CodeGenModule.cpp 231 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-module state used while generating code.
//
//===----------------------------------------------------------------------===//

#include "CodeGenModule.h"
#include "CGBlocks.h"
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGCall.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CGOpenCLRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CGOpenMPRuntimeAMDGCN.h"
#include "CGOpenMPRuntimeNVPTX.h"
#include "CodeGenFunction.h"
#include "CodeGenPGO.h"
#include "ConstantEmitter.h"
#include "CoverageMappingGen.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/TimeProfiler.h"

using namespace clang;
using namespace CodeGen;

static llvm::cl::opt<bool> LimitedCoverage(
    "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
    llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
    llvm::cl::init(false));

static const char AnnotationSection[] = "llvm.metadata";

static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
  switch (CGM.getTarget().getCXXABI().getKind()) {
  case TargetCXXABI::Fuchsia:
  case TargetCXXABI::GenericAArch64:
  case TargetCXXABI::GenericARM:
  case TargetCXXABI::iOS:
  case TargetCXXABI::iOS64:
  case TargetCXXABI::WatchOS:
  case TargetCXXABI::GenericMIPS:
  case TargetCXXABI::GenericItanium:
  case TargetCXXABI::WebAssembly:
  case TargetCXXABI::XL:
    return CreateItaniumCXXABI(CGM);
  case TargetCXXABI::Microsoft:
    return CreateMicrosoftCXXABI(CGM);
  }

  llvm_unreachable("invalid C++ ABI kind");
}

CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
                             const PreprocessorOptions &PPO,
                             const CodeGenOptions &CGO, llvm::Module &M,
                             DiagnosticsEngine &diags,
                             CoverageSourceInfo *CoverageInfo)
    : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
      PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
      Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
      VMContext(M.getContext()), Types(*this), VTables(*this),
      SanitizerMD(new SanitizerMetadata(*this)) {

  // Initialize the type cache.
  llvm::LLVMContext &LLVMContext = M.getContext();
  VoidTy = llvm::Type::getVoidTy(LLVMContext);
  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
  HalfTy = llvm::Type::getHalfTy(LLVMContext);
  BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
  FloatTy = llvm::Type::getFloatTy(LLVMContext);
  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
  PointerAlignInBytes =
    C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
  SizeSizeInBytes =
    C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
  IntAlignInBytes =
    C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
  IntPtrTy = llvm::IntegerType::get(LLVMContext,
    C.getTargetInfo().getMaxPointerWidth());
  Int8PtrTy = Int8Ty->getPointerTo(0);
  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
  AllocaInt8PtrTy = Int8Ty->getPointerTo(
      M.getDataLayout().getAllocaAddrSpace());
  ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();

  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();

  if (LangOpts.ObjC)
    createObjCRuntime();
  if (LangOpts.OpenCL)
    createOpenCLRuntime();
  if (LangOpts.OpenMP)
    createOpenMPRuntime();
  if (LangOpts.CUDA)
    createCUDARuntime();

  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
  if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
    TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
                               getCXXABI().getMangleContext()));

  // If debug info or coverage generation is enabled, create the CGDebugInfo
  // object.
  if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
      CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
    DebugInfo.reset(new CGDebugInfo(*this));

  Block.GlobalUniqueCount = 0;

  if (C.getLangOpts().ObjC)
    ObjCData.reset(new ObjCEntrypoints());

  if (CodeGenOpts.hasProfileClangUse()) {
    auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
        CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
    if (auto E = ReaderOrErr.takeError()) {
      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
                                              "Could not read profile %0: %1");
      llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
        getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
                                  << EI.message();
      });
    } else
      PGOReader = std::move(ReaderOrErr.get());
  }

  // If coverage mapping generation is enabled, create the
  // CoverageMappingModuleGen object.
  if (CodeGenOpts.CoverageMapping)
    CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
}

CodeGenModule::~CodeGenModule() {}

void CodeGenModule::createObjCRuntime() {
  // This is just isGNUFamily(), but we want to force implementors of
  // new ABIs to decide how best to do this.
  switch (LangOpts.ObjCRuntime.getKind()) {
  case ObjCRuntime::GNUstep:
  case ObjCRuntime::GCC:
  case ObjCRuntime::ObjFW:
    ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
    return;

  case ObjCRuntime::FragileMacOSX:
  case ObjCRuntime::MacOSX:
  case ObjCRuntime::iOS:
  case ObjCRuntime::WatchOS:
    ObjCRuntime.reset(CreateMacObjCRuntime(*this));
    return;
  }
  llvm_unreachable("bad runtime kind");
}

void CodeGenModule::createOpenCLRuntime() {
  OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
}

void CodeGenModule::createOpenMPRuntime() {
  // Select a specialized code generation class based on the target, if any.
  // If it does not exist use the default implementation.
  switch (getTriple().getArch()) {
  case llvm::Triple::nvptx:
  case llvm::Triple::nvptx64:
    assert(getLangOpts().OpenMPIsDevice &&
           "OpenMP NVPTX is only prepared to deal with device code.");
    OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
    break;
  case llvm::Triple::amdgcn:
    assert(getLangOpts().OpenMPIsDevice &&
           "OpenMP AMDGCN is only prepared to deal with device code.");
    OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
    break;
  default:
    if (LangOpts.OpenMPSimd)
      OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
    else
      OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
    break;
  }
}

void CodeGenModule::createCUDARuntime() {
  CUDARuntime.reset(CreateNVCUDARuntime(*this));
}

void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
  Replacements[Name] = C;
}

void CodeGenModule::applyReplacements() {
  for (auto &I : Replacements) {
    StringRef MangledName = I.first();
    llvm::Constant *Replacement = I.second;
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
    if (!Entry)
      continue;
    auto *OldF = cast<llvm::Function>(Entry);
    auto *NewF = dyn_cast<llvm::Function>(Replacement);
    if (!NewF) {
      if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
        NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
      } else {
        auto *CE = cast<llvm::ConstantExpr>(Replacement);
        assert(CE->getOpcode() == llvm::Instruction::BitCast ||
               CE->getOpcode() == llvm::Instruction::GetElementPtr);
        NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
      }
    }

    // Replace old with new, but keep the old order.
    OldF->replaceAllUsesWith(Replacement);
    if (NewF) {
      NewF->removeFromParent();
      OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
                                                       NewF);
    }
    OldF->eraseFromParent();
  }
}

void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
  GlobalValReplacements.push_back(std::make_pair(GV, C));
}

void CodeGenModule::applyGlobalValReplacements() {
  for (auto &I : GlobalValReplacements) {
    llvm::GlobalValue *GV = I.first;
    llvm::Constant *C = I.second;

    GV->replaceAllUsesWith(C);
    GV->eraseFromParent();
  }
}

// This is only used in aliases that we created and we know they have a
// linear structure.
static const llvm::GlobalObject *getAliasedGlobal(
    const llvm::GlobalIndirectSymbol &GIS) {
  llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
  const llvm::Constant *C = &GIS;
  for (;;) {
    C = C->stripPointerCasts();
    if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
      return GO;
    // stripPointerCasts will not walk over weak aliases.
    auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
    if (!GIS2)
      return nullptr;
    if (!Visited.insert(GIS2).second)
      return nullptr;
    C = GIS2->getIndirectSymbol();
  }
}

void CodeGenModule::checkAliases() {
  // Check if the constructed aliases are well formed. It is really unfortunate
  // that we have to do this in CodeGen, but we only construct mangled names
  // and aliases during codegen.
  bool Error = false;
  DiagnosticsEngine &Diags = getDiags();
  for (const GlobalDecl &GD : Aliases) {
    const auto *D = cast<ValueDecl>(GD.getDecl());
    SourceLocation Location;
    bool IsIFunc = D->hasAttr<IFuncAttr>();
    if (const Attr *A = D->getDefiningAttr())
      Location = A->getLocation();
    else
      llvm_unreachable("Not an alias or ifunc?");
    StringRef MangledName = getMangledName(GD);
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
    auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
    const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
    if (!GV) {
      Error = true;
      Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
    } else if (GV->isDeclaration()) {
      Error = true;
      Diags.Report(Location, diag::err_alias_to_undefined)
          << IsIFunc << IsIFunc;
    } else if (IsIFunc) {
      // Check resolver function type.
      llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
          GV->getType()->getPointerElementType());
      assert(FTy);
      if (!FTy->getReturnType()->isPointerTy())
        Diags.Report(Location, diag::err_ifunc_resolver_return);
    }

    llvm::Constant *Aliasee = Alias->getIndirectSymbol();
    llvm::GlobalValue *AliaseeGV;
    if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
      AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
    else
      AliaseeGV = cast<llvm::GlobalValue>(Aliasee);

    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
      StringRef AliasSection = SA->getName();
      if (AliasSection != AliaseeGV->getSection())
        Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
            << AliasSection << IsIFunc << IsIFunc;
    }

    // We have to handle alias to weak aliases in here. LLVM itself disallows
    // this since the object semantics would not match the IL one. For
    // compatibility with gcc we implement it by just pointing the alias
    // to its aliasee's aliasee. We also warn, since the user is probably
    // expecting the link to be weak.
    if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
      if (GA->isInterposable()) {
        Diags.Report(Location, diag::warn_alias_to_weak_alias)
            << GV->getName() << GA->getName() << IsIFunc;
        Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
            GA->getIndirectSymbol(), Alias->getType());
        Alias->setIndirectSymbol(Aliasee);
      }
    }
  }
  if (!Error)
    return;

  for (const GlobalDecl &GD : Aliases) {
    StringRef MangledName = getMangledName(GD);
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
    auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
    Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
    Alias->eraseFromParent();
  }
}

void CodeGenModule::clear() {
  DeferredDeclsToEmit.clear();
  if (OpenMPRuntime)
    OpenMPRuntime->clear();
}

void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
                                       StringRef MainFile) {
  if (!hasDiagnostics())
    return;
  if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
    if (MainFile.empty())
      MainFile = "<stdin>";
    Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
  } else {
    if (Mismatched > 0)
      Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;

    if (Missing > 0)
      Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
  }
}

void CodeGenModule::Release() {
  EmitDeferred();
  EmitVTablesOpportunistically();
  applyGlobalValReplacements();
  applyReplacements();
  checkAliases();
  emitMultiVersionFunctions();
  EmitCXXGlobalInitFunc();
  EmitCXXGlobalCleanUpFunc();
  registerGlobalDtorsWithAtExit();
  EmitCXXThreadLocalInitFunc();
  if (ObjCRuntime)
    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
      AddGlobalCtor(ObjCInitFunction);
  if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
      CUDARuntime) {
    if (llvm::Function *CudaCtorFunction =
            CUDARuntime->makeModuleCtorFunction())
      AddGlobalCtor(CudaCtorFunction);
  }
  if (OpenMPRuntime) {
    if (llvm::Function *OpenMPRequiresDirectiveRegFun =
            OpenMPRuntime->emitRequiresDirectiveRegFun()) {
      AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
    }
    OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
    OpenMPRuntime->clear();
  }
  if (PGOReader) {
    getModule().setProfileSummary(
        PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
        llvm::ProfileSummary::PSK_Instr);
    if (PGOStats.hasDiagnostics())
      PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
  }
  EmitCtorList(GlobalCtors, "llvm.global_ctors");
  EmitCtorList(GlobalDtors, "llvm.global_dtors");
  EmitGlobalAnnotations();
  EmitStaticExternCAliases();
  EmitDeferredUnusedCoverageMappings();
  if (CoverageMapping)
    CoverageMapping->emit();
  if (CodeGenOpts.SanitizeCfiCrossDso) {
    CodeGenFunction(*this).EmitCfiCheckFail();
    CodeGenFunction(*this).EmitCfiCheckStub();
  }
  emitAtAvailableLinkGuard();
  if (Context.getTargetInfo().getTriple().isWasm() &&
      !Context.getTargetInfo().getTriple().isOSEmscripten()) {
    EmitMainVoidAlias();
  }
  emitLLVMUsed();
  if (SanStats)
    SanStats->finish();

  if (CodeGenOpts.Autolink &&
      (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
    EmitModuleLinkOptions();
  }

  // On ELF we pass the dependent library specifiers directly to the linker
  // without manipulating them. This is in contrast to other platforms where
  // they are mapped to a specific linker option by the compiler. This
  // difference is a result of the greater variety of ELF linkers and the fact
  // that ELF linkers tend to handle libraries in a more complicated fashion
  // than on other platforms. This forces us to defer handling the dependent
  // libs to the linker.
  //
  // CUDA/HIP device and host libraries are different. Currently there is no
  // way to differentiate dependent libraries for host or device. Existing
  // usage of #pragma comment(lib, *) is intended for host libraries on
  // Windows. Therefore emit llvm.dependent-libraries only for host.
  if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
    for (auto *MD : ELFDependentLibraries)
      NMD->addOperand(MD);
  }

  // Record mregparm value now so it is visible through rest of codegen.
  if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
    getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
                              CodeGenOpts.NumRegisterParameters);

  if (CodeGenOpts.DwarfVersion) {
    getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
                              CodeGenOpts.DwarfVersion);
  }

  if (Context.getLangOpts().SemanticInterposition)
    // Require various optimization to respect semantic interposition.
    getModule().setSemanticInterposition(1);
  else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
    // Allow dso_local on applicable targets.
    getModule().setSemanticInterposition(0);

  if (CodeGenOpts.EmitCodeView) {
    // Indicate that we want CodeView in the metadata.
    getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
  }
  if (CodeGenOpts.CodeViewGHash) {
    getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
  }
  if (CodeGenOpts.ControlFlowGuard) {
    // Function ID tables and checks for Control Flow Guard (cfguard=2).
    getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
  } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
    // Function ID tables for Control Flow Guard (cfguard=1).
    getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
  }
  if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
    // We don't support LTO with 2 with different StrictVTablePointers
    // FIXME: we could support it by stripping all the information introduced
    // by StrictVTablePointers.

    getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);

    llvm::Metadata *Ops[2] = {
              llvm::MDString::get(VMContext, "StrictVTablePointers"),
              llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
                  llvm::Type::getInt32Ty(VMContext), 1))};

    getModule().addModuleFlag(llvm::Module::Require,
                              "StrictVTablePointersRequirement",
                              llvm::MDNode::get(VMContext, Ops));
  }
  if (getModuleDebugInfo())
    // We support a single version in the linked module. The LLVM
    // parser will drop debug info with a different version number
    // (and warn about it, too).
    getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
                              llvm::DEBUG_METADATA_VERSION);

  // We need to record the widths of enums and wchar_t, so that we can generate
  // the correct build attributes in the ARM backend. wchar_size is also used by
  // TargetLibraryInfo.
  uint64_t WCharWidth =
      Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
  getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);

  llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
  if (   Arch == llvm::Triple::arm
      || Arch == llvm::Triple::armeb
      || Arch == llvm::Triple::thumb
      || Arch == llvm::Triple::thumbeb) {
    // The minimum width of an enum in bytes
    uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
    getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
  }

  if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
    StringRef ABIStr = Target.getABI();
    llvm::LLVMContext &Ctx = TheModule.getContext();
    getModule().addModuleFlag(llvm::Module::Error, "target-abi",
                              llvm::MDString::get(Ctx, ABIStr));
  }

  if (CodeGenOpts.SanitizeCfiCrossDso) {
    // Indicate that we want cross-DSO control flow integrity checks.
    getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
  }

  if (CodeGenOpts.WholeProgramVTables) {
    // Indicate whether VFE was enabled for this module, so that the
    // vcall_visibility metadata added under whole program vtables is handled
    // appropriately in the optimizer.
    getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
                              CodeGenOpts.VirtualFunctionElimination);
  }

  if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
    getModule().addModuleFlag(llvm::Module::Override,
                              "CFI Canonical Jump Tables",
                              CodeGenOpts.SanitizeCfiCanonicalJumpTables);
  }

  if (CodeGenOpts.CFProtectionReturn &&
      Target.checkCFProtectionReturnSupported(getDiags())) {
    // Indicate that we want to instrument return control flow protection.
    getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
                              1);
  }

  if (CodeGenOpts.CFProtectionBranch &&
      Target.checkCFProtectionBranchSupported(getDiags())) {
    // Indicate that we want to instrument branch control flow protection.
    getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
                              1);
  }

  if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
      Arch == llvm::Triple::aarch64_be) {
    getModule().addModuleFlag(llvm::Module::Error,
                              "branch-target-enforcement",
                              LangOpts.BranchTargetEnforcement);

    getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
                              LangOpts.hasSignReturnAddress());

    getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
                              LangOpts.isSignReturnAddressScopeAll());

    getModule().addModuleFlag(llvm::Module::Error,
                              "sign-return-address-with-bkey",
                              !LangOpts.isSignReturnAddressWithAKey());
  }

  if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
    // Indicate whether __nvvm_reflect should be configured to flush denormal
    // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
    // property.)
    getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
                              CodeGenOpts.FP32DenormalMode.Output !=
                                  llvm::DenormalMode::IEEE);
  }

  // Emit OpenCL specific module metadata: OpenCL/SPIR version.
  if (LangOpts.OpenCL) {
    EmitOpenCLMetadata();
    // Emit SPIR version.
    if (getTriple().isSPIR()) {
      // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
      // opencl.spir.version named metadata.
      // C++ is backwards compatible with OpenCL v2.0.
      auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
      llvm::Metadata *SPIRVerElts[] = {
          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
              Int32Ty, Version / 100)),
          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
              Int32Ty, (Version / 100 > 1) ? 0 : 2))};
      llvm::NamedMDNode *SPIRVerMD =
          TheModule.getOrInsertNamedMetadata("opencl.spir.version");
      llvm::LLVMContext &Ctx = TheModule.getContext();
      SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
    }
  }

  if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
    assert(PLevel < 3 && "Invalid PIC Level");
    getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
    if (Context.getLangOpts().PIE)
      getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
  }

  if (getCodeGenOpts().CodeModel.size() > 0) {
    unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
                  .Case("tiny", llvm::CodeModel::Tiny)
                  .Case("small", llvm::CodeModel::Small)
                  .Case("kernel", llvm::CodeModel::Kernel)
                  .Case("medium", llvm::CodeModel::Medium)
                  .Case("large", llvm::CodeModel::Large)
                  .Default(~0u);
    if (CM != ~0u) {
      llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
      getModule().setCodeModel(codeModel);
    }
  }

  if (CodeGenOpts.NoPLT)
    getModule().setRtLibUseGOT();

  SimplifyPersonality();

  if (getCodeGenOpts().EmitDeclMetadata)
    EmitDeclMetadata();

  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
    EmitCoverageFile();

  if (CGDebugInfo *DI = getModuleDebugInfo())
    DI->finalize();

  if (getCodeGenOpts().EmitVersionIdentMetadata)
    EmitVersionIdentMetadata();

  if (!getCodeGenOpts().RecordCommandLine.empty())
    EmitCommandLineMetadata();

  getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);

  EmitBackendOptionsMetadata(getCodeGenOpts());
}

void CodeGenModule::EmitOpenCLMetadata() {
  // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
  // opencl.ocl.version named metadata node.
  // C++ is backwards compatible with OpenCL v2.0.
  // FIXME: We might need to add CXX version at some point too?
  auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
  llvm::Metadata *OCLVerElts[] = {
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
          Int32Ty, Version / 100)),
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
          Int32Ty, (Version % 100) / 10))};
  llvm::NamedMDNode *OCLVerMD =
      TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
  llvm::LLVMContext &Ctx = TheModule.getContext();
  OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
}

void CodeGenModule::EmitBackendOptionsMetadata(
    const CodeGenOptions CodeGenOpts) {
  switch (getTriple().getArch()) {
  default:
    break;
  case llvm::Triple::riscv32:
  case llvm::Triple::riscv64:
    getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
                              CodeGenOpts.SmallDataLimit);
    break;
  }
}

void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
  // Make sure that this type is translated.
  Types.UpdateCompletedType(TD);
}

void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
  // Make sure that this type is translated.
  Types.RefreshTypeCacheForClass(RD);
}

llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
  if (!TBAA)
    return nullptr;
  return TBAA->getTypeInfo(QTy);
}

TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
  if (!TBAA)
    return TBAAAccessInfo();
  if (getLangOpts().CUDAIsDevice) {
    // As CUDA builtin surface/texture types are replaced, skip generating TBAA
    // access info.
    if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
      if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
          nullptr)
        return TBAAAccessInfo();
    } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
      if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
          nullptr)
        return TBAAAccessInfo();
    }
  }
  return TBAA->getAccessInfo(AccessType);
}

TBAAAccessInfo
CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
  if (!TBAA)
    return TBAAAccessInfo();
  return TBAA->getVTablePtrAccessInfo(VTablePtrType);
}

llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
  if (!TBAA)
    return nullptr;
  return TBAA->getTBAAStructInfo(QTy);
}

llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
  if (!TBAA)
    return nullptr;
  return TBAA->getBaseTypeInfo(QTy);
}

llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
  if (!TBAA)
    return nullptr;
  return TBAA->getAccessTagInfo(Info);
}

TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
                                                   TBAAAccessInfo TargetInfo) {
  if (!TBAA)
    return TBAAAccessInfo();
  return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
}

TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
                                                   TBAAAccessInfo InfoB) {
  if (!TBAA)
    return TBAAAccessInfo();
  return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
}

TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
                                              TBAAAccessInfo SrcInfo) {
  if (!TBAA)
    return TBAAAccessInfo();
  return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
}

void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
                                                TBAAAccessInfo TBAAInfo) {
  if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
}

void CodeGenModule::DecorateInstructionWithInvariantGroup(
    llvm::Instruction *I, const CXXRecordDecl *RD) {
  I->setMetadata(llvm::LLVMContext::MD_invariant_group,
                 llvm::MDNode::get(getLLVMContext(), {}));
}

void CodeGenModule::Error(SourceLocation loc, StringRef message) {
  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
  getDiags().Report(Context.getFullLoc(loc), diagID) << message;
}

