DefaultLvalueConversion(E);
  if (RValueExpr.isInvalid())
    return ExprError();

  E = RValueExpr.get();

  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
  // in the non-ICE case.
  if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
    if (Result)
      *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
    if (!isa<ConstantExpr>(E))
      E = ConstantExpr::Create(Context, E);
    return E;
  }

  Expr::EvalResult EvalResult;
  SmallVector<PartialDiagnosticAt, 8> Notes;
  EvalResult.Diag = &Notes;

  // Try to evaluate the expression, and produce diagnostics explaining why it's
  // not a constant expression as a side-effect.
  bool Folded =
      E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
      EvalResult.Val.isInt() && !EvalResult.HasSideEffects;

  if (!isa<ConstantExpr>(E))
    E = ConstantExpr::Create(Context, E, EvalResult.Val);

  // In C++11, we can rely on diagnostics being produced for any expression
  // which is not a constant expression. If no diagnostics were produced, then
  // this is a constant expression.
  if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
    if (Result)
      *Result = EvalResult.Val.getInt();
    return E;
  }

  // If our only note is the usual "invalid subexpression" note, just point
  // the caret at its location rather than producing an essentially
  // redundant note.
  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
        diag::note_invalid_subexpr_in_const_expr) {
    DiagLoc = Notes[0].first;
    Notes.clear();
  }

  if (!Folded || !AllowFold) {
    if (!Diagnoser.Suppress) {
      Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
      for (const PartialDiagnosticAt &Note : Notes)
        Diag(Note.first, Note.second);
    }

    return ExprError();
  }

  Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
  for (const PartialDiagnosticAt &Note : Notes)
    Diag(Note.first, Note.second);

  if (Result)
    *Result = EvalResult.Val.getInt();
  return E;
}

namespace {
  // Handle the case where we conclude a expression which we speculatively
  // considered to be unevaluated is actually evaluated.
  class TransformToPE : public TreeTransform<TransformToPE> {
    typedef TreeTransform<TransformToPE> BaseTransform;

  public:
    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }

    // Make sure we redo semantic analysis
    bool AlwaysRebuild() { return true; }
    bool ReplacingOriginal() { return true; }

    // We need to special-case DeclRefExprs referring to FieldDecls which
    // are not part of a member pointer formation; normal TreeTransforming
    // doesn't catch this case because of the way we represent them in the AST.
    // FIXME: This is a bit ugly; is it really the best way to handle this
    // case?
    //
    // Error on DeclRefExprs referring to FieldDecls.
    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
      if (isa<FieldDecl>(E->getDecl()) &&
          !SemaRef.isUnevaluatedContext())
        return SemaRef.Diag(E->getLocation(),
                            diag::err_invalid_non_static_member_use)
            << E->getDecl() << E->getSourceRange();

      return BaseTransform::TransformDeclRefExpr(E);
    }

    // Exception: filter out member pointer formation
    ExprResult TransformUnaryOperator(UnaryOperator *E) {
      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
        return E;

      return BaseTransform::TransformUnaryOperator(E);
    }

    // The body of a lambda-expression is in a separate expression evaluation
    // context so never needs to be transformed.
    // FIXME: Ideally we wouldn't transform the closure type either, and would
    // just recreate the capture expressions and lambda expression.
    StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
      return SkipLambdaBody(E, Body);
    }
  };
}

ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
  assert(isUnevaluatedContext() &&
         "Should only transform unevaluated expressions");
  ExprEvalContexts.back().Context =
      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
  if (isUnevaluatedContext())
    return E;
  return TransformToPE(*this).TransformExpr(E);
}

void
Sema::PushExpressionEvaluationContext(
    ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
    ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
  ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
                                LambdaContextDecl, ExprContext);
  Cleanup.reset();
  if (!MaybeODRUseExprs.empty())
    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
}

void
Sema::PushExpressionEvaluationContext(
    ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
    ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
  Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
  PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
}

namespace {

const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
  PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
  if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
    if (E->getOpcode() == UO_Deref)
      return CheckPossibleDeref(S, E->getSubExpr());
  } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
    return CheckPossibleDeref(S, E->getBase());
  } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
    return CheckPossibleDeref(S, E->getBase());
  } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
    QualType Inner;
    QualType Ty = E->getType();
    if (const auto *Ptr = Ty->getAs<PointerType>())
      Inner = Ptr->getPointeeType();
    else if (const auto *Arr = S.Context.getAsArrayType(Ty))
      Inner = Arr->getElementType();
    else
      return nullptr;

    if (Inner->hasAttr(attr::NoDeref))
      return E;
  }
  return nullptr;
}

} // namespace

void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
  for (const Expr *E : Rec.PossibleDerefs) {
    const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
    if (DeclRef) {
      const ValueDecl *Decl = DeclRef->getDecl();
      Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
          << Decl->getName() << E->getSourceRange();
      Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
    } else {
      Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
          << E->getSourceRange();
    }
  }
  Rec.PossibleDerefs.clear();
}

/// Check whether E, which is either a discarded-value expression or an
/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
/// and if so, remove it from the list of volatile-qualified assignments that
/// we are going to warn are deprecated.
void Sema::CheckUnusedVolatileAssignment(Expr *E) {
  if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
    return;

  // Note: ignoring parens here is not justified by the standard rules, but
  // ignoring parentheses seems like a more reasonable approach, and this only
  // drives a deprecation warning so doesn't affect conformance.
  if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
    if (BO->getOpcode() == BO_Assign) {
      auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
      LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
                 LHSs.end());
    }
  }
}

ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
  if (!E.isUsable() || !Decl || !Decl->isConsteval() || isConstantEvaluated() ||
      RebuildingImmediateInvocation)
    return E;

  /// Opportunistically remove the callee from ReferencesToConsteval if we can.
  /// It's OK if this fails; we'll also remove this in
  /// HandleImmediateInvocations, but catching it here allows us to avoid
  /// walking the AST looking for it in simple cases.
  if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
    if (auto *DeclRef =
            dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
      ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);

  E = MaybeCreateExprWithCleanups(E);

  ConstantExpr *Res = ConstantExpr::Create(
      getASTContext(), E.get(),
      ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
                                   getASTContext()),
      /*IsImmediateInvocation*/ true);
  ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
  return Res;
}

static void EvaluateAndDiagnoseImmediateInvocation(
    Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
  Expr::EvalResult Eval;
  Eval.Diag = &Notes;
  ConstantExpr *CE = Candidate.getPointer();
  bool Result = CE->EvaluateAsConstantExpr(Eval, Expr::EvaluateForCodeGen,
                                           SemaRef.getASTContext(), true);
  if (!Result || !Notes.empty()) {
    Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
    if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
      InnerExpr = FunctionalCast->getSubExpr();
    FunctionDecl *FD = nullptr;
    if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
      FD = cast<FunctionDecl>(Call->getCalleeDecl());
    else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
      FD = Call->getConstructor();
    else
      llvm_unreachable("unhandled decl kind");
    assert(FD->isConsteval());
    SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
    for (auto &Note : Notes)
      SemaRef.Diag(Note.first, Note.second);
    return;
  }
  CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
}

static void RemoveNestedImmediateInvocation(
    Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
    SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
  struct ComplexRemove : TreeTransform<ComplexRemove> {
    using Base = TreeTransform<ComplexRemove>;
    llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
    SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
    SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
        CurrentII;
    ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
                  SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
                  SmallVector<Sema::ImmediateInvocationCandidate,
                              4>::reverse_iterator Current)
        : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
    void RemoveImmediateInvocation(ConstantExpr* E) {
      auto It = std::find_if(CurrentII, IISet.rend(),
                             [E](Sema::ImmediateInvocationCandidate Elem) {
                               return Elem.getPointer() == E;
                             });
      assert(It != IISet.rend() &&
             "ConstantExpr marked IsImmediateInvocation should "
             "be present");
      It->setInt(1); // Mark as deleted
    }
    ExprResult TransformConstantExpr(ConstantExpr *E) {
      if (!E->isImmediateInvocation())
        return Base::TransformConstantExpr(E);
      RemoveImmediateInvocation(E);
      return Base::TransformExpr(E->getSubExpr());
    }
    /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
    /// we need to remove its DeclRefExpr from the DRSet.
    ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
      DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
      return Base::TransformCXXOperatorCallExpr(E);
    }
    /// Base::TransformInitializer skip ConstantExpr so we need to visit them
    /// here.
    ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
      if (!Init)
        return Init;
      /// ConstantExpr are the first layer of implicit node to be removed so if
      /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
      if (auto *CE = dyn_cast<ConstantExpr>(Init))
        if (CE->isImmediateInvocation())
          RemoveImmediateInvocation(CE);
      return Base::TransformInitializer(Init, NotCopyInit);
    }
    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
      DRSet.erase(E);
      return E;
    }
    bool AlwaysRebuild() { return false; }
    bool ReplacingOriginal() { return true; }
    bool AllowSkippingCXXConstructExpr() {
      bool Res = AllowSkippingFirstCXXConstructExpr;
      AllowSkippingFirstCXXConstructExpr = true;
      return Res;
    }
    bool AllowSkippingFirstCXXConstructExpr = true;
  } Transformer(SemaRef, Rec.ReferenceToConsteval,
                Rec.ImmediateInvocationCandidates, It);

  /// CXXConstructExpr with a single argument are getting skipped by
  /// TreeTransform in some situtation because they could be implicit. This
  /// can only occur for the top-level CXXConstructExpr because it is used
  /// nowhere in the expression being transformed therefore will not be rebuilt.
  /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
  /// skipping the first CXXConstructExpr.
  if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
    Transformer.AllowSkippingFirstCXXConstructExpr = false;

  ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
  assert(Res.isUsable());
  Res = SemaRef.MaybeCreateExprWithCleanups(Res);
  It->getPointer()->setSubExpr(Res.get());
}

static void
HandleImmediateInvocations(Sema &SemaRef,
                           Sema::ExpressionEvaluationContextRecord &Rec) {
  if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
       Rec.ReferenceToConsteval.size() == 0) ||
      SemaRef.RebuildingImmediateInvocation)
    return;

  /// When we have more then 1 ImmediateInvocationCandidates we need to check
  /// for nested ImmediateInvocationCandidates. when we have only 1 we only
  /// need to remove ReferenceToConsteval in the immediate invocation.
  if (Rec.ImmediateInvocationCandidates.size() > 1) {

    /// Prevent sema calls during the tree transform from adding pointers that
    /// are already in the sets.
    llvm::SaveAndRestore<bool> DisableIITracking(
        SemaRef.RebuildingImmediateInvocation, true);

    /// Prevent diagnostic during tree transfrom as they are duplicates
    Sema::TentativeAnalysisScope DisableDiag(SemaRef);

    for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
         It != Rec.ImmediateInvocationCandidates.rend(); It++)
      if (!It->getInt())
        RemoveNestedImmediateInvocation(SemaRef, Rec, It);
  } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
             Rec.ReferenceToConsteval.size()) {
    struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
      llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
      SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
      bool VisitDeclRefExpr(DeclRefExpr *E) {
        DRSet.erase(E);
        return DRSet.size();
      }
    } Visitor(Rec.ReferenceToConsteval);
    Visitor.TraverseStmt(
        Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
  }
  for (auto CE : Rec.ImmediateInvocationCandidates)
    if (!CE.getInt())
      EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
  for (auto DR : Rec.ReferenceToConsteval) {
    auto *FD = cast<FunctionDecl>(DR->getDecl());
    SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
        << FD;
    SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
  }
}

void Sema::PopExpressionEvaluationContext() {
  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
  unsigned NumTypos = Rec.NumTypos;

  if (!Rec.Lambdas.empty()) {
    using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
    if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
        (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
      unsigned D;
      if (Rec.isUnevaluated()) {
        // C++11 [expr.prim.lambda]p2:
        //   A lambda-expression shall not appear in an unevaluated operand
        //   (Clause 5).
        D = diag::err_lambda_unevaluated_operand;
      } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
        // C++1y [expr.const]p2:
        //   A conditional-expression e is a core constant expression unless the
        //   evaluation of e, following the rules of the abstract machine, would
        //   evaluate [...] a lambda-expression.
        D = diag::err_lambda_in_constant_expression;
      } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
        // C++17 [expr.prim.lamda]p2:
        // A lambda-expression shall not appear [...] in a template-argument.
        D = diag::err_lambda_in_invalid_context;
      } else
        llvm_unreachable("Couldn't infer lambda error message.");

      for (const auto *L : Rec.Lambdas)
        Diag(L->getBeginLoc(), D);
    }
  }

  WarnOnPendingNoDerefs(Rec);
  HandleImmediateInvocations(*this, Rec);

