CGExprComplex.cpp
44.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes with complex types as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include <algorithm>
using namespace clang;
using namespace CodeGen;
//===----------------------------------------------------------------------===//
// Complex Expression Emitter
//===----------------------------------------------------------------------===//
typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
/// Return the complex type that we are meant to emit.
static const ComplexType *getComplexType(QualType type) {
type = type.getCanonicalType();
if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
return comp;
} else {
return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
}
}
namespace {
class ComplexExprEmitter
: public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
CodeGenFunction &CGF;
CGBuilderTy &Builder;
bool IgnoreReal;
bool IgnoreImag;
public:
ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
: CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
bool TestAndClearIgnoreReal() {
bool I = IgnoreReal;
IgnoreReal = false;
return I;
}
bool TestAndClearIgnoreImag() {
bool I = IgnoreImag;
IgnoreImag = false;
return I;
}
/// EmitLoadOfLValue - Given an expression with complex type that represents a
/// value l-value, this method emits the address of the l-value, then loads
/// and returns the result.
ComplexPairTy EmitLoadOfLValue(const Expr *E) {
return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
}
ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
/// EmitStoreOfComplex - Store the specified real/imag parts into the
/// specified value pointer.
void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
/// Emit a cast from complex value Val to DestType.
ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
QualType DestType, SourceLocation Loc);
/// Emit a cast from scalar value Val to DestType.
ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
QualType DestType, SourceLocation Loc);
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
ComplexPairTy Visit(Expr *E) {
ApplyDebugLocation DL(CGF, E);
return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
}
ComplexPairTy VisitStmt(Stmt *S) {
S->dump(llvm::errs(), CGF.getContext());
llvm_unreachable("Stmt can't have complex result type!");
}
ComplexPairTy VisitExpr(Expr *S);
ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
return ComplexPairTy(Result->getAggregateElement(0U),
Result->getAggregateElement(1U));
return Visit(E->getSubExpr());
}
ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
return Visit(GE->getResultExpr());
}
ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
ComplexPairTy
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
return Visit(PE->getReplacement());
}
ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
return CGF.EmitCoawaitExpr(*S).getComplexVal();
}
ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
return CGF.EmitCoyieldExpr(*S).getComplexVal();
}
ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
Expr *E) {
assert(Constant && "not a constant");
if (Constant.isReference())
return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
E->getExprLoc());
llvm::Constant *pair = Constant.getValue();
return ComplexPairTy(pair->getAggregateElement(0U),
pair->getAggregateElement(1U));
}
// l-values.
ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
return emitConstant(Constant, E);
return EmitLoadOfLValue(E);
}
ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
return EmitLoadOfLValue(E);
}
ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
return CGF.EmitObjCMessageExpr(E).getComplexVal();
}
ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
if (CodeGenFunction::ConstantEmission Constant =
CGF.tryEmitAsConstant(ME)) {
CGF.EmitIgnoredExpr(ME->getBase());
return emitConstant(Constant, ME);
}
return EmitLoadOfLValue(ME);
}
ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
if (E->isGLValue())
return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
E->getExprLoc());
return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
}
ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
return CGF.EmitPseudoObjectRValue(E).getComplexVal();
}
// FIXME: CompoundLiteralExpr
ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
// Unlike for scalars, we don't have to worry about function->ptr demotion
// here.
return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
}
ComplexPairTy VisitCastExpr(CastExpr *E) {
if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
}
ComplexPairTy VisitCallExpr(const CallExpr *E);
ComplexPairTy VisitStmtExpr(const StmtExpr *E);
// Operators.
ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
bool isInc, bool isPre) {
LValue LV = CGF.EmitLValue(E->getSubExpr());
return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
}
ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
return VisitPrePostIncDec(E, false, false);
}
ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
return VisitPrePostIncDec(E, true, false);
}
ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
return VisitPrePostIncDec(E, false, true);
}
ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
return VisitPrePostIncDec(E, true, true);
}
ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
return Visit(E->getSubExpr());
}
ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
// LNot,Real,Imag never return complex.
ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
return Visit(DAE->getExpr());
}
ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
return Visit(DIE->getExpr());
}
ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
CodeGenFunction::RunCleanupsScope Scope(CGF);
ComplexPairTy Vals = Visit(E->getSubExpr());
// Defend against dominance problems caused by jumps out of expression
// evaluation through the shared cleanup block.
Scope.ForceCleanup({&Vals.first, &Vals.second});
return Vals;
}
ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
assert(E->getType()->isAnyComplexType() && "Expected complex type!");
QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
return ComplexPairTy(Null, Null);
}
ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
assert(E->getType()->isAnyComplexType() && "Expected complex type!");
QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
llvm::Constant *Null =
llvm::Constant::getNullValue(CGF.ConvertType(Elem));
return ComplexPairTy(Null, Null);
}
struct BinOpInfo {
ComplexPairTy LHS;
ComplexPairTy RHS;
QualType Ty; // Computation Type.
};
BinOpInfo EmitBinOps(const BinaryOperator *E);
LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)
(const BinOpInfo &),
RValue &Val);
ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)
(const BinOpInfo &));
ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
ComplexPairTy EmitBinSub(const BinOpInfo &Op);
ComplexPairTy EmitBinMul(const BinOpInfo &Op);
ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
const BinOpInfo &Op);
ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
return EmitBinAdd(EmitBinOps(E));
}
ComplexPairTy VisitBinSub(const BinaryOperator *E) {
return EmitBinSub(EmitBinOps(E));
}
ComplexPairTy VisitBinMul(const BinaryOperator *E) {
return EmitBinMul(EmitBinOps(E));
}
ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
return EmitBinDiv(EmitBinOps(E));
}
ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
return Visit(E->getSemanticForm());
}
// Compound assignments.
ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
}
ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
}
ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
}
ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
}
// GCC rejects rem/and/or/xor for integer complex.
// Logical and/or always return int, never complex.
// No comparisons produce a complex result.
LValue EmitBinAssignLValue(const BinaryOperator *E,
ComplexPairTy &Val);
ComplexPairTy VisitBinAssign (const BinaryOperator *E);
ComplexPairTy VisitBinComma (const BinaryOperator *E);
ComplexPairTy
VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
ComplexPairTy VisitInitListExpr(InitListExpr *E);
ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
return EmitLoadOfLValue(E);
}
ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
return CGF.EmitAtomicExpr(E).getComplexVal();
}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
QualType complexType) {
return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
}
Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
QualType complexType) {
return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
}
/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
/// load the real and imaginary pieces, returning them as Real/Imag.
ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
SourceLocation loc) {
assert(lvalue.isSimple() && "non-simple complex l-value?");
if (lvalue.getType()->isAtomicType())
return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
Address SrcPtr = lvalue.getAddress(CGF);
bool isVolatile = lvalue.isVolatileQualified();
llvm::Value *Real = nullptr, *Imag = nullptr;
if (!IgnoreReal || isVolatile) {
Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
}
if (!IgnoreImag || isVolatile) {
Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
}
return ComplexPairTy(Real, Imag);
}
/// EmitStoreOfComplex - Store the specified real/imag parts into the
/// specified value pointer.
void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
bool isInit) {
if (lvalue.getType()->isAtomicType() ||
(!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
Address Ptr = lvalue.getAddress(CGF);
Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
}
//===----------------------------------------------------------------------===//
// Visitor Methods
//===----------------------------------------------------------------------===//
ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
CGF.ErrorUnsupported(E, "complex expression");
llvm::Type *EltTy =
CGF.ConvertType(getComplexType(E->getType())->getElementType());
llvm::Value *U = llvm::UndefValue::get(EltTy);
return ComplexPairTy(U, U);
}
ComplexPairTy ComplexExprEmitter::
VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
}
ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
if (E->getCallReturnType(CGF.getContext())->isReferenceType())
return EmitLoadOfLValue(E);
return CGF.EmitCallExpr(E).getComplexVal();
}
ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
CodeGenFunction::StmtExprEvaluation eval(CGF);
Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
assert(RetAlloca.isValid() && "Expected complex return value");
return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
E->getExprLoc());
}
/// Emit a cast from complex value Val to DestType.
ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
QualType SrcType,
QualType DestType,
SourceLocation Loc) {
// Get the src/dest element type.
SrcType = SrcType->castAs<ComplexType>()->getElementType();
DestType = DestType->castAs<ComplexType>()->getElementType();
// C99 6.3.1.6: When a value of complex type is converted to another
// complex type, both the real and imaginary parts follow the conversion
// rules for the corresponding real types.
if (Val.first)
Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
if (Val.second)
Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
return Val;
}
ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
QualType SrcType,
QualType DestType,
SourceLocation Loc) {
// Convert the input element to the element type of the complex.
DestType = DestType->castAs<ComplexType>()->getElementType();
Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
// Return (realval, 0).
return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
}
ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
QualType DestTy) {
switch (CK) {
case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
// Atomic to non-atomic casts may be more than a no-op for some platforms and
// for some types.
case CK_AtomicToNonAtomic:
case CK_NonAtomicToAtomic:
case CK_NoOp:
case CK_LValueToRValue:
case CK_UserDefinedConversion:
return Visit(Op);
case CK_LValueBitCast: {
LValue origLV = CGF.EmitLValue(Op);
Address V = origLV.getAddress(CGF);
V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
}
case CK_LValueToRValueBitCast: {
LValue SourceLVal = CGF.EmitLValue(Op);
Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
CGF.ConvertTypeForMem(DestTy));
LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
return EmitLoadOfLValue(DestLV, Op->getExprLoc());
}
case CK_BitCast:
case CK_BaseToDerived:
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
case CK_Dynamic:
case CK_ToUnion:
case CK_ArrayToPointerDecay:
case CK_FunctionToPointerDecay:
case CK_NullToPointer:
case CK_NullToMemberPointer:
case CK_BaseToDerivedMemberPointer:
case CK_DerivedToBaseMemberPointer:
case CK_MemberPointerToBoolean:
case CK_ReinterpretMemberPointer:
case CK_ConstructorConversion:
case CK_IntegralToPointer:
case CK_PointerToIntegral:
case CK_PointerToBoolean:
case CK_ToVoid:
case CK_VectorSplat:
case CK_IntegralCast:
case CK_BooleanToSignedIntegral:
case CK_IntegralToBoolean:
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
case CK_FloatingToBoolean:
case CK_FloatingCast:
case CK_CPointerToObjCPointerCast:
case CK_BlockPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
case CK_ObjCObjectLValueCast:
case CK_FloatingComplexToReal:
case CK_FloatingComplexToBoolean:
case CK_IntegralComplexToReal:
case CK_IntegralComplexToBoolean:
case CK_ARCProduceObject:
case CK_ARCConsumeObject:
case CK_ARCReclaimReturnedObject:
case CK_ARCExtendBlockObject:
case CK_CopyAndAutoreleaseBlockObject:
case CK_BuiltinFnToFnPtr:
case CK_ZeroToOCLOpaqueType:
case CK_AddressSpaceConversion:
case CK_IntToOCLSampler:
case CK_FixedPointCast:
case CK_FixedPointToBoolean:
case CK_FixedPointToIntegral:
case CK_IntegralToFixedPoint:
llvm_unreachable("invalid cast kind for complex value");
case CK_FloatingRealToComplex:
case CK_IntegralRealToComplex:
return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
DestTy, Op->getExprLoc());
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralComplexCast:
case CK_IntegralComplexToFloatingComplex:
return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
Op->getExprLoc());
}
llvm_unreachable("unknown cast resulting in complex value");
}
ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
ComplexPairTy Op = Visit(E->getSubExpr());
llvm::Value *ResR, *ResI;
if (Op.first->getType()->isFloatingPointTy()) {
ResR = Builder.CreateFNeg(Op.first, "neg.r");
