CGExprComplex.cpp 44.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes with complex types as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include <algorithm>
using namespace clang;
using namespace CodeGen;

//===----------------------------------------------------------------------===//
//                        Complex Expression Emitter
//===----------------------------------------------------------------------===//

typedef CodeGenFunction::ComplexPairTy ComplexPairTy;

/// Return the complex type that we are meant to emit.
static const ComplexType *getComplexType(QualType type) {
  type = type.getCanonicalType();
  if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
    return comp;
  } else {
    return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
  }
}

namespace  {
class ComplexExprEmitter
  : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
  CodeGenFunction &CGF;
  CGBuilderTy &Builder;
  bool IgnoreReal;
  bool IgnoreImag;
public:
  ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
    : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
  }


  //===--------------------------------------------------------------------===//
  //                               Utilities
  //===--------------------------------------------------------------------===//

  bool TestAndClearIgnoreReal() {
    bool I = IgnoreReal;
    IgnoreReal = false;
    return I;
  }
  bool TestAndClearIgnoreImag() {
    bool I = IgnoreImag;
    IgnoreImag = false;
    return I;
  }

  /// EmitLoadOfLValue - Given an expression with complex type that represents a
  /// value l-value, this method emits the address of the l-value, then loads
  /// and returns the result.
  ComplexPairTy EmitLoadOfLValue(const Expr *E) {
    return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
  }

  ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);

  /// EmitStoreOfComplex - Store the specified real/imag parts into the
  /// specified value pointer.
  void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);

  /// Emit a cast from complex value Val to DestType.
  ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
                                         QualType DestType, SourceLocation Loc);
  /// Emit a cast from scalar value Val to DestType.
  ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
                                        QualType DestType, SourceLocation Loc);

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  ComplexPairTy Visit(Expr *E) {
    ApplyDebugLocation DL(CGF, E);
    return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
  }

  ComplexPairTy VisitStmt(Stmt *S) {
    S->dump(llvm::errs(), CGF.getContext());
    llvm_unreachable("Stmt can't have complex result type!");
  }
  ComplexPairTy VisitExpr(Expr *S);
  ComplexPairTy VisitConstantExpr(ConstantExpr *E) {
    if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E))
      return ComplexPairTy(Result->getAggregateElement(0U),
                           Result->getAggregateElement(1U));
    return Visit(E->getSubExpr());
  }
  ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
  ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    return Visit(GE->getResultExpr());
  }
  ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
  ComplexPairTy
  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
    return Visit(PE->getReplacement());
  }
  ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) {
    return CGF.EmitCoawaitExpr(*S).getComplexVal();
  }
  ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) {
    return CGF.EmitCoyieldExpr(*S).getComplexVal();
  }
  ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) {
    return Visit(E->getSubExpr());
  }

  ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant,
                             Expr *E) {
    assert(Constant && "not a constant");
    if (Constant.isReference())
      return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
                              E->getExprLoc());

    llvm::Constant *pair = Constant.getValue();
    return ComplexPairTy(pair->getAggregateElement(0U),
                         pair->getAggregateElement(1U));
  }

  // l-values.
  ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
    if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
      return emitConstant(Constant, E);
    return EmitLoadOfLValue(E);
  }
  ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    return EmitLoadOfLValue(E);
  }
  ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
    return CGF.EmitObjCMessageExpr(E).getComplexVal();
  }
  ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
  ComplexPairTy VisitMemberExpr(MemberExpr *ME) {
    if (CodeGenFunction::ConstantEmission Constant =
            CGF.tryEmitAsConstant(ME)) {
      CGF.EmitIgnoredExpr(ME->getBase());
      return emitConstant(Constant, ME);
    }
    return EmitLoadOfLValue(ME);
  }
  ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
    if (E->isGLValue())
      return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
                              E->getExprLoc());
    return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal();
  }

  ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    return CGF.EmitPseudoObjectRValue(E).getComplexVal();
  }