  // Warn on any volatile-qualified simple-assignments that are not discarded-
  // value expressions nor unevaluated operands (those cases get removed from
  // this list by CheckUnusedVolatileAssignment).
  for (auto *BO : Rec.VolatileAssignmentLHSs)
    Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
        << BO->getType();

  // When are coming out of an unevaluated context, clear out any
  // temporaries that we may have created as part of the evaluation of
  // the expression in that context: they aren't relevant because they
  // will never be constructed.
  if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
                             ExprCleanupObjects.end());
    Cleanup = Rec.ParentCleanup;
    CleanupVarDeclMarking();
    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
  // Otherwise, merge the contexts together.
  } else {
    Cleanup.mergeFrom(Rec.ParentCleanup);
    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
                            Rec.SavedMaybeODRUseExprs.end());
  }

  // Pop the current expression evaluation context off the stack.
  ExprEvalContexts.pop_back();

  // The global expression evaluation context record is never popped.
  ExprEvalContexts.back().NumTypos += NumTypos;
}

void Sema::DiscardCleanupsInEvaluationContext() {
  ExprCleanupObjects.erase(
         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
         ExprCleanupObjects.end());
  Cleanup.reset();
  MaybeODRUseExprs.clear();
}

ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
  ExprResult Result = CheckPlaceholderExpr(E);
  if (Result.isInvalid())
    return ExprError();
  E = Result.get();
  if (!E->getType()->isVariablyModifiedType())
    return E;
  return TransformToPotentiallyEvaluated(E);
}

/// Are we in a context that is potentially constant evaluated per C++20
/// [expr.const]p12?
static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
  /// C++2a [expr.const]p12:
  //   An expression or conversion is potentially constant evaluated if it is
  switch (SemaRef.ExprEvalContexts.back().Context) {
    case Sema::ExpressionEvaluationContext::ConstantEvaluated:
      // -- a manifestly constant-evaluated expression,
    case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
    case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
    case Sema::ExpressionEvaluationContext::DiscardedStatement:
      // -- a potentially-evaluated expression,
    case Sema::ExpressionEvaluationContext::UnevaluatedList:
      // -- an immediate subexpression of a braced-init-list,

      // -- [FIXME] an expression of the form & cast-expression that occurs
      //    within a templated entity
      // -- a subexpression of one of the above that is not a subexpression of
      // a nested unevaluated operand.
      return true;

    case Sema::ExpressionEvaluationContext::Unevaluated:
    case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
      // Expressions in this context are never evaluated.
      return false;
  }
  llvm_unreachable("Invalid context");
}

/// Return true if this function has a calling convention that requires mangling
/// in the size of the parameter pack.
static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
  // These manglings don't do anything on non-Windows or non-x86 platforms, so
  // we don't need parameter type sizes.
  const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
  if (!TT.isOSWindows() || !TT.isX86())
    return false;

  // If this is C++ and this isn't an extern "C" function, parameters do not
  // need to be complete. In this case, C++ mangling will apply, which doesn't
  // use the size of the parameters.
  if (S.getLangOpts().CPlusPlus && !FD->isExternC())
    return false;

  // Stdcall, fastcall, and vectorcall need this special treatment.
  CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
  switch (CC) {
  case CC_X86StdCall:
  case CC_X86FastCall:
  case CC_X86VectorCall:
    return true;
  default:
    break;
  }
  return false;
}

/// Require that all of the parameter types of function be complete. Normally,
/// parameter types are only required to be complete when a function is called
/// or defined, but to mangle functions with certain calling conventions, the
/// mangler needs to know the size of the parameter list. In this situation,
/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
/// result in a linker error. Clang doesn't implement this behavior, and instead
/// attempts to error at compile time.
static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
                                                  SourceLocation Loc) {
  class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
    FunctionDecl *FD;
    ParmVarDecl *Param;

  public:
    ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
        : FD(FD), Param(Param) {}

    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
      CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
      StringRef CCName;
      switch (CC) {
      case CC_X86StdCall:
        CCName = "stdcall";
        break;
      case CC_X86FastCall:
        CCName = "fastcall";
        break;
      case CC_X86VectorCall:
        CCName = "vectorcall";
        break;
      default:
        llvm_unreachable("CC does not need mangling");
      }

      S.Diag(Loc, diag::err_cconv_incomplete_param_type)
          << Param->getDeclName() << FD->getDeclName() << CCName;
    }
  };

  for (ParmVarDecl *Param : FD->parameters()) {
    ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
    S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
  }
}

namespace {
enum class OdrUseContext {
  /// Declarations in this context are not odr-used.
  None,
  /// Declarations in this context are formally odr-used, but this is a
  /// dependent context.
  Dependent,
  /// Declarations in this context are odr-used but not actually used (yet).
  FormallyOdrUsed,
  /// Declarations in this context are used.
  Used
};
}

/// Are we within a context in which references to resolved functions or to
/// variables result in odr-use?
static OdrUseContext isOdrUseContext(Sema &SemaRef) {
  OdrUseContext Result;

  switch (SemaRef.ExprEvalContexts.back().Context) {
    case Sema::ExpressionEvaluationContext::Unevaluated:
    case Sema::ExpressionEvaluationContext::UnevaluatedList:
    case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
      return OdrUseContext::None;

    case Sema::ExpressionEvaluationContext::ConstantEvaluated:
    case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
      Result = OdrUseContext::Used;
      break;

    case Sema::ExpressionEvaluationContext::DiscardedStatement:
      Result = OdrUseContext::FormallyOdrUsed;
      break;

    case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
      // A default argument formally results in odr-use, but doesn't actually
      // result in a use in any real sense until it itself is used.
      Result = OdrUseContext::FormallyOdrUsed;
      break;
  }

  if (SemaRef.CurContext->isDependentContext())
    return OdrUseContext::Dependent;

  return Result;
}

static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
  if (!Func->isConstexpr())
    return false;

  if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
    return true;
  auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
  return CCD && CCD->getInheritedConstructor();
}

/// Mark a function referenced, and check whether it is odr-used
/// (C++ [basic.def.odr]p2, C99 6.9p3)
void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
                                  bool MightBeOdrUse) {
  assert(Func && "No function?");

  Func->setReferenced();

  // Recursive functions aren't really used until they're used from some other
  // context.
  bool IsRecursiveCall = CurContext == Func;

  // C++11 [basic.def.odr]p3:
  //   A function whose name appears as a potentially-evaluated expression is
  //   odr-used if it is the unique lookup result or the selected member of a
  //   set of overloaded functions [...].
  //
  // We (incorrectly) mark overload resolution as an unevaluated context, so we
  // can just check that here.
  OdrUseContext OdrUse =
      MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
  if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
    OdrUse = OdrUseContext::FormallyOdrUsed;

  // Trivial default constructors and destructors are never actually used.
  // FIXME: What about other special members?
  if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
      OdrUse == OdrUseContext::Used) {
    if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
      if (Constructor->isDefaultConstructor())
        OdrUse = OdrUseContext::FormallyOdrUsed;
    if (isa<CXXDestructorDecl>(Func))
      OdrUse = OdrUseContext::FormallyOdrUsed;
  }

  // C++20 [expr.const]p12:
  //   A function [...] is needed for constant evaluation if it is [...] a
  //   constexpr function that is named by an expression that is potentially
  //   constant evaluated
  bool NeededForConstantEvaluation =
      isPotentiallyConstantEvaluatedContext(*this) &&
      isImplicitlyDefinableConstexprFunction(Func);

  // Determine whether we require a function definition to exist, per
  // C++11 [temp.inst]p3:
  //   Unless a function template specialization has been explicitly
  //   instantiated or explicitly specialized, the function template
  //   specialization is implicitly instantiated when the specialization is
  //   referenced in a context that requires a function definition to exist.
  // C++20 [temp.inst]p7:
  //   The existence of a definition of a [...] function is considered to
  //   affect the semantics of the program if the [...] function is needed for
  //   constant evaluation by an expression
  // C++20 [basic.def.odr]p10:
  //   Every program shall contain exactly one definition of every non-inline
  //   function or variable that is odr-used in that program outside of a
  //   discarded statement
  // C++20 [special]p1:
  //   The implementation will implicitly define [defaulted special members]
  //   if they are odr-used or needed for constant evaluation.
  //
  // Note that we skip the implicit instantiation of templates that are only
  // used in unused default arguments or by recursive calls to themselves.
  // This is formally non-conforming, but seems reasonable in practice.
  bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
                                             NeededForConstantEvaluation);

  // C++14 [temp.expl.spec]p6:
  //   If a template [...] is explicitly specialized then that specialization
  //   shall be declared before the first use of that specialization that would
  //   cause an implicit instantiation to take place, in every translation unit
  //   in which such a use occurs
  if (NeedDefinition &&
      (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
       Func->getMemberSpecializationInfo()))
    checkSpecializationVisibility(Loc, Func);

  if (getLangOpts().CUDA)
    CheckCUDACall(Loc, Func);

  if (getLangOpts().SYCLIsDevice)
    checkSYCLDeviceFunction(Loc, Func);

  // If we need a definition, try to create one.
  if (NeedDefinition && !Func->getBody()) {
    runWithSufficientStackSpace(Loc, [&] {
      if (CXXConstructorDecl *Constructor =
              dyn_cast<CXXConstructorDecl>(Func)) {
        Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
        if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
          if (Constructor->isDefaultConstructor()) {
            if (Constructor->isTrivial() &&
                !Constructor->hasAttr<DLLExportAttr>())
              return;
            DefineImplicitDefaultConstructor(Loc, Constructor);
          } else if (Constructor->isCopyConstructor()) {
            DefineImplicitCopyConstructor(Loc, Constructor);
          } else if (Constructor->isMoveConstructor()) {
            DefineImplicitMoveConstructor(Loc, Constructor);
          }
        } else if (Constructor->getInheritedConstructor()) {
          DefineInheritingConstructor(Loc, Constructor);
        }
      } else if (CXXDestructorDecl *Destructor =
                     dyn_cast<CXXDestructorDecl>(Func)) {
        Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
        if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
          if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
            return;
          DefineImplicitDestructor(Loc, Destructor);
        }
        if (Destructor->isVirtual() && getLangOpts().AppleKext)
          MarkVTableUsed(Loc, Destructor->getParent());
      } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
        if (MethodDecl->isOverloadedOperator() &&
            MethodDecl->getOverloadedOperator() == OO_Equal) {
          MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
          if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
            if (MethodDecl->isCopyAssignmentOperator())
              DefineImplicitCopyAssignment(Loc, MethodDecl);
            else if (MethodDecl->isMoveAssignmentOperator())
              DefineImplicitMoveAssignment(Loc, MethodDecl);
          }
        } else if (isa<CXXConversionDecl>(MethodDecl) &&
                   MethodDecl->getParent()->isLambda()) {
          CXXConversionDecl *Conversion =
              cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
          if (Conversion->isLambdaToBlockPointerConversion())
            DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
          else
            DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
        } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
          MarkVTableUsed(Loc, MethodDecl->getParent());
      }

      if (Func->isDefaulted() && !Func->isDeleted()) {
        DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
        if (DCK != DefaultedComparisonKind::None)
          DefineDefaultedComparison(Loc, Func, DCK);
      }