/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
                                               "cannot compile this %0 yet");
  std::string Msg = Type;
  getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
      << Msg << S->getSourceRange();
}

/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified decl yet.
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
                                               "cannot compile this %0 yet");
  std::string Msg = Type;
  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
}

llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
}

void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
                                        const NamedDecl *D) const {
  if (GV->hasDLLImportStorageClass())
    return;
  // Internal definitions always have default visibility.
  if (GV->hasLocalLinkage()) {
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
    return;
  }
  if (!D)
    return;
  // Set visibility for definitions, and for declarations if requested globally
  // or set explicitly.
  LinkageInfo LV = D->getLinkageAndVisibility();
  if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
      !GV->isDeclarationForLinker())
    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
}

static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
                                 llvm::GlobalValue *GV) {
  if (GV->hasLocalLinkage())
    return true;

  if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
    return true;

  // DLLImport explicitly marks the GV as external.
  if (GV->hasDLLImportStorageClass())
    return false;

  const llvm::Triple &TT = CGM.getTriple();
  if (TT.isWindowsGNUEnvironment()) {
    // In MinGW, variables without DLLImport can still be automatically
    // imported from a DLL by the linker; don't mark variables that
    // potentially could come from another DLL as DSO local.
    if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
        !GV->isThreadLocal())
      return false;
  }

  // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
  // remain unresolved in the link, they can be resolved to zero, which is
  // outside the current DSO.
  if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
    return false;

  // Every other GV is local on COFF.
  // Make an exception for windows OS in the triple: Some firmware builds use
  // *-win32-macho triples. This (accidentally?) produced windows relocations
  // without GOT tables in older clang versions; Keep this behaviour.
  // FIXME: even thread local variables?
  if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
    return true;

  // Only handle COFF and ELF for now.
  if (!TT.isOSBinFormatELF())
    return false;

  // If this is not an executable, don't assume anything is local.
  const auto &CGOpts = CGM.getCodeGenOpts();
  llvm::Reloc::Model RM = CGOpts.RelocationModel;
  const auto &LOpts = CGM.getLangOpts();
  if (RM != llvm::Reloc::Static && !LOpts.PIE)
    return false;

  // A definition cannot be preempted from an executable.
  if (!GV->isDeclarationForLinker())
    return true;

  // Most PIC code sequences that assume that a symbol is local cannot produce a
  // 0 if it turns out the symbol is undefined. While this is ABI and relocation
  // depended, it seems worth it to handle it here.
  if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
    return false;

  // PPC has no copy relocations and cannot use a plt entry as a symbol address.
  llvm::Triple::ArchType Arch = TT.getArch();
  if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
      Arch == llvm::Triple::ppc64le)
    return false;

  // If we can use copy relocations we can assume it is local.
  if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
    if (!Var->isThreadLocal() &&
        (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
      return true;

  // If we can use a plt entry as the symbol address we can assume it
  // is local.
  // FIXME: This should work for PIE, but the gold linker doesn't support it.
  if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
    return true;

  // Otherwise don't assume it is local.
  return false;
}

void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
  GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
}

void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
                                          GlobalDecl GD) const {
  const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
  // C++ destructors have a few C++ ABI specific special cases.
  if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
    getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
    return;
  }
  setDLLImportDLLExport(GV, D);
}

void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
                                          const NamedDecl *D) const {
  if (D && D->isExternallyVisible()) {
    if (D->hasAttr<DLLImportAttr>())
      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
    else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
  }
}

void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
                                    GlobalDecl GD) const {
  setDLLImportDLLExport(GV, GD);
  setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
}

void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
                                    const NamedDecl *D) const {
  setDLLImportDLLExport(GV, D);
  setGVPropertiesAux(GV, D);
}

void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
                                       const NamedDecl *D) const {
  setGlobalVisibility(GV, D);
  setDSOLocal(GV);
  GV->setPartition(CodeGenOpts.SymbolPartition);
}

static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
}

llvm::GlobalVariable::ThreadLocalMode
CodeGenModule::GetDefaultLLVMTLSModel() const {
  switch (CodeGenOpts.getDefaultTLSModel()) {
  case CodeGenOptions::GeneralDynamicTLSModel:
    return llvm::GlobalVariable::GeneralDynamicTLSModel;
  case CodeGenOptions::LocalDynamicTLSModel:
    return llvm::GlobalVariable::LocalDynamicTLSModel;
  case CodeGenOptions::InitialExecTLSModel:
    return llvm::GlobalVariable::InitialExecTLSModel;
  case CodeGenOptions::LocalExecTLSModel:
    return llvm::GlobalVariable::LocalExecTLSModel;
  }
  llvm_unreachable("Invalid TLS model!");
}

void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");

  llvm::GlobalValue::ThreadLocalMode TLM;
  TLM = GetDefaultLLVMTLSModel();

  // Override the TLS model if it is explicitly specified.
  if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
    TLM = GetLLVMTLSModel(Attr->getModel());
  }

  GV->setThreadLocalMode(TLM);
}

static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
                                          StringRef Name) {
  const TargetInfo &Target = CGM.getTarget();
  return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
}

static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
                                                 const CPUSpecificAttr *Attr,
                                                 unsigned CPUIndex,
                                                 raw_ostream &Out) {
  // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
  // supported.
  if (Attr)
    Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
  else if (CGM.getTarget().supportsIFunc())
    Out << ".resolver";
}

static void AppendTargetMangling(const CodeGenModule &CGM,
                                 const TargetAttr *Attr, raw_ostream &Out) {
  if (Attr->isDefaultVersion())
    return;

  Out << '.';
  const TargetInfo &Target = CGM.getTarget();
  ParsedTargetAttr Info =
      Attr->parse([&Target](StringRef LHS, StringRef RHS) {
        // Multiversioning doesn't allow "no-${feature}", so we can
        // only have "+" prefixes here.
        assert(LHS.startswith("+") && RHS.startswith("+") &&
               "Features should always have a prefix.");
        return Target.multiVersionSortPriority(LHS.substr(1)) >
               Target.multiVersionSortPriority(RHS.substr(1));
      });

  bool IsFirst = true;

  if (!Info.Architecture.empty()) {
    IsFirst = false;
    Out << "arch_" << Info.Architecture;
  }

  for (StringRef Feat : Info.Features) {
    if (!IsFirst)
      Out << '_';
    IsFirst = false;
    Out << Feat.substr(1);
  }
}

static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
                                      const NamedDecl *ND,
                                      bool OmitMultiVersionMangling = false) {
  SmallString<256> Buffer;
  llvm::raw_svector_ostream Out(Buffer);
  MangleContext &MC = CGM.getCXXABI().getMangleContext();
  if (MC.shouldMangleDeclName(ND))
    MC.mangleName(GD.getWithDecl(ND), Out);
  else {
    IdentifierInfo *II = ND->getIdentifier();
    assert(II && "Attempt to mangle unnamed decl.");
    const auto *FD = dyn_cast<FunctionDecl>(ND);

    if (FD &&
        FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
      Out << "__regcall3__" << II->getName();
    } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
               GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
      Out << "__device_stub__" << II->getName();
    } else {
      Out << II->getName();
    }
  }

  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
    if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
      switch (FD->getMultiVersionKind()) {
      case MultiVersionKind::CPUDispatch:
      case MultiVersionKind::CPUSpecific:
        AppendCPUSpecificCPUDispatchMangling(CGM,
                                             FD->getAttr<CPUSpecificAttr>(),
                                             GD.getMultiVersionIndex(), Out);
        break;
      case MultiVersionKind::Target:
        AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
        break;
      case MultiVersionKind::None:
        llvm_unreachable("None multiversion type isn't valid here");
      }
    }

  return std::string(Out.str());
}

void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
                                            const FunctionDecl *FD) {
  if (!FD->isMultiVersion())
    return;

  // Get the name of what this would be without the 'target' attribute.  This
  // allows us to lookup the version that was emitted when this wasn't a
  // multiversion function.
  std::string NonTargetName =
      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
  GlobalDecl OtherGD;
  if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
    assert(OtherGD.getCanonicalDecl()
               .getDecl()
               ->getAsFunction()
               ->isMultiVersion() &&
           "Other GD should now be a multiversioned function");
    // OtherFD is the version of this function that was mangled BEFORE
    // becoming a MultiVersion function.  It potentially needs to be updated.
    const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
                                      .getDecl()
                                      ->getAsFunction()
                                      ->getMostRecentDecl();
    std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
    // This is so that if the initial version was already the 'default'
    // version, we don't try to update it.
    if (OtherName != NonTargetName) {
      // Remove instead of erase, since others may have stored the StringRef
      // to this.
      const auto ExistingRecord = Manglings.find(NonTargetName);
      if (ExistingRecord != std::end(Manglings))
        Manglings.remove(&(*ExistingRecord));
      auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
      MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
      if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
        Entry->setName(OtherName);
    }
  }
}

StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
  GlobalDecl CanonicalGD = GD.getCanonicalDecl();

  // Some ABIs don't have constructor variants.  Make sure that base and
  // complete constructors get mangled the same.
  if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
    if (!getTarget().getCXXABI().hasConstructorVariants()) {
      CXXCtorType OrigCtorType = GD.getCtorType();
      assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
      if (OrigCtorType == Ctor_Base)
        CanonicalGD = GlobalDecl(CD, Ctor_Complete);
    }
  }

  auto FoundName = MangledDeclNames.find(CanonicalGD);
  if (FoundName != MangledDeclNames.end())
    return FoundName->second;

  // Keep the first result in the case of a mangling collision.
  const auto *ND = cast<NamedDecl>(GD.getDecl());
  std::string MangledName = getMangledNameImpl(*this, GD, ND);

  // Ensure either we have different ABIs between host and device compilations,
  // says host compilation following MSVC ABI but device compilation follows
  // Itanium C++ ABI or, if they follow the same ABI, kernel names after
  // mangling should be the same after name stubbing. The later checking is
  // very important as the device kernel name being mangled in host-compilation
  // is used to resolve the device binaries to be executed. Inconsistent naming
  // result in undefined behavior. Even though we cannot check that naming
  // directly between host- and device-compilations, the host- and
  // device-mangling in host compilation could help catching certain ones.
  assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
         getLangOpts().CUDAIsDevice ||
         (getContext().getAuxTargetInfo() &&
          (getContext().getAuxTargetInfo()->getCXXABI() !=
           getContext().getTargetInfo().getCXXABI())) ||
         getCUDARuntime().getDeviceSideName(ND) ==
             getMangledNameImpl(
                 *this,
                 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
                 ND));

  auto Result = Manglings.insert(std::make_pair(MangledName, GD));
  return MangledDeclNames[CanonicalGD] = Result.first->first();
}

StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
                                             const BlockDecl *BD) {
  MangleContext &MangleCtx = getCXXABI().getMangleContext();
  const Decl *D = GD.getDecl();

  SmallString<256> Buffer;
  llvm::raw_svector_ostream Out(Buffer);
  if (!D)
    MangleCtx.mangleGlobalBlock(BD,
      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
  else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
  else
    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);

  auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
  return Result.first->first();
}

llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
  return getModule().getNamedValue(Name);
}

/// AddGlobalCtor - Add a function to the list that will be called before
/// main() runs.
void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
                                  llvm::Constant *AssociatedData) {
  // FIXME: Type coercion of void()* types.
  GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
}

/// AddGlobalDtor - Add a function to the list that will be called
/// when the module is unloaded.
void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
  if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
    if (getCXXABI().useSinitAndSterm())
      llvm::report_fatal_error(
          "register global dtors with atexit() is not supported yet");
    DtorsUsingAtExit[Priority].push_back(Dtor);
    return;
  }

  // FIXME: Type coercion of void()* types.
  GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
}

void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
  if (Fns.empty()) return;

  // Ctor function type is void()*.
  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
  llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
      TheModule.getDataLayout().getProgramAddressSpace());

  // Get the type of a ctor entry, { i32, void ()*, i8* }.
  llvm::StructType *CtorStructTy = llvm::StructType::get(
      Int32Ty, CtorPFTy, VoidPtrTy);

  // Construct the constructor and destructor arrays.
  ConstantInitBuilder builder(*this);
  auto ctors = builder.beginArray(CtorStructTy);
  for (const auto &I : Fns) {
    auto ctor = ctors.beginStruct(CtorStructTy);
    ctor.addInt(Int32Ty, I.Priority);
    ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
    if (I.AssociatedData)
      ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
    else
      ctor.addNullPointer(VoidPtrTy);
    ctor.finishAndAddTo(ctors);
  }

  auto list =
    ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
                                /*constant*/ false,
                                llvm::GlobalValue::AppendingLinkage);

  // The LTO linker doesn't seem to like it when we set an alignment
  // on appending variables.  Take it off as a workaround.
  list->setAlignment(llvm::None);

  Fns.clear();
}

llvm::GlobalValue::LinkageTypes
CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
  const auto *D = cast<FunctionDecl>(GD.getDecl());

  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);

  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
    return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());

  if (isa<CXXConstructorDecl>(D) &&
      cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
      Context.getTargetInfo().getCXXABI().isMicrosoft()) {
    // Our approach to inheriting constructors is fundamentally different from
    // that used by the MS ABI, so keep our inheriting constructor thunks
    // internal rather than trying to pick an unambiguous mangling for them.
    return llvm::GlobalValue::InternalLinkage;
  }

  return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
}

llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
  llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
  if (!MDS) return nullptr;

  return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
}

void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
                                              const CGFunctionInfo &Info,
                                              llvm::Function *F) {
  unsigned CallingConv;
  llvm::AttributeList PAL;
  ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
  F->setAttributes(PAL);
  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
}

static void removeImageAccessQualifier(std::string& TyName) {
  std::string ReadOnlyQual("__read_only");
  std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
  if (ReadOnlyPos != std::string::npos)
    // "+ 1" for the space after access qualifier.
    TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
  else {
    std::string WriteOnlyQual("__write_only");
    std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
    if (WriteOnlyPos != std::string::npos)
      TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
    else {
      std::string ReadWriteQual("__read_write");
      std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
      if (ReadWritePos != std::string::npos)
        TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
    }
  }
}

// Returns the address space id that should be produced to the
// kernel_arg_addr_space metadata. This is always fixed to the ids
// as specified in the SPIR 2.0 specification in order to differentiate
// for example in clGetKernelArgInfo() implementation between the address
// spaces with targets without unique mapping to the OpenCL address spaces
// (basically all single AS CPUs).
static unsigned ArgInfoAddressSpace(LangAS AS) {
  switch (AS) {
  case LangAS::opencl_global:
    return 1;
  case LangAS::opencl_constant:
    return 2;
  case LangAS::opencl_local:
    return 3;
  case LangAS::opencl_generic:
    return 4; // Not in SPIR 2.0 specs.
  case LangAS::opencl_global_device:
    return 5;
  case LangAS::opencl_global_host:
    return 6;
  default:
    return 0; // Assume private.
  }
}

void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
                                         const FunctionDecl *FD,
                                         CodeGenFunction *CGF) {
  assert(((FD && CGF) || (!FD && !CGF)) &&
         "Incorrect use - FD and CGF should either be both null or not!");
  // Create MDNodes that represent the kernel arg metadata.
  // Each MDNode is a list in the form of "key", N number of values which is
  // the same number of values as their are kernel arguments.

  const PrintingPolicy &Policy = Context.getPrintingPolicy();

  // MDNode for the kernel argument address space qualifiers.
  SmallVector<llvm::Metadata *, 8> addressQuals;

  // MDNode for the kernel argument access qualifiers (images only).
  SmallVector<llvm::Metadata *, 8> accessQuals;

  // MDNode for the kernel argument type names.
  SmallVector<llvm::Metadata *, 8> argTypeNames;

  // MDNode for the kernel argument base type names.
  SmallVector<llvm::Metadata *, 8> argBaseTypeNames;

  // MDNode for the kernel argument type qualifiers.
  SmallVector<llvm::Metadata *, 8> argTypeQuals;

  // MDNode for the kernel argument names.
  SmallVector<llvm::Metadata *, 8> argNames;

  if (FD && CGF)
    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
      const ParmVarDecl *parm = FD->getParamDecl(i);
      QualType ty = parm->getType();
      std::string typeQuals;

      if (ty->isPointerType()) {
        QualType pointeeTy = ty->getPointeeType();

        // Get address qualifier.
        addressQuals.push_back(
            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
                ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));

        // Get argument type name.
        std::string typeName =
            pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";

        // Turn "unsigned type" to "utype"
        std::string::size_type pos = typeName.find("unsigned");
        if (pointeeTy.isCanonical() && pos != std::string::npos)
          typeName.erase(pos + 1, 8);

        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));

        std::string baseTypeName =
            pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
                Policy) +
            "*";

        // Turn "unsigned type" to "utype"
        pos = baseTypeName.find("unsigned");
        if (pos != std::string::npos)
          baseTypeName.erase(pos + 1, 8);

        argBaseTypeNames.push_back(
            llvm::MDString::get(VMContext, baseTypeName));

        // Get argument type qualifiers:
        if (ty.isRestrictQualified())
          typeQuals = "restrict";
        if (pointeeTy.isConstQualified() ||
            (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
          typeQuals += typeQuals.empty() ? "const" : " const";
        if (pointeeTy.isVolatileQualified())
          typeQuals += typeQuals.empty() ? "volatile" : " volatile";
      } else {
        uint32_t AddrSpc = 0;
        bool isPipe = ty->isPipeType();
        if (ty->isImageType() || isPipe)
          AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);

        addressQuals.push_back(
            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));

        // Get argument type name.
        std::string typeName;
        if (isPipe)
          typeName = ty.getCanonicalType()
                         ->castAs<PipeType>()
                         ->getElementType()
                         .getAsString(Policy);
        else
          typeName = ty.getUnqualifiedType().getAsString(Policy);

        // Turn "unsigned type" to "utype"
        std::string::size_type pos = typeName.find("unsigned");
        if (ty.isCanonical() && pos != std::string::npos)
          typeName.erase(pos + 1, 8);

        std::string baseTypeName;
        if (isPipe)
          baseTypeName = ty.getCanonicalType()
                             ->castAs<PipeType>()
                             ->getElementType()
                             .getCanonicalType()
                             .getAsString(Policy);
        else
          baseTypeName =
              ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);

        // Remove access qualifiers on images
        // (as they are inseparable from type in clang implementation,
        // but OpenCL spec provides a special query to get access qualifier
        // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
        if (ty->isImageType()) {
          removeImageAccessQualifier(typeName);
          removeImageAccessQualifier(baseTypeName);
        }

        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));

        // Turn "unsigned type" to "utype"
        pos = baseTypeName.find("unsigned");
        if (pos != std::string::npos)
          baseTypeName.erase(pos + 1, 8);

        argBaseTypeNames.push_back(
            llvm::MDString::get(VMContext, baseTypeName));

        if (isPipe)
          typeQuals = "pipe";
      }

      argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));

      // Get image and pipe access qualifier:
      if (ty->isImageType() || ty->isPipeType()) {
        const Decl *PDecl = parm;
        if (auto *TD = dyn_cast<TypedefType>(ty))
          PDecl = TD->getDecl();
        const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
        if (A && A->isWriteOnly())
          accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
        else if (A && A->isReadWrite())
          accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
        else
          accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
      } else
        accessQuals.push_back(llvm::MDString::get(VMContext, "none"));

      // Get argument name.
      argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
    }

  Fn->setMetadata("kernel_arg_addr_space",
                  llvm::MDNode::get(VMContext, addressQuals));
  Fn->setMetadata("kernel_arg_access_qual",
                  llvm::MDNode::get(VMContext, accessQuals));
  Fn->setMetadata("kernel_arg_type",
                  llvm::MDNode::get(VMContext, argTypeNames));
  Fn->setMetadata("kernel_arg_base_type",
                  llvm::MDNode::get(VMContext, argBaseTypeNames));
  Fn->setMetadata("kernel_arg_type_qual",
                  llvm::MDNode::get(VMContext, argTypeQuals));
  if (getCodeGenOpts().EmitOpenCLArgMetadata)
    Fn->setMetadata("kernel_arg_name",
                    llvm::MDNode::get(VMContext, argNames));
}

/// Determines whether the language options require us to model
/// unwind exceptions.  We treat -fexceptions as mandating this
/// except under the fragile ObjC ABI with only ObjC exceptions
/// enabled.  This means, for example, that C with -fexceptions
/// enables this.
static bool hasUnwindExceptions(const LangOptions &LangOpts) {
  // If exceptions are completely disabled, obviously this is false.
  if (!LangOpts.Exceptions) return false;

  // If C++ exceptions are enabled, this is true.
  if (LangOpts.CXXExceptions) return true;

  // If ObjC exceptions are enabled, this depends on the ABI.
  if (LangOpts.ObjCExceptions) {
    return LangOpts.ObjCRuntime.hasUnwindExceptions();
  }

  return true;
}

static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
                                                      const CXXMethodDecl *MD) {
  // Check that the type metadata can ever actually be used by a call.
  if (!CGM.getCodeGenOpts().LTOUnit ||
      !CGM.HasHiddenLTOVisibility(MD->getParent()))
    return false;

  // Only functions whose address can be taken with a member function pointer
  // need this sort of type metadata.
  return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
         !isa<CXXDestructorDecl>(MD);
}

std::vector<const CXXRecordDecl *>
CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
  llvm::SetVector<const CXXRecordDecl *> MostBases;

  std::function<void (const CXXRecordDecl *)> CollectMostBases;
  CollectMostBases = [&](const CXXRecordDecl *RD) {
    if (RD->getNumBases() == 0)
      MostBases.insert(RD);
    for (const CXXBaseSpecifier &B : RD->bases())
      CollectMostBases(B.getType()->getAsCXXRecordDecl());
  };
  CollectMostBases(RD);
  return MostBases.takeVector();
}

void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
                                                           llvm::Function *F) {
  llvm::AttrBuilder B;

  if (CodeGenOpts.UnwindTables)
    B.addAttribute(llvm::Attribute::UWTable);

  if (CodeGenOpts.StackClashProtector)
    B.addAttribute("probe-stack", "inline-asm");

  if (!hasUnwindExceptions(LangOpts))
    B.addAttribute(llvm::Attribute::NoUnwind);

  if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
    if (LangOpts.getStackProtector() == LangOptions::SSPOn)
      B.addAttribute(llvm::Attribute::StackProtect);
    else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
      B.addAttribute(llvm::Attribute::StackProtectStrong);
    else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
      B.addAttribute(llvm::Attribute::StackProtectReq);
  }

  if (!D) {
    // If we don't have a declaration to control inlining, the function isn't
    // explicitly marked as alwaysinline for semantic reasons, and inlining is
    // disabled, mark the function as noinline.
    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
        CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
      B.addAttribute(llvm::Attribute::NoInline);