  // FIXME: CompoundLiteralExpr

  ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
  ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
    // Unlike for scalars, we don't have to worry about function->ptr demotion
    // here.
    return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
  }
  ComplexPairTy VisitCastExpr(CastExpr *E) {
    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
      CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
    return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
  }
  ComplexPairTy VisitCallExpr(const CallExpr *E);
  ComplexPairTy VisitStmtExpr(const StmtExpr *E);

  // Operators.
  ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
                                   bool isInc, bool isPre) {
    LValue LV = CGF.EmitLValue(E->getSubExpr());
    return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
  }
  ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
    return VisitPrePostIncDec(E, false, false);
  }
  ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
    return VisitPrePostIncDec(E, true, false);
  }
  ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
    return VisitPrePostIncDec(E, false, true);
  }
  ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
    return VisitPrePostIncDec(E, true, true);
  }
  ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
  ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
    TestAndClearIgnoreReal();
    TestAndClearIgnoreImag();
    return Visit(E->getSubExpr());
  }
  ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
  ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
  // LNot,Real,Imag never return complex.
  ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
    return Visit(E->getSubExpr());
  }
  ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
    return Visit(DAE->getExpr());
  }
  ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
    return Visit(DIE->getExpr());
  }
  ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
    CodeGenFunction::RunCleanupsScope Scope(CGF);
    ComplexPairTy Vals = Visit(E->getSubExpr());
    // Defend against dominance problems caused by jumps out of expression
    // evaluation through the shared cleanup block.
    Scope.ForceCleanup({&Vals.first, &Vals.second});
    return Vals;
  }
  ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
    assert(E->getType()->isAnyComplexType() && "Expected complex type!");
    QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
    llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
    return ComplexPairTy(Null, Null);
  }
  ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
    assert(E->getType()->isAnyComplexType() && "Expected complex type!");
    QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
    llvm::Constant *Null =
                       llvm::Constant::getNullValue(CGF.ConvertType(Elem));
    return ComplexPairTy(Null, Null);
  }

  struct BinOpInfo {
    ComplexPairTy LHS;
    ComplexPairTy RHS;
    QualType Ty;  // Computation Type.
  };

  BinOpInfo EmitBinOps(const BinaryOperator *E);
  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
                                  ComplexPairTy (ComplexExprEmitter::*Func)
                                  (const BinOpInfo &),
                                  RValue &Val);
  ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
                                   ComplexPairTy (ComplexExprEmitter::*Func)
                                   (const BinOpInfo &));

  ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
  ComplexPairTy EmitBinSub(const BinOpInfo &Op);
  ComplexPairTy EmitBinMul(const BinOpInfo &Op);
  ComplexPairTy EmitBinDiv(const BinOpInfo &Op);

  ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
                                        const BinOpInfo &Op);

  ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
    return EmitBinAdd(EmitBinOps(E));
  }
  ComplexPairTy VisitBinSub(const BinaryOperator *E) {
    return EmitBinSub(EmitBinOps(E));
  }
  ComplexPairTy VisitBinMul(const BinaryOperator *E) {
    return EmitBinMul(EmitBinOps(E));
  }
  ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
    return EmitBinDiv(EmitBinOps(E));
  }

  ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
    return Visit(E->getSemanticForm());
  }

  // Compound assignments.
  ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
  }
  ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
  }
  ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
  }
  ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
  }

  // GCC rejects rem/and/or/xor for integer complex.
  // Logical and/or always return int, never complex.

  // No comparisons produce a complex result.

  LValue EmitBinAssignLValue(const BinaryOperator *E,
                             ComplexPairTy &Val);
  ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
  ComplexPairTy VisitBinComma      (const BinaryOperator *E);


  ComplexPairTy
  VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
  ComplexPairTy VisitChooseExpr(ChooseExpr *CE);

  ComplexPairTy VisitInitListExpr(InitListExpr *E);

  ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    return EmitLoadOfLValue(E);
  }

  ComplexPairTy VisitVAArgExpr(VAArgExpr *E);

  ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
    return CGF.EmitAtomicExpr(E).getComplexVal();
  }
};
}  // end anonymous namespace.