      // Implicit instantiation of function templates and member functions of
      // class templates.
      if (Func->isImplicitlyInstantiable()) {
        TemplateSpecializationKind TSK =
            Func->getTemplateSpecializationKindForInstantiation();
        SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
        bool FirstInstantiation = PointOfInstantiation.isInvalid();
        if (FirstInstantiation) {
          PointOfInstantiation = Loc;
          Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
        } else if (TSK != TSK_ImplicitInstantiation) {
          // Use the point of use as the point of instantiation, instead of the
          // point of explicit instantiation (which we track as the actual point
          // of instantiation). This gives better backtraces in diagnostics.
          PointOfInstantiation = Loc;
        }

        if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
            Func->isConstexpr()) {
          if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
              cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
              CodeSynthesisContexts.size())
            PendingLocalImplicitInstantiations.push_back(
                std::make_pair(Func, PointOfInstantiation));
          else if (Func->isConstexpr())
            // Do not defer instantiations of constexpr functions, to avoid the
            // expression evaluator needing to call back into Sema if it sees a
            // call to such a function.
            InstantiateFunctionDefinition(PointOfInstantiation, Func);
          else {
            Func->setInstantiationIsPending(true);
            PendingInstantiations.push_back(
                std::make_pair(Func, PointOfInstantiation));
            // Notify the consumer that a function was implicitly instantiated.
            Consumer.HandleCXXImplicitFunctionInstantiation(Func);
          }
        }
      } else {
        // Walk redefinitions, as some of them may be instantiable.
        for (auto i : Func->redecls()) {
          if (!i->isUsed(false) && i->isImplicitlyInstantiable())
            MarkFunctionReferenced(Loc, i, MightBeOdrUse);
        }
      }
    });
  }

  // C++14 [except.spec]p17:
  //   An exception-specification is considered to be needed when:
  //   - the function is odr-used or, if it appears in an unevaluated operand,
  //     would be odr-used if the expression were potentially-evaluated;
  //
  // Note, we do this even if MightBeOdrUse is false. That indicates that the
  // function is a pure virtual function we're calling, and in that case the
  // function was selected by overload resolution and we need to resolve its
  // exception specification for a different reason.
  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
    ResolveExceptionSpec(Loc, FPT);

  // If this is the first "real" use, act on that.
  if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
    // Keep track of used but undefined functions.
    if (!Func->isDefined()) {
      if (mightHaveNonExternalLinkage(Func))
        UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
      else if (Func->getMostRecentDecl()->isInlined() &&
               !LangOpts.GNUInline &&
               !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
        UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
      else if (isExternalWithNoLinkageType(Func))
        UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
    }

    // Some x86 Windows calling conventions mangle the size of the parameter
    // pack into the name. Computing the size of the parameters requires the
    // parameter types to be complete. Check that now.
    if (funcHasParameterSizeMangling(*this, Func))
      CheckCompleteParameterTypesForMangler(*this, Func, Loc);

    // In the MS C++ ABI, the compiler emits destructor variants where they are
    // used. If the destructor is used here but defined elsewhere, mark the
    // virtual base destructors referenced. If those virtual base destructors
    // are inline, this will ensure they are defined when emitting the complete
    // destructor variant. This checking may be redundant if the destructor is
    // provided later in this TU.
    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
      if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
        CXXRecordDecl *Parent = Dtor->getParent();
        if (Parent->getNumVBases() > 0 && !Dtor->getBody())
          CheckCompleteDestructorVariant(Loc, Dtor);
      }
    }

    Func->markUsed(Context);
  }
}

/// Directly mark a variable odr-used. Given a choice, prefer to use
/// MarkVariableReferenced since it does additional checks and then
/// calls MarkVarDeclODRUsed.
/// If the variable must be captured:
///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
///  - else capture it in the DeclContext that maps to the
///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
static void
MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
                   const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
  // Keep track of used but undefined variables.
  // FIXME: We shouldn't suppress this warning for static data members.
  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
      (!Var->isExternallyVisible() || Var->isInline() ||
       SemaRef.isExternalWithNoLinkageType(Var)) &&
      !(Var->isStaticDataMember() && Var->hasInit())) {
    SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
    if (old.isInvalid())
      old = Loc;
  }
  QualType CaptureType, DeclRefType;
  if (SemaRef.LangOpts.OpenMP)
    SemaRef.tryCaptureOpenMPLambdas(Var);
  SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
    /*EllipsisLoc*/ SourceLocation(),
    /*BuildAndDiagnose*/ true,
    CaptureType, DeclRefType,
    FunctionScopeIndexToStopAt);

  Var->markUsed(SemaRef.Context);
}

void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
                                             SourceLocation Loc,
                                             unsigned CapturingScopeIndex) {
  MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
}

static void
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
                                   ValueDecl *var, DeclContext *DC) {
  DeclContext *VarDC = var->getDeclContext();

  //  If the parameter still belongs to the translation unit, then
  //  we're actually just using one parameter in the declaration of
  //  the next.
  if (isa<ParmVarDecl>(var) &&
      isa<TranslationUnitDecl>(VarDC))
    return;

  // For C code, don't diagnose about capture if we're not actually in code
  // right now; it's impossible to write a non-constant expression outside of
  // function context, so we'll get other (more useful) diagnostics later.
  //
  // For C++, things get a bit more nasty... it would be nice to suppress this
  // diagnostic for certain cases like using a local variable in an array bound
  // for a member of a local class, but the correct predicate is not obvious.
  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
    return;

  unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
  unsigned ContextKind = 3; // unknown
  if (isa<CXXMethodDecl>(VarDC) &&
      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
    ContextKind = 2;
  } else if (isa<FunctionDecl>(VarDC)) {
    ContextKind = 0;
  } else if (isa<BlockDecl>(VarDC)) {
    ContextKind = 1;
  }

  S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
    << var << ValueKind << ContextKind << VarDC;
  S.Diag(var->getLocation(), diag::note_entity_declared_at)
      << var;

  // FIXME: Add additional diagnostic info about class etc. which prevents
  // capture.
}


static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
                                      bool &SubCapturesAreNested,
                                      QualType &CaptureType,
                                      QualType &DeclRefType) {
   // Check whether we've already captured it.
  if (CSI->CaptureMap.count(Var)) {
    // If we found a capture, any subcaptures are nested.
    SubCapturesAreNested = true;

    // Retrieve the capture type for this variable.
    CaptureType = CSI->getCapture(Var).getCaptureType();

    // Compute the type of an expression that refers to this variable.
    DeclRefType = CaptureType.getNonReferenceType();

    // Similarly to mutable captures in lambda, all the OpenMP captures by copy
    // are mutable in the sense that user can change their value - they are
    // private instances of the captured declarations.
    const Capture &Cap = CSI->getCapture(Var);
    if (Cap.isCopyCapture() &&
        !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
        !(isa<CapturedRegionScopeInfo>(CSI) &&
          cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
      DeclRefType.addConst();
    return true;
  }
  return false;
}

// Only block literals, captured statements, and lambda expressions can
// capture; other scopes don't work.
static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
                                 SourceLocation Loc,
                                 const bool Diagnose, Sema &S) {
  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
    return getLambdaAwareParentOfDeclContext(DC);
  else if (Var->hasLocalStorage()) {
    if (Diagnose)
       diagnoseUncapturableValueReference(S, Loc, Var, DC);
  }
  return nullptr;
}

// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
// certain types of variables (unnamed, variably modified types etc.)
// so check for eligibility.
static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
                                 SourceLocation Loc,
                                 const bool Diagnose, Sema &S) {

  bool IsBlock = isa<BlockScopeInfo>(CSI);
  bool IsLambda = isa<LambdaScopeInfo>(CSI);

  // Lambdas are not allowed to capture unnamed variables
  // (e.g. anonymous unions).
  // FIXME: The C++11 rule don't actually state this explicitly, but I'm
  // assuming that's the intent.
  if (IsLambda && !Var->getDeclName()) {
    if (Diagnose) {
      S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
      S.Diag(Var->getLocation(), diag::note_declared_at);
    }
    return false;
  }

  // Prohibit variably-modified types in blocks; they're difficult to deal with.
  if (Var->getType()->isVariablyModifiedType() && IsBlock) {
    if (Diagnose) {
      S.Diag(Loc, diag::err_ref_vm_type);
      S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
    }
    return false;
  }
  // Prohibit structs with flexible array members too.
  // We cannot capture what is in the tail end of the struct.
  if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
    if (VTTy->getDecl()->hasFlexibleArrayMember()) {
      if (Diagnose) {
        if (IsBlock)
          S.Diag(Loc, diag::err_ref_flexarray_type);
        else
          S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
        S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
      }
      return false;
    }
  }
  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
  // Lambdas and captured statements are not allowed to capture __block
  // variables; they don't support the expected semantics.
  if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
    if (Diagnose) {
      S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
      S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
    }
    return false;
  }
  // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
  if (S.getLangOpts().OpenCL && IsBlock &&
      Var->getType()->isBlockPointerType()) {
    if (Diagnose)
      S.Diag(Loc, diag::err_opencl_block_ref_block);
    return false;
  }

  return true;
}

// Returns true if the capture by block was successful.
static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
                                 SourceLocation Loc,
                                 const bool BuildAndDiagnose,
                                 QualType &CaptureType,
                                 QualType &DeclRefType,
                                 const bool Nested,
                                 Sema &S, bool Invalid) {
  bool ByRef = false;

  // Blocks are not allowed to capture arrays, excepting OpenCL.
  // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
  // (decayed to pointers).
  if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
    if (BuildAndDiagnose) {
      S.Diag(Loc, diag::err_ref_array_type);
      S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
      Invalid = true;
    } else {
      return false;
    }
  }

  // Forbid the block-capture of autoreleasing variables.
  if (!Invalid &&
      CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
    if (BuildAndDiagnose) {
      S.Diag(Loc, diag::err_arc_autoreleasing_capture)
        << /*block*/ 0;
      S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
      Invalid = true;
    } else {
      return false;
    }
  }

  // Warn about implicitly autoreleasing indirect parameters captured by blocks.
  if (const auto *PT = CaptureType->getAs<PointerType>()) {
    QualType PointeeTy = PT->getPointeeType();

    if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
        PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
        !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
      if (BuildAndDiagnose) {
        SourceLocation VarLoc = Var->getLocation();
        S.Diag(Loc, diag::warn_block_capture_autoreleasing);
        S.Diag(VarLoc, diag::note_declare_parameter_strong);
      }
    }
  }

  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
  if (HasBlocksAttr || CaptureType->isReferenceType() ||
      (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
    // Block capture by reference does not change the capture or
    // declaration reference types.
    ByRef = true;
  } else {
    // Block capture by copy introduces 'const'.
    CaptureType = CaptureType.getNonReferenceType().withConst();
    DeclRefType = CaptureType;
  }

  // Actually capture the variable.
  if (BuildAndDiagnose)
    BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
                    CaptureType, Invalid);

  return !Invalid;
}


/// Capture the given variable in the captured region.
static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
                                    VarDecl *Var,
                                    SourceLocation Loc,
                                    const bool BuildAndDiagnose,
                                    QualType &CaptureType,
                                    QualType &DeclRefType,
                                    const bool RefersToCapturedVariable,
                                    Sema &S, bool Invalid) {
  // By default, capture variables by reference.
  bool ByRef = true;
  // Using an LValue reference type is consistent with Lambdas (see below).
  if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
    if (S.isOpenMPCapturedDecl(Var)) {
      bool HasConst = DeclRefType.isConstQualified();
      DeclRefType = DeclRefType.getUnqualifiedType();
      // Don't lose diagnostics about assignments to const.
      if (HasConst)
        DeclRefType.addConst();
    }
    // Do not capture firstprivates in tasks.
    if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
        OMPC_unknown)
      return true;
    ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
                                    RSI->OpenMPCaptureLevel);
  }

  if (ByRef)
    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
  else
    CaptureType = DeclRefType;

  // Actually capture the variable.
  if (BuildAndDiagnose)
    RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
                    Loc, SourceLocation(), CaptureType, Invalid);

  return !Invalid;
}

/// Capture the given variable in the lambda.
static bool captureInLambda(LambdaScopeInfo *LSI,
                            VarDecl *Var,
                            SourceLocation Loc,
                            const bool BuildAndDiagnose,
                            QualType &CaptureType,
                            QualType &DeclRefType,
                            const bool RefersToCapturedVariable,
                            const Sema::TryCaptureKind Kind,
                            SourceLocation EllipsisLoc,
                            const bool IsTopScope,
                            Sema &S, bool Invalid) {
  // Determine whether we are capturing by reference or by value.
  bool ByRef = false;
  if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
    ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
  } else {
    ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
  }

