ASTContext.cpp 410 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325
//===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/ASTContext.h"
#include "CXXABI.h"
#include "Interp/Context.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTConcept.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Attr.h"
#include "clang/AST/AttrIterator.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Comment.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/MangleNumberingContext.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/AST/RawCommentList.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CommentOptions.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/SanitizerBlacklist.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetCXXABI.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/XRayLists.h"
#include "llvm/ADT/APFixedPoint.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Capacity.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <tuple>
#include <utility>

using namespace clang;

enum FloatingRank {
  BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
};

/// \returns location that is relevant when searching for Doc comments related
/// to \p D.
static SourceLocation getDeclLocForCommentSearch(const Decl *D,
                                                 SourceManager &SourceMgr) {
  assert(D);

  // User can not attach documentation to implicit declarations.
  if (D->isImplicit())
    return {};

  // User can not attach documentation to implicit instantiations.
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
      return {};
  }

  if (const auto *VD = dyn_cast<VarDecl>(D)) {
    if (VD->isStaticDataMember() &&
        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
      return {};
  }

  if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
      return {};
  }

  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
    if (TSK == TSK_ImplicitInstantiation ||
        TSK == TSK_Undeclared)
      return {};
  }

  if (const auto *ED = dyn_cast<EnumDecl>(D)) {
    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
      return {};
  }
  if (const auto *TD = dyn_cast<TagDecl>(D)) {
    // When tag declaration (but not definition!) is part of the
    // decl-specifier-seq of some other declaration, it doesn't get comment
    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
      return {};
  }
  // TODO: handle comments for function parameters properly.
  if (isa<ParmVarDecl>(D))
    return {};

  // TODO: we could look up template parameter documentation in the template
  // documentation.
  if (isa<TemplateTypeParmDecl>(D) ||
      isa<NonTypeTemplateParmDecl>(D) ||
      isa<TemplateTemplateParmDecl>(D))
    return {};

  // Find declaration location.
  // For Objective-C declarations we generally don't expect to have multiple
  // declarators, thus use declaration starting location as the "declaration
  // location".
  // For all other declarations multiple declarators are used quite frequently,
  // so we use the location of the identifier as the "declaration location".
  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
      isa<ObjCPropertyDecl>(D) ||
      isa<RedeclarableTemplateDecl>(D) ||
      isa<ClassTemplateSpecializationDecl>(D) ||
      // Allow association with Y across {} in `typedef struct X {} Y`.
      isa<TypedefDecl>(D))
    return D->getBeginLoc();
  else {
    const SourceLocation DeclLoc = D->getLocation();
    if (DeclLoc.isMacroID()) {
      if (isa<TypedefDecl>(D)) {
        // If location of the typedef name is in a macro, it is because being
        // declared via a macro. Try using declaration's starting location as
        // the "declaration location".
        return D->getBeginLoc();
      } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
        // If location of the tag decl is inside a macro, but the spelling of
        // the tag name comes from a macro argument, it looks like a special
        // macro like NS_ENUM is being used to define the tag decl.  In that
        // case, adjust the source location to the expansion loc so that we can
        // attach the comment to the tag decl.
        if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
            TD->isCompleteDefinition())
          return SourceMgr.getExpansionLoc(DeclLoc);
      }
    }
    return DeclLoc;
  }

  return {};
}

RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
    const Decl *D, const SourceLocation RepresentativeLocForDecl,
    const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
  // If the declaration doesn't map directly to a location in a file, we
  // can't find the comment.
  if (RepresentativeLocForDecl.isInvalid() ||
      !RepresentativeLocForDecl.isFileID())
    return nullptr;

  // If there are no comments anywhere, we won't find anything.
  if (CommentsInTheFile.empty())
    return nullptr;

  // Decompose the location for the declaration and find the beginning of the
  // file buffer.
  const std::pair<FileID, unsigned> DeclLocDecomp =
      SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);

  // Slow path.
  auto OffsetCommentBehindDecl =
      CommentsInTheFile.lower_bound(DeclLocDecomp.second);

  // First check whether we have a trailing comment.
  if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
    RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
    if ((CommentBehindDecl->isDocumentation() ||
         LangOpts.CommentOpts.ParseAllComments) &&
        CommentBehindDecl->isTrailingComment() &&
        (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
         isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {

      // Check that Doxygen trailing comment comes after the declaration, starts
      // on the same line and in the same file as the declaration.
      if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
          Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
                                       OffsetCommentBehindDecl->first)) {
        return CommentBehindDecl;
      }
    }
  }

  // The comment just after the declaration was not a trailing comment.
  // Let's look at the previous comment.
  if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
    return nullptr;

  auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
  RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;

  // Check that we actually have a non-member Doxygen comment.
  if (!(CommentBeforeDecl->isDocumentation() ||
        LangOpts.CommentOpts.ParseAllComments) ||
      CommentBeforeDecl->isTrailingComment())
    return nullptr;

  // Decompose the end of the comment.
  const unsigned CommentEndOffset =
      Comments.getCommentEndOffset(CommentBeforeDecl);

  // Get the corresponding buffer.
  bool Invalid = false;
  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
                                               &Invalid).data();
  if (Invalid)
    return nullptr;

  // Extract text between the comment and declaration.
  StringRef Text(Buffer + CommentEndOffset,
                 DeclLocDecomp.second - CommentEndOffset);

  // There should be no other declarations or preprocessor directives between
  // comment and declaration.
  if (Text.find_first_of(";{}#@") != StringRef::npos)
    return nullptr;

  return CommentBeforeDecl;
}

RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
  const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);

  // If the declaration doesn't map directly to a location in a file, we
  // can't find the comment.
  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
    return nullptr;

  if (ExternalSource && !CommentsLoaded) {
    ExternalSource->ReadComments();
    CommentsLoaded = true;
  }

  if (Comments.empty())
    return nullptr;

  const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
  const auto CommentsInThisFile = Comments.getCommentsInFile(File);
  if (!CommentsInThisFile || CommentsInThisFile->empty())
    return nullptr;

  return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
}

void ASTContext::addComment(const RawComment &RC) {
  assert(LangOpts.RetainCommentsFromSystemHeaders ||
         !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
  Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
}

/// If we have a 'templated' declaration for a template, adjust 'D' to
/// refer to the actual template.
/// If we have an implicit instantiation, adjust 'D' to refer to template.
static const Decl &adjustDeclToTemplate(const Decl &D) {
  if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
    // Is this function declaration part of a function template?
    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
      return *FTD;

    // Nothing to do if function is not an implicit instantiation.
    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
      return D;

    // Function is an implicit instantiation of a function template?
    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
      return *FTD;

    // Function is instantiated from a member definition of a class template?
    if (const FunctionDecl *MemberDecl =
            FD->getInstantiatedFromMemberFunction())
      return *MemberDecl;

    return D;
  }
  if (const auto *VD = dyn_cast<VarDecl>(&D)) {
    // Static data member is instantiated from a member definition of a class
    // template?
    if (VD->isStaticDataMember())
      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
        return *MemberDecl;

    return D;
  }
  if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
    // Is this class declaration part of a class template?
    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
      return *CTD;

    // Class is an implicit instantiation of a class template or partial
    // specialization?
    if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
        return D;
      llvm::PointerUnion<ClassTemplateDecl *,
                         ClassTemplatePartialSpecializationDecl *>
          PU = CTSD->getSpecializedTemplateOrPartial();
      return PU.is<ClassTemplateDecl *>()
                 ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
                 : *static_cast<const Decl *>(
                       PU.get<ClassTemplatePartialSpecializationDecl *>());
    }

    // Class is instantiated from a member definition of a class template?
    if (const MemberSpecializationInfo *Info =
            CRD->getMemberSpecializationInfo())
      return *Info->getInstantiatedFrom();

    return D;
  }
  if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
    // Enum is instantiated from a member definition of a class template?
    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
      return *MemberDecl;

    return D;
  }
  // FIXME: Adjust alias templates?
  return D;
}

const RawComment *ASTContext::getRawCommentForAnyRedecl(
                                                const Decl *D,
                                                const Decl **OriginalDecl) const {
  if (!D) {
    if (OriginalDecl)
      OriginalDecl = nullptr;
    return nullptr;
  }