    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
    return;
  }

  // Track whether we need to add the optnone LLVM attribute,
  // starting with the default for this optimization level.
  bool ShouldAddOptNone =
      !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
  // We can't add optnone in the following cases, it won't pass the verifier.
  ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
  ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();

  // Add optnone, but do so only if the function isn't always_inline.
  if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
      !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
    B.addAttribute(llvm::Attribute::OptimizeNone);

    // OptimizeNone implies noinline; we should not be inlining such functions.
    B.addAttribute(llvm::Attribute::NoInline);

    // We still need to handle naked functions even though optnone subsumes
    // much of their semantics.
    if (D->hasAttr<NakedAttr>())
      B.addAttribute(llvm::Attribute::Naked);

    // OptimizeNone wins over OptimizeForSize and MinSize.
    F->removeFnAttr(llvm::Attribute::OptimizeForSize);
    F->removeFnAttr(llvm::Attribute::MinSize);
  } else if (D->hasAttr<NakedAttr>()) {
    // Naked implies noinline: we should not be inlining such functions.
    B.addAttribute(llvm::Attribute::Naked);
    B.addAttribute(llvm::Attribute::NoInline);
  } else if (D->hasAttr<NoDuplicateAttr>()) {
    B.addAttribute(llvm::Attribute::NoDuplicate);
  } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
    // Add noinline if the function isn't always_inline.
    B.addAttribute(llvm::Attribute::NoInline);
  } else if (D->hasAttr<AlwaysInlineAttr>() &&
             !F->hasFnAttribute(llvm::Attribute::NoInline)) {
    // (noinline wins over always_inline, and we can't specify both in IR)
    B.addAttribute(llvm::Attribute::AlwaysInline);
  } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
    // If we're not inlining, then force everything that isn't always_inline to
    // carry an explicit noinline attribute.
    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
      B.addAttribute(llvm::Attribute::NoInline);
  } else {
    // Otherwise, propagate the inline hint attribute and potentially use its
    // absence to mark things as noinline.
    if (auto *FD = dyn_cast<FunctionDecl>(D)) {
      // Search function and template pattern redeclarations for inline.
      auto CheckForInline = [](const FunctionDecl *FD) {
        auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
          return Redecl->isInlineSpecified();
        };
        if (any_of(FD->redecls(), CheckRedeclForInline))
          return true;
        const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
        if (!Pattern)
          return false;
        return any_of(Pattern->redecls(), CheckRedeclForInline);
      };
      if (CheckForInline(FD)) {
        B.addAttribute(llvm::Attribute::InlineHint);
      } else if (CodeGenOpts.getInlining() ==
                     CodeGenOptions::OnlyHintInlining &&
                 !FD->isInlined() &&
                 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
        B.addAttribute(llvm::Attribute::NoInline);
      }
    }
  }

  // Add other optimization related attributes if we are optimizing this
  // function.
  if (!D->hasAttr<OptimizeNoneAttr>()) {
    if (D->hasAttr<ColdAttr>()) {
      if (!ShouldAddOptNone)
        B.addAttribute(llvm::Attribute::OptimizeForSize);
      B.addAttribute(llvm::Attribute::Cold);
    }

    if (D->hasAttr<MinSizeAttr>())
      B.addAttribute(llvm::Attribute::MinSize);
  }

  F->addAttributes(llvm::AttributeList::FunctionIndex, B);

  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
  if (alignment)
    F->setAlignment(llvm::Align(alignment));

  if (!D->hasAttr<AlignedAttr>())
    if (LangOpts.FunctionAlignment)
      F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));

  // Some C++ ABIs require 2-byte alignment for member functions, in order to
  // reserve a bit for differentiating between virtual and non-virtual member
  // functions. If the current target's C++ ABI requires this and this is a
  // member function, set its alignment accordingly.
  if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
    if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
      F->setAlignment(llvm::Align(2));
  }

  // In the cross-dso CFI mode with canonical jump tables, we want !type
  // attributes on definitions only.
  if (CodeGenOpts.SanitizeCfiCrossDso &&
      CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
    if (auto *FD = dyn_cast<FunctionDecl>(D)) {
      // Skip available_externally functions. They won't be codegen'ed in the
      // current module anyway.
      if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
        CreateFunctionTypeMetadataForIcall(FD, F);
    }
  }

  // Emit type metadata on member functions for member function pointer checks.
  // These are only ever necessary on definitions; we're guaranteed that the
  // definition will be present in the LTO unit as a result of LTO visibility.
  auto *MD = dyn_cast<CXXMethodDecl>(D);
  if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
    for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
      llvm::Metadata *Id =
          CreateMetadataIdentifierForType(Context.getMemberPointerType(
              MD->getType(), Context.getRecordType(Base).getTypePtr()));
      F->addTypeMetadata(0, Id);
    }
  }
}

void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
  const Decl *D = GD.getDecl();
  if (dyn_cast_or_null<NamedDecl>(D))
    setGVProperties(GV, GD);
  else
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);

  if (D && D->hasAttr<UsedAttr>())
    addUsedGlobal(GV);

  if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
    const auto *VD = cast<VarDecl>(D);
    if (VD->getType().isConstQualified() &&
        VD->getStorageDuration() == SD_Static)
      addUsedGlobal(GV);
  }
}

bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
                                                llvm::AttrBuilder &Attrs) {
  // Add target-cpu and target-features attributes to functions. If
  // we have a decl for the function and it has a target attribute then
  // parse that and add it to the feature set.
  StringRef TargetCPU = getTarget().getTargetOpts().CPU;
  StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
  std::vector<std::string> Features;
  const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
  FD = FD ? FD->getMostRecentDecl() : FD;
  const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
  const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
  bool AddedAttr = false;
  if (TD || SD) {
    llvm::StringMap<bool> FeatureMap;
    getContext().getFunctionFeatureMap(FeatureMap, GD);

    // Produce the canonical string for this set of features.
    for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
      Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());

    // Now add the target-cpu and target-features to the function.
    // While we populated the feature map above, we still need to
    // get and parse the target attribute so we can get the cpu for
    // the function.
    if (TD) {
      ParsedTargetAttr ParsedAttr = TD->parse();
      if (!ParsedAttr.Architecture.empty() &&
          getTarget().isValidCPUName(ParsedAttr.Architecture)) {
        TargetCPU = ParsedAttr.Architecture;
        TuneCPU = ""; // Clear the tune CPU.
      }
      if (!ParsedAttr.Tune.empty() &&
          getTarget().isValidCPUName(ParsedAttr.Tune))
        TuneCPU = ParsedAttr.Tune;
    }
  } else {
    // Otherwise just add the existing target cpu and target features to the
    // function.
    Features = getTarget().getTargetOpts().Features;
  }

  if (!TargetCPU.empty()) {
    Attrs.addAttribute("target-cpu", TargetCPU);
    AddedAttr = true;
  }
  if (!TuneCPU.empty()) {
    Attrs.addAttribute("tune-cpu", TuneCPU);
    AddedAttr = true;
  }
  if (!Features.empty()) {
    llvm::sort(Features);
    Attrs.addAttribute("target-features", llvm::join(Features, ","));
    AddedAttr = true;
  }

  return AddedAttr;
}

void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
                                          llvm::GlobalObject *GO) {
  const Decl *D = GD.getDecl();
  SetCommonAttributes(GD, GO);

  if (D) {
    if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
      if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
        GV->addAttribute("bss-section", SA->getName());
      if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
        GV->addAttribute("data-section", SA->getName());
      if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
        GV->addAttribute("rodata-section", SA->getName());
      if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
        GV->addAttribute("relro-section", SA->getName());
    }

    if (auto *F = dyn_cast<llvm::Function>(GO)) {
      if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
        if (!D->getAttr<SectionAttr>())
          F->addFnAttr("implicit-section-name", SA->getName());

      llvm::AttrBuilder Attrs;
      if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
        // We know that GetCPUAndFeaturesAttributes will always have the
        // newest set, since it has the newest possible FunctionDecl, so the
        // new ones should replace the old.
        llvm::AttrBuilder RemoveAttrs;
        RemoveAttrs.addAttribute("target-cpu");
        RemoveAttrs.addAttribute("target-features");
        RemoveAttrs.addAttribute("tune-cpu");
        F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
        F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
      }
    }

    if (const auto *CSA = D->getAttr<CodeSegAttr>())
      GO->setSection(CSA->getName());
    else if (const auto *SA = D->getAttr<SectionAttr>())
      GO->setSection(SA->getName());
  }

  getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
}

void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
                                                  llvm::Function *F,
                                                  const CGFunctionInfo &FI) {
  const Decl *D = GD.getDecl();
  SetLLVMFunctionAttributes(GD, FI, F);
  SetLLVMFunctionAttributesForDefinition(D, F);

  F->setLinkage(llvm::Function::InternalLinkage);

  setNonAliasAttributes(GD, F);
}

static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
  // Set linkage and visibility in case we never see a definition.
  LinkageInfo LV = ND->getLinkageAndVisibility();
  // Don't set internal linkage on declarations.
  // "extern_weak" is overloaded in LLVM; we probably should have
  // separate linkage types for this.
  if (isExternallyVisible(LV.getLinkage()) &&
      (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
    GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
}

void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
                                                       llvm::Function *F) {
  // Only if we are checking indirect calls.
  if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
    return;

  // Non-static class methods are handled via vtable or member function pointer
  // checks elsewhere.
  if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
    return;

  llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
  F->addTypeMetadata(0, MD);
  F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));

  // Emit a hash-based bit set entry for cross-DSO calls.
  if (CodeGenOpts.SanitizeCfiCrossDso)
    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
      F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
}

void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
                                          bool IsIncompleteFunction,
                                          bool IsThunk) {

  if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
    // If this is an intrinsic function, set the function's attributes
    // to the intrinsic's attributes.
    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
    return;
  }

  const auto *FD = cast<FunctionDecl>(GD.getDecl());

  if (!IsIncompleteFunction)
    SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);

  // Add the Returned attribute for "this", except for iOS 5 and earlier
  // where substantial code, including the libstdc++ dylib, was compiled with
  // GCC and does not actually return "this".
  if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
      !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
    assert(!F->arg_empty() &&
           F->arg_begin()->getType()
             ->canLosslesslyBitCastTo(F->getReturnType()) &&
           "unexpected this return");
    F->addAttribute(1, llvm::Attribute::Returned);
  }

  // Only a few attributes are set on declarations; these may later be
  // overridden by a definition.

  setLinkageForGV(F, FD);
  setGVProperties(F, FD);

  // Setup target-specific attributes.
  if (!IsIncompleteFunction && F->isDeclaration())
    getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);

  if (const auto *CSA = FD->getAttr<CodeSegAttr>())
    F->setSection(CSA->getName());
  else if (const auto *SA = FD->getAttr<SectionAttr>())
     F->setSection(SA->getName());

  // If we plan on emitting this inline builtin, we can't treat it as a builtin.
  if (FD->isInlineBuiltinDeclaration()) {
    const FunctionDecl *FDBody;
    bool HasBody = FD->hasBody(FDBody);
    (void)HasBody;
    assert(HasBody && "Inline builtin declarations should always have an "
                      "available body!");
    if (shouldEmitFunction(FDBody))
      F->addAttribute(llvm::AttributeList::FunctionIndex,
                      llvm::Attribute::NoBuiltin);
  }

  if (FD->isReplaceableGlobalAllocationFunction()) {
    // A replaceable global allocation function does not act like a builtin by
    // default, only if it is invoked by a new-expression or delete-expression.
    F->addAttribute(llvm::AttributeList::FunctionIndex,
                    llvm::Attribute::NoBuiltin);
  }

  if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
    F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
    if (MD->isVirtual())
      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);

  // Don't emit entries for function declarations in the cross-DSO mode. This
  // is handled with better precision by the receiving DSO. But if jump tables
  // are non-canonical then we need type metadata in order to produce the local
  // jump table.
  if (!CodeGenOpts.SanitizeCfiCrossDso ||
      !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
    CreateFunctionTypeMetadataForIcall(FD, F);

  if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
    getOpenMPRuntime().emitDeclareSimdFunction(FD, F);

  if (const auto *CB = FD->getAttr<CallbackAttr>()) {
    // Annotate the callback behavior as metadata:
    //  - The callback callee (as argument number).
    //  - The callback payloads (as argument numbers).
    llvm::LLVMContext &Ctx = F->getContext();
    llvm::MDBuilder MDB(Ctx);

    // The payload indices are all but the first one in the encoding. The first
    // identifies the callback callee.
    int CalleeIdx = *CB->encoding_begin();
    ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
    F->addMetadata(llvm::LLVMContext::MD_callback,
                   *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
                                               CalleeIdx, PayloadIndices,
                                               /* VarArgsArePassed */ false)}));
  }
}

void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
  assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
         "Only globals with definition can force usage.");
  LLVMUsed.emplace_back(GV);
}

void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
  assert(!GV->isDeclaration() &&
         "Only globals with definition can force usage.");
  LLVMCompilerUsed.emplace_back(GV);
}

static void emitUsed(CodeGenModule &CGM, StringRef Name,
                     std::vector<llvm::WeakTrackingVH> &List) {
  // Don't create llvm.used if there is no need.
  if (List.empty())
    return;

  // Convert List to what ConstantArray needs.
  SmallVector<llvm::Constant*, 8> UsedArray;
  UsedArray.resize(List.size());
  for (unsigned i = 0, e = List.size(); i != e; ++i) {
    UsedArray[i] =
        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
            cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
  }

  if (UsedArray.empty())
    return;
  llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());

  auto *GV = new llvm::GlobalVariable(
      CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
      llvm::ConstantArray::get(ATy, UsedArray), Name);

  GV->setSection("llvm.metadata");
}

void CodeGenModule::emitLLVMUsed() {
  emitUsed(*this, "llvm.used", LLVMUsed);
  emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
}

void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}

void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
  llvm::SmallString<32> Opt;
  getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
  if (Opt.empty())
    return;
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}

void CodeGenModule::AddDependentLib(StringRef Lib) {
  auto &C = getLLVMContext();
  if (getTarget().getTriple().isOSBinFormatELF()) {
      ELFDependentLibraries.push_back(
        llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
    return;
  }

  llvm::SmallString<24> Opt;
  getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
}

/// Add link options implied by the given module, including modules
/// it depends on, using a postorder walk.
static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
                                    SmallVectorImpl<llvm::MDNode *> &Metadata,
                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
  // Import this module's parent.
  if (Mod->Parent && Visited.insert(Mod->Parent).second) {
    addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
  }

  // Import this module's dependencies.
  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
    if (Visited.insert(Mod->Imports[I - 1]).second)
      addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
  }

  // Add linker options to link against the libraries/frameworks
  // described by this module.
  llvm::LLVMContext &Context = CGM.getLLVMContext();
  bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();

  // For modules that use export_as for linking, use that module
  // name instead.
  if (Mod->UseExportAsModuleLinkName)
    return;

  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
    // Link against a framework.  Frameworks are currently Darwin only, so we
    // don't to ask TargetCodeGenInfo for the spelling of the linker option.
    if (Mod->LinkLibraries[I-1].IsFramework) {
      llvm::Metadata *Args[2] = {
          llvm::MDString::get(Context, "-framework"),
          llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};

      Metadata.push_back(llvm::MDNode::get(Context, Args));
      continue;
    }

    // Link against a library.
    if (IsELF) {
      llvm::Metadata *Args[2] = {
          llvm::MDString::get(Context, "lib"),
          llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
      };
      Metadata.push_back(llvm::MDNode::get(Context, Args));
    } else {
      llvm::SmallString<24> Opt;
      CGM.getTargetCodeGenInfo().getDependentLibraryOption(
          Mod->LinkLibraries[I - 1].Library, Opt);
      auto *OptString = llvm::MDString::get(Context, Opt);
      Metadata.push_back(llvm::MDNode::get(Context, OptString));
    }
  }
}

void CodeGenModule::EmitModuleLinkOptions() {
  // Collect the set of all of the modules we want to visit to emit link
  // options, which is essentially the imported modules and all of their
  // non-explicit child modules.
  llvm::SetVector<clang::Module *> LinkModules;
  llvm::SmallPtrSet<clang::Module *, 16> Visited;
  SmallVector<clang::Module *, 16> Stack;

  // Seed the stack with imported modules.
  for (Module *M : ImportedModules) {
    // Do not add any link flags when an implementation TU of a module imports
    // a header of that same module.
    if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
        !getLangOpts().isCompilingModule())
      continue;
    if (Visited.insert(M).second)
      Stack.push_back(M);
  }

  // Find all of the modules to import, making a little effort to prune
  // non-leaf modules.
  while (!Stack.empty()) {
    clang::Module *Mod = Stack.pop_back_val();

    bool AnyChildren = false;

    // Visit the submodules of this module.
    for (const auto &SM : Mod->submodules()) {
      // Skip explicit children; they need to be explicitly imported to be
      // linked against.
      if (SM->IsExplicit)
        continue;

      if (Visited.insert(SM).second) {
        Stack.push_back(SM);
        AnyChildren = true;
      }
    }

    // We didn't find any children, so add this module to the list of
    // modules to link against.
    if (!AnyChildren) {
      LinkModules.insert(Mod);
    }
  }

  // Add link options for all of the imported modules in reverse topological
  // order.  We don't do anything to try to order import link flags with respect
  // to linker options inserted by things like #pragma comment().
  SmallVector<llvm::MDNode *, 16> MetadataArgs;
  Visited.clear();
  for (Module *M : LinkModules)
    if (Visited.insert(M).second)
      addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
  LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());

  // Add the linker options metadata flag.
  auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
  for (auto *MD : LinkerOptionsMetadata)
    NMD->addOperand(MD);
}

void CodeGenModule::EmitDeferred() {
  // Emit deferred declare target declarations.
  if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
    getOpenMPRuntime().emitDeferredTargetDecls();

  // Emit code for any potentially referenced deferred decls.  Since a
  // previously unused static decl may become used during the generation of code
  // for a static function, iterate until no changes are made.

  if (!DeferredVTables.empty()) {
    EmitDeferredVTables();

    // Emitting a vtable doesn't directly cause more vtables to
    // become deferred, although it can cause functions to be
    // emitted that then need those vtables.
    assert(DeferredVTables.empty());
  }

  // Emit CUDA/HIP static device variables referenced by host code only.
  if (getLangOpts().CUDA)
    for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
      DeferredDeclsToEmit.push_back(V);

  // Stop if we're out of both deferred vtables and deferred declarations.
  if (DeferredDeclsToEmit.empty())
    return;

  // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
  // work, it will not interfere with this.
  std::vector<GlobalDecl> CurDeclsToEmit;
  CurDeclsToEmit.swap(DeferredDeclsToEmit);

  for (GlobalDecl &D : CurDeclsToEmit) {
    // We should call GetAddrOfGlobal with IsForDefinition set to true in order
    // to get GlobalValue with exactly the type we need, not something that
    // might had been created for another decl with the same mangled name but
    // different type.
    llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
        GetAddrOfGlobal(D, ForDefinition));

    // In case of different address spaces, we may still get a cast, even with
    // IsForDefinition equal to true. Query mangled names table to get
    // GlobalValue.
    if (!GV)
      GV = GetGlobalValue(getMangledName(D));

    // Make sure GetGlobalValue returned non-null.
    assert(GV);

    // Check to see if we've already emitted this.  This is necessary
    // for a couple of reasons: first, decls can end up in the
    // deferred-decls queue multiple times, and second, decls can end
    // up with definitions in unusual ways (e.g. by an extern inline
    // function acquiring a strong function redefinition).  Just
    // ignore these cases.
    if (!GV->isDeclaration())
      continue;

    // If this is OpenMP, check if it is legal to emit this global normally.
    if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
      continue;

    // Otherwise, emit the definition and move on to the next one.
    EmitGlobalDefinition(D, GV);

    // If we found out that we need to emit more decls, do that recursively.
    // This has the advantage that the decls are emitted in a DFS and related
    // ones are close together, which is convenient for testing.
    if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
      EmitDeferred();
      assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
    }
  }
}

void CodeGenModule::EmitVTablesOpportunistically() {
  // Try to emit external vtables as available_externally if they have emitted
  // all inlined virtual functions.  It runs after EmitDeferred() and therefore
  // is not allowed to create new references to things that need to be emitted
  // lazily. Note that it also uses fact that we eagerly emitting RTTI.

  assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
         && "Only emit opportunistic vtables with optimizations");

  for (const CXXRecordDecl *RD : OpportunisticVTables) {
    assert(getVTables().isVTableExternal(RD) &&
           "This queue should only contain external vtables");
    if (getCXXABI().canSpeculativelyEmitVTable(RD))
      VTables.GenerateClassData(RD);
  }
  OpportunisticVTables.clear();
}

void CodeGenModule::EmitGlobalAnnotations() {
  if (Annotations.empty())
    return;

  // Create a new global variable for the ConstantStruct in the Module.
  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
    Annotations[0]->getType(), Annotations.size()), Annotations);
  auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
                                      llvm::GlobalValue::AppendingLinkage,
                                      Array, "llvm.global.annotations");
  gv->setSection(AnnotationSection);
}

llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
  llvm::Constant *&AStr = AnnotationStrings[Str];
  if (AStr)
    return AStr;