  // Compute the type of the field that will capture this variable.
  if (ByRef) {
    // C++11 [expr.prim.lambda]p15:
    //   An entity is captured by reference if it is implicitly or
    //   explicitly captured but not captured by copy. It is
    //   unspecified whether additional unnamed non-static data
    //   members are declared in the closure type for entities
    //   captured by reference.
    //
    // FIXME: It is not clear whether we want to build an lvalue reference
    // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
    // to do the former, while EDG does the latter. Core issue 1249 will
    // clarify, but for now we follow GCC because it's a more permissive and
    // easily defensible position.
    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
  } else {
    // C++11 [expr.prim.lambda]p14:
    //   For each entity captured by copy, an unnamed non-static
    //   data member is declared in the closure type. The
    //   declaration order of these members is unspecified. The type
    //   of such a data member is the type of the corresponding
    //   captured entity if the entity is not a reference to an
    //   object, or the referenced type otherwise. [Note: If the
    //   captured entity is a reference to a function, the
    //   corresponding data member is also a reference to a
    //   function. - end note ]
    if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
      if (!RefType->getPointeeType()->isFunctionType())
        CaptureType = RefType->getPointeeType();
    }

    // Forbid the lambda copy-capture of autoreleasing variables.
    if (!Invalid &&
        CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
      if (BuildAndDiagnose) {
        S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
        S.Diag(Var->getLocation(), diag::note_previous_decl)
          << Var->getDeclName();
        Invalid = true;
      } else {
        return false;
      }
    }

    // Make sure that by-copy captures are of a complete and non-abstract type.
    if (!Invalid && BuildAndDiagnose) {
      if (!CaptureType->isDependentType() &&
          S.RequireCompleteSizedType(
              Loc, CaptureType,
              diag::err_capture_of_incomplete_or_sizeless_type,
              Var->getDeclName()))
        Invalid = true;
      else if (S.RequireNonAbstractType(Loc, CaptureType,
                                        diag::err_capture_of_abstract_type))
        Invalid = true;
    }
  }

  // Compute the type of a reference to this captured variable.
  if (ByRef)
    DeclRefType = CaptureType.getNonReferenceType();
  else {
    // C++ [expr.prim.lambda]p5:
    //   The closure type for a lambda-expression has a public inline
    //   function call operator [...]. This function call operator is
    //   declared const (9.3.1) if and only if the lambda-expression's
    //   parameter-declaration-clause is not followed by mutable.
    DeclRefType = CaptureType.getNonReferenceType();
    if (!LSI->Mutable && !CaptureType->isReferenceType())
      DeclRefType.addConst();
  }

  // Add the capture.
  if (BuildAndDiagnose)
    LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
                    Loc, EllipsisLoc, CaptureType, Invalid);

  return !Invalid;
}

bool Sema::tryCaptureVariable(
    VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
    SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
    QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
  // An init-capture is notionally from the context surrounding its
  // declaration, but its parent DC is the lambda class.
  DeclContext *VarDC = Var->getDeclContext();
  if (Var->isInitCapture())
    VarDC = VarDC->getParent();

  DeclContext *DC = CurContext;
  const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
      ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
  // We need to sync up the Declaration Context with the
  // FunctionScopeIndexToStopAt
  if (FunctionScopeIndexToStopAt) {
    unsigned FSIndex = FunctionScopes.size() - 1;
    while (FSIndex != MaxFunctionScopesIndex) {
      DC = getLambdaAwareParentOfDeclContext(DC);
      --FSIndex;
    }
  }


  // If the variable is declared in the current context, there is no need to
  // capture it.
  if (VarDC == DC) return true;

  // Capture global variables if it is required to use private copy of this
  // variable.
  bool IsGlobal = !Var->hasLocalStorage();
  if (IsGlobal &&
      !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
                                                MaxFunctionScopesIndex)))
    return true;
  Var = Var->getCanonicalDecl();

  // Walk up the stack to determine whether we can capture the variable,
  // performing the "simple" checks that don't depend on type. We stop when
  // we've either hit the declared scope of the variable or find an existing
  // capture of that variable.  We start from the innermost capturing-entity
  // (the DC) and ensure that all intervening capturing-entities
  // (blocks/lambdas etc.) between the innermost capturer and the variable`s
  // declcontext can either capture the variable or have already captured
  // the variable.
  CaptureType = Var->getType();
  DeclRefType = CaptureType.getNonReferenceType();
  bool Nested = false;
  bool Explicit = (Kind != TryCapture_Implicit);
  unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
  do {
    // Only block literals, captured statements, and lambda expressions can
    // capture; other scopes don't work.
    DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
                                                              ExprLoc,
                                                              BuildAndDiagnose,
                                                              *this);
    // We need to check for the parent *first* because, if we *have*
    // private-captured a global variable, we need to recursively capture it in
    // intermediate blocks, lambdas, etc.
    if (!ParentDC) {
      if (IsGlobal) {
        FunctionScopesIndex = MaxFunctionScopesIndex - 1;
        break;
      }
      return true;
    }

    FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);


    // Check whether we've already captured it.
    if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
                                             DeclRefType)) {
      CSI->getCapture(Var).markUsed(BuildAndDiagnose);
      break;
    }
    // If we are instantiating a generic lambda call operator body,
    // we do not want to capture new variables.  What was captured
    // during either a lambdas transformation or initial parsing
    // should be used.
    if (isGenericLambdaCallOperatorSpecialization(DC)) {
      if (BuildAndDiagnose) {
        LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
        if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
          Diag(ExprLoc, diag::err_lambda_impcap) << Var;
          Diag(Var->getLocation(), diag::note_previous_decl) << Var;
          Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
        } else
          diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
      }
      return true;
    }

    // Try to capture variable-length arrays types.
    if (Var->getType()->isVariablyModifiedType()) {
      // We're going to walk down into the type and look for VLA
      // expressions.
      QualType QTy = Var->getType();
      if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
        QTy = PVD->getOriginalType();
      captureVariablyModifiedType(Context, QTy, CSI);
    }

    if (getLangOpts().OpenMP) {
      if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
        // OpenMP private variables should not be captured in outer scope, so
        // just break here. Similarly, global variables that are captured in a
        // target region should not be captured outside the scope of the region.
        if (RSI->CapRegionKind == CR_OpenMP) {
          OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
              Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
          // If the variable is private (i.e. not captured) and has variably
          // modified type, we still need to capture the type for correct
          // codegen in all regions, associated with the construct. Currently,
          // it is captured in the innermost captured region only.
          if (IsOpenMPPrivateDecl != OMPC_unknown &&
              Var->getType()->isVariablyModifiedType()) {
            QualType QTy = Var->getType();
            if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
              QTy = PVD->getOriginalType();
            for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
                 I < E; ++I) {
              auto *OuterRSI = cast<CapturedRegionScopeInfo>(
                  FunctionScopes[FunctionScopesIndex - I]);
              assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
                     "Wrong number of captured regions associated with the "
                     "OpenMP construct.");
              captureVariablyModifiedType(Context, QTy, OuterRSI);
            }
          }
          bool IsTargetCap =
              IsOpenMPPrivateDecl != OMPC_private &&
              isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
                                         RSI->OpenMPCaptureLevel);
          // Do not capture global if it is not privatized in outer regions.
          bool IsGlobalCap =
              IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
                                                     RSI->OpenMPCaptureLevel);

          // When we detect target captures we are looking from inside the
          // target region, therefore we need to propagate the capture from the
          // enclosing region. Therefore, the capture is not initially nested.
          if (IsTargetCap)
            adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);

          if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
              (IsGlobal && !IsGlobalCap)) {
            Nested = !IsTargetCap;
            DeclRefType = DeclRefType.getUnqualifiedType();
            CaptureType = Context.getLValueReferenceType(DeclRefType);
            break;
          }
        }
      }
    }
    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
      // No capture-default, and this is not an explicit capture
      // so cannot capture this variable.
      if (BuildAndDiagnose) {
        Diag(ExprLoc, diag::err_lambda_impcap) << Var;
        Diag(Var->getLocation(), diag::note_previous_decl) << Var;
        if (cast<LambdaScopeInfo>(CSI)->Lambda)
          Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
               diag::note_lambda_decl);
        // FIXME: If we error out because an outer lambda can not implicitly
        // capture a variable that an inner lambda explicitly captures, we
        // should have the inner lambda do the explicit capture - because
        // it makes for cleaner diagnostics later.  This would purely be done
        // so that the diagnostic does not misleadingly claim that a variable
        // can not be captured by a lambda implicitly even though it is captured
        // explicitly.  Suggestion:
        //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
        //    at the function head
        //  - cache the StartingDeclContext - this must be a lambda
        //  - captureInLambda in the innermost lambda the variable.
      }
      return true;
    }

    FunctionScopesIndex--;
    DC = ParentDC;
    Explicit = false;
  } while (!VarDC->Equals(DC));

  // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
  // computing the type of the capture at each step, checking type-specific
  // requirements, and adding captures if requested.
  // If the variable had already been captured previously, we start capturing
  // at the lambda nested within that one.
  bool Invalid = false;
  for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
       ++I) {
    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);

    // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
    // certain types of variables (unnamed, variably modified types etc.)
    // so check for eligibility.
    if (!Invalid)
      Invalid =
          !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);

    // After encountering an error, if we're actually supposed to capture, keep
    // capturing in nested contexts to suppress any follow-on diagnostics.
    if (Invalid && !BuildAndDiagnose)
      return true;

    if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
      Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
                               DeclRefType, Nested, *this, Invalid);
      Nested = true;
    } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
      Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose,
                                         CaptureType, DeclRefType, Nested,
                                         *this, Invalid);
      Nested = true;
    } else {
      LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
      Invalid =
          !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
                           DeclRefType, Nested, Kind, EllipsisLoc,
                           /*IsTopScope*/ I == N - 1, *this, Invalid);
      Nested = true;
    }

    if (Invalid && !BuildAndDiagnose)
      return true;
  }
  return Invalid;
}

bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
  QualType CaptureType;
  QualType DeclRefType;
  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
                            /*BuildAndDiagnose=*/true, CaptureType,
                            DeclRefType, nullptr);
}

bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
  QualType CaptureType;
  QualType DeclRefType;
  return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
                             /*BuildAndDiagnose=*/false, CaptureType,
                             DeclRefType, nullptr);
}

QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
  QualType CaptureType;
  QualType DeclRefType;

  // Determine whether we can capture this variable.
  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
                         /*BuildAndDiagnose=*/false, CaptureType,
                         DeclRefType, nullptr))
    return QualType();

  return DeclRefType;
}

namespace {
// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
// The produced TemplateArgumentListInfo* points to data stored within this
// object, so should only be used in contexts where the pointer will not be
// used after the CopiedTemplateArgs object is destroyed.
class CopiedTemplateArgs {
  bool HasArgs;
  TemplateArgumentListInfo TemplateArgStorage;
public:
  template<typename RefExpr>
  CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
    if (HasArgs)
      E->copyTemplateArgumentsInto(TemplateArgStorage);
  }
  operator TemplateArgumentListInfo*()
#ifdef __has_cpp_attribute
#if __has_cpp_attribute(clang::lifetimebound)
  [[clang::lifetimebound]]
#endif
#endif
  {
    return HasArgs ? &TemplateArgStorage : nullptr;
  }
};
}

/// Walk the set of potential results of an expression and mark them all as
/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
///
/// \return A new expression if we found any potential results, ExprEmpty() if
///         not, and ExprError() if we diagnosed an error.
static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
                                                      NonOdrUseReason NOUR) {
  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
  // an object that satisfies the requirements for appearing in a
  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
  // is immediately applied."  This function handles the lvalue-to-rvalue
  // conversion part.
  //
  // If we encounter a node that claims to be an odr-use but shouldn't be, we
  // transform it into the relevant kind of non-odr-use node and rebuild the
  // tree of nodes leading to it.
  //
  // This is a mini-TreeTransform that only transforms a restricted subset of
  // nodes (and only certain operands of them).