  D = &adjustDeclToTemplate(*D);

  // Any comment directly attached to D?
  {
    auto DeclComment = DeclRawComments.find(D);
    if (DeclComment != DeclRawComments.end()) {
      if (OriginalDecl)
        *OriginalDecl = D;
      return DeclComment->second;
    }
  }

  // Any comment attached to any redeclaration of D?
  const Decl *CanonicalD = D->getCanonicalDecl();
  if (!CanonicalD)
    return nullptr;

  {
    auto RedeclComment = RedeclChainComments.find(CanonicalD);
    if (RedeclComment != RedeclChainComments.end()) {
      if (OriginalDecl)
        *OriginalDecl = RedeclComment->second;
      auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
      assert(CommentAtRedecl != DeclRawComments.end() &&
             "This decl is supposed to have comment attached.");
      return CommentAtRedecl->second;
    }
  }

  // Any redeclarations of D that we haven't checked for comments yet?
  // We can't use DenseMap::iterator directly since it'd get invalid.
  auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
    auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
    if (LookupRes != CommentlessRedeclChains.end())
      return LookupRes->second;
    return nullptr;
  }();

  for (const auto Redecl : D->redecls()) {
    assert(Redecl);
    // Skip all redeclarations that have been checked previously.
    if (LastCheckedRedecl) {
      if (LastCheckedRedecl == Redecl) {
        LastCheckedRedecl = nullptr;
      }
      continue;
    }
    const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
    if (RedeclComment) {
      cacheRawCommentForDecl(*Redecl, *RedeclComment);
      if (OriginalDecl)
        *OriginalDecl = Redecl;
      return RedeclComment;
    }
    CommentlessRedeclChains[CanonicalD] = Redecl;
  }

  if (OriginalDecl)
    *OriginalDecl = nullptr;
  return nullptr;
}

void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
                                        const RawComment &Comment) const {
  assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
  DeclRawComments.try_emplace(&OriginalD, &Comment);
  const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
  RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
  CommentlessRedeclChains.erase(CanonicalDecl);
}

static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
  const DeclContext *DC = ObjCMethod->getDeclContext();
  if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
    if (!ID)
      return;
    // Add redeclared method here.
    for (const auto *Ext : ID->known_extensions()) {
      if (ObjCMethodDecl *RedeclaredMethod =
            Ext->getMethod(ObjCMethod->getSelector(),
                                  ObjCMethod->isInstanceMethod()))
        Redeclared.push_back(RedeclaredMethod);
    }
  }
}

void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
                                                 const Preprocessor *PP) {
  if (Comments.empty() || Decls.empty())
    return;

  FileID File;
  for (Decl *D : Decls) {
    SourceLocation Loc = D->getLocation();
    if (Loc.isValid()) {
      // See if there are any new comments that are not attached to a decl.
      // The location doesn't have to be precise - we care only about the file.
      File = SourceMgr.getDecomposedLoc(Loc).first;
      break;
    }
  }

  if (File.isInvalid())
    return;

  auto CommentsInThisFile = Comments.getCommentsInFile(File);
  if (!CommentsInThisFile || CommentsInThisFile->empty() ||
      CommentsInThisFile->rbegin()->second->isAttached())
    return;

  // There is at least one comment not attached to a decl.
  // Maybe it should be attached to one of Decls?
  //
  // Note that this way we pick up not only comments that precede the
  // declaration, but also comments that *follow* the declaration -- thanks to
  // the lookahead in the lexer: we've consumed the semicolon and looked
  // ahead through comments.

  for (const Decl *D : Decls) {
    assert(D);
    if (D->isInvalidDecl())
      continue;

    D = &adjustDeclToTemplate(*D);

    const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);

    if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
      continue;

    if (DeclRawComments.count(D) > 0)
      continue;

    if (RawComment *const DocComment =
            getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
      cacheRawCommentForDecl(*D, *DocComment);
      comments::FullComment *FC = DocComment->parse(*this, PP, D);
      ParsedComments[D->getCanonicalDecl()] = FC;
    }
  }
}

comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
                                                    const Decl *D) const {
  auto *ThisDeclInfo = new (*this) comments::DeclInfo;
  ThisDeclInfo->CommentDecl = D;
  ThisDeclInfo->IsFilled = false;
  ThisDeclInfo->fill();
  ThisDeclInfo->CommentDecl = FC->getDecl();
  if (!ThisDeclInfo->TemplateParameters)
    ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
  comments::FullComment *CFC =
    new (*this) comments::FullComment(FC->getBlocks(),
                                      ThisDeclInfo);
  return CFC;
}

comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
  const RawComment *RC = getRawCommentForDeclNoCache(D);
  return RC ? RC->parse(*this, nullptr, D) : nullptr;
}

comments::FullComment *ASTContext::getCommentForDecl(
                                              const Decl *D,
                                              const Preprocessor *PP) const {
  if (!D || D->isInvalidDecl())
    return nullptr;
  D = &adjustDeclToTemplate(*D);

  const Decl *Canonical = D->getCanonicalDecl();
  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
      ParsedComments.find(Canonical);

  if (Pos != ParsedComments.end()) {
    if (Canonical != D) {
      comments::FullComment *FC = Pos->second;
      comments::FullComment *CFC = cloneFullComment(FC, D);
      return CFC;
    }
    return Pos->second;
  }

  const Decl *OriginalDecl = nullptr;

  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
  if (!RC) {
    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
      SmallVector<const NamedDecl*, 8> Overridden;
      const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
      if (OMD && OMD->isPropertyAccessor())
        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
            return cloneFullComment(FC, D);
      if (OMD)
        addRedeclaredMethods(OMD, Overridden);
      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
          return cloneFullComment(FC, D);
    }
    else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
      // Attach any tag type's documentation to its typedef if latter
      // does not have one of its own.
      QualType QT = TD->getUnderlyingType();
      if (const auto *TT = QT->getAs<TagType>())
        if (const Decl *TD = TT->getDecl())
          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
            return cloneFullComment(FC, D);
    }
    else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
      while (IC->getSuperClass()) {
        IC = IC->getSuperClass();
        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
          return cloneFullComment(FC, D);
      }
    }
    else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
          return cloneFullComment(FC, D);
    }
    else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
      if (!(RD = RD->getDefinition()))
        return nullptr;
      // Check non-virtual bases.
      for (const auto &I : RD->bases()) {
        if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
          continue;
        QualType Ty = I.getType();
        if (Ty.isNull())
          continue;
        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
            continue;

          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
            return cloneFullComment(FC, D);
        }
      }
      // Check virtual bases.
      for (const auto &I : RD->vbases()) {
        if (I.getAccessSpecifier() != AS_public)
          continue;
        QualType Ty = I.getType();
        if (Ty.isNull())
          continue;
        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
          if (!(VirtualBase= VirtualBase->getDefinition()))
            continue;
          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
            return cloneFullComment(FC, D);
        }
      }
    }
    return nullptr;
  }

  // If the RawComment was attached to other redeclaration of this Decl, we
  // should parse the comment in context of that other Decl.  This is important
  // because comments can contain references to parameter names which can be
  // different across redeclarations.
  if (D != OriginalDecl && OriginalDecl)
    return getCommentForDecl(OriginalDecl, PP);

  comments::FullComment *FC = RC->parse(*this, PP, D);
  ParsedComments[Canonical] = FC;
  return FC;
}

void
ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
                                                   const ASTContext &C,
                                               TemplateTemplateParmDecl *Parm) {
  ID.AddInteger(Parm->getDepth());
  ID.AddInteger(Parm->getPosition());
  ID.AddBoolean(Parm->isParameterPack());