  // Not found yet, create a new global.
  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
  auto *gv =
      new llvm::GlobalVariable(getModule(), s->getType(), true,
                               llvm::GlobalValue::PrivateLinkage, s, ".str");
  gv->setSection(AnnotationSection);
  gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  AStr = gv;
  return gv;
}

llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
  SourceManager &SM = getContext().getSourceManager();
  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
  if (PLoc.isValid())
    return EmitAnnotationString(PLoc.getFilename());
  return EmitAnnotationString(SM.getBufferName(Loc));
}

llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
  SourceManager &SM = getContext().getSourceManager();
  PresumedLoc PLoc = SM.getPresumedLoc(L);
  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
    SM.getExpansionLineNumber(L);
  return llvm::ConstantInt::get(Int32Ty, LineNo);
}

llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
                                                const AnnotateAttr *AA,
                                                SourceLocation L) {
  // Get the globals for file name, annotation, and the line number.
  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
                 *UnitGV = EmitAnnotationUnit(L),
                 *LineNoCst = EmitAnnotationLineNo(L);

  llvm::Constant *ASZeroGV = GV;
  if (GV->getAddressSpace() != 0) {
    ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
                   GV, GV->getValueType()->getPointerTo(0));
  }

  // Create the ConstantStruct for the global annotation.
  llvm::Constant *Fields[4] = {
    llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
    LineNoCst
  };
  return llvm::ConstantStruct::getAnon(Fields);
}

void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
                                         llvm::GlobalValue *GV) {
  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
  // Get the struct elements for these annotations.
  for (const auto *I : D->specific_attrs<AnnotateAttr>())
    Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
}

bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
                                           llvm::Function *Fn,
                                           SourceLocation Loc) const {
  const auto &SanitizerBL = getContext().getSanitizerBlacklist();
  // Blacklist by function name.
  if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
    return true;
  // Blacklist by location.
  if (Loc.isValid())
    return SanitizerBL.isBlacklistedLocation(Kind, Loc);
  // If location is unknown, this may be a compiler-generated function. Assume
  // it's located in the main file.
  auto &SM = Context.getSourceManager();
  if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
    return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
  }
  return false;
}

bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
                                           SourceLocation Loc, QualType Ty,
                                           StringRef Category) const {
  // For now globals can be blacklisted only in ASan and KASan.
  const SanitizerMask EnabledAsanMask =
      LangOpts.Sanitize.Mask &
      (SanitizerKind::Address | SanitizerKind::KernelAddress |
       SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
       SanitizerKind::MemTag);
  if (!EnabledAsanMask)
    return false;
  const auto &SanitizerBL = getContext().getSanitizerBlacklist();
  if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
    return true;
  if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
    return true;
  // Check global type.
  if (!Ty.isNull()) {
    // Drill down the array types: if global variable of a fixed type is
    // blacklisted, we also don't instrument arrays of them.
    while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
      Ty = AT->getElementType();
    Ty = Ty.getCanonicalType().getUnqualifiedType();
    // We allow to blacklist only record types (classes, structs etc.)
    if (Ty->isRecordType()) {
      std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
      if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
        return true;
    }
  }
  return false;
}

bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
                                   StringRef Category) const {
  const auto &XRayFilter = getContext().getXRayFilter();
  using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
  auto Attr = ImbueAttr::NONE;
  if (Loc.isValid())
    Attr = XRayFilter.shouldImbueLocation(Loc, Category);
  if (Attr == ImbueAttr::NONE)
    Attr = XRayFilter.shouldImbueFunction(Fn->getName());
  switch (Attr) {
  case ImbueAttr::NONE:
    return false;
  case ImbueAttr::ALWAYS:
    Fn->addFnAttr("function-instrument", "xray-always");
    break;
  case ImbueAttr::ALWAYS_ARG1:
    Fn->addFnAttr("function-instrument", "xray-always");
    Fn->addFnAttr("xray-log-args", "1");
    break;
  case ImbueAttr::NEVER:
    Fn->addFnAttr("function-instrument", "xray-never");
    break;
  }
  return true;
}

bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
  // Never defer when EmitAllDecls is specified.
  if (LangOpts.EmitAllDecls)
    return true;

  if (CodeGenOpts.KeepStaticConsts) {
    const auto *VD = dyn_cast<VarDecl>(Global);
    if (VD && VD->getType().isConstQualified() &&
        VD->getStorageDuration() == SD_Static)
      return true;
  }

  return getContext().DeclMustBeEmitted(Global);
}

bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
      // Implicit template instantiations may change linkage if they are later
      // explicitly instantiated, so they should not be emitted eagerly.
      return false;
    // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
    // not emit them eagerly unless we sure that the function must be emitted on
    // the host.
    if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
        !LangOpts.OpenMPIsDevice &&
        !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
        !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
      return false;
  }
  if (const auto *VD = dyn_cast<VarDecl>(Global))
    if (Context.getInlineVariableDefinitionKind(VD) ==
        ASTContext::InlineVariableDefinitionKind::WeakUnknown)
      // A definition of an inline constexpr static data member may change
      // linkage later if it's redeclared outside the class.
      return false;
  // If OpenMP is enabled and threadprivates must be generated like TLS, delay
  // codegen for global variables, because they may be marked as threadprivate.
  if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
      getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
      !isTypeConstant(Global->getType(), false) &&
      !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
    return false;

  return true;
}

ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
  StringRef Name = getMangledName(GD);

  // The UUID descriptor should be pointer aligned.
  CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);

  // Look for an existing global.
  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
    return ConstantAddress(GV, Alignment);

  ConstantEmitter Emitter(*this);
  llvm::Constant *Init;

  APValue &V = GD->getAsAPValue();
  if (!V.isAbsent()) {
    // If possible, emit the APValue version of the initializer. In particular,
    // this gets the type of the constant right.
    Init = Emitter.emitForInitializer(
        GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
  } else {
    // As a fallback, directly construct the constant.
    // FIXME: This may get padding wrong under esoteric struct layout rules.
    // MSVC appears to create a complete type 'struct __s_GUID' that it
    // presumably uses to represent these constants.
    MSGuidDecl::Parts Parts = GD->getParts();
    llvm::Constant *Fields[4] = {
        llvm::ConstantInt::get(Int32Ty, Parts.Part1),
        llvm::ConstantInt::get(Int16Ty, Parts.Part2),
        llvm::ConstantInt::get(Int16Ty, Parts.Part3),
        llvm::ConstantDataArray::getRaw(
            StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
            Int8Ty)};
    Init = llvm::ConstantStruct::getAnon(Fields);
  }

  auto *GV = new llvm::GlobalVariable(
      getModule(), Init->getType(),
      /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
  if (supportsCOMDAT())
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
  setDSOLocal(GV);

  llvm::Constant *Addr = GV;
  if (!V.isAbsent()) {
    Emitter.finalize(GV);
  } else {
    llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
    Addr = llvm::ConstantExpr::getBitCast(
        GV, Ty->getPointerTo(GV->getAddressSpace()));
  }
  return ConstantAddress(Addr, Alignment);
}

ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
  const AliasAttr *AA = VD->getAttr<AliasAttr>();
  assert(AA && "No alias?");

  CharUnits Alignment = getContext().getDeclAlign(VD);
  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());

  // See if there is already something with the target's name in the module.
  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
  if (Entry) {
    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
    auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
    return ConstantAddress(Ptr, Alignment);
  }

  llvm::Constant *Aliasee;
  if (isa<llvm::FunctionType>(DeclTy))
    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
                                      GlobalDecl(cast<FunctionDecl>(VD)),
                                      /*ForVTable=*/false);
  else
    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
                                    llvm::PointerType::getUnqual(DeclTy),
                                    nullptr);

  auto *F = cast<llvm::GlobalValue>(Aliasee);
  F->setLinkage(llvm::Function::ExternalWeakLinkage);
  WeakRefReferences.insert(F);

  return ConstantAddress(Aliasee, Alignment);
}

void CodeGenModule::EmitGlobal(GlobalDecl GD) {
  const auto *Global = cast<ValueDecl>(GD.getDecl());

  // Weak references don't produce any output by themselves.
  if (Global->hasAttr<WeakRefAttr>())
    return;

  // If this is an alias definition (which otherwise looks like a declaration)
  // emit it now.
  if (Global->hasAttr<AliasAttr>())
    return EmitAliasDefinition(GD);

  // IFunc like an alias whose value is resolved at runtime by calling resolver.
  if (Global->hasAttr<IFuncAttr>())
    return emitIFuncDefinition(GD);

  // If this is a cpu_dispatch multiversion function, emit the resolver.
  if (Global->hasAttr<CPUDispatchAttr>())
    return emitCPUDispatchDefinition(GD);

  // If this is CUDA, be selective about which declarations we emit.
  if (LangOpts.CUDA) {
    if (LangOpts.CUDAIsDevice) {
      if (!Global->hasAttr<CUDADeviceAttr>() &&
          !Global->hasAttr<CUDAGlobalAttr>() &&
          !Global->hasAttr<CUDAConstantAttr>() &&
          !Global->hasAttr<CUDASharedAttr>() &&
          !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
          !Global->getType()->isCUDADeviceBuiltinTextureType())
        return;
    } else {
      // We need to emit host-side 'shadows' for all global
      // device-side variables because the CUDA runtime needs their
      // size and host-side address in order to provide access to
      // their device-side incarnations.

      // So device-only functions are the only things we skip.
      if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
          Global->hasAttr<CUDADeviceAttr>())
        return;

      assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
             "Expected Variable or Function");
    }
  }

  if (LangOpts.OpenMP) {
    // If this is OpenMP, check if it is legal to emit this global normally.
    if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
      return;
    if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
      if (MustBeEmitted(Global))
        EmitOMPDeclareReduction(DRD);
      return;
    } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
      if (MustBeEmitted(Global))
        EmitOMPDeclareMapper(DMD);
      return;
    }
  }

  // Ignore declarations, they will be emitted on their first use.
  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
    // Forward declarations are emitted lazily on first use.
    if (!FD->doesThisDeclarationHaveABody()) {
      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
        return;

      StringRef MangledName = getMangledName(GD);

      // Compute the function info and LLVM type.
      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
      llvm::Type *Ty = getTypes().GetFunctionType(FI);

      GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
                              /*DontDefer=*/false);
      return;
    }
  } else {
    const auto *VD = cast<VarDecl>(Global);
    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
    if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
        !Context.isMSStaticDataMemberInlineDefinition(VD)) {
      if (LangOpts.OpenMP) {
        // Emit declaration of the must-be-emitted declare target variable.
        if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
                OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
          bool UnifiedMemoryEnabled =
              getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
          if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
              !UnifiedMemoryEnabled) {
            (void)GetAddrOfGlobalVar(VD);
          } else {
            assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
                    (*Res == OMPDeclareTargetDeclAttr::MT_To &&
                     UnifiedMemoryEnabled)) &&
                   "Link clause or to clause with unified memory expected.");
            (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
          }

          return;
        }
      }
      // If this declaration may have caused an inline variable definition to
      // change linkage, make sure that it's emitted.
      if (Context.getInlineVariableDefinitionKind(VD) ==
          ASTContext::InlineVariableDefinitionKind::Strong)
        GetAddrOfGlobalVar(VD);
      return;
    }
  }

  // Defer code generation to first use when possible, e.g. if this is an inline
  // function. If the global must always be emitted, do it eagerly if possible
  // to benefit from cache locality.
  if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
    // Emit the definition if it can't be deferred.
    EmitGlobalDefinition(GD);
    return;
  }

  // If we're deferring emission of a C++ variable with an
  // initializer, remember the order in which it appeared in the file.
  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
      cast<VarDecl>(Global)->hasInit()) {
    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
    CXXGlobalInits.push_back(nullptr);
  }

  StringRef MangledName = getMangledName(GD);
  if (GetGlobalValue(MangledName) != nullptr) {
    // The value has already been used and should therefore be emitted.
    addDeferredDeclToEmit(GD);
  } else if (MustBeEmitted(Global)) {
    // The value must be emitted, but cannot be emitted eagerly.
    assert(!MayBeEmittedEagerly(Global));
    addDeferredDeclToEmit(GD);
  } else {
    // Otherwise, remember that we saw a deferred decl with this name.  The
    // first use of the mangled name will cause it to move into
    // DeferredDeclsToEmit.
    DeferredDecls[MangledName] = GD;
  }
}

// Check if T is a class type with a destructor that's not dllimport.
static bool HasNonDllImportDtor(QualType T) {
  if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
      if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
        return true;

  return false;
}

namespace {
  struct FunctionIsDirectlyRecursive
      : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
    const StringRef Name;
    const Builtin::Context &BI;
    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
        : Name(N), BI(C) {}

    bool VisitCallExpr(const CallExpr *E) {
      const FunctionDecl *FD = E->getDirectCallee();
      if (!FD)
        return false;
      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
      if (Attr && Name == Attr->getLabel())
        return true;
      unsigned BuiltinID = FD->getBuiltinID();
      if (!BuiltinID || !BI.isLibFunction(BuiltinID))
        return false;
      StringRef BuiltinName = BI.getName(BuiltinID);
      if (BuiltinName.startswith("__builtin_") &&
          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
        return true;
      }
      return false;
    }

    bool VisitStmt(const Stmt *S) {
      for (const Stmt *Child : S->children())
        if (Child && this->Visit(Child))
          return true;
      return false;
    }
  };

  // Make sure we're not referencing non-imported vars or functions.
  struct DLLImportFunctionVisitor
      : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
    bool SafeToInline = true;

    bool shouldVisitImplicitCode() const { return true; }

    bool VisitVarDecl(VarDecl *VD) {
      if (VD->getTLSKind()) {
        // A thread-local variable cannot be imported.
        SafeToInline = false;
        return SafeToInline;
      }

      // A variable definition might imply a destructor call.
      if (VD->isThisDeclarationADefinition())
        SafeToInline = !HasNonDllImportDtor(VD->getType());

      return SafeToInline;
    }

    bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
      if (const auto *D = E->getTemporary()->getDestructor())
        SafeToInline = D->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }

    bool VisitDeclRefExpr(DeclRefExpr *E) {
      ValueDecl *VD = E->getDecl();
      if (isa<FunctionDecl>(VD))
        SafeToInline = VD->hasAttr<DLLImportAttr>();
      else if (VarDecl *V = dyn_cast<VarDecl>(VD))
        SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }

    bool VisitCXXConstructExpr(CXXConstructExpr *E) {
      SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }

    bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
      CXXMethodDecl *M = E->getMethodDecl();
      if (!M) {
        // Call through a pointer to member function. This is safe to inline.
        SafeToInline = true;
      } else {
        SafeToInline = M->hasAttr<DLLImportAttr>();
      }
      return SafeToInline;
    }

    bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
      SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }

    bool VisitCXXNewExpr(CXXNewExpr *E) {
      SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
      return SafeToInline;
    }
  };
}

// isTriviallyRecursive - Check if this function calls another
// decl that, because of the asm attribute or the other decl being a builtin,
// ends up pointing to itself.
bool
CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
  StringRef Name;
  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
    // asm labels are a special kind of mangling we have to support.
    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
    if (!Attr)
      return false;
    Name = Attr->getLabel();
  } else {
    Name = FD->getName();
  }

  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
  const Stmt *Body = FD->getBody();
  return Body ? Walker.Visit(Body) : false;
}

bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
  if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
    return true;
  const auto *F = cast<FunctionDecl>(GD.getDecl());
  if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
    return false;

  if (F->hasAttr<DLLImportAttr>()) {
    // Check whether it would be safe to inline this dllimport function.
    DLLImportFunctionVisitor Visitor;
    Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
    if (!Visitor.SafeToInline)
      return false;

    if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
      // Implicit destructor invocations aren't captured in the AST, so the
      // check above can't see them. Check for them manually here.
      for (const Decl *Member : Dtor->getParent()->decls())
        if (isa<FieldDecl>(Member))
          if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
            return false;
      for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
        if (HasNonDllImportDtor(B.getType()))
          return false;
    }
  }

  // PR9614. Avoid cases where the source code is lying to us. An available
  // externally function should have an equivalent function somewhere else,
  // but a function that calls itself through asm label/`__builtin_` trickery is
  // clearly not equivalent to the real implementation.
  // This happens in glibc's btowc and in some configure checks.
  return !isTriviallyRecursive(F);
}

bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
  return CodeGenOpts.OptimizationLevel > 0;
}

void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
                                                       llvm::GlobalValue *GV) {
  const auto *FD = cast<FunctionDecl>(GD.getDecl());

  if (FD->isCPUSpecificMultiVersion()) {
    auto *Spec = FD->getAttr<CPUSpecificAttr>();
    for (unsigned I = 0; I < Spec->cpus_size(); ++I)
      EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
    // Requires multiple emits.
  } else
    EmitGlobalFunctionDefinition(GD, GV);
}

void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
  const auto *D = cast<ValueDecl>(GD.getDecl());

  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
                                 Context.getSourceManager(),
                                 "Generating code for declaration");

  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
    // At -O0, don't generate IR for functions with available_externally
    // linkage.
    if (!shouldEmitFunction(GD))
      return;

    llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
      std::string Name;
      llvm::raw_string_ostream OS(Name);
      FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
                               /*Qualified=*/true);
      return Name;
    });

    if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
      // Make sure to emit the definition(s) before we emit the thunks.
      // This is necessary for the generation of certain thunks.
      if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
        ABI->emitCXXStructor(GD);
      else if (FD->isMultiVersion())
        EmitMultiVersionFunctionDefinition(GD, GV);
      else
        EmitGlobalFunctionDefinition(GD, GV);

      if (Method->isVirtual())
        getVTables().EmitThunks(GD);

      return;
    }

    if (FD->isMultiVersion())
      return EmitMultiVersionFunctionDefinition(GD, GV);
    return EmitGlobalFunctionDefinition(GD, GV);
  }

  if (const auto *VD = dyn_cast<VarDecl>(D))
    return EmitGlobalVarDefinition(VD, !VD->hasDefinition());

  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
}

static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
                                                      llvm::Function *NewFn);

static unsigned
TargetMVPriority(const TargetInfo &TI,
                 const CodeGenFunction::MultiVersionResolverOption &RO) {
  unsigned Priority = 0;
  for (StringRef Feat : RO.Conditions.Features)
    Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));

  if (!RO.Conditions.Architecture.empty())
    Priority = std::max(
        Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
  return Priority;
}

void CodeGenModule::emitMultiVersionFunctions() {
  for (GlobalDecl GD : MultiVersionFuncs) {
    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    getContext().forEachMultiversionedFunctionVersion(
        FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
          GlobalDecl CurGD{
              (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
          StringRef MangledName = getMangledName(CurGD);
          llvm::Constant *Func = GetGlobalValue(MangledName);
          if (!Func) {
            if (CurFD->isDefined()) {
              EmitGlobalFunctionDefinition(CurGD, nullptr);
              Func = GetGlobalValue(MangledName);
            } else {
              const CGFunctionInfo &FI =
                  getTypes().arrangeGlobalDeclaration(GD);
              llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
              Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
                                       /*DontDefer=*/false, ForDefinition);
            }
            assert(Func && "This should have just been created");
          }

          const auto *TA = CurFD->getAttr<TargetAttr>();
          llvm::SmallVector<StringRef, 8> Feats;
          TA->getAddedFeatures(Feats);

          Options.emplace_back(cast<llvm::Function>(Func),
                               TA->getArchitecture(), Feats);
        });

    llvm::Function *ResolverFunc;
    const TargetInfo &TI = getTarget();

    if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
      ResolverFunc = cast<llvm::Function>(
          GetGlobalValue((getMangledName(GD) + ".resolver").str()));
      ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
    } else {
      ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
    }

    if (supportsCOMDAT())
      ResolverFunc->setComdat(
          getModule().getOrInsertComdat(ResolverFunc->getName()));

    llvm::stable_sort(
        Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
                       const CodeGenFunction::MultiVersionResolverOption &RHS) {
          return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
        });
    CodeGenFunction CGF(*this);
    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
  }
}

void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
  const auto *FD = cast<FunctionDecl>(GD.getDecl());
  assert(FD && "Not a FunctionDecl?");
  const auto *DD = FD->getAttr<CPUDispatchAttr>();
  assert(DD && "Not a cpu_dispatch Function?");
  llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());

  if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
    const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
    DeclTy = getTypes().GetFunctionType(FInfo);
  }

  StringRef ResolverName = getMangledName(GD);

  llvm::Type *ResolverType;
  GlobalDecl ResolverGD;
  if (getTarget().supportsIFunc())
    ResolverType = llvm::FunctionType::get(
        llvm::PointerType::get(DeclTy,
                               Context.getTargetAddressSpace(FD->getType())),
        false);
  else {
    ResolverType = DeclTy;
    ResolverGD = GD;
  }

  auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
      ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
  ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
  if (supportsCOMDAT())
    ResolverFunc->setComdat(
        getModule().getOrInsertComdat(ResolverFunc->getName()));

  SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
  const TargetInfo &Target = getTarget();
  unsigned Index = 0;
  for (const IdentifierInfo *II : DD->cpus()) {
    // Get the name of the target function so we can look it up/create it.
    std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
                              getCPUSpecificMangling(*this, II->getName());

    llvm::Constant *Func = GetGlobalValue(MangledName);

    if (!Func) {
      GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
      if (ExistingDecl.getDecl() &&
          ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
        EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
        Func = GetGlobalValue(MangledName);
      } else {
        if (!ExistingDecl.getDecl())
          ExistingDecl = GD.getWithMultiVersionIndex(Index);

      Func = GetOrCreateLLVMFunction(
          MangledName, DeclTy, ExistingDecl,
          /*ForVTable=*/false, /*DontDefer=*/true,
          /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
      }
    }

    llvm::SmallVector<StringRef, 32> Features;
    Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
    llvm::transform(Features, Features.begin(),
                    [](StringRef Str) { return Str.substr(1); });
    Features.erase(std::remove_if(
        Features.begin(), Features.end(), [&Target](StringRef Feat) {
          return !Target.validateCpuSupports(Feat);
        }), Features.end());
    Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
    ++Index;
  }

  llvm::sort(
      Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
                  const CodeGenFunction::MultiVersionResolverOption &RHS) {
        return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
               CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
      });