  // Rebuild a subexpression.
  auto Rebuild = [&](Expr *Sub) {
    return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
  };

  // Check whether a potential result satisfies the requirements of NOUR.
  auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
    // Any entity other than a VarDecl is always odr-used whenever it's named
    // in a potentially-evaluated expression.
    auto *VD = dyn_cast<VarDecl>(D);
    if (!VD)
      return true;

    // C++2a [basic.def.odr]p4:
    //   A variable x whose name appears as a potentially-evalauted expression
    //   e is odr-used by e unless
    //   -- x is a reference that is usable in constant expressions, or
    //   -- x is a variable of non-reference type that is usable in constant
    //      expressions and has no mutable subobjects, and e is an element of
    //      the set of potential results of an expression of
    //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
    //      conversion is applied, or
    //   -- x is a variable of non-reference type, and e is an element of the
    //      set of potential results of a discarded-value expression to which
    //      the lvalue-to-rvalue conversion is not applied
    //
    // We check the first bullet and the "potentially-evaluated" condition in
    // BuildDeclRefExpr. We check the type requirements in the second bullet
    // in CheckLValueToRValueConversionOperand below.
    switch (NOUR) {
    case NOUR_None:
    case NOUR_Unevaluated:
      llvm_unreachable("unexpected non-odr-use-reason");

    case NOUR_Constant:
      // Constant references were handled when they were built.
      if (VD->getType()->isReferenceType())
        return true;
      if (auto *RD = VD->getType()->getAsCXXRecordDecl())
        if (RD->hasMutableFields())
          return true;
      if (!VD->isUsableInConstantExpressions(S.Context))
        return true;
      break;

    case NOUR_Discarded:
      if (VD->getType()->isReferenceType())
        return true;
      break;
    }
    return false;
  };

  // Mark that this expression does not constitute an odr-use.
  auto MarkNotOdrUsed = [&] {
    S.MaybeODRUseExprs.remove(E);
    if (LambdaScopeInfo *LSI = S.getCurLambda())
      LSI->markVariableExprAsNonODRUsed(E);
  };

  // C++2a [basic.def.odr]p2:
  //   The set of potential results of an expression e is defined as follows:
  switch (E->getStmtClass()) {
  //   -- If e is an id-expression, ...
  case Expr::DeclRefExprClass: {
    auto *DRE = cast<DeclRefExpr>(E);
    if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
      break;

    // Rebuild as a non-odr-use DeclRefExpr.
    MarkNotOdrUsed();
    return DeclRefExpr::Create(
        S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
        DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
        DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
        DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
  }

  case Expr::FunctionParmPackExprClass: {
    auto *FPPE = cast<FunctionParmPackExpr>(E);
    // If any of the declarations in the pack is odr-used, then the expression
    // as a whole constitutes an odr-use.
    for (VarDecl *D : *FPPE)
      if (IsPotentialResultOdrUsed(D))
        return ExprEmpty();

    // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
    // nothing cares about whether we marked this as an odr-use, but it might
    // be useful for non-compiler tools.
    MarkNotOdrUsed();
    break;
  }

  //   -- If e is a subscripting operation with an array operand...
  case Expr::ArraySubscriptExprClass: {
    auto *ASE = cast<ArraySubscriptExpr>(E);
    Expr *OldBase = ASE->getBase()->IgnoreImplicit();
    if (!OldBase->getType()->isArrayType())
      break;
    ExprResult Base = Rebuild(OldBase);
    if (!Base.isUsable())
      return Base;
    Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
    Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
    SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
    return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
                                     ASE->getRBracketLoc());
  }

  case Expr::MemberExprClass: {
    auto *ME = cast<MemberExpr>(E);
    // -- If e is a class member access expression [...] naming a non-static
    //    data member...
    if (isa<FieldDecl>(ME->getMemberDecl())) {
      ExprResult Base = Rebuild(ME->getBase());
      if (!Base.isUsable())
        return Base;
      return MemberExpr::Create(
          S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
          ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
          ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
          CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
          ME->getObjectKind(), ME->isNonOdrUse());
    }

    if (ME->getMemberDecl()->isCXXInstanceMember())
      break;

    // -- If e is a class member access expression naming a static data member,
    //    ...
    if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
      break;

    // Rebuild as a non-odr-use MemberExpr.
    MarkNotOdrUsed();
    return MemberExpr::Create(
        S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
        ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
        ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
        ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
    return ExprEmpty();
  }

  case Expr::BinaryOperatorClass: {
    auto *BO = cast<BinaryOperator>(E);
    Expr *LHS = BO->getLHS();
    Expr *RHS = BO->getRHS();
    // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
    if (BO->getOpcode() == BO_PtrMemD) {
      ExprResult Sub = Rebuild(LHS);
      if (!Sub.isUsable())
        return Sub;
      LHS = Sub.get();
    //   -- If e is a comma expression, ...
    } else if (BO->getOpcode() == BO_Comma) {
      ExprResult Sub = Rebuild(RHS);
      if (!Sub.isUsable())
        return Sub;
      RHS = Sub.get();
    } else {
      break;
    }
    return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
                        LHS, RHS);
  }

  //   -- If e has the form (e1)...
  case Expr::ParenExprClass: {
    auto *PE = cast<ParenExpr>(E);
    ExprResult Sub = Rebuild(PE->getSubExpr());
    if (!Sub.isUsable())
      return Sub;
    return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
  }

  //   -- If e is a glvalue conditional expression, ...
  // We don't apply this to a binary conditional operator. FIXME: Should we?
  case Expr::ConditionalOperatorClass: {
    auto *CO = cast<ConditionalOperator>(E);
    ExprResult LHS = Rebuild(CO->getLHS());
    if (LHS.isInvalid())
      return ExprError();
    ExprResult RHS = Rebuild(CO->getRHS());
    if (RHS.isInvalid())
      return ExprError();
    if (!LHS.isUsable() && !RHS.isUsable())
      return ExprEmpty();
    if (!LHS.isUsable())
      LHS = CO->getLHS();
    if (!RHS.isUsable())
      RHS = CO->getRHS();
    return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
                                CO->getCond(), LHS.get(), RHS.get());
  }

  // [Clang extension]
  //   -- If e has the form __extension__ e1...
  case Expr::UnaryOperatorClass: {
    auto *UO = cast<UnaryOperator>(E);
    if (UO->getOpcode() != UO_Extension)
      break;
    ExprResult Sub = Rebuild(UO->getSubExpr());
    if (!Sub.isUsable())
      return Sub;
    return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
                          Sub.get());
  }

  // [Clang extension]
  //   -- If e has the form _Generic(...), the set of potential results is the
  //      union of the sets of potential results of the associated expressions.
  case Expr::GenericSelectionExprClass: {
    auto *GSE = cast<GenericSelectionExpr>(E);

    SmallVector<Expr *, 4> AssocExprs;
    bool AnyChanged = false;
    for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
      ExprResult AssocExpr = Rebuild(OrigAssocExpr);
      if (AssocExpr.isInvalid())
        return ExprError();
      if (AssocExpr.isUsable()) {
        AssocExprs.push_back(AssocExpr.get());
        AnyChanged = true;
      } else {
        AssocExprs.push_back(OrigAssocExpr);
      }
    }

    return AnyChanged ? S.CreateGenericSelectionExpr(
                            GSE->getGenericLoc(), GSE->getDefaultLoc(),
                            GSE->getRParenLoc(), GSE->getControllingExpr(),
                            GSE->getAssocTypeSourceInfos(), AssocExprs)
                      : ExprEmpty();
  }

  // [Clang extension]
  //   -- If e has the form __builtin_choose_expr(...), the set of potential
  //      results is the union of the sets of potential results of the
  //      second and third subexpressions.
  case Expr::ChooseExprClass: {
    auto *CE = cast<ChooseExpr>(E);

    ExprResult LHS = Rebuild(CE->getLHS());
    if (LHS.isInvalid())
      return ExprError();

    ExprResult RHS = Rebuild(CE->getLHS());
    if (RHS.isInvalid())
      return ExprError();

    if (!LHS.get() && !RHS.get())
      return ExprEmpty();
    if (!LHS.isUsable())
      LHS = CE->getLHS();
    if (!RHS.isUsable())
      RHS = CE->getRHS();

    return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
                             RHS.get(), CE->getRParenLoc());
  }

  // Step through non-syntactic nodes.
  case Expr::ConstantExprClass: {
    auto *CE = cast<ConstantExpr>(E);
    ExprResult Sub = Rebuild(CE->getSubExpr());
    if (!Sub.isUsable())
      return Sub;
    return ConstantExpr::Create(S.Context, Sub.get());
  }

  // We could mostly rely on the recursive rebuilding to rebuild implicit
  // casts, but not at the top level, so rebuild them here.
  case Expr::ImplicitCastExprClass: {
    auto *ICE = cast<ImplicitCastExpr>(E);
    // Only step through the narrow set of cast kinds we expect to encounter.
    // Anything else suggests we've left the region in which potential results
    // can be found.
    switch (ICE->getCastKind()) {
    case CK_NoOp:
    case CK_DerivedToBase:
    case CK_UncheckedDerivedToBase: {
      ExprResult Sub = Rebuild(ICE->getSubExpr());
      if (!Sub.isUsable())
        return Sub;
      CXXCastPath Path(ICE->path());
      return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
                                 ICE->getValueKind(), &Path);
    }

    default:
      break;
    }
    break;
  }

  default:
    break;
  }

  // Can't traverse through this node. Nothing to do.
  return ExprEmpty();
}

ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
  // Check whether the operand is or contains an object of non-trivial C union
  // type.
  if (E->getType().isVolatileQualified() &&
      (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
       E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
    checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
                          Sema::NTCUC_LValueToRValueVolatile,
                          NTCUK_Destruct|NTCUK_Copy);

  // C++2a [basic.def.odr]p4:
  //   [...] an expression of non-volatile-qualified non-class type to which
  //   the lvalue-to-rvalue conversion is applied [...]
  if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
    return E;

  ExprResult Result =
      rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
  if (Result.isInvalid())
    return ExprError();
  return Result.get() ? Result : E;
}

ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
  Res = CorrectDelayedTyposInExpr(Res);

  if (!Res.isUsable())
    return Res;

  // If a constant-expression is a reference to a variable where we delay
  // deciding whether it is an odr-use, just assume we will apply the
  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
  // (a non-type template argument), we have special handling anyway.
  return CheckLValueToRValueConversionOperand(Res.get());
}

void Sema::CleanupVarDeclMarking() {
  // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
  // call.
  MaybeODRUseExprSet LocalMaybeODRUseExprs;
  std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);

  for (Expr *E : LocalMaybeODRUseExprs) {
    if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
      MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
                         DRE->getLocation(), *this);
    } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
      MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
                         *this);
    } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
      for (VarDecl *VD : *FP)
        MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
    } else {
      llvm_unreachable("Unexpected expression");
    }
  }

  assert(MaybeODRUseExprs.empty() &&
         "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
}

static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
                                    VarDecl *Var, Expr *E) {
  assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
          isa<FunctionParmPackExpr>(E)) &&
         "Invalid Expr argument to DoMarkVarDeclReferenced");
  Var->setReferenced();

  if (Var->isInvalidDecl())
    return;

  // Record a CUDA/HIP static device/constant variable if it is referenced
  // by host code. This is done conservatively, when the variable is referenced
  // in any of the following contexts:
  //   - a non-function context
  //   - a host function
  //   - a host device function
  // This also requires the reference of the static device/constant variable by
  // host code to be visible in the device compilation for the compiler to be
  // able to externalize the static device/constant variable.
  if (SemaRef.getASTContext().mayExternalizeStaticVar(Var)) {
    auto *CurContext = SemaRef.CurContext;
    if (!CurContext || !isa<FunctionDecl>(CurContext) ||
        cast<FunctionDecl>(CurContext)->hasAttr<CUDAHostAttr>() ||
        (!cast<FunctionDecl>(CurContext)->hasAttr<CUDADeviceAttr>() &&
         !cast<FunctionDecl>(CurContext)->hasAttr<CUDAGlobalAttr>()))
      SemaRef.getASTContext().CUDAStaticDeviceVarReferencedByHost.insert(Var);
  }

  auto *MSI = Var->getMemberSpecializationInfo();
  TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
                                       : Var->getTemplateSpecializationKind();

  OdrUseContext OdrUse = isOdrUseContext(SemaRef);
  bool UsableInConstantExpr =
      Var->mightBeUsableInConstantExpressions(SemaRef.Context);

  // C++20 [expr.const]p12:
  //   A variable [...] is needed for constant evaluation if it is [...] a
  //   variable whose name appears as a potentially constant evaluated
  //   expression that is either a contexpr variable or is of non-volatile
  //   const-qualified integral type or of reference type
  bool NeededForConstantEvaluation =
      isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;

  bool NeedDefinition =
      OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;

  assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
         "Can't instantiate a partial template specialization.");