//===----------------------------------------------------------------------===//
//                                Utilities
//===----------------------------------------------------------------------===//

Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
                                                 QualType complexType) {
  return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp");
}

Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
                                                 QualType complexType) {
  return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp");
}

/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
/// load the real and imaginary pieces, returning them as Real/Imag.
ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
                                                   SourceLocation loc) {
  assert(lvalue.isSimple() && "non-simple complex l-value?");
  if (lvalue.getType()->isAtomicType())
    return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();

  Address SrcPtr = lvalue.getAddress(CGF);
  bool isVolatile = lvalue.isVolatileQualified();

  llvm::Value *Real = nullptr, *Imag = nullptr;

  if (!IgnoreReal || isVolatile) {
    Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
    Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
  }

  if (!IgnoreImag || isVolatile) {
    Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
    Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
  }

  return ComplexPairTy(Real, Imag);
}

/// EmitStoreOfComplex - Store the specified real/imag parts into the
/// specified value pointer.
void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
                                            bool isInit) {
  if (lvalue.getType()->isAtomicType() ||
      (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
    return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);

  Address Ptr = lvalue.getAddress(CGF);
  Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
  Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());

  Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
  Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
}



//===----------------------------------------------------------------------===//
//                            Visitor Methods
//===----------------------------------------------------------------------===//

ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
  CGF.ErrorUnsupported(E, "complex expression");
  llvm::Type *EltTy =
    CGF.ConvertType(getComplexType(E->getType())->getElementType());
  llvm::Value *U = llvm::UndefValue::get(EltTy);
  return ComplexPairTy(U, U);
}

ComplexPairTy ComplexExprEmitter::
VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
  llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
  return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
}


ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
    return EmitLoadOfLValue(E);

  return CGF.EmitCallExpr(E).getComplexVal();
}

ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
  CodeGenFunction::StmtExprEvaluation eval(CGF);
  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
  assert(RetAlloca.isValid() && "Expected complex return value");
  return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
                          E->getExprLoc());
}

/// Emit a cast from complex value Val to DestType.
ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
                                                           QualType SrcType,
                                                           QualType DestType,
                                                           SourceLocation Loc) {
  // Get the src/dest element type.
  SrcType = SrcType->castAs<ComplexType>()->getElementType();
  DestType = DestType->castAs<ComplexType>()->getElementType();

  // C99 6.3.1.6: When a value of complex type is converted to another
  // complex type, both the real and imaginary parts follow the conversion
  // rules for the corresponding real types.
  if (Val.first)
    Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
  if (Val.second)
    Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
  return Val;
}

ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
                                                          QualType SrcType,
                                                          QualType DestType,
                                                          SourceLocation Loc) {
  // Convert the input element to the element type of the complex.
  DestType = DestType->castAs<ComplexType>()->getElementType();
  Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);

  // Return (realval, 0).
  return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
}

ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
                                           QualType DestTy) {
  switch (CK) {
  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");

  // Atomic to non-atomic casts may be more than a no-op for some platforms and
  // for some types.
  case CK_AtomicToNonAtomic:
  case CK_NonAtomicToAtomic:
  case CK_NoOp:
  case CK_LValueToRValue:
  case CK_UserDefinedConversion:
    return Visit(Op);

  case CK_LValueBitCast: {
    LValue origLV = CGF.EmitLValue(Op);
    Address V = origLV.getAddress(CGF);
    V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
  }

  case CK_LValueToRValueBitCast: {
    LValue SourceLVal = CGF.EmitLValue(Op);
    Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
                                                CGF.ConvertTypeForMem(DestTy));
    LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
    DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
    return EmitLoadOfLValue(DestLV, Op->getExprLoc());
  }