  // If the list contains multiple 'default' versions, such as when it contains
  // 'pentium' and 'generic', don't emit the call to the generic one (since we
  // always run on at least a 'pentium'). We do this by deleting the 'least
  // advanced' (read, lowest mangling letter).
  while (Options.size() > 1 &&
         CodeGenFunction::GetX86CpuSupportsMask(
             (Options.end() - 2)->Conditions.Features) == 0) {
    StringRef LHSName = (Options.end() - 2)->Function->getName();
    StringRef RHSName = (Options.end() - 1)->Function->getName();
    if (LHSName.compare(RHSName) < 0)
      Options.erase(Options.end() - 2);
    else
      Options.erase(Options.end() - 1);
  }

  CodeGenFunction CGF(*this);
  CGF.EmitMultiVersionResolver(ResolverFunc, Options);

  if (getTarget().supportsIFunc()) {
    std::string AliasName = getMangledNameImpl(
        *this, GD, FD, /*OmitMultiVersionMangling=*/true);
    llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
    if (!AliasFunc) {
      auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
          AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
          /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
      auto *GA = llvm::GlobalAlias::create(
         DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
      GA->setLinkage(llvm::Function::WeakODRLinkage);
      SetCommonAttributes(GD, GA);
    }
  }
}

/// If a dispatcher for the specified mangled name is not in the module, create
/// and return an llvm Function with the specified type.
llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
    GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
  std::string MangledName =
      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);

  // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
  // a separate resolver).
  std::string ResolverName = MangledName;
  if (getTarget().supportsIFunc())
    ResolverName += ".ifunc";
  else if (FD->isTargetMultiVersion())
    ResolverName += ".resolver";

  // If this already exists, just return that one.
  if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
    return ResolverGV;

  // Since this is the first time we've created this IFunc, make sure
  // that we put this multiversioned function into the list to be
  // replaced later if necessary (target multiversioning only).
  if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
    MultiVersionFuncs.push_back(GD);

  if (getTarget().supportsIFunc()) {
    llvm::Type *ResolverType = llvm::FunctionType::get(
        llvm::PointerType::get(
            DeclTy, getContext().getTargetAddressSpace(FD->getType())),
        false);
    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
        MangledName + ".resolver", ResolverType, GlobalDecl{},
        /*ForVTable=*/false);
    llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
        DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
    GIF->setName(ResolverName);
    SetCommonAttributes(FD, GIF);

    return GIF;
  }

  llvm::Constant *Resolver = GetOrCreateLLVMFunction(
      ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
  assert(isa<llvm::GlobalValue>(Resolver) &&
         "Resolver should be created for the first time");
  SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
  return Resolver;
}

/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
/// module, create and return an llvm Function with the specified type. If there
/// is something in the module with the specified name, return it potentially
/// bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this.  This is used
/// to set the attributes on the function when it is first created.
llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
    StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
    bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
    ForDefinition_t IsForDefinition) {
  const Decl *D = GD.getDecl();

  // Any attempts to use a MultiVersion function should result in retrieving
  // the iFunc instead. Name Mangling will handle the rest of the changes.
  if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
    // For the device mark the function as one that should be emitted.
    if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
        !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
        !DontDefer && !IsForDefinition) {
      if (const FunctionDecl *FDDef = FD->getDefinition()) {
        GlobalDecl GDDef;
        if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
          GDDef = GlobalDecl(CD, GD.getCtorType());
        else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
          GDDef = GlobalDecl(DD, GD.getDtorType());
        else
          GDDef = GlobalDecl(FDDef);
        EmitGlobal(GDDef);
      }
    }

    if (FD->isMultiVersion()) {
      if (FD->hasAttr<TargetAttr>())
        UpdateMultiVersionNames(GD, FD);
      if (!IsForDefinition)
        return GetOrCreateMultiVersionResolver(GD, Ty, FD);
    }
  }

  // Lookup the entry, lazily creating it if necessary.
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
  if (Entry) {
    if (WeakRefReferences.erase(Entry)) {
      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
      if (FD && !FD->hasAttr<WeakAttr>())
        Entry->setLinkage(llvm::Function::ExternalLinkage);
    }

    // Handle dropped DLL attributes.
    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
      setDSOLocal(Entry);
    }

    // If there are two attempts to define the same mangled name, issue an
    // error.
    if (IsForDefinition && !Entry->isDeclaration()) {
      GlobalDecl OtherGD;
      // Check that GD is not yet in DiagnosedConflictingDefinitions is required
      // to make sure that we issue an error only once.
      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
          (GD.getCanonicalDecl().getDecl() !=
           OtherGD.getCanonicalDecl().getDecl()) &&
          DiagnosedConflictingDefinitions.insert(GD).second) {
        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
            << MangledName;
        getDiags().Report(OtherGD.getDecl()->getLocation(),
                          diag::note_previous_definition);
      }
    }

    if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
        (Entry->getValueType() == Ty)) {
      return Entry;
    }

    // Make sure the result is of the correct type.
    // (If function is requested for a definition, we always need to create a new
    // function, not just return a bitcast.)
    if (!IsForDefinition)
      return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
  }

  // This function doesn't have a complete type (for example, the return
  // type is an incomplete struct). Use a fake type instead, and make
  // sure not to try to set attributes.
  bool IsIncompleteFunction = false;

  llvm::FunctionType *FTy;
  if (isa<llvm::FunctionType>(Ty)) {
    FTy = cast<llvm::FunctionType>(Ty);
  } else {
    FTy = llvm::FunctionType::get(VoidTy, false);
    IsIncompleteFunction = true;
  }

  llvm::Function *F =
      llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
                             Entry ? StringRef() : MangledName, &getModule());

  // If we already created a function with the same mangled name (but different
  // type) before, take its name and add it to the list of functions to be
  // replaced with F at the end of CodeGen.
  //
  // This happens if there is a prototype for a function (e.g. "int f()") and
  // then a definition of a different type (e.g. "int f(int x)").
  if (Entry) {
    F->takeName(Entry);

    // This might be an implementation of a function without a prototype, in
    // which case, try to do special replacement of calls which match the new
    // prototype.  The really key thing here is that we also potentially drop
    // arguments from the call site so as to make a direct call, which makes the
    // inliner happier and suppresses a number of optimizer warnings (!) about
    // dropping arguments.
    if (!Entry->use_empty()) {
      ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
      Entry->removeDeadConstantUsers();
    }

    llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
        F, Entry->getValueType()->getPointerTo());
    addGlobalValReplacement(Entry, BC);
  }

  assert(F->getName() == MangledName && "name was uniqued!");
  if (D)
    SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
  if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
  }

  if (!DontDefer) {
    // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
    // each other bottoming out with the base dtor.  Therefore we emit non-base
    // dtors on usage, even if there is no dtor definition in the TU.
    if (D && isa<CXXDestructorDecl>(D) &&
        getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
                                           GD.getDtorType()))
      addDeferredDeclToEmit(GD);

    // This is the first use or definition of a mangled name.  If there is a
    // deferred decl with this name, remember that we need to emit it at the end
    // of the file.
    auto DDI = DeferredDecls.find(MangledName);
    if (DDI != DeferredDecls.end()) {
      // Move the potentially referenced deferred decl to the
      // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
      // don't need it anymore).
      addDeferredDeclToEmit(DDI->second);
      DeferredDecls.erase(DDI);

      // Otherwise, there are cases we have to worry about where we're
      // using a declaration for which we must emit a definition but where
      // we might not find a top-level definition:
      //   - member functions defined inline in their classes
      //   - friend functions defined inline in some class
      //   - special member functions with implicit definitions
      // If we ever change our AST traversal to walk into class methods,
      // this will be unnecessary.
      //
      // We also don't emit a definition for a function if it's going to be an
      // entry in a vtable, unless it's already marked as used.
    } else if (getLangOpts().CPlusPlus && D) {
      // Look for a declaration that's lexically in a record.
      for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
           FD = FD->getPreviousDecl()) {
        if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
          if (FD->doesThisDeclarationHaveABody()) {
            addDeferredDeclToEmit(GD.getWithDecl(FD));
            break;
          }
        }
      }
    }
  }

  // Make sure the result is of the requested type.
  if (!IsIncompleteFunction) {
    assert(F->getFunctionType() == Ty);
    return F;
  }

  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
  return llvm::ConstantExpr::getBitCast(F, PTy);
}

/// GetAddrOfFunction - Return the address of the given function.  If Ty is
/// non-null, then this function will use the specified type if it has to
/// create it (this occurs when we see a definition of the function).
llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
                                                 llvm::Type *Ty,
                                                 bool ForVTable,
                                                 bool DontDefer,
                                              ForDefinition_t IsForDefinition) {
  assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
         "consteval function should never be emitted");
  // If there was no specific requested type, just convert it now.
  if (!Ty) {
    const auto *FD = cast<FunctionDecl>(GD.getDecl());
    Ty = getTypes().ConvertType(FD->getType());
  }

  // Devirtualized destructor calls may come through here instead of via
  // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
  // of the complete destructor when necessary.
  if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
    if (getTarget().getCXXABI().isMicrosoft() &&
        GD.getDtorType() == Dtor_Complete &&
        DD->getParent()->getNumVBases() == 0)
      GD = GlobalDecl(DD, Dtor_Base);
  }

  StringRef MangledName = getMangledName(GD);
  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
                                 /*IsThunk=*/false, llvm::AttributeList(),
                                 IsForDefinition);
}

static const FunctionDecl *
GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
  TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
  DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);

  IdentifierInfo &CII = C.Idents.get(Name);
  for (const auto &Result : DC->lookup(&CII))
    if (const auto FD = dyn_cast<FunctionDecl>(Result))
      return FD;

  if (!C.getLangOpts().CPlusPlus)
    return nullptr;

  // Demangle the premangled name from getTerminateFn()
  IdentifierInfo &CXXII =
      (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
          ? C.Idents.get("terminate")
          : C.Idents.get(Name);

  for (const auto &N : {"__cxxabiv1", "std"}) {
    IdentifierInfo &NS = C.Idents.get(N);
    for (const auto &Result : DC->lookup(&NS)) {
      NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
      if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
        for (const auto &Result : LSD->lookup(&NS))
          if ((ND = dyn_cast<NamespaceDecl>(Result)))
            break;

      if (ND)
        for (const auto &Result : ND->lookup(&CXXII))
          if (const auto *FD = dyn_cast<FunctionDecl>(Result))
            return FD;
    }
  }

  return nullptr;
}

/// CreateRuntimeFunction - Create a new runtime function with the specified
/// type and name.
llvm::FunctionCallee
CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
                                     llvm::AttributeList ExtraAttrs, bool Local,
                                     bool AssumeConvergent) {
  if (AssumeConvergent) {
    ExtraAttrs =
        ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
                                llvm::Attribute::Convergent);
  }

  llvm::Constant *C =
      GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
                              /*DontDefer=*/false, /*IsThunk=*/false,
                              ExtraAttrs);

  if (auto *F = dyn_cast<llvm::Function>(C)) {
    if (F->empty()) {
      F->setCallingConv(getRuntimeCC());

      // In Windows Itanium environments, try to mark runtime functions
      // dllimport. For Mingw and MSVC, don't. We don't really know if the user
      // will link their standard library statically or dynamically. Marking
      // functions imported when they are not imported can cause linker errors
      // and warnings.
      if (!Local && getTriple().isWindowsItaniumEnvironment() &&
          !getCodeGenOpts().LTOVisibilityPublicStd) {
        const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
        if (!FD || FD->hasAttr<DLLImportAttr>()) {
          F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
          F->setLinkage(llvm::GlobalValue::ExternalLinkage);
        }
      }
      setDSOLocal(F);
    }
  }

  return {FTy, C};
}

/// isTypeConstant - Determine whether an object of this type can be emitted
/// as a constant.
///
/// If ExcludeCtor is true, the duration when the object's constructor runs
/// will not be considered. The caller will need to verify that the object is
/// not written to during its construction.
bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
    return false;

  if (Context.getLangOpts().CPlusPlus) {
    if (const CXXRecordDecl *Record
          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
      return ExcludeCtor && !Record->hasMutableFields() &&
             Record->hasTrivialDestructor();
  }

  return true;
}

/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
/// create and return an llvm GlobalVariable with the specified type.  If there
/// is something in the module with the specified name, return it potentially
/// bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this.  This is used
/// to set the attributes on the global when it is first created.
///
/// If IsForDefinition is true, it is guaranteed that an actual global with
/// type Ty will be returned, not conversion of a variable with the same
/// mangled name but some other type.
llvm::Constant *
CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
                                     llvm::PointerType *Ty,
                                     const VarDecl *D,
                                     ForDefinition_t IsForDefinition) {
  // Lookup the entry, lazily creating it if necessary.
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
  if (Entry) {
    if (WeakRefReferences.erase(Entry)) {
      if (D && !D->hasAttr<WeakAttr>())
        Entry->setLinkage(llvm::Function::ExternalLinkage);
    }

    // Handle dropped DLL attributes.
    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);

    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
      getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);

    if (Entry->getType() == Ty)
      return Entry;

    // If there are two attempts to define the same mangled name, issue an
    // error.
    if (IsForDefinition && !Entry->isDeclaration()) {
      GlobalDecl OtherGD;
      const VarDecl *OtherD;

      // Check that D is not yet in DiagnosedConflictingDefinitions is required
      // to make sure that we issue an error only once.
      if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
          (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
          (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
          OtherD->hasInit() &&
          DiagnosedConflictingDefinitions.insert(D).second) {
        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
            << MangledName;
        getDiags().Report(OtherGD.getDecl()->getLocation(),
                          diag::note_previous_definition);
      }
    }

    // Make sure the result is of the correct type.
    if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
      return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);

    // (If global is requested for a definition, we always need to create a new
    // global, not just return a bitcast.)
    if (!IsForDefinition)
      return llvm::ConstantExpr::getBitCast(Entry, Ty);
  }

  auto AddrSpace = GetGlobalVarAddressSpace(D);
  auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);

  auto *GV = new llvm::GlobalVariable(
      getModule(), Ty->getElementType(), false,
      llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
      llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);

  // If we already created a global with the same mangled name (but different
  // type) before, take its name and remove it from its parent.
  if (Entry) {
    GV->takeName(Entry);

    if (!Entry->use_empty()) {
      llvm::Constant *NewPtrForOldDecl =
          llvm::ConstantExpr::getBitCast(GV, Entry->getType());
      Entry->replaceAllUsesWith(NewPtrForOldDecl);
    }

    Entry->eraseFromParent();
  }

  // This is the first use or definition of a mangled name.  If there is a
  // deferred decl with this name, remember that we need to emit it at the end
  // of the file.
  auto DDI = DeferredDecls.find(MangledName);
  if (DDI != DeferredDecls.end()) {
    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
    // list, and remove it from DeferredDecls (since we don't need it anymore).
    addDeferredDeclToEmit(DDI->second);
    DeferredDecls.erase(DDI);
  }

  // Handle things which are present even on external declarations.
  if (D) {
    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
      getOpenMPRuntime().registerTargetGlobalVariable(D, GV);

    // FIXME: This code is overly simple and should be merged with other global
    // handling.
    GV->setConstant(isTypeConstant(D->getType(), false));

    GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());

    setLinkageForGV(GV, D);

    if (D->getTLSKind()) {
      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
        CXXThreadLocals.push_back(D);
      setTLSMode(GV, *D);
    }

    setGVProperties(GV, D);

    // If required by the ABI, treat declarations of static data members with
    // inline initializers as definitions.
    if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
      EmitGlobalVarDefinition(D);
    }

    // Emit section information for extern variables.
    if (D->hasExternalStorage()) {
      if (const SectionAttr *SA = D->getAttr<SectionAttr>())
        GV->setSection(SA->getName());
    }

    // Handle XCore specific ABI requirements.
    if (getTriple().getArch() == llvm::Triple::xcore &&
        D->getLanguageLinkage() == CLanguageLinkage &&
        D->getType().isConstant(Context) &&
        isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
      GV->setSection(".cp.rodata");

    // Check if we a have a const declaration with an initializer, we may be
    // able to emit it as available_externally to expose it's value to the
    // optimizer.
    if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
        D->getType().isConstQualified() && !GV->hasInitializer() &&
        !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
      const auto *Record =
          Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
      bool HasMutableFields = Record && Record->hasMutableFields();
      if (!HasMutableFields) {
        const VarDecl *InitDecl;
        const Expr *InitExpr = D->getAnyInitializer(InitDecl);
        if (InitExpr) {
          ConstantEmitter emitter(*this);
          llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
          if (Init) {
            auto *InitType = Init->getType();
            if (GV->getValueType() != InitType) {
              // The type of the initializer does not match the definition.
              // This happens when an initializer has a different type from
              // the type of the global (because of padding at the end of a
              // structure for instance).
              GV->setName(StringRef());
              // Make a new global with the correct type, this is now guaranteed
              // to work.
              auto *NewGV = cast<llvm::GlobalVariable>(
                  GetAddrOfGlobalVar(D, InitType, IsForDefinition)
                      ->stripPointerCasts());

              // Erase the old global, since it is no longer used.
              GV->eraseFromParent();
              GV = NewGV;
            } else {
              GV->setInitializer(Init);
              GV->setConstant(true);
              GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
            }
            emitter.finalize(GV);
          }
        }
      }
    }
  }

  if (GV->isDeclaration())
    getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);

  LangAS ExpectedAS =
      D ? D->getType().getAddressSpace()
        : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
  assert(getContext().getTargetAddressSpace(ExpectedAS) ==
         Ty->getPointerAddressSpace());
  if (AddrSpace != ExpectedAS)
    return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
                                                       ExpectedAS, Ty);

  return GV;
}

llvm::Constant *
CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
  const Decl *D = GD.getDecl();

  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
    return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
                                /*DontDefer=*/false, IsForDefinition);

  if (isa<CXXMethodDecl>(D)) {
    auto FInfo =
        &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
    auto Ty = getTypes().GetFunctionType(*FInfo);
    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
                             IsForDefinition);
  }

  if (isa<FunctionDecl>(D)) {
    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
                             IsForDefinition);
  }

  return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
}

llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
    StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
    unsigned Alignment) {
  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
  llvm::GlobalVariable *OldGV = nullptr;

  if (GV) {
    // Check if the variable has the right type.
    if (GV->getValueType() == Ty)
      return GV;

    // Because C++ name mangling, the only way we can end up with an already
    // existing global with the same name is if it has been declared extern "C".
    assert(GV->isDeclaration() && "Declaration has wrong type!");
    OldGV = GV;
  }

  // Create a new variable.
  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
                                Linkage, nullptr, Name);

  if (OldGV) {
    // Replace occurrences of the old variable if needed.
    GV->takeName(OldGV);

    if (!OldGV->use_empty()) {
      llvm::Constant *NewPtrForOldDecl =
      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
    }

    OldGV->eraseFromParent();
  }

  if (supportsCOMDAT() && GV->isWeakForLinker() &&
      !GV->hasAvailableExternallyLinkage())
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));

  GV->setAlignment(llvm::MaybeAlign(Alignment));

  return GV;
}

/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
/// given global variable.  If Ty is non-null and if the global doesn't exist,
/// then it will be created with the specified type instead of whatever the
/// normal requested type would be. If IsForDefinition is true, it is guaranteed
/// that an actual global with type Ty will be returned, not conversion of a
/// variable with the same mangled name but some other type.
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
                                                  llvm::Type *Ty,
                                           ForDefinition_t IsForDefinition) {
  assert(D->hasGlobalStorage() && "Not a global variable");
  QualType ASTTy = D->getType();
  if (!Ty)
    Ty = getTypes().ConvertTypeForMem(ASTTy);

  llvm::PointerType *PTy =
    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));

  StringRef MangledName = getMangledName(D);
  return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
}

/// CreateRuntimeVariable - Create a new runtime global variable with the
/// specified type and name.
llvm::Constant *
CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
                                     StringRef Name) {
  auto PtrTy =
      getContext().getLangOpts().OpenCL
          ? llvm::PointerType::get(
                Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
          : llvm::PointerType::getUnqual(Ty);
  auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
  setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
  return Ret;
}

void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
  assert(!D->getInit() && "Cannot emit definite definitions here!");

  StringRef MangledName = getMangledName(D);
  llvm::GlobalValue *GV = GetGlobalValue(MangledName);

  // We already have a definition, not declaration, with the same mangled name.
  // Emitting of declaration is not required (and actually overwrites emitted
  // definition).
  if (GV && !GV->isDeclaration())
    return;

  // If we have not seen a reference to this variable yet, place it into the
  // deferred declarations table to be emitted if needed later.
  if (!MustBeEmitted(D) && !GV) {
      DeferredDecls[MangledName] = D;
      return;
  }

  // The tentative definition is the only definition.
  EmitGlobalVarDefinition(D);
}

void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
  EmitExternalVarDeclaration(D);
}

CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
  return Context.toCharUnitsFromBits(
      getDataLayout().getTypeStoreSizeInBits(Ty));
}

LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
  LangAS AddrSpace = LangAS::Default;
  if (LangOpts.OpenCL) {
    AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
    assert(AddrSpace == LangAS::opencl_global ||
           AddrSpace == LangAS::opencl_global_device ||
           AddrSpace == LangAS::opencl_global_host ||
           AddrSpace == LangAS::opencl_constant ||
           AddrSpace == LangAS::opencl_local ||
           AddrSpace >= LangAS::FirstTargetAddressSpace);
    return AddrSpace;
  }

  if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
    if (D && D->hasAttr<CUDAConstantAttr>())
      return LangAS::cuda_constant;
    else if (D && D->hasAttr<CUDASharedAttr>())
      return LangAS::cuda_shared;
    else if (D && D->hasAttr<CUDADeviceAttr>())
      return LangAS::cuda_device;
    else if (D && D->getType().isConstQualified())
      return LangAS::cuda_constant;
    else
      return LangAS::cuda_device;
  }

  if (LangOpts.OpenMP) {
    LangAS AS;
    if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
      return AS;
  }
  return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
}