  // If this might be a member specialization of a static data member, check
  // the specialization is visible. We already did the checks for variable
  // template specializations when we created them.
  if (NeedDefinition && TSK != TSK_Undeclared &&
      !isa<VarTemplateSpecializationDecl>(Var))
    SemaRef.checkSpecializationVisibility(Loc, Var);

  // Perform implicit instantiation of static data members, static data member
  // templates of class templates, and variable template specializations. Delay
  // instantiations of variable templates, except for those that could be used
  // in a constant expression.
  if (NeedDefinition && isTemplateInstantiation(TSK)) {
    // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
    // instantiation declaration if a variable is usable in a constant
    // expression (among other cases).
    bool TryInstantiating =
        TSK == TSK_ImplicitInstantiation ||
        (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);

    if (TryInstantiating) {
      SourceLocation PointOfInstantiation =
          MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
      bool FirstInstantiation = PointOfInstantiation.isInvalid();
      if (FirstInstantiation) {
        PointOfInstantiation = Loc;
        if (MSI)
          MSI->setPointOfInstantiation(PointOfInstantiation);
        else
          Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
      }

      if (UsableInConstantExpr) {
        // Do not defer instantiations of variables that could be used in a
        // constant expression.
        SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
          SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
        });
      } else if (FirstInstantiation ||
                 isa<VarTemplateSpecializationDecl>(Var)) {
        // FIXME: For a specialization of a variable template, we don't
        // distinguish between "declaration and type implicitly instantiated"
        // and "implicit instantiation of definition requested", so we have
        // no direct way to avoid enqueueing the pending instantiation
        // multiple times.
        SemaRef.PendingInstantiations
            .push_back(std::make_pair(Var, PointOfInstantiation));
      }
    }
  }

  // C++2a [basic.def.odr]p4:
  //   A variable x whose name appears as a potentially-evaluated expression e
  //   is odr-used by e unless
  //   -- x is a reference that is usable in constant expressions
  //   -- x is a variable of non-reference type that is usable in constant
  //      expressions and has no mutable subobjects [FIXME], and e is an
  //      element of the set of potential results of an expression of
  //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
  //      conversion is applied
  //   -- x is a variable of non-reference type, and e is an element of the set
  //      of potential results of a discarded-value expression to which the
  //      lvalue-to-rvalue conversion is not applied [FIXME]
  //
  // We check the first part of the second bullet here, and
  // Sema::CheckLValueToRValueConversionOperand deals with the second part.
  // FIXME: To get the third bullet right, we need to delay this even for
  // variables that are not usable in constant expressions.

  // If we already know this isn't an odr-use, there's nothing more to do.
  if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
    if (DRE->isNonOdrUse())
      return;
  if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
    if (ME->isNonOdrUse())
      return;

  switch (OdrUse) {
  case OdrUseContext::None:
    assert((!E || isa<FunctionParmPackExpr>(E)) &&
           "missing non-odr-use marking for unevaluated decl ref");
    break;

  case OdrUseContext::FormallyOdrUsed:
    // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
    // behavior.
    break;

  case OdrUseContext::Used:
    // If we might later find that this expression isn't actually an odr-use,
    // delay the marking.
    if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
      SemaRef.MaybeODRUseExprs.insert(E);
    else
      MarkVarDeclODRUsed(Var, Loc, SemaRef);
    break;

  case OdrUseContext::Dependent:
    // If this is a dependent context, we don't need to mark variables as
    // odr-used, but we may still need to track them for lambda capture.
    // FIXME: Do we also need to do this inside dependent typeid expressions
    // (which are modeled as unevaluated at this point)?
    const bool RefersToEnclosingScope =
        (SemaRef.CurContext != Var->getDeclContext() &&
         Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
    if (RefersToEnclosingScope) {
      LambdaScopeInfo *const LSI =
          SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
      if (LSI && (!LSI->CallOperator ||
                  !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
        // If a variable could potentially be odr-used, defer marking it so
        // until we finish analyzing the full expression for any
        // lvalue-to-rvalue
        // or discarded value conversions that would obviate odr-use.
        // Add it to the list of potential captures that will be analyzed
        // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
        // unless the variable is a reference that was initialized by a constant
        // expression (this will never need to be captured or odr-used).
        //
        // FIXME: We can simplify this a lot after implementing P0588R1.
        assert(E && "Capture variable should be used in an expression.");
        if (!Var->getType()->isReferenceType() ||
            !Var->isUsableInConstantExpressions(SemaRef.Context))
          LSI->addPotentialCapture(E->IgnoreParens());
      }
    }
    break;
  }
}

/// Mark a variable referenced, and check whether it is odr-used
/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
/// used directly for normal expressions referring to VarDecl.
void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
  DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
}

static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
                               Decl *D, Expr *E, bool MightBeOdrUse) {
  if (SemaRef.isInOpenMPDeclareTargetContext())
    SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);

  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
    return;
  }

  SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);

  // If this is a call to a method via a cast, also mark the method in the
  // derived class used in case codegen can devirtualize the call.
  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
  if (!ME)
    return;
  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
  if (!MD)
    return;
  // Only attempt to devirtualize if this is truly a virtual call.
  bool IsVirtualCall = MD->isVirtual() &&
                          ME->performsVirtualDispatch(SemaRef.getLangOpts());
  if (!IsVirtualCall)
    return;

  // If it's possible to devirtualize the call, mark the called function
  // referenced.
  CXXMethodDecl *DM = MD->getDevirtualizedMethod(
      ME->getBase(), SemaRef.getLangOpts().AppleKext);
  if (DM)
    SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
}

/// Perform reference-marking and odr-use handling for a DeclRefExpr.
void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
  // TODO: update this with DR# once a defect report is filed.
  // C++11 defect. The address of a pure member should not be an ODR use, even
  // if it's a qualified reference.
  bool OdrUse = true;
  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
    if (Method->isVirtual() &&
        !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
      OdrUse = false;

  if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
    if (!isConstantEvaluated() && FD->isConsteval() &&
        !RebuildingImmediateInvocation)
      ExprEvalContexts.back().ReferenceToConsteval.insert(E);
  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
}

/// Perform reference-marking and odr-use handling for a MemberExpr.
void Sema::MarkMemberReferenced(MemberExpr *E) {
  // C++11 [basic.def.odr]p2:
  //   A non-overloaded function whose name appears as a potentially-evaluated
  //   expression or a member of a set of candidate functions, if selected by
  //   overload resolution when referred to from a potentially-evaluated
  //   expression, is odr-used, unless it is a pure virtual function and its
  //   name is not explicitly qualified.
  bool MightBeOdrUse = true;
  if (E->performsVirtualDispatch(getLangOpts())) {
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
      if (Method->isPure())
        MightBeOdrUse = false;
  }
  SourceLocation Loc =
      E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
  MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
}

/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
  for (VarDecl *VD : *E)
    MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
}

/// Perform marking for a reference to an arbitrary declaration.  It
/// marks the declaration referenced, and performs odr-use checking for
/// functions and variables. This method should not be used when building a
/// normal expression which refers to a variable.
void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
                                 bool MightBeOdrUse) {
  if (MightBeOdrUse) {
    if (auto *VD = dyn_cast<VarDecl>(D)) {
      MarkVariableReferenced(Loc, VD);
      return;
    }
  }
  if (auto *FD = dyn_cast<FunctionDecl>(D)) {
    MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
    return;
  }
  D->setReferenced();
}

namespace {
  // Mark all of the declarations used by a type as referenced.
  // FIXME: Not fully implemented yet! We need to have a better understanding
  // of when we're entering a context we should not recurse into.
  // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
  // TreeTransforms rebuilding the type in a new context. Rather than
  // duplicating the TreeTransform logic, we should consider reusing it here.
  // Currently that causes problems when rebuilding LambdaExprs.
  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
    Sema &S;
    SourceLocation Loc;

  public:
    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;

    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }

    bool TraverseTemplateArgument(const TemplateArgument &Arg);
  };
}

bool MarkReferencedDecls::TraverseTemplateArgument(
    const TemplateArgument &Arg) {
  {
    // A non-type template argument is a constant-evaluated context.
    EnterExpressionEvaluationContext Evaluated(
        S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
    if (Arg.getKind() == TemplateArgument::Declaration) {
      if (Decl *D = Arg.getAsDecl())
        S.MarkAnyDeclReferenced(Loc, D, true);
    } else if (Arg.getKind() == TemplateArgument::Expression) {
      S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
    }
  }

  return Inherited::TraverseTemplateArgument(Arg);
}

void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
  MarkReferencedDecls Marker(*this, Loc);
  Marker.TraverseType(T);
}

namespace {
/// Helper class that marks all of the declarations referenced by
/// potentially-evaluated subexpressions as "referenced".
class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
public:
  typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
  bool SkipLocalVariables;

  EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
      : Inherited(S), SkipLocalVariables(SkipLocalVariables) {}

  void visitUsedDecl(SourceLocation Loc, Decl *D) {
    S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
  }

  void VisitDeclRefExpr(DeclRefExpr *E) {
    // If we were asked not to visit local variables, don't.
    if (SkipLocalVariables) {
      if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
        if (VD->hasLocalStorage())
          return;
    }
    S.MarkDeclRefReferenced(E);
  }

  void VisitMemberExpr(MemberExpr *E) {
    S.MarkMemberReferenced(E);
    Visit(E->getBase());
  }
};
} // namespace

/// Mark any declarations that appear within this expression or any
/// potentially-evaluated subexpressions as "referenced".
///
/// \param SkipLocalVariables If true, don't mark local variables as
/// 'referenced'.
void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
                                            bool SkipLocalVariables) {
  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
}

/// Emit a diagnostic that describes an effect on the run-time behavior
/// of the program being compiled.
///
/// This routine emits the given diagnostic when the code currently being
/// type-checked is "potentially evaluated", meaning that there is a
/// possibility that the code will actually be executable. Code in sizeof()
/// expressions, code used only during overload resolution, etc., are not
/// potentially evaluated. This routine will suppress such diagnostics or,
/// in the absolutely nutty case of potentially potentially evaluated
/// expressions (C++ typeid), queue the diagnostic to potentially emit it
/// later.
///
/// This routine should be used for all diagnostics that describe the run-time
/// behavior of a program, such as passing a non-POD value through an ellipsis.
/// Failure to do so will likely result in spurious diagnostics or failures
/// during overload resolution or within sizeof/alignof/typeof/typeid.
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
                               const PartialDiagnostic &PD) {
  switch (ExprEvalContexts.back().Context) {
  case ExpressionEvaluationContext::Unevaluated:
  case ExpressionEvaluationContext::UnevaluatedList:
  case ExpressionEvaluationContext::UnevaluatedAbstract:
  case ExpressionEvaluationContext::DiscardedStatement:
    // The argument will never be evaluated, so don't complain.
    break;

  case ExpressionEvaluationContext::ConstantEvaluated:
    // Relevant diagnostics should be produced by constant evaluation.
    break;

  case ExpressionEvaluationContext::PotentiallyEvaluated:
  case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
    if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
      FunctionScopes.back()->PossiblyUnreachableDiags.
        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
      return true;
    }

    // The initializer of a constexpr variable or of the first declaration of a
    // static data member is not syntactically a constant evaluated constant,
    // but nonetheless is always required to be a constant expression, so we
    // can skip diagnosing.
    // FIXME: Using the mangling context here is a hack.
    if (auto *VD = dyn_cast_or_null<VarDecl>(
            ExprEvalContexts.back().ManglingContextDecl)) {
      if (VD->isConstexpr() ||
          (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
        break;
      // FIXME: For any other kind of variable, we should build a CFG for its
      // initializer and check whether the context in question is reachable.
    }

    Diag(Loc, PD);
    return true;
  }

  return false;
}

bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
                               const PartialDiagnostic &PD) {
  return DiagRuntimeBehavior(
      Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
}

bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
                               CallExpr *CE, FunctionDecl *FD) {
  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
    return false;

  // If we're inside a decltype's expression, don't check for a valid return
  // type or construct temporaries until we know whether this is the last call.
  if (ExprEvalContexts.back().ExprContext ==
      ExpressionEvaluationContextRecord::EK_Decltype) {
    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
    return false;
  }