  case CK_BitCast:
  case CK_BaseToDerived:
  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase:
  case CK_Dynamic:
  case CK_ToUnion:
  case CK_ArrayToPointerDecay:
  case CK_FunctionToPointerDecay:
  case CK_NullToPointer:
  case CK_NullToMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_DerivedToBaseMemberPointer:
  case CK_MemberPointerToBoolean:
  case CK_ReinterpretMemberPointer:
  case CK_ConstructorConversion:
  case CK_IntegralToPointer:
  case CK_PointerToIntegral:
  case CK_PointerToBoolean:
  case CK_ToVoid:
  case CK_VectorSplat:
  case CK_IntegralCast:
  case CK_BooleanToSignedIntegral:
  case CK_IntegralToBoolean:
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingToBoolean:
  case CK_FloatingCast:
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_ObjCObjectLValueCast:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexToBoolean:
  case CK_IntegralComplexToReal:
  case CK_IntegralComplexToBoolean:
  case CK_ARCProduceObject:
  case CK_ARCConsumeObject:
  case CK_ARCReclaimReturnedObject:
  case CK_ARCExtendBlockObject:
  case CK_CopyAndAutoreleaseBlockObject:
  case CK_BuiltinFnToFnPtr:
  case CK_ZeroToOCLOpaqueType:
  case CK_AddressSpaceConversion:
  case CK_IntToOCLSampler:
  case CK_FixedPointCast:
  case CK_FixedPointToBoolean:
  case CK_FixedPointToIntegral:
  case CK_IntegralToFixedPoint:
    llvm_unreachable("invalid cast kind for complex value");

  case CK_FloatingRealToComplex:
  case CK_IntegralRealToComplex:
    return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
                                   DestTy, Op->getExprLoc());

  case CK_FloatingComplexCast:
  case CK_FloatingComplexToIntegralComplex:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
    return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
                                    Op->getExprLoc());
  }

  llvm_unreachable("unknown cast resulting in complex value");
}

ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
  TestAndClearIgnoreReal();
  TestAndClearIgnoreImag();
  ComplexPairTy Op = Visit(E->getSubExpr());

  llvm::Value *ResR, *ResI;
  if (Op.first->getType()->isFloatingPointTy()) {
    ResR = Builder.CreateFNeg(Op.first,  "neg.r");
    ResI = Builder.CreateFNeg(Op.second, "neg.i");
  } else {
    ResR = Builder.CreateNeg(Op.first,  "neg.r");
    ResI = Builder.CreateNeg(Op.second, "neg.i");
  }
  return ComplexPairTy(ResR, ResI);
}

ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
  TestAndClearIgnoreReal();
  TestAndClearIgnoreImag();
  // ~(a+ib) = a + i*-b
  ComplexPairTy Op = Visit(E->getSubExpr());
  llvm::Value *ResI;
  if (Op.second->getType()->isFloatingPointTy())
    ResI = Builder.CreateFNeg(Op.second, "conj.i");
  else
    ResI = Builder.CreateNeg(Op.second, "conj.i");

  return ComplexPairTy(Op.first, ResI);
}

ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
  llvm::Value *ResR, *ResI;

  if (Op.LHS.first->getType()->isFloatingPointTy()) {
    ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
    if (Op.LHS.second && Op.RHS.second)
      ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
    else
      ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
    assert(ResI && "Only one operand may be real!");
  } else {
    ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
    assert(Op.LHS.second && Op.RHS.second &&
           "Both operands of integer complex operators must be complex!");
    ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
  }
  return ComplexPairTy(ResR, ResI);
}

ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
  llvm::Value *ResR, *ResI;
  if (Op.LHS.first->getType()->isFloatingPointTy()) {
    ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
    if (Op.LHS.second && Op.RHS.second)
      ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
    else
      ResI = Op.LHS.second ? Op.LHS.second
                           : Builder.CreateFNeg(Op.RHS.second, "sub.i");
    assert(ResI && "Only one operand may be real!");
  } else {
    ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
    assert(Op.LHS.second && Op.RHS.second &&
           "Both operands of integer complex operators must be complex!");
    ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
  }
  return ComplexPairTy(ResR, ResI);
}