  TemplateParameterList *Params = Parm->getTemplateParameters();
  ID.AddInteger(Params->size());
  for (TemplateParameterList::const_iterator P = Params->begin(),
                                          PEnd = Params->end();
       P != PEnd; ++P) {
    if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
      ID.AddInteger(0);
      ID.AddBoolean(TTP->isParameterPack());
      const TypeConstraint *TC = TTP->getTypeConstraint();
      ID.AddBoolean(TC != nullptr);
      if (TC)
        TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
                                                        /*Canonical=*/true);
      if (TTP->isExpandedParameterPack()) {
        ID.AddBoolean(true);
        ID.AddInteger(TTP->getNumExpansionParameters());
      } else
        ID.AddBoolean(false);
      continue;
    }

    if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
      ID.AddInteger(1);
      ID.AddBoolean(NTTP->isParameterPack());
      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
      if (NTTP->isExpandedParameterPack()) {
        ID.AddBoolean(true);
        ID.AddInteger(NTTP->getNumExpansionTypes());
        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
          QualType T = NTTP->getExpansionType(I);
          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
        }
      } else
        ID.AddBoolean(false);
      continue;
    }

    auto *TTP = cast<TemplateTemplateParmDecl>(*P);
    ID.AddInteger(2);
    Profile(ID, C, TTP);
  }
  Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
  ID.AddBoolean(RequiresClause != nullptr);
  if (RequiresClause)
    RequiresClause->Profile(ID, C, /*Canonical=*/true);
}

static Expr *
canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
                                          QualType ConstrainedType) {
  // This is a bit ugly - we need to form a new immediately-declared
  // constraint that references the new parameter; this would ideally
  // require semantic analysis (e.g. template<C T> struct S {}; - the
  // converted arguments of C<T> could be an argument pack if C is
  // declared as template<typename... T> concept C = ...).
  // We don't have semantic analysis here so we dig deep into the
  // ready-made constraint expr and change the thing manually.
  ConceptSpecializationExpr *CSE;
  if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
    CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
  else
    CSE = cast<ConceptSpecializationExpr>(IDC);
  ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
  SmallVector<TemplateArgument, 3> NewConverted;
  NewConverted.reserve(OldConverted.size());
  if (OldConverted.front().getKind() == TemplateArgument::Pack) {
    // The case:
    // template<typename... T> concept C = true;
    // template<C<int> T> struct S; -> constraint is C<{T, int}>
    NewConverted.push_back(ConstrainedType);
    for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
      NewConverted.push_back(Arg);
    TemplateArgument NewPack(NewConverted);

    NewConverted.clear();
    NewConverted.push_back(NewPack);
    assert(OldConverted.size() == 1 &&
           "Template parameter pack should be the last parameter");
  } else {
    assert(OldConverted.front().getKind() == TemplateArgument::Type &&
           "Unexpected first argument kind for immediately-declared "
           "constraint");
    NewConverted.push_back(ConstrainedType);
    for (auto &Arg : OldConverted.drop_front(1))
      NewConverted.push_back(Arg);
  }
  Expr *NewIDC = ConceptSpecializationExpr::Create(
      C, CSE->getNamedConcept(), NewConverted, nullptr,
      CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());

  if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
    NewIDC = new (C) CXXFoldExpr(
        OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
        BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
        SourceLocation(), /*NumExpansions=*/None);
  return NewIDC;
}

TemplateTemplateParmDecl *
ASTContext::getCanonicalTemplateTemplateParmDecl(
                                          TemplateTemplateParmDecl *TTP) const {
  // Check if we already have a canonical template template parameter.
  llvm::FoldingSetNodeID ID;
  CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
  void *InsertPos = nullptr;
  CanonicalTemplateTemplateParm *Canonical
    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
  if (Canonical)
    return Canonical->getParam();

  // Build a canonical template parameter list.
  TemplateParameterList *Params = TTP->getTemplateParameters();
  SmallVector<NamedDecl *, 4> CanonParams;
  CanonParams.reserve(Params->size());
  for (TemplateParameterList::const_iterator P = Params->begin(),
                                          PEnd = Params->end();
       P != PEnd; ++P) {
    if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
      TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
          getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
          TTP->getDepth(), TTP->getIndex(), nullptr, false,
          TTP->isParameterPack(), TTP->hasTypeConstraint(),
          TTP->isExpandedParameterPack() ?
          llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
      if (const auto *TC = TTP->getTypeConstraint()) {
        QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
        Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
                *this, TC->getImmediatelyDeclaredConstraint(),
                ParamAsArgument);
        TemplateArgumentListInfo CanonArgsAsWritten;
        if (auto *Args = TC->getTemplateArgsAsWritten())
          for (const auto &ArgLoc : Args->arguments())
            CanonArgsAsWritten.addArgument(
                TemplateArgumentLoc(ArgLoc.getArgument(),
                                    TemplateArgumentLocInfo()));
        NewTTP->setTypeConstraint(
            NestedNameSpecifierLoc(),
            DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
                                SourceLocation()), /*FoundDecl=*/nullptr,
            // Actually canonicalizing a TemplateArgumentLoc is difficult so we
            // simply omit the ArgsAsWritten
            TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
      }
      CanonParams.push_back(NewTTP);
    } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
      QualType T = getCanonicalType(NTTP->getType());
      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
      NonTypeTemplateParmDecl *Param;
      if (NTTP->isExpandedParameterPack()) {
        SmallVector<QualType, 2> ExpandedTypes;
        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
          ExpandedTInfos.push_back(
                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
        }

        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
                                                SourceLocation(),
                                                SourceLocation(),
                                                NTTP->getDepth(),
                                                NTTP->getPosition(), nullptr,
                                                T,
                                                TInfo,
                                                ExpandedTypes,
                                                ExpandedTInfos);
      } else {
        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
                                                SourceLocation(),
                                                SourceLocation(),
                                                NTTP->getDepth(),
                                                NTTP->getPosition(), nullptr,
                                                T,
                                                NTTP->isParameterPack(),
                                                TInfo);
      }
      if (AutoType *AT = T->getContainedAutoType()) {
        if (AT->isConstrained()) {
          Param->setPlaceholderTypeConstraint(
              canonicalizeImmediatelyDeclaredConstraint(
                  *this, NTTP->getPlaceholderTypeConstraint(), T));
        }
      }
      CanonParams.push_back(Param);

    } else
      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
                                           cast<TemplateTemplateParmDecl>(*P)));
  }

  Expr *CanonRequiresClause = nullptr;
  if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
    CanonRequiresClause = RequiresClause;

  TemplateTemplateParmDecl *CanonTTP
    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
                                       SourceLocation(), TTP->getDepth(),
                                       TTP->getPosition(),
                                       TTP->isParameterPack(),
                                       nullptr,
                         TemplateParameterList::Create(*this, SourceLocation(),
                                                       SourceLocation(),
                                                       CanonParams,
                                                       SourceLocation(),
                                                       CanonRequiresClause));

  // Get the new insert position for the node we care about.
  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
  assert(!Canonical && "Shouldn't be in the map!");
  (void)Canonical;

  // Create the canonical template template parameter entry.
  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
  return CanonTTP;
}

CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
  if (!LangOpts.CPlusPlus) return nullptr;

  switch (T.getCXXABI().getKind()) {
  case TargetCXXABI::Fuchsia:
  case TargetCXXABI::GenericARM: // Same as Itanium at this level
  case TargetCXXABI::iOS:
  case TargetCXXABI::iOS64:
  case TargetCXXABI::WatchOS:
  case TargetCXXABI::GenericAArch64:
  case TargetCXXABI::GenericMIPS:
  case TargetCXXABI::GenericItanium:
  case TargetCXXABI::WebAssembly:
  case TargetCXXABI::XL:
    return CreateItaniumCXXABI(*this);
  case TargetCXXABI::Microsoft:
    return CreateMicrosoftCXXABI(*this);
  }
  llvm_unreachable("Invalid CXXABI type!");
}

interp::Context &ASTContext::getInterpContext() {
  if (!InterpContext) {
    InterpContext.reset(new interp::Context(*this));
  }
  return *InterpContext.get();
}