ResI = Builder.CreateFNeg(Op.second, "neg.i");
} else {
ResR = Builder.CreateNeg(Op.first, "neg.r");
ResI = Builder.CreateNeg(Op.second, "neg.i");
}
return ComplexPairTy(ResR, ResI);
}
ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
// ~(a+ib) = a + i*-b
ComplexPairTy Op = Visit(E->getSubExpr());
llvm::Value *ResI;
if (Op.second->getType()->isFloatingPointTy())
ResI = Builder.CreateFNeg(Op.second, "conj.i");
else
ResI = Builder.CreateNeg(Op.second, "conj.i");
return ComplexPairTy(Op.first, ResI);
}
ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
llvm::Value *ResR, *ResI;
if (Op.LHS.first->getType()->isFloatingPointTy()) {
ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
if (Op.LHS.second && Op.RHS.second)
ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
else
ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
assert(ResI && "Only one operand may be real!");
} else {
ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
assert(Op.LHS.second && Op.RHS.second &&
"Both operands of integer complex operators must be complex!");
ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
}
return ComplexPairTy(ResR, ResI);
}
ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
llvm::Value *ResR, *ResI;
if (Op.LHS.first->getType()->isFloatingPointTy()) {
ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
if (Op.LHS.second && Op.RHS.second)
ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
else
ResI = Op.LHS.second ? Op.LHS.second
: Builder.CreateFNeg(Op.RHS.second, "sub.i");
assert(ResI && "Only one operand may be real!");
} else {
ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
assert(Op.LHS.second && Op.RHS.second &&
"Both operands of integer complex operators must be complex!");
ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
}
return ComplexPairTy(ResR, ResI);
}
/// Emit a libcall for a binary operation on complex types.
ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
const BinOpInfo &Op) {
CallArgList Args;
Args.add(RValue::get(Op.LHS.first),
Op.Ty->castAs<ComplexType>()->getElementType());
Args.add(RValue::get(Op.LHS.second),
Op.Ty->castAs<ComplexType>()->getElementType());
Args.add(RValue::get(Op.RHS.first),
Op.Ty->castAs<ComplexType>()->getElementType());
Args.add(RValue::get(Op.RHS.second),
Op.Ty->castAs<ComplexType>()->getElementType());
// We *must* use the full CG function call building logic here because the
// complex type has special ABI handling. We also should not forget about
// special calling convention which may be used for compiler builtins.
// We create a function qualified type to state that this call does not have
// any exceptions.
FunctionProtoType::ExtProtoInfo EPI;
EPI = EPI.withExceptionSpec(
FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
SmallVector<QualType, 4> ArgsQTys(
4, Op.Ty->castAs<ComplexType>()->getElementType());
QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
Args, cast<FunctionType>(FQTy.getTypePtr()), false);
llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
FTy, LibCallName, llvm::AttributeList(), true);
CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());
llvm::CallBase *Call;
RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
Call->setCallingConv(CGF.CGM.getRuntimeCC());
return Res.getComplexVal();
}
/// Lookup the libcall name for a given floating point type complex
/// multiply.
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
switch (Ty->getTypeID()) {
default:
llvm_unreachable("Unsupported floating point type!");
case llvm::Type::HalfTyID:
return "__mulhc3";
case llvm::Type::FloatTyID:
return "__mulsc3";
case llvm::Type::DoubleTyID:
return "__muldc3";
case llvm::Type::PPC_FP128TyID:
return "__multc3";
case llvm::Type::X86_FP80TyID:
return "__mulxc3";
case llvm::Type::FP128TyID:
return "__multc3";
}
}
// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
// typed values.
ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
using llvm::Value;
Value *ResR, *ResI;
llvm::MDBuilder MDHelper(CGF.getLLVMContext());
if (Op.LHS.first->getType()->isFloatingPointTy()) {
// The general formulation is:
// (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
//
// But we can fold away components which would be zero due to a real
// operand according to C11 Annex G.5.1p2.
// FIXME: C11 also provides for imaginary types which would allow folding
// still more of this within the type system.
if (Op.LHS.second && Op.RHS.second) {
// If both operands are complex, emit the core math directly, and then
// test for NaNs. If we find NaNs in the result, we delegate to a libcall
// to carefully re-compute the correct infinity representation if
// possible. The expectation is that the presence of NaNs here is
// *extremely* rare, and so the cost of the libcall is almost irrelevant.
// This is good, because the libcall re-computes the core multiplication
// exactly the same as we do here and re-tests for NaNs in order to be
// a generic complex*complex libcall.
// First compute the four products.
Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
// The real part is the difference of the first two, the imaginary part is
// the sum of the second.
ResR = Builder.CreateFSub(AC, BD, "mul_r");
ResI = Builder.CreateFAdd(AD, BC, "mul_i");
// Emit the test for the real part becoming NaN and create a branch to
// handle it. We test for NaN by comparing the number to itself.
Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
llvm::BasicBlock *OrigBB = Branch->getParent();
// Give hint that we very much don't expect to see NaNs.
// Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
// Now test the imaginary part and create its branch.
CGF.EmitBlock(INaNBB);
Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
// Now emit the libcall on this slowest of the slow paths.
CGF.EmitBlock(LibCallBB);
Value *LibCallR, *LibCallI;
std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
Builder.CreateBr(ContBB);
// Finally continue execution by phi-ing together the different
// computation paths.
CGF.EmitBlock(ContBB);
llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
RealPHI->addIncoming(ResR, OrigBB);
RealPHI->addIncoming(ResR, INaNBB);
RealPHI->addIncoming(LibCallR, LibCallBB);
llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
ImagPHI->addIncoming(ResI, OrigBB);
ImagPHI->addIncoming(ResI, INaNBB);
ImagPHI->addIncoming(LibCallI, LibCallBB);
return ComplexPairTy(RealPHI, ImagPHI);
}
assert((Op.LHS.second || Op.RHS.second) &&
"At least one operand must be complex!");
// If either of the operands is a real rather than a complex, the
// imaginary component is ignored when computing the real component of the
// result.
ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
ResI = Op.LHS.second
? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
: Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
} else {
assert(Op.LHS.second && Op.RHS.second &&
"Both operands of integer complex operators must be complex!");
Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
}
return ComplexPairTy(ResR, ResI);
}
// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
// typed values.
ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
llvm::Value *DSTr, *DSTi;
if (LHSr->getType()->isFloatingPointTy()) {
// If we have a complex operand on the RHS and FastMath is not allowed, we
// delegate to a libcall to handle all of the complexities and minimize
// underflow/overflow cases. When FastMath is allowed we construct the
// divide inline using the same algorithm as for integer operands.
//
// FIXME: We would be able to avoid the libcall in many places if we
// supported imaginary types in addition to complex types.
if (RHSi && !CGF.getLangOpts().FastMath) {
BinOpInfo LibCallOp = Op;
// If LHS was a real, supply a null imaginary part.