LangAS CodeGenModule::getStringLiteralAddressSpace() const {
  // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
  if (LangOpts.OpenCL)
    return LangAS::opencl_constant;
  if (auto AS = getTarget().getConstantAddressSpace())
    return AS.getValue();
  return LangAS::Default;
}

// In address space agnostic languages, string literals are in default address
// space in AST. However, certain targets (e.g. amdgcn) request them to be
// emitted in constant address space in LLVM IR. To be consistent with other
// parts of AST, string literal global variables in constant address space
// need to be casted to default address space before being put into address
// map and referenced by other part of CodeGen.
// In OpenCL, string literals are in constant address space in AST, therefore
// they should not be casted to default address space.
static llvm::Constant *
castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
                                       llvm::GlobalVariable *GV) {
  llvm::Constant *Cast = GV;
  if (!CGM.getLangOpts().OpenCL) {
    if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
      if (AS != LangAS::Default)
        Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
            CGM, GV, AS.getValue(), LangAS::Default,
            GV->getValueType()->getPointerTo(
                CGM.getContext().getTargetAddressSpace(LangAS::Default)));
    }
  }
  return Cast;
}

template<typename SomeDecl>
void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
                                               llvm::GlobalValue *GV) {
  if (!getLangOpts().CPlusPlus)
    return;

  // Must have 'used' attribute, or else inline assembly can't rely on
  // the name existing.
  if (!D->template hasAttr<UsedAttr>())
    return;

  // Must have internal linkage and an ordinary name.
  if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
    return;

  // Must be in an extern "C" context. Entities declared directly within
  // a record are not extern "C" even if the record is in such a context.
  const SomeDecl *First = D->getFirstDecl();
  if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
    return;

  // OK, this is an internal linkage entity inside an extern "C" linkage
  // specification. Make a note of that so we can give it the "expected"
  // mangled name if nothing else is using that name.
  std::pair<StaticExternCMap::iterator, bool> R =
      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));

  // If we have multiple internal linkage entities with the same name
  // in extern "C" regions, none of them gets that name.
  if (!R.second)
    R.first->second = nullptr;
}

static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
  if (!CGM.supportsCOMDAT())
    return false;

  // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
  // them being "merged" by the COMDAT Folding linker optimization.
  if (D.hasAttr<CUDAGlobalAttr>())
    return false;

  if (D.hasAttr<SelectAnyAttr>())
    return true;

  GVALinkage Linkage;
  if (auto *VD = dyn_cast<VarDecl>(&D))
    Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
  else
    Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));

  switch (Linkage) {
  case GVA_Internal:
  case GVA_AvailableExternally:
  case GVA_StrongExternal:
    return false;
  case GVA_DiscardableODR:
  case GVA_StrongODR:
    return true;
  }
  llvm_unreachable("No such linkage");
}

void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
                                          llvm::GlobalObject &GO) {
  if (!shouldBeInCOMDAT(*this, D))
    return;
  GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
}

/// Pass IsTentative as true if you want to create a tentative definition.
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
                                            bool IsTentative) {
  // OpenCL global variables of sampler type are translated to function calls,
  // therefore no need to be translated.
  QualType ASTTy = D->getType();
  if (getLangOpts().OpenCL && ASTTy->isSamplerT())
    return;

  // If this is OpenMP device, check if it is legal to emit this global
  // normally.
  if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
      OpenMPRuntime->emitTargetGlobalVariable(D))
    return;

  llvm::Constant *Init = nullptr;
  bool NeedsGlobalCtor = false;
  bool NeedsGlobalDtor =
      D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;

  const VarDecl *InitDecl;
  const Expr *InitExpr = D->getAnyInitializer(InitDecl);

  Optional<ConstantEmitter> emitter;

  // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
  // as part of their declaration."  Sema has already checked for
  // error cases, so we just need to set Init to UndefValue.
  bool IsCUDASharedVar =
      getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
  // Shadows of initialized device-side global variables are also left
  // undefined.
  bool IsCUDAShadowVar =
      !getLangOpts().CUDAIsDevice &&
      (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
       D->hasAttr<CUDASharedAttr>());
  bool IsCUDADeviceShadowVar =
      getLangOpts().CUDAIsDevice &&
      (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
       D->getType()->isCUDADeviceBuiltinTextureType());
  // HIP pinned shadow of initialized host-side global variables are also
  // left undefined.
  if (getLangOpts().CUDA &&
      (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
    Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
  else if (D->hasAttr<LoaderUninitializedAttr>())
    Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
  else if (!InitExpr) {
    // This is a tentative definition; tentative definitions are
    // implicitly initialized with { 0 }.
    //
    // Note that tentative definitions are only emitted at the end of
    // a translation unit, so they should never have incomplete
    // type. In addition, EmitTentativeDefinition makes sure that we
    // never attempt to emit a tentative definition if a real one
    // exists. A use may still exists, however, so we still may need
    // to do a RAUW.
    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
    Init = EmitNullConstant(D->getType());
  } else {
    initializedGlobalDecl = GlobalDecl(D);
    emitter.emplace(*this);
    Init = emitter->tryEmitForInitializer(*InitDecl);

    if (!Init) {
      QualType T = InitExpr->getType();
      if (D->getType()->isReferenceType())
        T = D->getType();

      if (getLangOpts().CPlusPlus) {
        Init = EmitNullConstant(T);
        NeedsGlobalCtor = true;
      } else {
        ErrorUnsupported(D, "static initializer");
        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
      }
    } else {
      // We don't need an initializer, so remove the entry for the delayed
      // initializer position (just in case this entry was delayed) if we
      // also don't need to register a destructor.
      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
        DelayedCXXInitPosition.erase(D);
    }
  }

  llvm::Type* InitType = Init->getType();
  llvm::Constant *Entry =
      GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));

  // Strip off pointer casts if we got them.
  Entry = Entry->stripPointerCasts();

  // Entry is now either a Function or GlobalVariable.
  auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);

  // We have a definition after a declaration with the wrong type.
  // We must make a new GlobalVariable* and update everything that used OldGV
  // (a declaration or tentative definition) with the new GlobalVariable*
  // (which will be a definition).
  //
  // This happens if there is a prototype for a global (e.g.
  // "extern int x[];") and then a definition of a different type (e.g.
  // "int x[10];"). This also happens when an initializer has a different type
  // from the type of the global (this happens with unions).
  if (!GV || GV->getValueType() != InitType ||
      GV->getType()->getAddressSpace() !=
          getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {

    // Move the old entry aside so that we'll create a new one.
    Entry->setName(StringRef());

    // Make a new global with the correct type, this is now guaranteed to work.
    GV = cast<llvm::GlobalVariable>(
        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
            ->stripPointerCasts());

    // Replace all uses of the old global with the new global
    llvm::Constant *NewPtrForOldDecl =
        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
    Entry->replaceAllUsesWith(NewPtrForOldDecl);

    // Erase the old global, since it is no longer used.
    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
  }

  MaybeHandleStaticInExternC(D, GV);

  if (D->hasAttr<AnnotateAttr>())
    AddGlobalAnnotations(D, GV);

  // Set the llvm linkage type as appropriate.
  llvm::GlobalValue::LinkageTypes Linkage =
      getLLVMLinkageVarDefinition(D, GV->isConstant());

  // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
  // the device. [...]"
  // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
  // __device__, declares a variable that: [...]
  // Is accessible from all the threads within the grid and from the host
  // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
  // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
  if (GV && LangOpts.CUDA) {
    if (LangOpts.CUDAIsDevice) {
      if (Linkage != llvm::GlobalValue::InternalLinkage &&
          (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
        GV->setExternallyInitialized(true);
    } else {
      // Host-side shadows of external declarations of device-side
      // global variables become internal definitions. These have to
      // be internal in order to prevent name conflicts with global
      // host variables with the same name in a different TUs.
      if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
        Linkage = llvm::GlobalValue::InternalLinkage;
        // Shadow variables and their properties must be registered with CUDA
        // runtime. Skip Extern global variables, which will be registered in
        // the TU where they are defined.
        if (!D->hasExternalStorage())
          getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
                                             D->hasAttr<CUDAConstantAttr>());
      } else if (D->hasAttr<CUDASharedAttr>()) {
        // __shared__ variables are odd. Shadows do get created, but
        // they are not registered with the CUDA runtime, so they
        // can't really be used to access their device-side
        // counterparts. It's not clear yet whether it's nvcc's bug or
        // a feature, but we've got to do the same for compatibility.
        Linkage = llvm::GlobalValue::InternalLinkage;
      } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
                 D->getType()->isCUDADeviceBuiltinTextureType()) {
        // Builtin surfaces and textures and their template arguments are
        // also registered with CUDA runtime.
        Linkage = llvm::GlobalValue::InternalLinkage;
        const ClassTemplateSpecializationDecl *TD =
            cast<ClassTemplateSpecializationDecl>(
                D->getType()->getAs<RecordType>()->getDecl());
        const TemplateArgumentList &Args = TD->getTemplateArgs();
        if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
          assert(Args.size() == 2 &&
                 "Unexpected number of template arguments of CUDA device "
                 "builtin surface type.");
          auto SurfType = Args[1].getAsIntegral();
          if (!D->hasExternalStorage())
            getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
                                                SurfType.getSExtValue());
        } else {
          assert(Args.size() == 3 &&
                 "Unexpected number of template arguments of CUDA device "
                 "builtin texture type.");
          auto TexType = Args[1].getAsIntegral();
          auto Normalized = Args[2].getAsIntegral();
          if (!D->hasExternalStorage())
            getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
                                               TexType.getSExtValue(),
                                               Normalized.getZExtValue());
        }
      }
    }
  }

  GV->setInitializer(Init);
  if (emitter)
    emitter->finalize(GV);

  // If it is safe to mark the global 'constant', do so now.
  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
                  isTypeConstant(D->getType(), true));

  // If it is in a read-only section, mark it 'constant'.
  if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
    const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
    if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
      GV->setConstant(true);
  }

  GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());

  // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
  // function is only defined alongside the variable, not also alongside
  // callers. Normally, all accesses to a thread_local go through the
  // thread-wrapper in order to ensure initialization has occurred, underlying
  // variable will never be used other than the thread-wrapper, so it can be
  // converted to internal linkage.
  //
  // However, if the variable has the 'constinit' attribute, it _can_ be
  // referenced directly, without calling the thread-wrapper, so the linkage
  // must not be changed.
  //
  // Additionally, if the variable isn't plain external linkage, e.g. if it's
  // weak or linkonce, the de-duplication semantics are important to preserve,
  // so we don't change the linkage.
  if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
      Linkage == llvm::GlobalValue::ExternalLinkage &&
      Context.getTargetInfo().getTriple().isOSDarwin() &&
      !D->hasAttr<ConstInitAttr>())
    Linkage = llvm::GlobalValue::InternalLinkage;

  GV->setLinkage(Linkage);
  if (D->hasAttr<DLLImportAttr>())
    GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
  else if (D->hasAttr<DLLExportAttr>())
    GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
  else
    GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);

  if (Linkage == llvm::GlobalVariable::CommonLinkage) {
    // common vars aren't constant even if declared const.
    GV->setConstant(false);
    // Tentative definition of global variables may be initialized with
    // non-zero null pointers. In this case they should have weak linkage
    // since common linkage must have zero initializer and must not have
    // explicit section therefore cannot have non-zero initial value.
    if (!GV->getInitializer()->isNullValue())
      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
  }

  setNonAliasAttributes(D, GV);

  if (D->getTLSKind() && !GV->isThreadLocal()) {
    if (D->getTLSKind() == VarDecl::TLS_Dynamic)
      CXXThreadLocals.push_back(D);
    setTLSMode(GV, *D);
  }

  maybeSetTrivialComdat(*D, *GV);

  // Emit the initializer function if necessary.
  if (NeedsGlobalCtor || NeedsGlobalDtor)
    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);

  SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);

  // Emit global variable debug information.
  if (CGDebugInfo *DI = getModuleDebugInfo())
    if (getCodeGenOpts().hasReducedDebugInfo())
      DI->EmitGlobalVariable(GV, D);
}

void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
  if (CGDebugInfo *DI = getModuleDebugInfo())
    if (getCodeGenOpts().hasReducedDebugInfo()) {
      QualType ASTTy = D->getType();
      llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
      llvm::PointerType *PTy =
          llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
      llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
      DI->EmitExternalVariable(
          cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
    }
}

static bool isVarDeclStrongDefinition(const ASTContext &Context,
                                      CodeGenModule &CGM, const VarDecl *D,
                                      bool NoCommon) {
  // Don't give variables common linkage if -fno-common was specified unless it
  // was overridden by a NoCommon attribute.
  if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
    return true;

  // C11 6.9.2/2:
  //   A declaration of an identifier for an object that has file scope without
  //   an initializer, and without a storage-class specifier or with the
  //   storage-class specifier static, constitutes a tentative definition.
  if (D->getInit() || D->hasExternalStorage())
    return true;

  // A variable cannot be both common and exist in a section.
  if (D->hasAttr<SectionAttr>())
    return true;

  // A variable cannot be both common and exist in a section.
  // We don't try to determine which is the right section in the front-end.
  // If no specialized section name is applicable, it will resort to default.
  if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
      D->hasAttr<PragmaClangDataSectionAttr>() ||
      D->hasAttr<PragmaClangRelroSectionAttr>() ||
      D->hasAttr<PragmaClangRodataSectionAttr>())
    return true;

  // Thread local vars aren't considered common linkage.
  if (D->getTLSKind())
    return true;

  // Tentative definitions marked with WeakImportAttr are true definitions.
  if (D->hasAttr<WeakImportAttr>())
    return true;

  // A variable cannot be both common and exist in a comdat.
  if (shouldBeInCOMDAT(CGM, *D))
    return true;

  // Declarations with a required alignment do not have common linkage in MSVC
  // mode.
  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
    if (D->hasAttr<AlignedAttr>())
      return true;
    QualType VarType = D->getType();
    if (Context.isAlignmentRequired(VarType))
      return true;

    if (const auto *RT = VarType->getAs<RecordType>()) {
      const RecordDecl *RD = RT->getDecl();
      for (const FieldDecl *FD : RD->fields()) {
        if (FD->isBitField())
          continue;
        if (FD->hasAttr<AlignedAttr>())
          return true;
        if (Context.isAlignmentRequired(FD->getType()))
          return true;
      }
    }
  }

  // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
  // common symbols, so symbols with greater alignment requirements cannot be
  // common.
  // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
  // alignments for common symbols via the aligncomm directive, so this
  // restriction only applies to MSVC environments.
  if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
      Context.getTypeAlignIfKnown(D->getType()) >
          Context.toBits(CharUnits::fromQuantity(32)))
    return true;

  return false;
}

llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
    const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
  if (Linkage == GVA_Internal)
    return llvm::Function::InternalLinkage;

  if (D->hasAttr<WeakAttr>()) {
    if (IsConstantVariable)
      return llvm::GlobalVariable::WeakODRLinkage;
    else
      return llvm::GlobalVariable::WeakAnyLinkage;
  }

  if (const auto *FD = D->getAsFunction())
    if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
      return llvm::GlobalVariable::LinkOnceAnyLinkage;

  // We are guaranteed to have a strong definition somewhere else,
  // so we can use available_externally linkage.
  if (Linkage == GVA_AvailableExternally)
    return llvm::GlobalValue::AvailableExternallyLinkage;

  // Note that Apple's kernel linker doesn't support symbol
  // coalescing, so we need to avoid linkonce and weak linkages there.
  // Normally, this means we just map to internal, but for explicit
  // instantiations we'll map to external.

  // In C++, the compiler has to emit a definition in every translation unit
  // that references the function.  We should use linkonce_odr because
  // a) if all references in this translation unit are optimized away, we
  // don't need to codegen it.  b) if the function persists, it needs to be
  // merged with other definitions. c) C++ has the ODR, so we know the
  // definition is dependable.
  if (Linkage == GVA_DiscardableODR)
    return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
                                            : llvm::Function::InternalLinkage;

  // An explicit instantiation of a template has weak linkage, since
  // explicit instantiations can occur in multiple translation units
  // and must all be equivalent. However, we are not allowed to
  // throw away these explicit instantiations.
  //
  // We don't currently support CUDA device code spread out across multiple TUs,
  // so say that CUDA templates are either external (for kernels) or internal.
  // This lets llvm perform aggressive inter-procedural optimizations.
  if (Linkage == GVA_StrongODR) {
    if (Context.getLangOpts().AppleKext)
      return llvm::Function::ExternalLinkage;
    if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
      return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
                                          : llvm::Function::InternalLinkage;
    return llvm::Function::WeakODRLinkage;
  }

  // C++ doesn't have tentative definitions and thus cannot have common
  // linkage.
  if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
      !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
                                 CodeGenOpts.NoCommon))
    return llvm::GlobalVariable::CommonLinkage;

  // selectany symbols are externally visible, so use weak instead of
  // linkonce.  MSVC optimizes away references to const selectany globals, so
  // all definitions should be the same and ODR linkage should be used.
  // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
  if (D->hasAttr<SelectAnyAttr>())
    return llvm::GlobalVariable::WeakODRLinkage;

  // Otherwise, we have strong external linkage.
  assert(Linkage == GVA_StrongExternal);
  return llvm::GlobalVariable::ExternalLinkage;
}

llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
    const VarDecl *VD, bool IsConstant) {
  GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
  return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
}

/// Replace the uses of a function that was declared with a non-proto type.
/// We want to silently drop extra arguments from call sites
static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
                                          llvm::Function *newFn) {
  // Fast path.
  if (old->use_empty()) return;

  llvm::Type *newRetTy = newFn->getReturnType();
  SmallVector<llvm::Value*, 4> newArgs;
  SmallVector<llvm::OperandBundleDef, 1> newBundles;

  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
         ui != ue; ) {
    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
    llvm::User *user = use->getUser();

    // Recognize and replace uses of bitcasts.  Most calls to
    // unprototyped functions will use bitcasts.
    if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
        replaceUsesOfNonProtoConstant(bitcast, newFn);
      continue;
    }

    // Recognize calls to the function.
    llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
    if (!callSite) continue;
    if (!callSite->isCallee(&*use))
      continue;

    // If the return types don't match exactly, then we can't
    // transform this call unless it's dead.
    if (callSite->getType() != newRetTy && !callSite->use_empty())
      continue;

    // Get the call site's attribute list.
    SmallVector<llvm::AttributeSet, 8> newArgAttrs;
    llvm::AttributeList oldAttrs = callSite->getAttributes();

    // If the function was passed too few arguments, don't transform.
    unsigned newNumArgs = newFn->arg_size();
    if (callSite->arg_size() < newNumArgs)
      continue;

    // If extra arguments were passed, we silently drop them.
    // If any of the types mismatch, we don't transform.
    unsigned argNo = 0;
    bool dontTransform = false;
    for (llvm::Argument &A : newFn->args()) {
      if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
        dontTransform = true;
        break;
      }

      // Add any parameter attributes.
      newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
      argNo++;
    }
    if (dontTransform)
      continue;

    // Okay, we can transform this.  Create the new call instruction and copy
    // over the required information.
    newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);

    // Copy over any operand bundles.
    callSite->getOperandBundlesAsDefs(newBundles);

    llvm::CallBase *newCall;
    if (dyn_cast<llvm::CallInst>(callSite)) {
      newCall =
          llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
    } else {
      auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
      newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
                                         oldInvoke->getUnwindDest(), newArgs,
                                         newBundles, "", callSite);
    }
    newArgs.clear(); // for the next iteration

    if (!newCall->getType()->isVoidTy())
      newCall->takeName(callSite);
    newCall->setAttributes(llvm::AttributeList::get(
        newFn->getContext(), oldAttrs.getFnAttributes(),
        oldAttrs.getRetAttributes(), newArgAttrs));
    newCall->setCallingConv(callSite->getCallingConv());

    // Finally, remove the old call, replacing any uses with the new one.
    if (!callSite->use_empty())
      callSite->replaceAllUsesWith(newCall);

    // Copy debug location attached to CI.
    if (callSite->getDebugLoc())
      newCall->setDebugLoc(callSite->getDebugLoc());

    callSite->eraseFromParent();
  }
}

/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
/// implement a function with no prototype, e.g. "int foo() {}".  If there are
/// existing call uses of the old function in the module, this adjusts them to
/// call the new function directly.
///
/// This is not just a cleanup: the always_inline pass requires direct calls to
/// functions to be able to inline them.  If there is a bitcast in the way, it
/// won't inline them.  Instcombine normally deletes these calls, but it isn't
/// run at -O0.
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
                                                      llvm::Function *NewFn) {
  // If we're redefining a global as a function, don't transform it.
  if (!isa<llvm::Function>(Old)) return;

  replaceUsesOfNonProtoConstant(Old, NewFn);
}

void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
  auto DK = VD->isThisDeclarationADefinition();
  if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
    return;

  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
  // If we have a definition, this might be a deferred decl. If the
  // instantiation is explicit, make sure we emit it at the end.
  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
    GetAddrOfGlobalVar(VD);

  EmitTopLevelDecl(VD);
}

void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
                                                 llvm::GlobalValue *GV) {
  const auto *D = cast<FunctionDecl>(GD.getDecl());

  // Compute the function info and LLVM type.
  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);

  // Get or create the prototype for the function.
  if (!GV || (GV->getValueType() != Ty))
    GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
                                                   /*DontDefer=*/true,
                                                   ForDefinition));

  // Already emitted.
  if (!GV->isDeclaration())
    return;

  // We need to set linkage and visibility on the function before
  // generating code for it because various parts of IR generation
  // want to propagate this information down (e.g. to local static
  // declarations).
  auto *Fn = cast<llvm::Function>(GV);
  setFunctionLinkage(GD, Fn);