/// Emit a libcall for a binary operation on complex types.
ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
                                                          const BinOpInfo &Op) {
  CallArgList Args;
  Args.add(RValue::get(Op.LHS.first),
           Op.Ty->castAs<ComplexType>()->getElementType());
  Args.add(RValue::get(Op.LHS.second),
           Op.Ty->castAs<ComplexType>()->getElementType());
  Args.add(RValue::get(Op.RHS.first),
           Op.Ty->castAs<ComplexType>()->getElementType());
  Args.add(RValue::get(Op.RHS.second),
           Op.Ty->castAs<ComplexType>()->getElementType());

  // We *must* use the full CG function call building logic here because the
  // complex type has special ABI handling. We also should not forget about
  // special calling convention which may be used for compiler builtins.

  // We create a function qualified type to state that this call does not have
  // any exceptions.
  FunctionProtoType::ExtProtoInfo EPI;
  EPI = EPI.withExceptionSpec(
      FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
  SmallVector<QualType, 4> ArgsQTys(
      4, Op.Ty->castAs<ComplexType>()->getElementType());
  QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
  const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
      Args, cast<FunctionType>(FQTy.getTypePtr()), false);

  llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
  llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction(
      FTy, LibCallName, llvm::AttributeList(), true);
  CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs<FunctionProtoType>());

  llvm::CallBase *Call;
  RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call);
  Call->setCallingConv(CGF.CGM.getRuntimeCC());
  return Res.getComplexVal();
}

/// Lookup the libcall name for a given floating point type complex
/// multiply.
static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
  switch (Ty->getTypeID()) {
  default:
    llvm_unreachable("Unsupported floating point type!");
  case llvm::Type::HalfTyID:
    return "__mulhc3";
  case llvm::Type::FloatTyID:
    return "__mulsc3";
  case llvm::Type::DoubleTyID:
    return "__muldc3";
  case llvm::Type::PPC_FP128TyID:
    return "__multc3";
  case llvm::Type::X86_FP80TyID:
    return "__mulxc3";
  case llvm::Type::FP128TyID:
    return "__multc3";
  }
}

// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
// typed values.
ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
  using llvm::Value;
  Value *ResR, *ResI;
  llvm::MDBuilder MDHelper(CGF.getLLVMContext());

  if (Op.LHS.first->getType()->isFloatingPointTy()) {
    // The general formulation is:
    // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
    //
    // But we can fold away components which would be zero due to a real
    // operand according to C11 Annex G.5.1p2.
    // FIXME: C11 also provides for imaginary types which would allow folding
    // still more of this within the type system.

    if (Op.LHS.second && Op.RHS.second) {
      // If both operands are complex, emit the core math directly, and then
      // test for NaNs. If we find NaNs in the result, we delegate to a libcall
      // to carefully re-compute the correct infinity representation if
      // possible. The expectation is that the presence of NaNs here is
      // *extremely* rare, and so the cost of the libcall is almost irrelevant.
      // This is good, because the libcall re-computes the core multiplication
      // exactly the same as we do here and re-tests for NaNs in order to be
      // a generic complex*complex libcall.

      // First compute the four products.
      Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
      Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
      Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
      Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");

      // The real part is the difference of the first two, the imaginary part is
      // the sum of the second.
      ResR = Builder.CreateFSub(AC, BD, "mul_r");
      ResI = Builder.CreateFAdd(AD, BC, "mul_i");

      // Emit the test for the real part becoming NaN and create a branch to
      // handle it. We test for NaN by comparing the number to itself.
      Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
      llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
      llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
      llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
      llvm::BasicBlock *OrigBB = Branch->getParent();

      // Give hint that we very much don't expect to see NaNs.
      // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
      llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
      Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);

      // Now test the imaginary part and create its branch.
      CGF.EmitBlock(INaNBB);
      Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
      llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
      Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
      Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);

      // Now emit the libcall on this slowest of the slow paths.
      CGF.EmitBlock(LibCallBB);
      Value *LibCallR, *LibCallI;
      std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
          getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
      Builder.CreateBr(ContBB);