ParentMapContext &ASTContext::getParentMapContext() {
  if (!ParentMapCtx)
    ParentMapCtx.reset(new ParentMapContext(*this));
  return *ParentMapCtx.get();
}

static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
                                           const LangOptions &LOpts) {
  if (LOpts.FakeAddressSpaceMap) {
    // The fake address space map must have a distinct entry for each
    // language-specific address space.
    static const unsigned FakeAddrSpaceMap[] = {
        0,  // Default
        1,  // opencl_global
        3,  // opencl_local
        2,  // opencl_constant
        0,  // opencl_private
        4,  // opencl_generic
        5,  // opencl_global_device
        6,  // opencl_global_host
        7,  // cuda_device
        8,  // cuda_constant
        9,  // cuda_shared
        10, // ptr32_sptr
        11, // ptr32_uptr
        12  // ptr64
    };
    return &FakeAddrSpaceMap;
  } else {
    return &T.getAddressSpaceMap();
  }
}

static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
                                          const LangOptions &LangOpts) {
  switch (LangOpts.getAddressSpaceMapMangling()) {
  case LangOptions::ASMM_Target:
    return TI.useAddressSpaceMapMangling();
  case LangOptions::ASMM_On:
    return true;
  case LangOptions::ASMM_Off:
    return false;
  }
  llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
}

ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
                       IdentifierTable &idents, SelectorTable &sels,
                       Builtin::Context &builtins)
    : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
      TemplateSpecializationTypes(this_()),
      DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
      SubstTemplateTemplateParmPacks(this_()),
      CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
      SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
      XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
                                        LangOpts.XRayNeverInstrumentFiles,
                                        LangOpts.XRayAttrListFiles, SM)),
      PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
      BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
      CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
      CompCategories(this_()), LastSDM(nullptr, 0) {
  TUDecl = TranslationUnitDecl::Create(*this);
  TraversalScope = {TUDecl};
}

ASTContext::~ASTContext() {
  // Release the DenseMaps associated with DeclContext objects.
  // FIXME: Is this the ideal solution?
  ReleaseDeclContextMaps();

  // Call all of the deallocation functions on all of their targets.
  for (auto &Pair : Deallocations)
    (Pair.first)(Pair.second);

  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
  // because they can contain DenseMaps.
  for (llvm::DenseMap<const ObjCContainerDecl*,
       const ASTRecordLayout*>::iterator
       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
    // Increment in loop to prevent using deallocated memory.
    if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
      R->Destroy(*this);

  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
    // Increment in loop to prevent using deallocated memory.
    if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
      R->Destroy(*this);
  }

  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
                                                    AEnd = DeclAttrs.end();
       A != AEnd; ++A)
    A->second->~AttrVec();

  for (const auto &Value : ModuleInitializers)
    Value.second->~PerModuleInitializers();

  for (APValue *Value : APValueCleanups)
    Value->~APValue();
}

void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
  TraversalScope = TopLevelDecls;
  getParentMapContext().clear();
}

void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
  Deallocations.push_back({Callback, Data});
}

void
ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
  ExternalSource = std::move(Source);
}

void ASTContext::PrintStats() const {
  llvm::errs() << "\n*** AST Context Stats:\n";
  llvm::errs() << "  " << Types.size() << " types total.\n";

  unsigned counts[] = {
#define TYPE(Name, Parent) 0,
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.inc"
    0 // Extra
  };

  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
    Type *T = Types[i];
    counts[(unsigned)T->getTypeClass()]++;
  }

  unsigned Idx = 0;
  unsigned TotalBytes = 0;
#define TYPE(Name, Parent)                                              \
  if (counts[Idx])                                                      \
    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
                 << " types, " << sizeof(Name##Type) << " each "        \
                 << "(" << counts[Idx] * sizeof(Name##Type)             \
                 << " bytes)\n";                                        \
  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
  ++Idx;
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.inc"

  llvm::errs() << "Total bytes = " << TotalBytes << "\n";

  // Implicit special member functions.
  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
               << NumImplicitDefaultConstructors
               << " implicit default constructors created\n";
  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
               << NumImplicitCopyConstructors
               << " implicit copy constructors created\n";
  if (getLangOpts().CPlusPlus)
    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
                 << NumImplicitMoveConstructors
                 << " implicit move constructors created\n";
  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
               << NumImplicitCopyAssignmentOperators
               << " implicit copy assignment operators created\n";
  if (getLangOpts().CPlusPlus)
    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
                 << NumImplicitMoveAssignmentOperators
                 << " implicit move assignment operators created\n";
  llvm::errs() << NumImplicitDestructorsDeclared << "/"
               << NumImplicitDestructors
               << " implicit destructors created\n";

  if (ExternalSource) {
    llvm::errs() << "\n";
    ExternalSource->PrintStats();
  }

  BumpAlloc.PrintStats();
}

void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
                                           bool NotifyListeners) {
  if (NotifyListeners)
    if (auto *Listener = getASTMutationListener())
      Listener->RedefinedHiddenDefinition(ND, M);

  MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
}

void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
  auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
  if (It == MergedDefModules.end())
    return;

  auto &Merged = It->second;
  llvm::DenseSet<Module*> Found;
  for (Module *&M : Merged)
    if (!Found.insert(M).second)
      M = nullptr;
  Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
}

ArrayRef<Module *>
ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
  auto MergedIt =
      MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
  if (MergedIt == MergedDefModules.end())
    return None;
  return MergedIt->second;
}

void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
  if (LazyInitializers.empty())
    return;

  auto *Source = Ctx.getExternalSource();
  assert(Source && "lazy initializers but no external source");

  auto LazyInits = std::move(LazyInitializers);
  LazyInitializers.clear();

  for (auto ID : LazyInits)
    Initializers.push_back(Source->GetExternalDecl(ID));

  assert(LazyInitializers.empty() &&
         "GetExternalDecl for lazy module initializer added more inits");
}

void ASTContext::addModuleInitializer(Module *M, Decl *D) {
  // One special case: if we add a module initializer that imports another
  // module, and that module's only initializer is an ImportDecl, simplify.
  if (const auto *ID = dyn_cast<ImportDecl>(D)) {
    auto It = ModuleInitializers.find(ID->getImportedModule());

    // Maybe the ImportDecl does nothing at all. (Common case.)
    if (It == ModuleInitializers.end())
      return;

    // Maybe the ImportDecl only imports another ImportDecl.
    auto &Imported = *It->second;
    if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
      Imported.resolve(*this);
      auto *OnlyDecl = Imported.Initializers.front();
      if (isa<ImportDecl>(OnlyDecl))
        D = OnlyDecl;
    }
  }

  auto *&Inits = ModuleInitializers[M];
  if (!Inits)
    Inits = new (*this) PerModuleInitializers;
  Inits->Initializers.push_back(D);
}

void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
  auto *&Inits = ModuleInitializers[M];
  if (!Inits)
    Inits = new (*this) PerModuleInitializers;
  Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
                                 IDs.begin(), IDs.end());
}

ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
  auto It = ModuleInitializers.find(M);
  if (It == ModuleInitializers.end())
    return None;

  auto *Inits = It->second;
  Inits->resolve(*this);
  return Inits->Initializers;
}

ExternCContextDecl *ASTContext::getExternCContextDecl() const {
  if (!ExternCContext)
    ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());

  return ExternCContext;
}

BuiltinTemplateDecl *
ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
                                     const IdentifierInfo *II) const {
  auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
  BuiltinTemplate->setImplicit();
  TUDecl->addDecl(BuiltinTemplate);

  return BuiltinTemplate;
}

BuiltinTemplateDecl *
ASTContext::getMakeIntegerSeqDecl() const {
  if (!MakeIntegerSeqDecl)
    MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
                                                  getMakeIntegerSeqName());
  return MakeIntegerSeqDecl;
}

BuiltinTemplateDecl *
ASTContext::getTypePackElementDecl() const {
  if (!TypePackElementDecl)
    TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
                                                   getTypePackElementName());
  return TypePackElementDecl;
}

RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
                                            RecordDecl::TagKind TK) const {
  SourceLocation Loc;
  RecordDecl *NewDecl;
  if (getLangOpts().CPlusPlus)
    NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
                                    Loc, &Idents.get(Name));
  else
    NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
                                 &Idents.get(Name));
  NewDecl->setImplicit();
  NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
      const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
  return NewDecl;
}

TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
                                              StringRef Name) const {
  TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
  TypedefDecl *NewDecl = TypedefDecl::Create(
      const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
      SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
  NewDecl->setImplicit();
  return NewDecl;
}

TypedefDecl *ASTContext::getInt128Decl() const {
  if (!Int128Decl)
    Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
  return Int128Decl;
}

TypedefDecl *ASTContext::getUInt128Decl() const {
  if (!UInt128Decl)
    UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
  return UInt128Decl;
}

void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
  auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
  Types.push_back(Ty);
}

void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
                                  const TargetInfo *AuxTarget) {
  assert((!this->Target || this->Target == &Target) &&
         "Incorrect target reinitialization");
  assert(VoidTy.isNull() && "Context reinitialized?");

  this->Target = &Target;
  this->AuxTarget = AuxTarget;

  ABI.reset(createCXXABI(Target));
  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
  AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);

  // C99 6.2.5p19.
  InitBuiltinType(VoidTy,              BuiltinType::Void);

  // C99 6.2.5p2.
  InitBuiltinType(BoolTy,              BuiltinType::Bool);
  // C99 6.2.5p3.
  if (LangOpts.CharIsSigned)
    InitBuiltinType(CharTy,            BuiltinType::Char_S);
  else
    InitBuiltinType(CharTy,            BuiltinType::Char_U);
  // C99 6.2.5p4.
  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
  InitBuiltinType(ShortTy,             BuiltinType::Short);
  InitBuiltinType(IntTy,               BuiltinType::Int);
  InitBuiltinType(LongTy,              BuiltinType::Long);
  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);

  // C99 6.2.5p6.
  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);

  // C99 6.2.5p10.
  InitBuiltinType(FloatTy,             BuiltinType::Float);
  InitBuiltinType(DoubleTy,            BuiltinType::Double);
  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);

  // GNU extension, __float128 for IEEE quadruple precision
  InitBuiltinType(Float128Ty,          BuiltinType::Float128);

  // C11 extension ISO/IEC TS 18661-3
  InitBuiltinType(Float16Ty,           BuiltinType::Float16);

  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
  InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
  InitBuiltinType(AccumTy,                 BuiltinType::Accum);
  InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
  InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
  InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
  InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
  InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
  InitBuiltinType(FractTy,                 BuiltinType::Fract);
  InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
  InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
  InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
  InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
  InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
  InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
  InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
  InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
  InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
  InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
  InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
  InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
  InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
  InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
  InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
  InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);

  // GNU extension, 128-bit integers.
  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);

  // C++ 3.9.1p5
  if (TargetInfo::isTypeSigned(Target.getWCharType()))
    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
  else  // -fshort-wchar makes wchar_t be unsigned.
    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
  if (LangOpts.CPlusPlus && LangOpts.WChar)
    WideCharTy = WCharTy;
  else {
    // C99 (or C++ using -fno-wchar).
    WideCharTy = getFromTargetType(Target.getWCharType());
  }

  WIntTy = getFromTargetType(Target.getWIntType());

  // C++20 (proposed)
  InitBuiltinType(Char8Ty,              BuiltinType::Char8);

  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
  else // C99
    Char16Ty = getFromTargetType(Target.getChar16Type());

  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
  else // C99
    Char32Ty = getFromTargetType(Target.getChar32Type());

  // Placeholder type for type-dependent expressions whose type is
  // completely unknown. No code should ever check a type against
  // DependentTy and users should never see it; however, it is here to
  // help diagnose failures to properly check for type-dependent
  // expressions.
  InitBuiltinType(DependentTy,         BuiltinType::Dependent);

  // Placeholder type for functions.
  InitBuiltinType(OverloadTy,          BuiltinType::Overload);

  // Placeholder type for bound members.
  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);

  // Placeholder type for pseudo-objects.
  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);

  // "any" type; useful for debugger-like clients.
  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);

  // Placeholder type for unbridged ARC casts.
  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);

  // Placeholder type for builtin functions.
  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);

  // Placeholder type for OMP array sections.
  if (LangOpts.OpenMP) {
    InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
    InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
    InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
  }
  if (LangOpts.MatrixTypes)
    InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);

  // C99 6.2.5p11.
  FloatComplexTy      = getComplexType(FloatTy);
  DoubleComplexTy     = getComplexType(DoubleTy);
  LongDoubleComplexTy = getComplexType(LongDoubleTy);
  Float128ComplexTy   = getComplexType(Float128Ty);

  // Builtin types for 'id', 'Class', and 'SEL'.
  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);

  if (LangOpts.OpenCL) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
    InitBuiltinType(SingletonId, BuiltinType::Id);
#include "clang/Basic/OpenCLImageTypes.def"

    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
    InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
    InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
    InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);

#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
    InitBuiltinType(Id##Ty, BuiltinType::Id);
#include "clang/Basic/OpenCLExtensionTypes.def"
  }

  if (Target.hasAArch64SVETypes()) {
#define SVE_TYPE(Name, Id, SingletonId) \
    InitBuiltinType(SingletonId, BuiltinType::Id);
#include "clang/Basic/AArch64SVEACLETypes.def"
  }

  // Builtin type for __objc_yes and __objc_no
  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
                       SignedCharTy : BoolTy);

  ObjCConstantStringType = QualType();

  ObjCSuperType = QualType();

  // void * type
  if (LangOpts.OpenCLVersion >= 200) {
    auto Q = VoidTy.getQualifiers();
    Q.setAddressSpace(LangAS::opencl_generic);
    VoidPtrTy = getPointerType(getCanonicalType(
        getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
  } else {
    VoidPtrTy = getPointerType(VoidTy);
  }

  // nullptr type (C++0x 2.14.7)
  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);

  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
  InitBuiltinType(HalfTy, BuiltinType::Half);

  InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);

  // Builtin type used to help define __builtin_va_list.
  VaListTagDecl = nullptr;

  // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
  if (LangOpts.MicrosoftExt || LangOpts.Borland) {
    MSGuidTagDecl = buildImplicitRecord("_GUID");
    TUDecl->addDecl(MSGuidTagDecl);
  }
}

DiagnosticsEngine &ASTContext::getDiagnostics() const {
  return SourceMgr.getDiagnostics();
}

AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
  AttrVec *&Result = DeclAttrs[D];
  if (!Result) {
    void *Mem = Allocate(sizeof(AttrVec));
    Result = new (Mem) AttrVec;
  }

  return *Result;
}

/// Erase the attributes corresponding to the given declaration.
void ASTContext::eraseDeclAttrs(const Decl *D) {
  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
  if (Pos != DeclAttrs.end()) {
    Pos->second->~AttrVec();
    DeclAttrs.erase(Pos);
  }
}

// FIXME: Remove ?
MemberSpecializationInfo *
ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
  assert(Var->isStaticDataMember() && "Not a static data member");
  return getTemplateOrSpecializationInfo(Var)
      .dyn_cast<MemberSpecializationInfo *>();
}

ASTContext::TemplateOrSpecializationInfo
ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
      TemplateOrInstantiation.find(Var);
  if (Pos == TemplateOrInstantiation.end())
    return {};

  return Pos->second;
}

void
ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
                                                TemplateSpecializationKind TSK,
                                          SourceLocation PointOfInstantiation) {
  assert(Inst->isStaticDataMember() && "Not a static data member");
  assert(Tmpl->isStaticDataMember() && "Not a static data member");
  setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
                                            Tmpl, TSK, PointOfInstantiation));
}

void
ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
                                            TemplateOrSpecializationInfo TSI) {
  assert(!TemplateOrInstantiation[Inst] &&
         "Already noted what the variable was instantiated from");
  TemplateOrInstantiation[Inst] = TSI;
}