if (!LHSi)
LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
switch (LHSr->getType()->getTypeID()) {
default:
llvm_unreachable("Unsupported floating point type!");
case llvm::Type::HalfTyID:
return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
case llvm::Type::FloatTyID:
return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
case llvm::Type::DoubleTyID:
return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
case llvm::Type::PPC_FP128TyID:
return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
case llvm::Type::X86_FP80TyID:
return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
case llvm::Type::FP128TyID:
return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
}
} else if (RHSi) {
if (!LHSi)
LHSi = llvm::Constant::getNullValue(RHSi->getType());
// (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd
llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd
llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad
DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
} else {
assert(LHSi && "Can have at most one non-complex operand!");
DSTr = Builder.CreateFDiv(LHSr, RHSr);
DSTi = Builder.CreateFDiv(LHSi, RHSr);
}
} else {
assert(Op.LHS.second && Op.RHS.second &&
"Both operands of integer complex operators must be complex!");
// (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
} else {
DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
}
}
return ComplexPairTy(DSTr, DSTi);
}
ComplexExprEmitter::BinOpInfo
ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
BinOpInfo Ops;
if (E->getLHS()->getType()->isRealFloatingType())
Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
else
Ops.LHS = Visit(E->getLHS());
if (E->getRHS()->getType()->isRealFloatingType())
Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
else
Ops.RHS = Visit(E->getRHS());
Ops.Ty = E->getType();
return Ops;
}
LValue ComplexExprEmitter::
EmitCompoundAssignLValue(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
RValue &Val) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
QualType LHSTy = E->getLHS()->getType();
if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
LHSTy = AT->getValueType();
BinOpInfo OpInfo;
// Load the RHS and LHS operands.
// __block variables need to have the rhs evaluated first, plus this should
// improve codegen a little.
OpInfo.Ty = E->getComputationResultType();
QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
// The RHS should have been converted to the computation type.
if (E->getRHS()->getType()->isRealFloatingType()) {
assert(
CGF.getContext()
.hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
} else {
assert(CGF.getContext()
.hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
OpInfo.RHS = Visit(E->getRHS());
}
LValue LHS = CGF.EmitLValue(E->getLHS());
// Load from the l-value and convert it.
SourceLocation Loc = E->getExprLoc();
if (LHSTy->isAnyComplexType()) {
ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
} else {
llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
// For floating point real operands we can directly pass the scalar form
// to the binary operator emission and potentially get more efficient code.
if (LHSTy->isRealFloatingType()) {
if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
} else {
OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
}
}
// Expand the binary operator.
ComplexPairTy Result = (this->*Func)(OpInfo);
// Truncate the result and store it into the LHS lvalue.
if (LHSTy->isAnyComplexType()) {
ComplexPairTy ResVal =
EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
Val = RValue::getComplex(ResVal);
} else {
llvm::Value *ResVal =
CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
Val = RValue::get(ResVal);
}
return LHS;
}
// Compound assignments.
ComplexPairTy ComplexExprEmitter::
EmitCompoundAssign(const CompoundAssignOperator *E,
ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
RValue Val;
LValue LV = EmitCompoundAssignLValue(E, Func, Val);
// The result of an assignment in C is the assigned r-value.
if (!CGF.getLangOpts().CPlusPlus)
return Val.getComplexVal();
// If the lvalue is non-volatile, return the computed value of the assignment.
if (!LV.isVolatileQualified())
return Val.getComplexVal();
return EmitLoadOfLValue(LV, E->getExprLoc());
}
LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
ComplexPairTy &Val) {
assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
E->getRHS()->getType()) &&
"Invalid assignment");
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
// Emit the RHS. __block variables need the RHS evaluated first.
Val = Visit(E->getRHS());
// Compute the address to store into.
LValue LHS = CGF.EmitLValue(E->getLHS());
// Store the result value into the LHS lvalue.
EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
return LHS;
}
ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
ComplexPairTy Val;
LValue LV = EmitBinAssignLValue(E, Val);
// The result of an assignment in C is the assigned r-value.
if (!CGF.getLangOpts().CPlusPlus)
return Val;
// If the lvalue is non-volatile, return the computed value of the assignment.
if (!LV.isVolatileQualified())
return Val;
return EmitLoadOfLValue(LV, E->getExprLoc());
}
ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
CGF.EmitIgnoredExpr(E->getLHS());
return Visit(E->getRHS());
}
ComplexPairTy ComplexExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
TestAndClearIgnoreReal();
TestAndClearIgnoreImag();
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
// Bind the common expression if necessary.