      // Finally continue execution by phi-ing together the different
      // computation paths.
      CGF.EmitBlock(ContBB);
      llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
      RealPHI->addIncoming(ResR, OrigBB);
      RealPHI->addIncoming(ResR, INaNBB);
      RealPHI->addIncoming(LibCallR, LibCallBB);
      llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
      ImagPHI->addIncoming(ResI, OrigBB);
      ImagPHI->addIncoming(ResI, INaNBB);
      ImagPHI->addIncoming(LibCallI, LibCallBB);
      return ComplexPairTy(RealPHI, ImagPHI);
    }
    assert((Op.LHS.second || Op.RHS.second) &&
           "At least one operand must be complex!");

    // If either of the operands is a real rather than a complex, the
    // imaginary component is ignored when computing the real component of the
    // result.
    ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");

    ResI = Op.LHS.second
               ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
               : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
  } else {
    assert(Op.LHS.second && Op.RHS.second &&
           "Both operands of integer complex operators must be complex!");
    Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
    Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
    ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");

    Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
    Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
    ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
  }
  return ComplexPairTy(ResR, ResI);
}

// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
// typed values.
ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
  llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
  llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;

  llvm::Value *DSTr, *DSTi;
  if (LHSr->getType()->isFloatingPointTy()) {
    // If we have a complex operand on the RHS and FastMath is not allowed, we
    // delegate to a libcall to handle all of the complexities and minimize
    // underflow/overflow cases. When FastMath is allowed we construct the
    // divide inline using the same algorithm as for integer operands.
    //
    // FIXME: We would be able to avoid the libcall in many places if we
    // supported imaginary types in addition to complex types.
    if (RHSi && !CGF.getLangOpts().FastMath) {
      BinOpInfo LibCallOp = Op;
      // If LHS was a real, supply a null imaginary part.
      if (!LHSi)
        LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());

      switch (LHSr->getType()->getTypeID()) {
      default:
        llvm_unreachable("Unsupported floating point type!");
      case llvm::Type::HalfTyID:
        return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
      case llvm::Type::FloatTyID:
        return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
      case llvm::Type::DoubleTyID:
        return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
      case llvm::Type::PPC_FP128TyID:
        return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
      case llvm::Type::X86_FP80TyID:
        return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
      case llvm::Type::FP128TyID:
        return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
      }
    } else if (RHSi) {
      if (!LHSi)
        LHSi = llvm::Constant::getNullValue(RHSi->getType());

      // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
      llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c
      llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d
      llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd

      llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c
      llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d
      llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd

      llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c
      llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d
      llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad

      DSTr = Builder.CreateFDiv(ACpBD, CCpDD);
      DSTi = Builder.CreateFDiv(BCmAD, CCpDD);
    } else {
      assert(LHSi && "Can have at most one non-complex operand!");

      DSTr = Builder.CreateFDiv(LHSr, RHSr);
      DSTi = Builder.CreateFDiv(LHSi, RHSr);
    }
  } else {
    assert(Op.LHS.second && Op.RHS.second &&
           "Both operands of integer complex operators must be complex!");
    // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
    llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
    llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
    llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd

    llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
    llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
    llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd

    llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
    llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
    llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad

    if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
      DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
      DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
    } else {
      DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
      DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
    }
  }

  return ComplexPairTy(DSTr, DSTi);
}

ComplexExprEmitter::BinOpInfo
ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
  TestAndClearIgnoreReal();
  TestAndClearIgnoreImag();
  BinOpInfo Ops;
  if (E->getLHS()->getType()->isRealFloatingType())
    Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
  else
    Ops.LHS = Visit(E->getLHS());
  if (E->getRHS()->getType()->isRealFloatingType())
    Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
  else
    Ops.RHS = Visit(E->getRHS());