NamedDecl *
ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
  auto Pos = InstantiatedFromUsingDecl.find(UUD);
  if (Pos == InstantiatedFromUsingDecl.end())
    return nullptr;

  return Pos->second;
}

void
ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
  assert((isa<UsingDecl>(Pattern) ||
          isa<UnresolvedUsingValueDecl>(Pattern) ||
          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
         "pattern decl is not a using decl");
  assert((isa<UsingDecl>(Inst) ||
          isa<UnresolvedUsingValueDecl>(Inst) ||
          isa<UnresolvedUsingTypenameDecl>(Inst)) &&
         "instantiation did not produce a using decl");
  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
  InstantiatedFromUsingDecl[Inst] = Pattern;
}

UsingShadowDecl *
ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
    = InstantiatedFromUsingShadowDecl.find(Inst);
  if (Pos == InstantiatedFromUsingShadowDecl.end())
    return nullptr;

  return Pos->second;
}

void
ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
                                               UsingShadowDecl *Pattern) {
  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
}

FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
    = InstantiatedFromUnnamedFieldDecl.find(Field);
  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
    return nullptr;

  return Pos->second;
}

void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
                                                     FieldDecl *Tmpl) {
  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
         "Already noted what unnamed field was instantiated from");

  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
}

ASTContext::overridden_cxx_method_iterator
ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
  return overridden_methods(Method).begin();
}

ASTContext::overridden_cxx_method_iterator
ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
  return overridden_methods(Method).end();
}

unsigned
ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
  auto Range = overridden_methods(Method);
  return Range.end() - Range.begin();
}

ASTContext::overridden_method_range
ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
      OverriddenMethods.find(Method->getCanonicalDecl());
  if (Pos == OverriddenMethods.end())
    return overridden_method_range(nullptr, nullptr);
  return overridden_method_range(Pos->second.begin(), Pos->second.end());
}

void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
                                     const CXXMethodDecl *Overridden) {
  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
  OverriddenMethods[Method].push_back(Overridden);
}

void ASTContext::getOverriddenMethods(
                      const NamedDecl *D,
                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
  assert(D);

  if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
    Overridden.append(overridden_methods_begin(CXXMethod),
                      overridden_methods_end(CXXMethod));
    return;
  }

  const auto *Method = dyn_cast<ObjCMethodDecl>(D);
  if (!Method)
    return;

  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
  Method->getOverriddenMethods(OverDecls);
  Overridden.append(OverDecls.begin(), OverDecls.end());
}

void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
  assert(!Import->getNextLocalImport() &&
         "Import declaration already in the chain");
  assert(!Import->isFromASTFile() && "Non-local import declaration");
  if (!FirstLocalImport) {
    FirstLocalImport = Import;
    LastLocalImport = Import;
    return;
  }

  LastLocalImport->setNextLocalImport(Import);
  LastLocalImport = Import;
}

//===----------------------------------------------------------------------===//
//                         Type Sizing and Analysis
//===----------------------------------------------------------------------===//

/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
  switch (T->castAs<BuiltinType>()->getKind()) {
  default:
    llvm_unreachable("Not a floating point type!");
  case BuiltinType::BFloat16:
    return Target->getBFloat16Format();
  case BuiltinType::Float16:
  case BuiltinType::Half:
    return Target->getHalfFormat();
  case BuiltinType::Float:      return Target->getFloatFormat();
  case BuiltinType::Double:     return Target->getDoubleFormat();
  case BuiltinType::LongDouble:
    if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
      return AuxTarget->getLongDoubleFormat();
    return Target->getLongDoubleFormat();
  case BuiltinType::Float128:
    if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
      return AuxTarget->getFloat128Format();
    return Target->getFloat128Format();
  }
}

CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
  unsigned Align = Target->getCharWidth();

  bool UseAlignAttrOnly = false;
  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
    Align = AlignFromAttr;

    // __attribute__((aligned)) can increase or decrease alignment
    // *except* on a struct or struct member, where it only increases
    // alignment unless 'packed' is also specified.
    //
    // It is an error for alignas to decrease alignment, so we can
    // ignore that possibility;  Sema should diagnose it.
    if (isa<FieldDecl>(D)) {
      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
    } else {
      UseAlignAttrOnly = true;
    }
  }
  else if (isa<FieldDecl>(D))
      UseAlignAttrOnly =
        D->hasAttr<PackedAttr>() ||
        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();

  // If we're using the align attribute only, just ignore everything
  // else about the declaration and its type.
  if (UseAlignAttrOnly) {
    // do nothing
  } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
    QualType T = VD->getType();
    if (const auto *RT = T->getAs<ReferenceType>()) {
      if (ForAlignof)
        T = RT->getPointeeType();
      else
        T = getPointerType(RT->getPointeeType());
    }
    QualType BaseT = getBaseElementType(T);
    if (T->isFunctionType())
      Align = getTypeInfoImpl(T.getTypePtr()).Align;
    else if (!BaseT->isIncompleteType()) {
      // Adjust alignments of declarations with array type by the
      // large-array alignment on the target.
      if (const ArrayType *arrayType = getAsArrayType(T)) {
        unsigned MinWidth = Target->getLargeArrayMinWidth();
        if (!ForAlignof && MinWidth) {
          if (isa<VariableArrayType>(arrayType))
            Align = std::max(Align, Target->getLargeArrayAlign());
          else if (isa<ConstantArrayType>(arrayType) &&
                   MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
            Align = std::max(Align, Target->getLargeArrayAlign());
        }
      }
      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
      if (BaseT.getQualifiers().hasUnaligned())
        Align = Target->getCharWidth();
      if (const auto *VD = dyn_cast<VarDecl>(D)) {
        if (VD->hasGlobalStorage() && !ForAlignof) {
          uint64_t TypeSize = getTypeSize(T.getTypePtr());
          Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
        }
      }
    }

    // Fields can be subject to extra alignment constraints, like if
    // the field is packed, the struct is packed, or the struct has a
    // a max-field-alignment constraint (#pragma pack).  So calculate
    // the actual alignment of the field within the struct, and then
    // (as we're expected to) constrain that by the alignment of the type.
    if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
      const RecordDecl *Parent = Field->getParent();
      // We can only produce a sensible answer if the record is valid.
      if (!Parent->isInvalidDecl()) {
        const ASTRecordLayout &Layout = getASTRecordLayout(Parent);

        // Start with the record's overall alignment.
        unsigned FieldAlign = toBits(Layout.getAlignment());

        // Use the GCD of that and the offset within the record.
        uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
        if (Offset > 0) {
          // Alignment is always a power of 2, so the GCD will be a power of 2,
          // which means we get to do this crazy thing instead of Euclid's.
          uint64_t LowBitOfOffset = Offset & (~Offset + 1);
          if (LowBitOfOffset < FieldAlign)
            FieldAlign = static_cast<unsigned>(LowBitOfOffset);
        }

        Align = std::min(Align, FieldAlign);
      }
    }
  }

  return toCharUnitsFromBits(Align);
}

CharUnits ASTContext::getExnObjectAlignment() const {
  return toCharUnitsFromBits(Target->getExnObjectAlignment());
}

// getTypeInfoDataSizeInChars - Return the size of a type, in
// chars. If the type is a record, its data size is returned.  This is
// the size of the memcpy that's performed when assigning this type
// using a trivial copy/move assignment operator.
std::pair<CharUnits, CharUnits>
ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);