  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
    FunctionDecl *FD;
    CallExpr *CE;

  public:
    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
      : FD(FD), CE(CE) { }

    void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
      if (!FD) {
        S.Diag(Loc, diag::err_call_incomplete_return)
          << T << CE->getSourceRange();
        return;
      }

      S.Diag(Loc, diag::err_call_function_incomplete_return)
          << CE->getSourceRange() << FD << T;
      S.Diag(FD->getLocation(), diag::note_entity_declared_at)
          << FD->getDeclName();
    }
  } Diagnoser(FD, CE);

  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
    return true;

  return false;
}

// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
// will prevent this condition from triggering, which is what we want.
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
  SourceLocation Loc;

  unsigned diagnostic = diag::warn_condition_is_assignment;
  bool IsOrAssign = false;

  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
      return;

    IsOrAssign = Op->getOpcode() == BO_OrAssign;

    // Greylist some idioms by putting them into a warning subcategory.
    if (ObjCMessageExpr *ME
          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
      Selector Sel = ME->getSelector();

      // self = [<foo> init...]
      if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
        diagnostic = diag::warn_condition_is_idiomatic_assignment;

      // <foo> = [<bar> nextObject]
      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
        diagnostic = diag::warn_condition_is_idiomatic_assignment;
    }

    Loc = Op->getOperatorLoc();
  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
      return;

    IsOrAssign = Op->getOperator() == OO_PipeEqual;
    Loc = Op->getOperatorLoc();
  } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
    return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
  else {
    // Not an assignment.
    return;
  }

  Diag(Loc, diagnostic) << E->getSourceRange();

  SourceLocation Open = E->getBeginLoc();
  SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
  Diag(Loc, diag::note_condition_assign_silence)
        << FixItHint::CreateInsertion(Open, "(")
        << FixItHint::CreateInsertion(Close, ")");

  if (IsOrAssign)
    Diag(Loc, diag::note_condition_or_assign_to_comparison)
      << FixItHint::CreateReplacement(Loc, "!=");
  else
    Diag(Loc, diag::note_condition_assign_to_comparison)
      << FixItHint::CreateReplacement(Loc, "==");
}

/// Redundant parentheses over an equality comparison can indicate
/// that the user intended an assignment used as condition.
void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
  // Don't warn if the parens came from a macro.
  SourceLocation parenLoc = ParenE->getBeginLoc();
  if (parenLoc.isInvalid() || parenLoc.isMacroID())
    return;
  // Don't warn for dependent expressions.
  if (ParenE->isTypeDependent())
    return;

  Expr *E = ParenE->IgnoreParens();

  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
    if (opE->getOpcode() == BO_EQ &&
        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
                                                           == Expr::MLV_Valid) {
      SourceLocation Loc = opE->getOperatorLoc();

      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
      SourceRange ParenERange = ParenE->getSourceRange();
      Diag(Loc, diag::note_equality_comparison_silence)
        << FixItHint::CreateRemoval(ParenERange.getBegin())
        << FixItHint::CreateRemoval(ParenERange.getEnd());
      Diag(Loc, diag::note_equality_comparison_to_assign)
        << FixItHint::CreateReplacement(Loc, "=");
    }
}

ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
                                       bool IsConstexpr) {
  DiagnoseAssignmentAsCondition(E);
  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
    DiagnoseEqualityWithExtraParens(parenE);

  ExprResult result = CheckPlaceholderExpr(E);
  if (result.isInvalid()) return ExprError();
  E = result.get();

  if (!E->isTypeDependent()) {
    if (getLangOpts().CPlusPlus)
      return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4

    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
    if (ERes.isInvalid())
      return ExprError();
    E = ERes.get();

    QualType T = E->getType();
    if (!T->isScalarType()) { // C99 6.8.4.1p1
      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
        << T << E->getSourceRange();
      return ExprError();
    }
    CheckBoolLikeConversion(E, Loc);
  }

  return E;
}

Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
                                           Expr *SubExpr, ConditionKind CK) {
  // Empty conditions are valid in for-statements.
  if (!SubExpr)
    return ConditionResult();

  ExprResult Cond;
  switch (CK) {
  case ConditionKind::Boolean:
    Cond = CheckBooleanCondition(Loc, SubExpr);
    break;

  case ConditionKind::ConstexprIf:
    Cond = CheckBooleanCondition(Loc, SubExpr, true);
    break;

  case ConditionKind::Switch:
    Cond = CheckSwitchCondition(Loc, SubExpr);
    break;
  }
  if (Cond.isInvalid()) {
    Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
                              {SubExpr});
    if (!Cond.get())
      return ConditionError();
  }
  // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
  FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
  if (!FullExpr.get())
    return ConditionError();

  return ConditionResult(*this, nullptr, FullExpr,
                         CK == ConditionKind::ConstexprIf);
}

namespace {
  /// A visitor for rebuilding a call to an __unknown_any expression
  /// to have an appropriate type.
  struct RebuildUnknownAnyFunction
    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {

    Sema &S;

    RebuildUnknownAnyFunction(Sema &S) : S(S) {}

    ExprResult VisitStmt(Stmt *S) {
      llvm_unreachable("unexpected statement!");
    }

    ExprResult VisitExpr(Expr *E) {
      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
        << E->getSourceRange();
      return ExprError();
    }

    /// Rebuild an expression which simply semantically wraps another
    /// expression which it shares the type and value kind of.
    template <class T> ExprResult rebuildSugarExpr(T *E) {
      ExprResult SubResult = Visit(E->getSubExpr());
      if (SubResult.isInvalid()) return ExprError();

      Expr *SubExpr = SubResult.get();
      E->setSubExpr(SubExpr);
      E->setType(SubExpr->getType());
      E->setValueKind(SubExpr->getValueKind());
      assert(E->getObjectKind() == OK_Ordinary);
      return E;
    }

    ExprResult VisitParenExpr(ParenExpr *E) {
      return rebuildSugarExpr(E);
    }

    ExprResult VisitUnaryExtension(UnaryOperator *E) {
      return rebuildSugarExpr(E);
    }

    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
      ExprResult SubResult = Visit(E->getSubExpr());
      if (SubResult.isInvalid()) return ExprError();

      Expr *SubExpr = SubResult.get();
      E->setSubExpr(SubExpr);
      E->setType(S.Context.getPointerType(SubExpr->getType()));
      assert(E->getValueKind() == VK_RValue);
      assert(E->getObjectKind() == OK_Ordinary);
      return E;
    }

    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);

      E->setType(VD->getType());

      assert(E->getValueKind() == VK_RValue);
      if (S.getLangOpts().CPlusPlus &&
          !(isa<CXXMethodDecl>(VD) &&
            cast<CXXMethodDecl>(VD)->isInstance()))
        E->setValueKind(VK_LValue);

      return E;
    }

    ExprResult VisitMemberExpr(MemberExpr *E) {
      return resolveDecl(E, E->getMemberDecl());
    }

    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
      return resolveDecl(E, E->getDecl());
    }
  };
}

/// Given a function expression of unknown-any type, try to rebuild it
/// to have a function type.
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
  if (Result.isInvalid()) return ExprError();
  return S.DefaultFunctionArrayConversion(Result.get());
}

namespace {
  /// A visitor for rebuilding an expression of type __unknown_anytype
  /// into one which resolves the type directly on the referring
  /// expression.  Strict preservation of the original source
  /// structure is not a goal.
  struct RebuildUnknownAnyExpr
    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {

    Sema &S;

    /// The current destination type.
    QualType DestType;

    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
      : S(S), DestType(CastType) {}

    ExprResult VisitStmt(Stmt *S) {
      llvm_unreachable("unexpected statement!");
    }

    ExprResult VisitExpr(Expr *E) {
      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
        << E->getSourceRange();
      return ExprError();
    }

    ExprResult VisitCallExpr(CallExpr *E);
    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);

    /// Rebuild an expression which simply semantically wraps another
    /// expression which it shares the type and value kind of.
    template <class T> ExprResult rebuildSugarExpr(T *E) {
      ExprResult SubResult = Visit(E->getSubExpr());
      if (SubResult.isInvalid()) return ExprError();
      Expr *SubExpr = SubResult.get();
      E->setSubExpr(SubExpr);
      E->setType(SubExpr->getType());
      E->setValueKind(SubExpr->getValueKind());
      assert(E->getObjectKind() == OK_Ordinary);
      return E;
    }

    ExprResult VisitParenExpr(ParenExpr *E) {
      return rebuildSugarExpr(E);
    }

    ExprResult VisitUnaryExtension(UnaryOperator *E) {
      return rebuildSugarExpr(E);
    }

    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
      const PointerType *Ptr = DestType->getAs<PointerType>();
      if (!Ptr) {
        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
          << E->getSourceRange();
        return ExprError();
      }

      if (isa<CallExpr>(E->getSubExpr())) {
        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
          << E->getSourceRange();
        return ExprError();
      }

      assert(E->getValueKind() == VK_RValue);
      assert(E->getObjectKind() == OK_Ordinary);
      E->setType(DestType);

      // Build the sub-expression as if it were an object of the pointee type.
      DestType = Ptr->getPointeeType();
      ExprResult SubResult = Visit(E->getSubExpr());
      if (SubResult.isInvalid()) return ExprError();
      E->setSubExpr(SubResult.get());
      return E;
    }

    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);

    ExprResult resolveDecl(Expr *E, ValueDecl *VD);

    ExprResult VisitMemberExpr(MemberExpr *E) {
      return resolveDecl(E, E->getMemberDecl());
    }

    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
      return resolveDecl(E, E->getDecl());
    }
  };
}

/// Rebuilds a call expression which yielded __unknown_anytype.
ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
  Expr *CalleeExpr = E->getCallee();

  enum FnKind {
    FK_MemberFunction,
    FK_FunctionPointer,
    FK_BlockPointer
  };

  FnKind Kind;
  QualType CalleeType = CalleeExpr->getType();
  if (CalleeType == S.Context.BoundMemberTy) {
    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
    Kind = FK_MemberFunction;
    CalleeType = Expr::findBoundMemberType(CalleeExpr);
  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
    CalleeType = Ptr->getPointeeType();
    Kind = FK_FunctionPointer;
  } else {
    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
    Kind = FK_BlockPointer;
  }
  const FunctionType *FnType = CalleeType->castAs<FunctionType>();

  // Verify that this is a legal result type of a function.
  if (DestType->isArrayType() || DestType->isFunctionType()) {
    unsigned diagID = diag::err_func_returning_array_function;
    if (Kind == FK_BlockPointer)
      diagID = diag::err_block_returning_array_function;

    S.Diag(E->getExprLoc(), diagID)
      << DestType->isFunctionType() << DestType;
    return ExprError();
  }

  // Otherwise, go ahead and set DestType as the call's result.
  E->setType(DestType.getNonLValueExprType(S.Context));
  E->setValueKind(Expr::getValueKindForType(DestType));
  assert(E->getObjectKind() == OK_Ordinary);

  // Rebuild the function type, replacing the result type with DestType.
  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
  if (Proto) {
    // __unknown_anytype(...) is a special case used by the debugger when
    // it has no idea what a function's signature is.
    //
    // We want to build this call essentially under the K&R
    // unprototyped rules, but making a FunctionNoProtoType in C++
    // would foul up all sorts of assumptions.  However, we cannot
    // simply pass all arguments as variadic arguments, nor can we
    // portably just call the function under a non-variadic type; see
    // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
    // However, it turns out that in practice it is generally safe to
    // call a function declared as "A foo(B,C,D);" under the prototype
    // "A foo(B,C,D,...);".  The only known exception is with the
    // Windows ABI, where any variadic function is implicitly cdecl
    // regardless of its normal CC.  Therefore we change the parameter
    // types to match the types of the arguments.
    //
    // This is a hack, but it is far superior to moving the
    // corresponding target-specific code from IR-gen to Sema/AST.

    ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
    SmallVector<QualType, 8> ArgTypes;
    if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
      ArgTypes.reserve(E->getNumArgs());
      for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
        Expr *Arg = E->getArg(i);
        QualType ArgType = Arg->getType();
        if (E->isLValue()) {
          ArgType = S.Context.getLValueReferenceType(ArgType);
        } else if (E->isXValue()) {
          ArgType = S.Context.getRValueReferenceType(ArgType);
        }
        ArgTypes.push_back(ArgType);
      }
      ParamTypes = ArgTypes;
    }
    DestType = S.Context.getFunctionType(DestType, ParamTypes,
                                         Proto->getExtProtoInfo());
  } else {
    DestType = S.Context.getFunctionNoProtoType(DestType,
                                                FnType->getExtInfo());
  }

  // Rebuild the appropriate pointer-to-function type.
  switch (Kind) {
  case FK_MemberFunction:
    // Nothing to do.
    break;

  case FK_FunctionPointer:
    DestType = S.Context.getPointerType(DestType);
    break;

  case FK_BlockPointer:
    DestType = S.Context.getBlockPointerType(DestType);
    break;
  }

  // Finally, we can recurse.
  ExprResult CalleeResult = Visit(CalleeExpr);
  if (!CalleeResult.isUsable()) return ExprError();
  E->setCallee(CalleeResult.get());

  // Bind a temporary if necessary.
  return S.MaybeBindToTemporary(E);
}

ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
  // Verify that this is a legal result type of a call.
  if (DestType->isArrayType() || DestType->isFunctionType()) {
    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
      << DestType->isFunctionType() << DestType;
    return ExprError();
  }

  // Rewrite the method result type if available.
  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
    assert(Method->getReturnType() == S.Context.UnknownAnyTy);
    Method->setReturnType(DestType);
  }

  // Change the type of the message.
  E->setType(DestType.getNonReferenceType());
  E->setValueKind(Expr::getValueKindForType(DestType));

  return S.MaybeBindToTemporary(E);
}

ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
  // The only case we should ever see here is a function-to-pointer decay.
  if (E->getCastKind() == CK_FunctionToPointerDecay) {
    assert(E->getValueKind() == VK_RValue);
    assert(E->getObjectKind() == OK_Ordinary);

    E->setType(DestType);

    // Rebuild the sub-expression as the pointee (function) type.
    DestType = DestType->castAs<PointerType>()->getPointeeType();

    ExprResult Result = Visit(E->getSubExpr());
    if (!Result.isUsable()) return ExprError();

    E->setSubExpr(Result.get());
    return E;
  } else if (E->getCastKind() == CK_LValueToRValue) {
    assert(E->getValueKind() == VK_RValue);
    assert(E->getObjectKind() == OK_Ordinary);

    assert(isa<BlockPointerType>(E->getType()));

    E->setType(DestType);

    // The sub-expression has to be a lvalue reference, so rebuild it as such.
    DestType = S.Context.getLValueReferenceType(DestType);

    ExprResult Result = Visit(E->getSubExpr());
    if (!Result.isUsable()) return ExprError();

    E->setSubExpr(Result.get());
    return E;
  } else {
    llvm_unreachable("Unhandled cast type!");
  }
}

ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
  ExprValueKind ValueKind = VK_LValue;
  QualType Type = DestType;

  // We know how to make this work for certain kinds of decls:

  //  - functions
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
      DestType = Ptr->getPointeeType();
      ExprResult Result = resolveDecl(E, VD);
      if (Result.isInvalid()) return ExprError();
      return S.ImpCastExprToType(Result.get(), Type,
                                 CK_FunctionToPointerDecay, VK_RValue);
    }

    if (!Type->isFunctionType()) {
      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
        << VD << E->getSourceRange();
      return ExprError();
    }
    if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
      // We must match the FunctionDecl's type to the hack introduced in
      // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
      // type. See the lengthy commentary in that routine.
      QualType FDT = FD->getType();
      const FunctionType *FnType = FDT->castAs<FunctionType>();
      const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
      if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
        SourceLocation Loc = FD->getLocation();
        FunctionDecl *NewFD = FunctionDecl::Create(
            S.Context, FD->getDeclContext(), Loc, Loc,
            FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
            SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
            /*ConstexprKind*/ CSK_unspecified);

        if (FD->getQualifier())
          NewFD->setQualifierInfo(FD->getQualifierLoc());

        SmallVector<ParmVarDecl*, 16> Params;
        for (const auto &AI : FT->param_types()) {
          ParmVarDecl *Param =
            S.BuildParmVarDeclForTypedef(FD, Loc, AI);
          Param->setScopeInfo(0, Params.size());
          Params.push_back(Param);
        }
        NewFD->setParams(Params);
        DRE->setDecl(NewFD);
        VD = DRE->getDecl();
      }
    }

    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
      if (MD->isInstance()) {
        ValueKind = VK_RValue;
        Type = S.Context.BoundMemberTy;
      }

    // Function references aren't l-values in C.
    if (!S.getLangOpts().CPlusPlus)
      ValueKind = VK_RValue;

  //  - variables
  } else if (isa<VarDecl>(VD)) {
    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
      Type = RefTy->getPointeeType();
    } else if (Type->isFunctionType()) {
      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
        << VD << E->getSourceRange();
      return ExprError();
    }

  //  - nothing else
  } else {
    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
      << VD << E->getSourceRange();
    return ExprError();
  }

  // Modifying the declaration like this is friendly to IR-gen but
  // also really dangerous.
  VD->setType(DestType);
  E->setType(Type);
  E->setValueKind(ValueKind);
  return E;
}

/// Check a cast of an unknown-any type.  We intentionally only
/// trigger this for C-style casts.
ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
                                     Expr *CastExpr, CastKind &CastKind,
                                     ExprValueKind &VK, CXXCastPath &Path) {
  // The type we're casting to must be either void or complete.
  if (!CastType->isVoidType() &&
      RequireCompleteType(TypeRange.getBegin(), CastType,
                          diag::err_typecheck_cast_to_incomplete))
    return ExprError();

  // Rewrite the casted expression from scratch.
  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
  if (!result.isUsable()) return ExprError();

  CastExpr = result.get();
  VK = CastExpr->getValueKind();
  CastKind = CK_NoOp;

  return CastExpr;
}

ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
}

ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
                                    Expr *arg, QualType &paramType) {
  // If the syntactic form of the argument is not an explicit cast of
  // any sort, just do default argument promotion.
  ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
  if (!castArg) {
    ExprResult result = DefaultArgumentPromotion(arg);
    if (result.isInvalid()) return ExprError();
    paramType = result.get()->getType();
    return result;
  }

  // Otherwise, use the type that was written in the explicit cast.
  assert(!arg->hasPlaceholderType());
  paramType = castArg->getTypeAsWritten();

  // Copy-initialize a parameter of that type.
  InitializedEntity entity =
    InitializedEntity::InitializeParameter(Context, paramType,
                                           /*consumed*/ false);
  return PerformCopyInitialization(entity, callLoc, arg);
}

static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
  Expr *orig = E;
  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
  while (true) {
    E = E->IgnoreParenImpCasts();
    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
      E = call->getCallee();
      diagID = diag::err_uncasted_call_of_unknown_any;
    } else {
      break;
    }
  }

  SourceLocation loc;
  NamedDecl *d;
  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
    loc = ref->getLocation();
    d = ref->getDecl();
  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
    loc = mem->getMemberLoc();
    d = mem->getMemberDecl();
  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
    diagID = diag::err_uncasted_call_of_unknown_any;
    loc = msg->getSelectorStartLoc();
    d = msg->getMethodDecl();
    if (!d) {
      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
        << orig->getSourceRange();
      return ExprError();
    }
  } else {
    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
      << E->getSourceRange();
    return ExprError();
  }

  S.Diag(loc, diagID) << d << orig->getSourceRange();

  // Never recoverable.
  return ExprError();
}

/// Check for operands with placeholder types and complain if found.
/// Returns ExprError() if there was an error and no recovery was possible.
ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
  if (!getLangOpts().CPlusPlus) {
    // C cannot handle TypoExpr nodes on either side of a binop because it
    // doesn't handle dependent types properly, so make sure any TypoExprs have
    // been dealt with before checking the operands.
    ExprResult Result = CorrectDelayedTyposInExpr(E);
    if (!Result.isUsable()) return ExprError();
    E = Result.get();
  }

  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
  if (!placeholderType) return E;

  switch (placeholderType->getKind()) {

  // Overloaded expressions.
  case BuiltinType::Overload: {
    // Try to resolve a single function template specialization.
    // This is obligatory.
    ExprResult Result = E;
    if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
      return Result;

    // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
    // leaves Result unchanged on failure.
    Result = E;
    if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
      return Result;

    // If that failed, try to recover with a call.
    tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
                         /*complain*/ true);
    return Result;
  }

  // Bound member functions.
  case BuiltinType::BoundMember: {
    ExprResult result = E;
    const Expr *BME = E->IgnoreParens();
    PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
    // Try to give a nicer diagnostic if it is a bound member that we recognize.
    if (isa<CXXPseudoDestructorExpr>(BME)) {
      PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
    } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
      if (ME->getMemberNameInfo().getName().getNameKind() ==
          DeclarationName::CXXDestructorName)
        PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
    }
    tryToRecoverWithCall(result, PD,
                         /*complain*/ true);
    return result;
  }

  // ARC unbridged casts.
  case BuiltinType::ARCUnbridgedCast: {
    Expr *realCast = stripARCUnbridgedCast(E);
    diagnoseARCUnbridgedCast(realCast);
    return realCast;
  }

  // Expressions of unknown type.
  case BuiltinType::UnknownAny:
    return diagnoseUnknownAnyExpr(*this, E);

  // Pseudo-objects.
  case BuiltinType::PseudoObject:
    return checkPseudoObjectRValue(E);

  case BuiltinType::BuiltinFn: {
    // Accept __noop without parens by implicitly converting it to a call expr.
    auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
    if (DRE) {
      auto *FD = cast<FunctionDecl>(DRE->getDecl());
      if (FD->getBuiltinID() == Builtin::BI__noop) {
        E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
                              CK_BuiltinFnToFnPtr)
                .get();
        return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
                                VK_RValue, SourceLocation(),
                                FPOptionsOverride());
      }
    }

    Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
    return ExprError();
  }

  case BuiltinType::IncompleteMatrixIdx:
    Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
             ->getRowIdx()
             ->getBeginLoc(),
         diag::err_matrix_incomplete_index);
    return ExprError();

  // Expressions of unknown type.
  case BuiltinType::OMPArraySection:
    Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
    return ExprError();

  // Expressions of unknown type.
  case BuiltinType::OMPArrayShaping:
    return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));

  case BuiltinType::OMPIterator:
    return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));

  // Everything else should be impossible.
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
  case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
  case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
#define SVE_TYPE(Name, Id, SingletonId) \
  case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
#define PLACEHOLDER_TYPE(Id, SingletonId)
#include "clang/AST/BuiltinTypes.def"
    break;
  }

  llvm_unreachable("invalid placeholder type!");
}

bool Sema::CheckCaseExpression(Expr *E) {
  if (E->isTypeDependent())
    return true;
  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
    return E->getType()->isIntegralOrEnumerationType();
  return false;
}

/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
ExprResult
Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
         "Unknown Objective-C Boolean value!");
  QualType BoolT = Context.ObjCBuiltinBoolTy;
  if (!Context.getBOOLDecl()) {
    LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
                        Sema::LookupOrdinaryName);
    if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
      NamedDecl *ND = Result.getFoundDecl();
      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
        Context.setBOOLDecl(TD);
    }
  }
  if (Context.getBOOLDecl())
    BoolT = Context.getBOOLType();
  return new (Context)
      ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
}

ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
    llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
    SourceLocation RParen) {

  StringRef Platform = getASTContext().getTargetInfo().getPlatformName();

  auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
    return Spec.getPlatform() == Platform;
  });

  VersionTuple Version;
  if (Spec != AvailSpecs.end())
    Version = Spec->getVersion();

  // The use of `@available` in the enclosing function should be analyzed to
  // warn when it's used inappropriately (i.e. not if(@available)).
  if (getCurFunctionOrMethodDecl())
    getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
  else if (getCurBlock() || getCurLambda())
    getCurFunction()->HasPotentialAvailabilityViolations = true;

  return new (Context)
      ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
}

ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
                                    ArrayRef<Expr *> SubExprs, QualType T) {
  if (!Context.getLangOpts().RecoveryAST)
    return ExprError();

  if (isSFINAEContext())
    return ExprError();

  if (T.isNull() || !Context.getLangOpts().RecoveryASTType)
    // We don't know the concrete type, fallback to dependent type.
    T = Context.DependentTy;
  return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
}