  Ops.Ty = E->getType();
  return Ops;
}


LValue ComplexExprEmitter::
EmitCompoundAssignLValue(const CompoundAssignOperator *E,
          ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
                         RValue &Val) {
  TestAndClearIgnoreReal();
  TestAndClearIgnoreImag();
  QualType LHSTy = E->getLHS()->getType();
  if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
    LHSTy = AT->getValueType();

  BinOpInfo OpInfo;

  // Load the RHS and LHS operands.
  // __block variables need to have the rhs evaluated first, plus this should
  // improve codegen a little.
  OpInfo.Ty = E->getComputationResultType();
  QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();

  // The RHS should have been converted to the computation type.
  if (E->getRHS()->getType()->isRealFloatingType()) {
    assert(
        CGF.getContext()
            .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
    OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
  } else {
    assert(CGF.getContext()
               .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
    OpInfo.RHS = Visit(E->getRHS());
  }

  LValue LHS = CGF.EmitLValue(E->getLHS());

  // Load from the l-value and convert it.
  SourceLocation Loc = E->getExprLoc();
  if (LHSTy->isAnyComplexType()) {
    ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
    OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
  } else {
    llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
    // For floating point real operands we can directly pass the scalar form
    // to the binary operator emission and potentially get more efficient code.
    if (LHSTy->isRealFloatingType()) {
      if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
        LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
      OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
    } else {
      OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
    }
  }

  // Expand the binary operator.
  ComplexPairTy Result = (this->*Func)(OpInfo);

  // Truncate the result and store it into the LHS lvalue.
  if (LHSTy->isAnyComplexType()) {
    ComplexPairTy ResVal =
        EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
    EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
    Val = RValue::getComplex(ResVal);
  } else {
    llvm::Value *ResVal =
        CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
    CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
    Val = RValue::get(ResVal);
  }

  return LHS;
}

// Compound assignments.
ComplexPairTy ComplexExprEmitter::
EmitCompoundAssign(const CompoundAssignOperator *E,
                   ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
  RValue Val;
  LValue LV = EmitCompoundAssignLValue(E, Func, Val);

  // The result of an assignment in C is the assigned r-value.
  if (!CGF.getLangOpts().CPlusPlus)
    return Val.getComplexVal();

  // If the lvalue is non-volatile, return the computed value of the assignment.
  if (!LV.isVolatileQualified())
    return Val.getComplexVal();

  return EmitLoadOfLValue(LV, E->getExprLoc());
}

LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
                                               ComplexPairTy &Val) {
  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
                                                 E->getRHS()->getType()) &&
         "Invalid assignment");
  TestAndClearIgnoreReal();
  TestAndClearIgnoreImag();

  // Emit the RHS.  __block variables need the RHS evaluated first.
  Val = Visit(E->getRHS());

  // Compute the address to store into.
  LValue LHS = CGF.EmitLValue(E->getLHS());

  // Store the result value into the LHS lvalue.
  EmitStoreOfComplex(Val, LHS, /*isInit*/ false);

  return LHS;
}

ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
  ComplexPairTy Val;
  LValue LV = EmitBinAssignLValue(E, Val);

  // The result of an assignment in C is the assigned r-value.
  if (!CGF.getLangOpts().CPlusPlus)
    return Val;

  // If the lvalue is non-volatile, return the computed value of the assignment.
  if (!LV.isVolatileQualified())
    return Val;

  return EmitLoadOfLValue(LV, E->getExprLoc());
}

ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
  CGF.EmitIgnoredExpr(E->getLHS());
  return Visit(E->getRHS());
}

ComplexPairTy ComplexExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
  TestAndClearIgnoreReal();
  TestAndClearIgnoreImag();
  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");

  // Bind the common expression if necessary.
  CodeGenFunction::OpaqueValueMapping binding(CGF, E);