CodeGenFunction::OpaqueValueMapping binding(CGF, E);
CodeGenFunction::ConditionalEvaluation eval(CGF);
CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
CGF.getProfileCount(E));
eval.begin(CGF);
CGF.EmitBlock(LHSBlock);
CGF.incrementProfileCounter(E);
ComplexPairTy LHS = Visit(E->getTrueExpr());
LHSBlock = Builder.GetInsertBlock();
CGF.EmitBranch(ContBlock);
eval.end(CGF);
eval.begin(CGF);
CGF.EmitBlock(RHSBlock);
ComplexPairTy RHS = Visit(E->getFalseExpr());
RHSBlock = Builder.GetInsertBlock();
CGF.EmitBlock(ContBlock);
eval.end(CGF);
// Create a PHI node for the real part.
llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
RealPN->addIncoming(LHS.first, LHSBlock);
RealPN->addIncoming(RHS.first, RHSBlock);
// Create a PHI node for the imaginary part.
llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
ImagPN->addIncoming(LHS.second, LHSBlock);
ImagPN->addIncoming(RHS.second, RHSBlock);
return ComplexPairTy(RealPN, ImagPN);
}
ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
return Visit(E->getChosenSubExpr());
}
ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
bool Ignore = TestAndClearIgnoreReal();
(void)Ignore;
assert (Ignore == false && "init list ignored");
Ignore = TestAndClearIgnoreImag();
(void)Ignore;
assert (Ignore == false && "init list ignored");
if (E->getNumInits() == 2) {
llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
return ComplexPairTy(Real, Imag);
} else if (E->getNumInits() == 1) {
return Visit(E->getInit(0));
}
// Empty init list initializes to null
assert(E->getNumInits() == 0 && "Unexpected number of inits");
QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
llvm::Type* LTy = CGF.ConvertType(Ty);
llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
return ComplexPairTy(zeroConstant, zeroConstant);
}
ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
Address ArgValue = Address::invalid();
Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
if (!ArgPtr.isValid()) {
CGF.ErrorUnsupported(E, "complex va_arg expression");
llvm::Type *EltTy =
CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
llvm::Value *U = llvm::UndefValue::get(EltTy);
return ComplexPairTy(U, U);
}
return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
E->getExprLoc());
}
//===----------------------------------------------------------------------===//
// Entry Point into this File
//===----------------------------------------------------------------------===//
/// EmitComplexExpr - Emit the computation of the specified expression of
/// complex type, ignoring the result.
ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
bool IgnoreImag) {
assert(E && getComplexType(E->getType()) &&
"Invalid complex expression to emit");
return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
.Visit(const_cast<Expr *>(E));
}
void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
bool isInit) {
assert(E && getComplexType(E->getType()) &&
"Invalid complex expression to emit");
ComplexExprEmitter Emitter(*this);
ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
Emitter.EmitStoreOfComplex(Val, dest, isInit);
}
/// EmitStoreOfComplex - Store a complex number into the specified l-value.
void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
bool isInit) {
ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
}
/// EmitLoadOfComplex - Load a complex number from the specified address.
ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
SourceLocation loc) {
return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
}
LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
assert(E->getOpcode() == BO_Assign);
ComplexPairTy Val; // ignored
LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
if (getLangOpts().OpenMP)
CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
E->getLHS());
return LVal;
}
typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
const ComplexExprEmitter::BinOpInfo &);
static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
switch (Op) {
case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
default:
llvm_unreachable("unexpected complex compound assignment");
}
}
LValue CodeGenFunction::
EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
CompoundFunc Op = getComplexOp(E->getOpcode());
RValue Val;
return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
}
LValue CodeGenFunction::
EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
llvm::Value *&Result) {
CompoundFunc Op = getComplexOp(E->getOpcode());
RValue Val;
LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
Result = Val.getScalarVal();
return Ret;
}