  // In C++, objects can sometimes be allocated into the tail padding
  // of a base-class subobject.  We decide whether that's possible
  // during class layout, so here we can just trust the layout results.
  if (getLangOpts().CPlusPlus) {
    if (const auto *RT = T->getAs<RecordType>()) {
      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
      sizeAndAlign.first = layout.getDataSize();
    }
  }

  return sizeAndAlign;
}

/// getConstantArrayInfoInChars - Performing the computation in CharUnits
/// instead of in bits prevents overflowing the uint64_t for some large arrays.
std::pair<CharUnits, CharUnits>
static getConstantArrayInfoInChars(const ASTContext &Context,
                                   const ConstantArrayType *CAT) {
  std::pair<CharUnits, CharUnits> EltInfo =
      Context.getTypeInfoInChars(CAT->getElementType());
  uint64_t Size = CAT->getSize().getZExtValue();
  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
              (uint64_t)(-1)/Size) &&
         "Overflow in array type char size evaluation");
  uint64_t Width = EltInfo.first.getQuantity() * Size;
  unsigned Align = EltInfo.second.getQuantity();
  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
      Context.getTargetInfo().getPointerWidth(0) == 64)
    Width = llvm::alignTo(Width, Align);
  return std::make_pair(CharUnits::fromQuantity(Width),
                        CharUnits::fromQuantity(Align));
}

std::pair<CharUnits, CharUnits>
ASTContext::getTypeInfoInChars(const Type *T) const {
  if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
    return getConstantArrayInfoInChars(*this, CAT);
  TypeInfo Info = getTypeInfo(T);
  return std::make_pair(toCharUnitsFromBits(Info.Width),
                        toCharUnitsFromBits(Info.Align));
}

std::pair<CharUnits, CharUnits>
ASTContext::getTypeInfoInChars(QualType T) const {
  return getTypeInfoInChars(T.getTypePtr());
}

bool ASTContext::isAlignmentRequired(const Type *T) const {
  return getTypeInfo(T).AlignIsRequired;
}

bool ASTContext::isAlignmentRequired(QualType T) const {
  return isAlignmentRequired(T.getTypePtr());
}

unsigned ASTContext::getTypeAlignIfKnown(QualType T,
                                         bool NeedsPreferredAlignment) const {
  // An alignment on a typedef overrides anything else.
  if (const auto *TT = T->getAs<TypedefType>())
    if (unsigned Align = TT->getDecl()->getMaxAlignment())
      return Align;

  // If we have an (array of) complete type, we're done.
  T = getBaseElementType(T);
  if (!T->isIncompleteType())
    return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);

  // If we had an array type, its element type might be a typedef
  // type with an alignment attribute.
  if (const auto *TT = T->getAs<TypedefType>())
    if (unsigned Align = TT->getDecl()->getMaxAlignment())
      return Align;

  // Otherwise, see if the declaration of the type had an attribute.
  if (const auto *TT = T->getAs<TagType>())
    return TT->getDecl()->getMaxAlignment();

  return 0;
}

TypeInfo ASTContext::getTypeInfo(const Type *T) const {
  TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
  if (I != MemoizedTypeInfo.end())
    return I->second;

  // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
  TypeInfo TI = getTypeInfoImpl(T);
  MemoizedTypeInfo[T] = TI;
  return TI;
}

/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
/// method does not work on incomplete types.
///
/// FIXME: Pointers into different addr spaces could have different sizes and
/// alignment requirements: getPointerInfo should take an AddrSpace, this
/// should take a QualType, &c.
TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
  uint64_t Width = 0;
  unsigned Align = 8;
  bool AlignIsRequired = false;
  unsigned AS = 0;
  switch (T->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
  case Type::Class:                                                            \
  assert(!T->isDependentType() && "should not see dependent types here");      \
  return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
#include "clang/AST/TypeNodes.inc"
    llvm_unreachable("Should not see dependent types");

  case Type::FunctionNoProto:
  case Type::FunctionProto:
    // GCC extension: alignof(function) = 32 bits
    Width = 0;
    Align = 32;
    break;

  case Type::IncompleteArray:
  case Type::VariableArray:
  case Type::ConstantArray: {
    // Model non-constant sized arrays as size zero, but track the alignment.
    uint64_t Size = 0;
    if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
      Size = CAT->getSize().getZExtValue();

    TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
    assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
           "Overflow in array type bit size evaluation");
    Width = EltInfo.Width * Size;
    Align = EltInfo.Align;
    AlignIsRequired = EltInfo.AlignIsRequired;
    if (!getTargetInfo().getCXXABI().isMicrosoft() ||
        getTargetInfo().getPointerWidth(0) == 64)
      Width = llvm::alignTo(Width, Align);
    break;
  }

  case Type::ExtVector:
  case Type::Vector: {
    const auto *VT = cast<VectorType>(T);
    TypeInfo EltInfo = getTypeInfo(VT->getElementType());
    Width = EltInfo.Width * VT->getNumElements();
    Align = Width;
    // If the alignment is not a power of 2, round up to the next power of 2.
    // This happens for non-power-of-2 length vectors.
    if (Align & (Align-1)) {
      Align = llvm::NextPowerOf2(Align);
      Width = llvm::alignTo(Width, Align);
    }
    // Adjust the alignment based on the target max.
    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
    if (TargetVectorAlign && TargetVectorAlign < Align)
      Align = TargetVectorAlign;
    if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
      // Adjust the alignment for fixed-length SVE vectors. This is important
      // for non-power-of-2 vector lengths.
      Align = 128;
    else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
      // Adjust the alignment for fixed-length SVE predicates.
      Align = 16;
    break;
  }

  case Type::ConstantMatrix: {
    const auto *MT = cast<ConstantMatrixType>(T);
    TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
    // The internal layout of a matrix value is implementation defined.
    // Initially be ABI compatible with arrays with respect to alignment and
    // size.
    Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
    Align = ElementInfo.Align;
    break;
  }