  CodeGenFunction::ConditionalEvaluation eval(CGF);
  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
                           CGF.getProfileCount(E));

  eval.begin(CGF);
  CGF.EmitBlock(LHSBlock);
  CGF.incrementProfileCounter(E);
  ComplexPairTy LHS = Visit(E->getTrueExpr());
  LHSBlock = Builder.GetInsertBlock();
  CGF.EmitBranch(ContBlock);
  eval.end(CGF);

  eval.begin(CGF);
  CGF.EmitBlock(RHSBlock);
  ComplexPairTy RHS = Visit(E->getFalseExpr());
  RHSBlock = Builder.GetInsertBlock();
  CGF.EmitBlock(ContBlock);
  eval.end(CGF);

  // Create a PHI node for the real part.
  llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
  RealPN->addIncoming(LHS.first, LHSBlock);
  RealPN->addIncoming(RHS.first, RHSBlock);

  // Create a PHI node for the imaginary part.
  llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
  ImagPN->addIncoming(LHS.second, LHSBlock);
  ImagPN->addIncoming(RHS.second, RHSBlock);

  return ComplexPairTy(RealPN, ImagPN);
}

ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
  return Visit(E->getChosenSubExpr());
}

ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
    bool Ignore = TestAndClearIgnoreReal();
    (void)Ignore;
    assert (Ignore == false && "init list ignored");
    Ignore = TestAndClearIgnoreImag();
    (void)Ignore;
    assert (Ignore == false && "init list ignored");

  if (E->getNumInits() == 2) {
    llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
    llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
    return ComplexPairTy(Real, Imag);
  } else if (E->getNumInits() == 1) {
    return Visit(E->getInit(0));
  }

  // Empty init list initializes to null
  assert(E->getNumInits() == 0 && "Unexpected number of inits");
  QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
  llvm::Type* LTy = CGF.ConvertType(Ty);
  llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
  return ComplexPairTy(zeroConstant, zeroConstant);
}

ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
  Address ArgValue = Address::invalid();
  Address ArgPtr = CGF.EmitVAArg(E, ArgValue);

  if (!ArgPtr.isValid()) {
    CGF.ErrorUnsupported(E, "complex va_arg expression");
    llvm::Type *EltTy =
      CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
    llvm::Value *U = llvm::UndefValue::get(EltTy);
    return ComplexPairTy(U, U);
  }

  return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
                          E->getExprLoc());
}

//===----------------------------------------------------------------------===//
//                         Entry Point into this File
//===----------------------------------------------------------------------===//

/// EmitComplexExpr - Emit the computation of the specified expression of
/// complex type, ignoring the result.
ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
                                               bool IgnoreImag) {
  assert(E && getComplexType(E->getType()) &&
         "Invalid complex expression to emit");

  return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
      .Visit(const_cast<Expr *>(E));
}

void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
                                                bool isInit) {
  assert(E && getComplexType(E->getType()) &&
         "Invalid complex expression to emit");
  ComplexExprEmitter Emitter(*this);
  ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
  Emitter.EmitStoreOfComplex(Val, dest, isInit);
}

/// EmitStoreOfComplex - Store a complex number into the specified l-value.
void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
                                         bool isInit) {
  ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
}

/// EmitLoadOfComplex - Load a complex number from the specified address.
ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
                                                 SourceLocation loc) {
  return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
}

LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
  assert(E->getOpcode() == BO_Assign);
  ComplexPairTy Val; // ignored
  LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
  if (getLangOpts().OpenMP)
    CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
                                                              E->getLHS());
  return LVal;
}

typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
    const ComplexExprEmitter::BinOpInfo &);

static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
  switch (Op) {
  case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
  case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
  case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
  case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
  default:
    llvm_unreachable("unexpected complex compound assignment");
  }
}

LValue CodeGenFunction::
EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
  CompoundFunc Op = getComplexOp(E->getOpcode());
  RValue Val;
  return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
}

LValue CodeGenFunction::
EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
                                    llvm::Value *&Result) {
  CompoundFunc Op = getComplexOp(E->getOpcode());
  RValue Val;
  LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
  Result = Val.getScalarVal();
  return Ret;
}