  // FIXME: this is redundant with part of setFunctionDefinitionAttributes
  setGVProperties(Fn, GD);

  MaybeHandleStaticInExternC(D, Fn);


  maybeSetTrivialComdat(*D, *Fn);

  CodeGenFunction(*this).GenerateCode(GD, Fn, FI);

  setNonAliasAttributes(GD, Fn);
  SetLLVMFunctionAttributesForDefinition(D, Fn);

  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
    AddGlobalCtor(Fn, CA->getPriority());
  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
    AddGlobalDtor(Fn, DA->getPriority());
  if (D->hasAttr<AnnotateAttr>())
    AddGlobalAnnotations(D, Fn);
}

void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
  const auto *D = cast<ValueDecl>(GD.getDecl());
  const AliasAttr *AA = D->getAttr<AliasAttr>();
  assert(AA && "Not an alias?");

  StringRef MangledName = getMangledName(GD);

  if (AA->getAliasee() == MangledName) {
    Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
    return;
  }

  // If there is a definition in the module, then it wins over the alias.
  // This is dubious, but allow it to be safe.  Just ignore the alias.
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
  if (Entry && !Entry->isDeclaration())
    return;

  Aliases.push_back(GD);

  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());

  // Create a reference to the named value.  This ensures that it is emitted
  // if a deferred decl.
  llvm::Constant *Aliasee;
  llvm::GlobalValue::LinkageTypes LT;
  if (isa<llvm::FunctionType>(DeclTy)) {
    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
                                      /*ForVTable=*/false);
    LT = getFunctionLinkage(GD);
  } else {
    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
                                    llvm::PointerType::getUnqual(DeclTy),
                                    /*D=*/nullptr);
    LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
                                     D->getType().isConstQualified());
  }

  // Create the new alias itself, but don't set a name yet.
  unsigned AS = Aliasee->getType()->getPointerAddressSpace();
  auto *GA =
      llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());

  if (Entry) {
    if (GA->getAliasee() == Entry) {
      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
      return;
    }

    assert(Entry->isDeclaration());

    // If there is a declaration in the module, then we had an extern followed
    // by the alias, as in:
    //   extern int test6();
    //   ...
    //   int test6() __attribute__((alias("test7")));
    //
    // Remove it and replace uses of it with the alias.
    GA->takeName(Entry);

    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
                                                          Entry->getType()));
    Entry->eraseFromParent();
  } else {
    GA->setName(MangledName);
  }

  // Set attributes which are particular to an alias; this is a
  // specialization of the attributes which may be set on a global
  // variable/function.
  if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
      D->isWeakImported()) {
    GA->setLinkage(llvm::Function::WeakAnyLinkage);
  }

  if (const auto *VD = dyn_cast<VarDecl>(D))
    if (VD->getTLSKind())
      setTLSMode(GA, *VD);

  SetCommonAttributes(GD, GA);
}

void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
  const auto *D = cast<ValueDecl>(GD.getDecl());
  const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
  assert(IFA && "Not an ifunc?");

  StringRef MangledName = getMangledName(GD);

  if (IFA->getResolver() == MangledName) {
    Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
    return;
  }

  // Report an error if some definition overrides ifunc.
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
  if (Entry && !Entry->isDeclaration()) {
    GlobalDecl OtherGD;
    if (lookupRepresentativeDecl(MangledName, OtherGD) &&
        DiagnosedConflictingDefinitions.insert(GD).second) {
      Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
          << MangledName;
      Diags.Report(OtherGD.getDecl()->getLocation(),
                   diag::note_previous_definition);
    }
    return;
  }

  Aliases.push_back(GD);

  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
  llvm::Constant *Resolver =
      GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
                              /*ForVTable=*/false);
  llvm::GlobalIFunc *GIF =
      llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
                                "", Resolver, &getModule());
  if (Entry) {
    if (GIF->getResolver() == Entry) {
      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
      return;
    }
    assert(Entry->isDeclaration());

    // If there is a declaration in the module, then we had an extern followed
    // by the ifunc, as in:
    //   extern int test();
    //   ...
    //   int test() __attribute__((ifunc("resolver")));
    //
    // Remove it and replace uses of it with the ifunc.
    GIF->takeName(Entry);

    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
                                                          Entry->getType()));
    Entry->eraseFromParent();
  } else
    GIF->setName(MangledName);

  SetCommonAttributes(GD, GIF);
}

llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
                                            ArrayRef<llvm::Type*> Tys) {
  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
                                         Tys);
}

static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
                         const StringLiteral *Literal, bool TargetIsLSB,
                         bool &IsUTF16, unsigned &StringLength) {
  StringRef String = Literal->getString();
  unsigned NumBytes = String.size();

  // Check for simple case.
  if (!Literal->containsNonAsciiOrNull()) {
    StringLength = NumBytes;
    return *Map.insert(std::make_pair(String, nullptr)).first;
  }

  // Otherwise, convert the UTF8 literals into a string of shorts.
  IsUTF16 = true;

  SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
  const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
  llvm::UTF16 *ToPtr = &ToBuf[0];

  (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
                                 ToPtr + NumBytes, llvm::strictConversion);

  // ConvertUTF8toUTF16 returns the length in ToPtr.
  StringLength = ToPtr - &ToBuf[0];

  // Add an explicit null.
  *ToPtr = 0;
  return *Map.insert(std::make_pair(
                         StringRef(reinterpret_cast<const char *>(ToBuf.data()),
                                   (StringLength + 1) * 2),
                         nullptr)).first;
}

ConstantAddress
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
  unsigned StringLength = 0;
  bool isUTF16 = false;
  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
      GetConstantCFStringEntry(CFConstantStringMap, Literal,
                               getDataLayout().isLittleEndian(), isUTF16,
                               StringLength);

  if (auto *C = Entry.second)
    return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));

  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
  llvm::Constant *Zeros[] = { Zero, Zero };

  const ASTContext &Context = getContext();
  const llvm::Triple &Triple = getTriple();

  const auto CFRuntime = getLangOpts().CFRuntime;
  const bool IsSwiftABI =
      static_cast<unsigned>(CFRuntime) >=
      static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
  const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;

  // If we don't already have it, get __CFConstantStringClassReference.
  if (!CFConstantStringClassRef) {
    const char *CFConstantStringClassName = "__CFConstantStringClassReference";
    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
    Ty = llvm::ArrayType::get(Ty, 0);

    switch (CFRuntime) {
    default: break;
    case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
    case LangOptions::CoreFoundationABI::Swift5_0:
      CFConstantStringClassName =
          Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
                              : "$s10Foundation19_NSCFConstantStringCN";
      Ty = IntPtrTy;
      break;
    case LangOptions::CoreFoundationABI::Swift4_2:
      CFConstantStringClassName =
          Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
                              : "$S10Foundation19_NSCFConstantStringCN";
      Ty = IntPtrTy;
      break;
    case LangOptions::CoreFoundationABI::Swift4_1:
      CFConstantStringClassName =
          Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
                              : "__T010Foundation19_NSCFConstantStringCN";
      Ty = IntPtrTy;
      break;
    }

    llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);

    if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
      llvm::GlobalValue *GV = nullptr;

      if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
        IdentifierInfo &II = Context.Idents.get(GV->getName());
        TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
        DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);

        const VarDecl *VD = nullptr;
        for (const auto &Result : DC->lookup(&II))
          if ((VD = dyn_cast<VarDecl>(Result)))
            break;

        if (Triple.isOSBinFormatELF()) {
          if (!VD)
            GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
        } else {
          GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
          if (!VD || !VD->hasAttr<DLLExportAttr>())
            GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
          else
            GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
        }

        setDSOLocal(GV);
      }
    }

    // Decay array -> ptr
    CFConstantStringClassRef =
        IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
                   : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
  }

  QualType CFTy = Context.getCFConstantStringType();

  auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));

  ConstantInitBuilder Builder(*this);
  auto Fields = Builder.beginStruct(STy);

  // Class pointer.
  Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));

  // Flags.
  if (IsSwiftABI) {
    Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
    Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
  } else {
    Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
  }

  // String pointer.
  llvm::Constant *C = nullptr;
  if (isUTF16) {
    auto Arr = llvm::makeArrayRef(
        reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
        Entry.first().size() / 2);
    C = llvm::ConstantDataArray::get(VMContext, Arr);
  } else {
    C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
  }

  // Note: -fwritable-strings doesn't make the backing store strings of
  // CFStrings writable. (See <rdar://problem/10657500>)
  auto *GV =
      new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
                               llvm::GlobalValue::PrivateLinkage, C, ".str");
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  // Don't enforce the target's minimum global alignment, since the only use
  // of the string is via this class initializer.
  CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
                            : Context.getTypeAlignInChars(Context.CharTy);
  GV->setAlignment(Align.getAsAlign());

  // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
  // Without it LLVM can merge the string with a non unnamed_addr one during
  // LTO.  Doing that changes the section it ends in, which surprises ld64.
  if (Triple.isOSBinFormatMachO())
    GV->setSection(isUTF16 ? "__TEXT,__ustring"
                           : "__TEXT,__cstring,cstring_literals");
  // Make sure the literal ends up in .rodata to allow for safe ICF and for
  // the static linker to adjust permissions to read-only later on.
  else if (Triple.isOSBinFormatELF())
    GV->setSection(".rodata");

  // String.
  llvm::Constant *Str =
      llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);

  if (isUTF16)
    // Cast the UTF16 string to the correct type.
    Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
  Fields.add(Str);

  // String length.
  llvm::IntegerType *LengthTy =
      llvm::IntegerType::get(getModule().getContext(),
                             Context.getTargetInfo().getLongWidth());
  if (IsSwiftABI) {
    if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
        CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
      LengthTy = Int32Ty;
    else
      LengthTy = IntPtrTy;
  }
  Fields.addInt(LengthTy, StringLength);

  // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
  // properly aligned on 32-bit platforms.
  CharUnits Alignment =
      IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();

  // The struct.
  GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
                                    /*isConstant=*/false,
                                    llvm::GlobalVariable::PrivateLinkage);
  GV->addAttribute("objc_arc_inert");
  switch (Triple.getObjectFormat()) {
  case llvm::Triple::UnknownObjectFormat:
    llvm_unreachable("unknown file format");
  case llvm::Triple::GOFF:
    llvm_unreachable("GOFF is not yet implemented");
  case llvm::Triple::XCOFF:
    llvm_unreachable("XCOFF is not yet implemented");
  case llvm::Triple::COFF:
  case llvm::Triple::ELF:
  case llvm::Triple::Wasm:
    GV->setSection("cfstring");
    break;
  case llvm::Triple::MachO:
    GV->setSection("__DATA,__cfstring");
    break;
  }
  Entry.second = GV;

  return ConstantAddress(GV, Alignment);
}

bool CodeGenModule::getExpressionLocationsEnabled() const {
  return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
}

QualType CodeGenModule::getObjCFastEnumerationStateType() {
  if (ObjCFastEnumerationStateType.isNull()) {
    RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
    D->startDefinition();

    QualType FieldTypes[] = {
      Context.UnsignedLongTy,
      Context.getPointerType(Context.getObjCIdType()),
      Context.getPointerType(Context.UnsignedLongTy),
      Context.getConstantArrayType(Context.UnsignedLongTy,
                           llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
    };

    for (size_t i = 0; i < 4; ++i) {
      FieldDecl *Field = FieldDecl::Create(Context,
                                           D,
                                           SourceLocation(),
                                           SourceLocation(), nullptr,
                                           FieldTypes[i], /*TInfo=*/nullptr,
                                           /*BitWidth=*/nullptr,
                                           /*Mutable=*/false,
                                           ICIS_NoInit);
      Field->setAccess(AS_public);
      D->addDecl(Field);
    }

    D->completeDefinition();
    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
  }

  return ObjCFastEnumerationStateType;
}

llvm::Constant *
CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
  assert(!E->getType()->isPointerType() && "Strings are always arrays");

  // Don't emit it as the address of the string, emit the string data itself
  // as an inline array.
  if (E->getCharByteWidth() == 1) {
    SmallString<64> Str(E->getString());

    // Resize the string to the right size, which is indicated by its type.
    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
    Str.resize(CAT->getSize().getZExtValue());
    return llvm::ConstantDataArray::getString(VMContext, Str, false);
  }

  auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
  llvm::Type *ElemTy = AType->getElementType();
  unsigned NumElements = AType->getNumElements();

  // Wide strings have either 2-byte or 4-byte elements.
  if (ElemTy->getPrimitiveSizeInBits() == 16) {
    SmallVector<uint16_t, 32> Elements;
    Elements.reserve(NumElements);

    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
      Elements.push_back(E->getCodeUnit(i));
    Elements.resize(NumElements);
    return llvm::ConstantDataArray::get(VMContext, Elements);
  }

  assert(ElemTy->getPrimitiveSizeInBits() == 32);
  SmallVector<uint32_t, 32> Elements;
  Elements.reserve(NumElements);

  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
    Elements.push_back(E->getCodeUnit(i));
  Elements.resize(NumElements);
  return llvm::ConstantDataArray::get(VMContext, Elements);
}

static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
                      CodeGenModule &CGM, StringRef GlobalName,
                      CharUnits Alignment) {
  unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
      CGM.getStringLiteralAddressSpace());

  llvm::Module &M = CGM.getModule();
  // Create a global variable for this string
  auto *GV = new llvm::GlobalVariable(
      M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
      nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
  GV->setAlignment(Alignment.getAsAlign());
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  if (GV->isWeakForLinker()) {
    assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
    GV->setComdat(M.getOrInsertComdat(GV->getName()));
  }
  CGM.setDSOLocal(GV);

  return GV;
}

/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
/// constant array for the given string literal.
ConstantAddress
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
                                                  StringRef Name) {
  CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());

  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
  llvm::GlobalVariable **Entry = nullptr;
  if (!LangOpts.WritableStrings) {
    Entry = &ConstantStringMap[C];
    if (auto GV = *Entry) {
      if (Alignment.getQuantity() > GV->getAlignment())
        GV->setAlignment(Alignment.getAsAlign());
      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
                             Alignment);
    }
  }

  SmallString<256> MangledNameBuffer;
  StringRef GlobalVariableName;
  llvm::GlobalValue::LinkageTypes LT;

  // Mangle the string literal if that's how the ABI merges duplicate strings.
  // Don't do it if they are writable, since we don't want writes in one TU to
  // affect strings in another.
  if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
      !LangOpts.WritableStrings) {
    llvm::raw_svector_ostream Out(MangledNameBuffer);
    getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
    LT = llvm::GlobalValue::LinkOnceODRLinkage;
    GlobalVariableName = MangledNameBuffer;
  } else {
    LT = llvm::GlobalValue::PrivateLinkage;
    GlobalVariableName = Name;
  }

  auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
  if (Entry)
    *Entry = GV;

  SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
                                  QualType());

  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
                         Alignment);
}

/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
/// array for the given ObjCEncodeExpr node.
ConstantAddress
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
  std::string Str;
  getContext().getObjCEncodingForType(E->getEncodedType(), Str);

  return GetAddrOfConstantCString(Str);
}

/// GetAddrOfConstantCString - Returns a pointer to a character array containing
/// the literal and a terminating '\0' character.
/// The result has pointer to array type.
ConstantAddress CodeGenModule::GetAddrOfConstantCString(
    const std::string &Str, const char *GlobalName) {
  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
  CharUnits Alignment =
    getContext().getAlignOfGlobalVarInChars(getContext().CharTy);

  llvm::Constant *C =
      llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);

  // Don't share any string literals if strings aren't constant.
  llvm::GlobalVariable **Entry = nullptr;
  if (!LangOpts.WritableStrings) {
    Entry = &ConstantStringMap[C];
    if (auto GV = *Entry) {
      if (Alignment.getQuantity() > GV->getAlignment())
        GV->setAlignment(Alignment.getAsAlign());
      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
                             Alignment);
    }
  }

  // Get the default prefix if a name wasn't specified.
  if (!GlobalName)
    GlobalName = ".str";
  // Create a global variable for this.
  auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
                                  GlobalName, Alignment);
  if (Entry)
    *Entry = GV;

  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
                         Alignment);
}

ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
    const MaterializeTemporaryExpr *E, const Expr *Init) {
  assert((E->getStorageDuration() == SD_Static ||
          E->getStorageDuration() == SD_Thread) && "not a global temporary");
  const auto *VD = cast<VarDecl>(E->getExtendingDecl());

  // If we're not materializing a subobject of the temporary, keep the
  // cv-qualifiers from the type of the MaterializeTemporaryExpr.
  QualType MaterializedType = Init->getType();
  if (Init == E->getSubExpr())
    MaterializedType = E->getType();

  CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);

  if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
    return ConstantAddress(Slot, Align);

  // FIXME: If an externally-visible declaration extends multiple temporaries,
  // we need to give each temporary the same name in every translation unit (and
  // we also need to make the temporaries externally-visible).
  SmallString<256> Name;
  llvm::raw_svector_ostream Out(Name);
  getCXXABI().getMangleContext().mangleReferenceTemporary(
      VD, E->getManglingNumber(), Out);

  APValue *Value = nullptr;
  if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
    // If the initializer of the extending declaration is a constant
    // initializer, we should have a cached constant initializer for this
    // temporary. Note that this might have a different value from the value
    // computed by evaluating the initializer if the surrounding constant
    // expression modifies the temporary.
    Value = E->getOrCreateValue(false);
  }

  // Try evaluating it now, it might have a constant initializer.
  Expr::EvalResult EvalResult;
  if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
      !EvalResult.hasSideEffects())
    Value = &EvalResult.Val;

  LangAS AddrSpace =
      VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();

  Optional<ConstantEmitter> emitter;
  llvm::Constant *InitialValue = nullptr;
  bool Constant = false;
  llvm::Type *Type;
  if (Value) {
    // The temporary has a constant initializer, use it.
    emitter.emplace(*this);
    InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
                                               MaterializedType);
    Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
    Type = InitialValue->getType();
  } else {
    // No initializer, the initialization will be provided when we
    // initialize the declaration which performed lifetime extension.
    Type = getTypes().ConvertTypeForMem(MaterializedType);
  }

  // Create a global variable for this lifetime-extended temporary.
  llvm::GlobalValue::LinkageTypes Linkage =
      getLLVMLinkageVarDefinition(VD, Constant);
  if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
    const VarDecl *InitVD;
    if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
        isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
      // Temporaries defined inside a class get linkonce_odr linkage because the
      // class can be defined in multiple translation units.
      Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
    } else {
      // There is no need for this temporary to have external linkage if the
      // VarDecl has external linkage.
      Linkage = llvm::GlobalVariable::InternalLinkage;
    }
  }
  auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
  auto *GV = new llvm::GlobalVariable(
      getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
      /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
  if (emitter) emitter->finalize(GV);
  setGVProperties(GV, VD);
  GV->setAlignment(Align.getAsAlign());
  if (supportsCOMDAT() && GV->isWeakForLinker())
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
  if (VD->getTLSKind())
    setTLSMode(GV, *VD);
  llvm::Constant *CV = GV;
  if (AddrSpace != LangAS::Default)
    CV = getTargetCodeGenInfo().performAddrSpaceCast(
        *this, GV, AddrSpace, LangAS::Default,
        Type->getPointerTo(
            getContext().getTargetAddressSpace(LangAS::Default)));
  MaterializedGlobalTemporaryMap[E] = CV;
  return ConstantAddress(CV, Align);
}

/// EmitObjCPropertyImplementations - Emit information for synthesized
/// properties for an implementation.
void CodeGenModule::EmitObjCPropertyImplementations(const
                                                    ObjCImplementationDecl *D) {
  for (const auto *PID : D->property_impls()) {
    // Dynamic is just for type-checking.
    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
      ObjCPropertyDecl *PD = PID->getPropertyDecl();

      // Determine which methods need to be implemented, some may have
      // been overridden. Note that ::isPropertyAccessor is not the method
      // we want, that just indicates if the decl came from a
      // property. What we want to know is if the method is defined in
      // this implementation.
      auto *Getter = PID->getGetterMethodDecl();
      if (!Getter || Getter->isSynthesizedAccessorStub())
        CodeGenFunction(*this).GenerateObjCGetter(
            const_cast<ObjCImplementationDecl *>(D), PID);
      auto *Setter = PID->getSetterMethodDecl();
      if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
        CodeGenFunction(*this).GenerateObjCSetter(
                                 const_cast<ObjCImplementationDecl *>(D), PID);
    }
  }
}

static bool needsDestructMethod(ObjCImplementationDecl *impl) {
  const ObjCInterfaceDecl *iface = impl->getClassInterface();
  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
       ivar; ivar = ivar->getNextIvar())
    if (ivar->getType().isDestructedType())
      return true;

  return false;
}

static bool AllTrivialInitializers(CodeGenModule &CGM,
                                   ObjCImplementationDecl *D) {
  CodeGenFunction CGF(CGM);
  for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
       E = D->init_end(); B != E; ++B) {
    CXXCtorInitializer *CtorInitExp = *B;
    Expr *Init = CtorInitExp->getInit();
    if (!CGF.isTrivialInitializer(Init))
      return false;
  }
  return true;
}

/// EmitObjCIvarInitializations - Emit information for ivar initialization
/// for an implementation.
void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
  // We might need a .cxx_destruct even if we don't have any ivar initializers.
  if (needsDestructMethod(D)) {
    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
    ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
        getContext(), D->getLocation(), D->getLocation(), cxxSelector,
        getContext().VoidTy, nullptr, D,
        /*isInstance=*/true, /*isVariadic=*/false,
        /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
        /*isImplicitlyDeclared=*/true,
        /*isDefined=*/false, ObjCMethodDecl::Required);
    D->addInstanceMethod(DTORMethod);
    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
    D->setHasDestructors(true);
  }

  // If the implementation doesn't have any ivar initializers, we don't need
  // a .cxx_construct.
  if (D->getNumIvarInitializers() == 0 ||
      AllTrivialInitializers(*this, D))
    return;

  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
  // The constructor returns 'self'.
  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
      getContext(), D->getLocation(), D->getLocation(), cxxSelector,
      getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
      /*isVariadic=*/false,
      /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
      /*isImplicitlyDeclared=*/true,
      /*isDefined=*/false, ObjCMethodDecl::Required);
  D->addInstanceMethod(CTORMethod);
  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
  D->setHasNonZeroConstructors(true);
}

// EmitLinkageSpec - Emit all declarations in a linkage spec.
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
    ErrorUnsupported(LSD, "linkage spec");
    return;
  }

  EmitDeclContext(LSD);
}

void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
  for (auto *I : DC->decls()) {
    // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
    // are themselves considered "top-level", so EmitTopLevelDecl on an
    // ObjCImplDecl does not recursively visit them. We need to do that in
    // case they're nested inside another construct (LinkageSpecDecl /
    // ExportDecl) that does stop them from being considered "top-level".
    if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
      for (auto *M : OID->methods())
        EmitTopLevelDecl(M);
    }

    EmitTopLevelDecl(I);
  }
}

/// EmitTopLevelDecl - Emit code for a single top level declaration.
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
  // Ignore dependent declarations.
  if (D->isTemplated())
    return;

  // Consteval function shouldn't be emitted.
  if (auto *FD = dyn_cast<FunctionDecl>(D))
    if (FD->isConsteval())
      return;

  switch (D->getKind()) {
  case Decl::CXXConversion:
  case Decl::CXXMethod:
  case Decl::Function:
    EmitGlobal(cast<FunctionDecl>(D));
    // Always provide some coverage mapping
    // even for the functions that aren't emitted.
    AddDeferredUnusedCoverageMapping(D);
    break;

  case Decl::CXXDeductionGuide:
    // Function-like, but does not result in code emission.
    break;

  case Decl::Var:
  case Decl::Decomposition:
  case Decl::VarTemplateSpecialization:
    EmitGlobal(cast<VarDecl>(D));
    if (auto *DD = dyn_cast<DecompositionDecl>(D))
      for (auto *B : DD->bindings())
        if (auto *HD = B->getHoldingVar())
          EmitGlobal(HD);
    break;

  // Indirect fields from global anonymous structs and unions can be
  // ignored; only the actual variable requires IR gen support.
  case Decl::IndirectField:
    break;

  // C++ Decls
  case Decl::Namespace:
    EmitDeclContext(cast<NamespaceDecl>(D));
    break;
  case Decl::ClassTemplateSpecialization: {
    const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
    if (CGDebugInfo *DI = getModuleDebugInfo())
      if (Spec->getSpecializationKind() ==
              TSK_ExplicitInstantiationDefinition &&
          Spec->hasDefinition())
        DI->completeTemplateDefinition(*Spec);
  } LLVM_FALLTHROUGH;
  case Decl::CXXRecord: {
    CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
    if (CGDebugInfo *DI = getModuleDebugInfo()) {
      if (CRD->hasDefinition())
        DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
      if (auto *ES = D->getASTContext().getExternalSource())
        if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
          DI->completeUnusedClass(*CRD);
    }
    // Emit any static data members, they may be definitions.
    for (auto *I : CRD->decls())
      if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
        EmitTopLevelDecl(I);
    break;
  }
    // No code generation needed.
  case Decl::UsingShadow:
  case Decl::ClassTemplate:
  case Decl::VarTemplate:
  case Decl::Concept:
  case Decl::VarTemplatePartialSpecialization:
  case Decl::FunctionTemplate:
  case Decl::TypeAliasTemplate:
  case Decl::Block:
  case Decl::Empty:
  case Decl::Binding:
    break;
  case Decl::Using:          // using X; [C++]
    if (CGDebugInfo *DI = getModuleDebugInfo())
        DI->EmitUsingDecl(cast<UsingDecl>(*D));
    break;
  case Decl::NamespaceAlias:
    if (CGDebugInfo *DI = getModuleDebugInfo())
        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
    break;
  case Decl::UsingDirective: // using namespace X; [C++]
    if (CGDebugInfo *DI = getModuleDebugInfo())
      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
    break;
  case Decl::CXXConstructor:
    getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
    break;
  case Decl::CXXDestructor:
    getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
    break;

  case Decl::StaticAssert:
    // Nothing to do.
    break;

  // Objective-C Decls

  // Forward declarations, no (immediate) code generation.
  case Decl::ObjCInterface:
  case Decl::ObjCCategory:
    break;

  case Decl::ObjCProtocol: {
    auto *Proto = cast<ObjCProtocolDecl>(D);
    if (Proto->isThisDeclarationADefinition())
      ObjCRuntime->GenerateProtocol(Proto);
    break;
  }

  case Decl::ObjCCategoryImpl:
    // Categories have properties but don't support synthesize so we
    // can ignore them here.
    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
    break;

  case Decl::ObjCImplementation: {
    auto *OMD = cast<ObjCImplementationDecl>(D);
    EmitObjCPropertyImplementations(OMD);
    EmitObjCIvarInitializations(OMD);
    ObjCRuntime->GenerateClass(OMD);
    // Emit global variable debug information.
    if (CGDebugInfo *DI = getModuleDebugInfo())
      if (getCodeGenOpts().hasReducedDebugInfo())
        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
            OMD->getClassInterface()), OMD->getLocation());
    break;
  }
  case Decl::ObjCMethod: {
    auto *OMD = cast<ObjCMethodDecl>(D);
    // If this is not a prototype, emit the body.
    if (OMD->getBody())
      CodeGenFunction(*this).GenerateObjCMethod(OMD);
    break;
  }
  case Decl::ObjCCompatibleAlias:
    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
    break;

  case Decl::PragmaComment: {
    const auto *PCD = cast<PragmaCommentDecl>(D);
    switch (PCD->getCommentKind()) {
    case PCK_Unknown:
      llvm_unreachable("unexpected pragma comment kind");
    case PCK_Linker:
      AppendLinkerOptions(PCD->getArg());
      break;
    case PCK_Lib:
        AddDependentLib(PCD->getArg());
      break;
    case PCK_Compiler:
    case PCK_ExeStr:
    case PCK_User:
      break; // We ignore all of these.
    }
    break;
  }

  case Decl::PragmaDetectMismatch: {
    const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
    AddDetectMismatch(PDMD->getName(), PDMD->getValue());
    break;
  }

  case Decl::LinkageSpec:
    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
    break;

  case Decl::FileScopeAsm: {
    // File-scope asm is ignored during device-side CUDA compilation.
    if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
      break;
    // File-scope asm is ignored during device-side OpenMP compilation.
    if (LangOpts.OpenMPIsDevice)
      break;
    auto *AD = cast<FileScopeAsmDecl>(D);
    getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
    break;
  }

  case Decl::Import: {
    auto *Import = cast<ImportDecl>(D);

    // If we've already imported this module, we're done.
    if (!ImportedModules.insert(Import->getImportedModule()))
      break;

    // Emit debug information for direct imports.
    if (!Import->getImportedOwningModule()) {
      if (CGDebugInfo *DI = getModuleDebugInfo())
        DI->EmitImportDecl(*Import);
    }

    // Find all of the submodules and emit the module initializers.
    llvm::SmallPtrSet<clang::Module *, 16> Visited;
    SmallVector<clang::Module *, 16> Stack;
    Visited.insert(Import->getImportedModule());
    Stack.push_back(Import->getImportedModule());

    while (!Stack.empty()) {
      clang::Module *Mod = Stack.pop_back_val();
      if (!EmittedModuleInitializers.insert(Mod).second)
        continue;

      for (auto *D : Context.getModuleInitializers(Mod))
        EmitTopLevelDecl(D);

      // Visit the submodules of this module.
      for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
                                             SubEnd = Mod->submodule_end();
           Sub != SubEnd; ++Sub) {
        // Skip explicit children; they need to be explicitly imported to emit
        // the initializers.
        if ((*Sub)->IsExplicit)
          continue;

        if (Visited.insert(*Sub).second)
          Stack.push_back(*Sub);
      }
    }
    break;
  }

  case Decl::Export:
    EmitDeclContext(cast<ExportDecl>(D));
    break;

  case Decl::OMPThreadPrivate:
    EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
    break;

  case Decl::OMPAllocate:
    break;

  case Decl::OMPDeclareReduction:
    EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
    break;

  case Decl::OMPDeclareMapper:
    EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
    break;

  case Decl::OMPRequires:
    EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
    break;

  case Decl::Typedef:
  case Decl::TypeAlias: // using foo = bar; [C++11]
    if (CGDebugInfo *DI = getModuleDebugInfo())
      DI->EmitAndRetainType(
          getContext().getTypedefType(cast<TypedefNameDecl>(D)));
    break;

  case Decl::Record:
    if (CGDebugInfo *DI = getModuleDebugInfo())
      if (cast<RecordDecl>(D)->getDefinition())
        DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
    break;

  case Decl::Enum:
    if (CGDebugInfo *DI = getModuleDebugInfo())
      if (cast<EnumDecl>(D)->getDefinition())
        DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
    break;

  default:
    // Make sure we handled everything we should, every other kind is a
    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
    // function. Need to recode Decl::Kind to do that easily.
    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
    break;
  }
}

void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
  // Do we need to generate coverage mapping?
  if (!CodeGenOpts.CoverageMapping)
    return;
  switch (D->getKind()) {
  case Decl::CXXConversion:
  case Decl::CXXMethod:
  case Decl::Function:
  case Decl::ObjCMethod:
  case Decl::CXXConstructor:
  case Decl::CXXDestructor: {
    if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
      break;
    SourceManager &SM = getContext().getSourceManager();
    if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
      break;
    auto I = DeferredEmptyCoverageMappingDecls.find(D);
    if (I == DeferredEmptyCoverageMappingDecls.end())
      DeferredEmptyCoverageMappingDecls[D] = true;
    break;
  }
  default:
    break;
  };
}

void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
  // Do we need to generate coverage mapping?
  if (!CodeGenOpts.CoverageMapping)
    return;
  if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
    if (Fn->isTemplateInstantiation())
      ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
  }
  auto I = DeferredEmptyCoverageMappingDecls.find(D);
  if (I == DeferredEmptyCoverageMappingDecls.end())
    DeferredEmptyCoverageMappingDecls[D] = false;
  else
    I->second = false;
}

void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
  // We call takeVector() here to avoid use-after-free.
  // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
  // we deserialize function bodies to emit coverage info for them, and that
  // deserializes more declarations. How should we handle that case?
  for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
    if (!Entry.second)
      continue;
    const Decl *D = Entry.first;
    switch (D->getKind()) {
    case Decl::CXXConversion:
    case Decl::CXXMethod:
    case Decl::Function:
    case Decl::ObjCMethod: {
      CodeGenPGO PGO(*this);
      GlobalDecl GD(cast<FunctionDecl>(D));
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
                                  getFunctionLinkage(GD));
      break;
    }
    case Decl::CXXConstructor: {
      CodeGenPGO PGO(*this);
      GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
                                  getFunctionLinkage(GD));
      break;
    }
    case Decl::CXXDestructor: {
      CodeGenPGO PGO(*this);
      GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
                                  getFunctionLinkage(GD));
      break;
    }
    default:
      break;
    };
  }
}

void CodeGenModule::EmitMainVoidAlias() {
  // In order to transition away from "__original_main" gracefully, emit an
  // alias for "main" in the no-argument case so that libc can detect when
  // new-style no-argument main is in used.
  if (llvm::Function *F = getModule().getFunction("main")) {
    if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
        F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
      addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
  }
}

/// Turns the given pointer into a constant.
static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
                                          const void *Ptr) {
  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
  return llvm::ConstantInt::get(i64, PtrInt);
}

static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
                                   llvm::NamedMDNode *&GlobalMetadata,
                                   GlobalDecl D,
                                   llvm::GlobalValue *Addr) {
  if (!GlobalMetadata)
    GlobalMetadata =
      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");

  // TODO: should we report variant information for ctors/dtors?
  llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
                           llvm::ConstantAsMetadata::get(GetPointerConstant(
                               CGM.getLLVMContext(), D.getDecl()))};
  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
}

/// For each function which is declared within an extern "C" region and marked
/// as 'used', but has internal linkage, create an alias from the unmangled
/// name to the mangled name if possible. People expect to be able to refer
/// to such functions with an unmangled name from inline assembly within the
/// same translation unit.
void CodeGenModule::EmitStaticExternCAliases() {
  if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
    return;
  for (auto &I : StaticExternCValues) {
    IdentifierInfo *Name = I.first;
    llvm::GlobalValue *Val = I.second;
    if (Val && !getModule().getNamedValue(Name->getName()))
      addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
  }
}

bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
                                             GlobalDecl &Result) const {
  auto Res = Manglings.find(MangledName);
  if (Res == Manglings.end())
    return false;
  Result = Res->getValue();
  return true;
}

/// Emits metadata nodes associating all the global values in the
/// current module with the Decls they came from.  This is useful for
/// projects using IR gen as a subroutine.
///
/// Since there's currently no way to associate an MDNode directly
/// with an llvm::GlobalValue, we create a global named metadata
/// with the name 'clang.global.decl.ptrs'.
void CodeGenModule::EmitDeclMetadata() {
  llvm::NamedMDNode *GlobalMetadata = nullptr;

  for (auto &I : MangledDeclNames) {
    llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
    // Some mangled names don't necessarily have an associated GlobalValue
    // in this module, e.g. if we mangled it for DebugInfo.
    if (Addr)
      EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
  }
}

/// Emits metadata nodes for all the local variables in the current
/// function.
void CodeGenFunction::EmitDeclMetadata() {
  if (LocalDeclMap.empty()) return;

  llvm::LLVMContext &Context = getLLVMContext();

  // Find the unique metadata ID for this name.
  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");

  llvm::NamedMDNode *GlobalMetadata = nullptr;

  for (auto &I : LocalDeclMap) {
    const Decl *D = I.first;
    llvm::Value *Addr = I.second.getPointer();
    if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
      Alloca->setMetadata(
          DeclPtrKind, llvm::MDNode::get(
                           Context, llvm::ValueAsMetadata::getConstant(DAddr)));
    } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
    }
  }
}

void CodeGenModule::EmitVersionIdentMetadata() {
  llvm::NamedMDNode *IdentMetadata =
    TheModule.getOrInsertNamedMetadata("llvm.ident");
  std::string Version = getClangFullVersion();
  llvm::LLVMContext &Ctx = TheModule.getContext();

  llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
  IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
}

void CodeGenModule::EmitCommandLineMetadata() {
  llvm::NamedMDNode *CommandLineMetadata =
    TheModule.getOrInsertNamedMetadata("llvm.commandline");
  std::string CommandLine = getCodeGenOpts().RecordCommandLine;
  llvm::LLVMContext &Ctx = TheModule.getContext();

  llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
  CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
}

void CodeGenModule::EmitCoverageFile() {
  if (getCodeGenOpts().CoverageDataFile.empty() &&
      getCodeGenOpts().CoverageNotesFile.empty())
    return;

  llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
  if (!CUNode)
    return;

  llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
  llvm::LLVMContext &Ctx = TheModule.getContext();
  auto *CoverageDataFile =
      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
  auto *CoverageNotesFile =
      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
  for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
    llvm::MDNode *CU = CUNode->getOperand(i);
    llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
    GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
  }
}

llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
                                                       bool ForEH) {
  // Return a bogus pointer if RTTI is disabled, unless it's for EH.
  // FIXME: should we even be calling this method if RTTI is disabled
  // and it's not for EH?
  if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
      (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
       getTriple().isNVPTX()))
    return llvm::Constant::getNullValue(Int8PtrTy);

  if (ForEH && Ty->isObjCObjectPointerType() &&
      LangOpts.ObjCRuntime.isGNUFamily())
    return ObjCRuntime->GetEHType(Ty);

  return getCXXABI().getAddrOfRTTIDescriptor(Ty);
}

void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
  // Do not emit threadprivates in simd-only mode.
  if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
    return;
  for (auto RefExpr : D->varlists()) {
    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
    bool PerformInit =
        VD->getAnyInitializer() &&
        !VD->getAnyInitializer()->isConstantInitializer(getContext(),
                                                        /*ForRef=*/false);

    Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
    if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
            VD, Addr, RefExpr->getBeginLoc(), PerformInit))
      CXXGlobalInits.push_back(InitFunction);
  }
}

llvm::Metadata *
CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
                                            StringRef Suffix) {
  llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
  if (InternalId)
    return InternalId;

  if (isExternallyVisible(T->getLinkage())) {
    std::string OutName;
    llvm::raw_string_ostream Out(OutName);
    getCXXABI().getMangleContext().mangleTypeName(T, Out);
    Out << Suffix;

    InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
  } else {
    InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
                                           llvm::ArrayRef<llvm::Metadata *>());
  }

  return InternalId;
}

llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
  return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
}

llvm::Metadata *
CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
  return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
}

// Generalize pointer types to a void pointer with the qualifiers of the
// originally pointed-to type, e.g. 'const char *' and 'char * const *'
// generalize to 'const void *' while 'char *' and 'const char **' generalize to
// 'void *'.
static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
  if (!Ty->isPointerType())
    return Ty;

  return Ctx.getPointerType(
      QualType(Ctx.VoidTy).withCVRQualifiers(
          Ty->getPointeeType().getCVRQualifiers()));
}

// Apply type generalization to a FunctionType's return and argument types
static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
  if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
    SmallVector<QualType, 8> GeneralizedParams;
    for (auto &Param : FnType->param_types())
      GeneralizedParams.push_back(GeneralizeType(Ctx, Param));

    return Ctx.getFunctionType(
        GeneralizeType(Ctx, FnType->getReturnType()),
        GeneralizedParams, FnType->getExtProtoInfo());
  }

  if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
    return Ctx.getFunctionNoProtoType(
        GeneralizeType(Ctx, FnType->getReturnType()));

  llvm_unreachable("Encountered unknown FunctionType");
}

llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
  return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
                                      GeneralizedMetadataIdMap, ".generalized");
}

/// Returns whether this module needs the "all-vtables" type identifier.
bool CodeGenModule::NeedAllVtablesTypeId() const {
  // Returns true if at least one of vtable-based CFI checkers is enabled and
  // is not in the trapping mode.
  return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
          (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
          (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
          (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
}

void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
                                          CharUnits Offset,
                                          const CXXRecordDecl *RD) {
  llvm::Metadata *MD =
      CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
  VTable->addTypeMetadata(Offset.getQuantity(), MD);

  if (CodeGenOpts.SanitizeCfiCrossDso)
    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
      VTable->addTypeMetadata(Offset.getQuantity(),
                              llvm::ConstantAsMetadata::get(CrossDsoTypeId));

  if (NeedAllVtablesTypeId()) {
    llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
    VTable->addTypeMetadata(Offset.getQuantity(), MD);
  }
}

llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
  if (!SanStats)
    SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());

  return *SanStats;
}
llvm::Value *
CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
                                                  CodeGenFunction &CGF) {
  llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
  auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
  auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
  return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
                                "__translate_sampler_initializer"),
                                {C});
}

CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
    QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
  return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
                                 /* forPointeeType= */ true);
}

CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
                                                 LValueBaseInfo *BaseInfo,
                                                 TBAAAccessInfo *TBAAInfo,
                                                 bool forPointeeType) {
  if (TBAAInfo)
    *TBAAInfo = getTBAAAccessInfo(T);

  // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
  // that doesn't return the information we need to compute BaseInfo.

  // Honor alignment typedef attributes even on incomplete types.
  // We also honor them straight for C++ class types, even as pointees;
  // there's an expressivity gap here.
  if (auto TT = T->getAs<TypedefType>()) {
    if (auto Align = TT->getDecl()->getMaxAlignment()) {
      if (BaseInfo)
        *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
      return getContext().toCharUnitsFromBits(Align);
    }
  }

  bool AlignForArray = T->isArrayType();

  // Analyze the base element type, so we don't get confused by incomplete
  // array types.
  T = getContext().getBaseElementType(T);

  if (T->isIncompleteType()) {
    // We could try to replicate the logic from
    // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
    // type is incomplete, so it's impossible to test. We could try to reuse
    // getTypeAlignIfKnown, but that doesn't return the information we need
    // to set BaseInfo.  So just ignore the possibility that the alignment is
    // greater than one.
    if (BaseInfo)
      *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
    return CharUnits::One();
  }

  if (BaseInfo)
    *BaseInfo = LValueBaseInfo(AlignmentSource::Type);

  CharUnits Alignment;
  // For C++ class pointees, we don't know whether we're pointing at a
  // base or a complete object, so we generally need to use the
  // non-virtual alignment.
  const CXXRecordDecl *RD;
  if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) {
    Alignment = getClassPointerAlignment(RD);
  } else {
    Alignment = getContext().getTypeAlignInChars(T);
    if (T.getQualifiers().hasUnaligned())
      Alignment = CharUnits::One();
  }

  // Cap to the global maximum type alignment unless the alignment
  // was somehow explicit on the type.
  if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
    if (Alignment.getQuantity() > MaxAlign &&
        !getContext().isAlignmentRequired(T))
      Alignment = CharUnits::fromQuantity(MaxAlign);
  }
  return Alignment;
}

bool CodeGenModule::stopAutoInit() {
  unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
  if (StopAfter) {
    // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
    // used
    if (NumAutoVarInit >= StopAfter) {
      return true;
    }
    if (!NumAutoVarInit) {
      unsigned DiagID = getDiags().getCustomDiagID(
          DiagnosticsEngine::Warning,
          "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
          "number of times ftrivial-auto-var-init=%1 gets applied.");
      getDiags().Report(DiagID)
          << StopAfter
          << (getContext().getLangOpts().getTrivialAutoVarInit() ==
                      LangOptions::TrivialAutoVarInitKind::Zero
                  ? "zero"
                  : "pattern");
    }
    ++NumAutoVarInit;
  }
  return false;
}