  case Type::Builtin:
    switch (cast<BuiltinType>(T)->getKind()) {
    default: llvm_unreachable("Unknown builtin type!");
    case BuiltinType::Void:
      // GCC extension: alignof(void) = 8 bits.
      Width = 0;
      Align = 8;
      break;
    case BuiltinType::Bool:
      Width = Target->getBoolWidth();
      Align = Target->getBoolAlign();
      break;
    case BuiltinType::Char_S:
    case BuiltinType::Char_U:
    case BuiltinType::UChar:
    case BuiltinType::SChar:
    case BuiltinType::Char8:
      Width = Target->getCharWidth();
      Align = Target->getCharAlign();
      break;
    case BuiltinType::WChar_S:
    case BuiltinType::WChar_U:
      Width = Target->getWCharWidth();
      Align = Target->getWCharAlign();
      break;
    case BuiltinType::Char16:
      Width = Target->getChar16Width();
      Align = Target->getChar16Align();
      break;
    case BuiltinType::Char32:
      Width = Target->getChar32Width();
      Align = Target->getChar32Align();
      break;
    case BuiltinType::UShort:
    case BuiltinType::Short:
      Width = Target->getShortWidth();
      Align = Target->getShortAlign();
      break;
    case BuiltinType::UInt:
    case BuiltinType::Int:
      Width = Target->getIntWidth();
      Align = Target->getIntAlign();
      break;
    case BuiltinType::ULong:
    case BuiltinType::Long:
      Width = Target->getLongWidth();
      Align = Target->getLongAlign();
      break;
    case BuiltinType::ULongLong:
    case BuiltinType::LongLong:
      Width = Target->getLongLongWidth();
      Align = Target->getLongLongAlign();
      break;
    case BuiltinType::Int128:
    case BuiltinType::UInt128:
      Width = 128;
      Align = 128; // int128_t is 128-bit aligned on all targets.
      break;
    case BuiltinType::ShortAccum:
    case BuiltinType::UShortAccum:
    case BuiltinType::SatShortAccum:
    case BuiltinType::SatUShortAccum:
      Width = Target->getShortAccumWidth();
      Align = Target->getShortAccumAlign();
      break;
    case BuiltinType::Accum:
    case BuiltinType::UAccum:
    case BuiltinType::SatAccum:
    case BuiltinType::SatUAccum:
      Width = Target->getAccumWidth();
      Align = Target->getAccumAlign();
      break;
    case BuiltinType::LongAccum:
    case BuiltinType::ULongAccum:
    case BuiltinType::SatLongAccum:
    case BuiltinType::SatULongAccum:
      Width = Target->getLongAccumWidth();
      Align = Target->getLongAccumAlign();
      break;
    case BuiltinType::ShortFract:
    case BuiltinType::UShortFract:
    case BuiltinType::SatShortFract:
    case BuiltinType::SatUShortFract:
      Width = Target->getShortFractWidth();
      Align = Target->getShortFractAlign();
      break;
    case BuiltinType::Fract:
    case BuiltinType::UFract:
    case BuiltinType::SatFract:
    case BuiltinType::SatUFract:
      Width = Target->getFractWidth();
      Align = Target->getFractAlign();
      break;
    case BuiltinType::LongFract:
    case BuiltinType::ULongFract:
    case BuiltinType::SatLongFract:
    case BuiltinType::SatULongFract:
      Width = Target->getLongFractWidth();
      Align = Target->getLongFractAlign();
      break;
    case BuiltinType::BFloat16:
      Width = Target->getBFloat16Width();
      Align = Target->getBFloat16Align();
      break;
    case BuiltinType::Float16:
    case BuiltinType::Half:
      if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
          !getLangOpts().OpenMPIsDevice) {
        Width = Target->getHalfWidth();
        Align = Target->getHalfAlign();
      } else {
        assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
               "Expected OpenMP device compilation.");
        Width = AuxTarget->getHalfWidth();
        Align = AuxTarget->getHalfAlign();
      }
      break;
    case BuiltinType::Float:
      Width = Target->getFloatWidth();
      Align = Target->getFloatAlign();
      break;
    case BuiltinType::Double:
      Width = Target->getDoubleWidth();
      Align = Target->getDoubleAlign();
      break;
    case BuiltinType::LongDouble:
      if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
          (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
           Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
        Width = AuxTarget->getLongDoubleWidth();
        Align = AuxTarget->getLongDoubleAlign();
      } else {
        Width = Target->getLongDoubleWidth();
        Align = Target->getLongDoubleAlign();
      }
      break;
    case BuiltinType::Float128:
      if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
          !getLangOpts().OpenMPIsDevice) {
        Width = Target->getFloat128Width();
        Align = Target->getFloat128Align();
      } else {
        assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
               "Expected OpenMP device compilation.");
        Width = AuxTarget->getFloat128Width();
        Align = AuxTarget->getFloat128Align();
      }
      break;
    case BuiltinType::NullPtr:
      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
      Align = Target->getPointerAlign(0); //   == sizeof(void*)
      break;
    case BuiltinType::ObjCId:
    case BuiltinType::ObjCClass:
    case BuiltinType::ObjCSel:
      Width = Target->getPointerWidth(0);
      Align = Target->getPointerAlign(0);
      break;
    case BuiltinType::OCLSampler:
    case BuiltinType::OCLEvent:
    case BuiltinType::OCLClkEvent:
    case BuiltinType::OCLQueue:
    case BuiltinType::OCLReserveID:
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
    case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
  case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
      AS = getTargetAddressSpace(
          Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
      Width = Target->getPointerWidth(AS);
      Align = Target->getPointerAlign(AS);
      break;
    // The SVE types are effectively target-specific.  The length of an
    // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
    // of 128 bits.  There is one predicate bit for each vector byte, so the
    // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
    //
    // Because the length is only known at runtime, we use a dummy value
    // of 0 for the static length.  The alignment values are those defined
    // by the Procedure Call Standard for the Arm Architecture.
#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
                        IsSigned, IsFP, IsBF)                                  \
  case BuiltinType::Id:                                                        \
    Width = 0;                                                                 \
    Align = 128;                                                               \
    break;
#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
  case BuiltinType::Id:                                                        \
    Width = 0;                                                                 \
    Align = 16;                                                                \
    break;
#include "clang/Basic/AArch64SVEACLETypes.def"
    }
    break;
  case Type::ObjCObjectPointer:
    Width = Target->getPointerWidth(0);
    Align = Target->getPointerAlign(0);
    break;
  case Type::BlockPointer:
    AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
    Width = Target->getPointerWidth(AS);
    Align = Target->getPointerAlign(AS);
    break;
  case Type::LValueReference:
  case Type::RValueReference:
    // alignof and sizeof should never enter this code path here, so we go
    // the pointer route.
    AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
    Width = Target->getPointerWidth(AS);
    Align = Target->getPointerAlign(AS);
    break;
  case Type::Pointer:
    AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
    Width = Target->getPointerWidth(AS);
    Align = Target->getPointerAlign(AS);
    break;
  case Type::MemberPointer: {
    const auto *MPT = cast<MemberPointerType>(T);
    CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
    Width = MPI.Width;
    Align = MPI.Align;
    break;
  }
  case Type::Complex: {
    // Complex types have the same alignment as their elements, but twice the
    // size.
    TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
    Width = EltInfo.Width * 2;
    Align = EltInfo.Align;
    break;
  }
  case Type::ObjCObject:
    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
  case Type::Adjusted:
  case Type::Decayed:
    return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
  case Type::ObjCInterface: {
    const auto *ObjCI = cast<ObjCInterfaceType>(T);
    if (ObjCI->getDecl()->isInvalidDecl()) {
      Width = 8;
      Align = 8;
      break;
    }
    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
    Width = toBits(Layout.getSize());
    Align = toBits(Layout.getAlignment());
    break;
  }
  case Type::ExtInt: {
    const auto *EIT = cast<ExtIntType>(T);
    Align =
        std::min(static_cast<unsigned>(std::max(
                     getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
                 Target->getLongLongAlign());
    Width = llvm::alignTo(EIT->getNumBits(), Align);
    break;
  }
  case Type::Record:
  case Type::Enum: {
    const auto *TT = cast<TagType>(T);

    if (TT->getDecl()->isInvalidDecl()) {
      Width = 8;
      Align = 8;
      break;
    }

    if (const auto *ET = dyn_cast<EnumType>(TT)) {
      const EnumDecl *ED = ET->getDecl();
      TypeInfo Info =
          getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
      if (unsigned AttrAlign = ED->getMaxAlignment()) {
        Info.Align = AttrAlign;
        Info.AlignIsRequired = true;
      }
      return Info;
    }

    const auto *RT = cast<RecordType>(TT);
    const RecordDecl *RD = RT->getDecl();
    const ASTRecordLayout &Layout = getASTRecordLayout(RD);
    Width = toBits(Layout.getSize());
    Align = toBits(Layout.getAlignment());
    AlignIsRequired = RD->hasAttr<AlignedAttr>();
    break;
  }

  case Type::SubstTemplateTypeParm:
    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
                       getReplacementType().getTypePtr());

  case Type::Auto:
  case Type::DeducedTemplateSpecialization: {
    const auto *A = cast<DeducedType>(T);
    assert(!A->getDeducedType().isNull() &&
           "cannot request the size of an undeduced or dependent auto type");
    return getTypeInfo(A->getDeducedType().getTypePtr());
  }

  case Type::Paren:
    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());

  case Type::MacroQualified:
    return getTypeInfo(
        cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());

  case Type::ObjCTypeParam:
    return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());

  case Type::Typedef: {
    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
    TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
    // If the typedef has an aligned attribute on it, it overrides any computed
    // alignment we have.  This violates the GCC documentation (which says that
    // attribute(aligned) can only round up) but matches its implementation.
    if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
      Align = AttrAlign;
      AlignIsRequired = true;
    } else {
      Align = Info.Align;
      AlignIsRequired = Info.AlignIsRequired;
    }
    Width = Info.Width;
    break;
  }

  case Type::Elaborated:
    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());

  case Type::Attributed:
    return getTypeInfo(
                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());

  case Type::Atomic: {
    // Start with the base type information.
    TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
    Width = Info.Width;
    Align = Info.Align;

    if (!Width) {
      // An otherwise zero-sized type should still generate an
      // atomic operation.
      Width = Target->getCharWidth();
      assert(Align);
    } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
      // If the size of the type doesn't exceed the platform's max
      // atomic promotion width, make the size and alignment more
      // favorable to atomic operations:

      // Round the size up to a power of 2.
      if (!llvm::isPowerOf2_64(Width))
        Width = llvm::NextPowerOf2(Width);

      // Set the alignment equal to the size.
      Align = static_cast<unsigned>(Width);
    }
  }
  break;

  case Type::Pipe:
    Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
    Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
    break;
  }

  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
  return TypeInfo(Width, Align, AlignIsRequired);
}

unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
  UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
  if (I != MemoizedUnadjustedAlign.end())
    return I->second;

  unsigned UnadjustedAlign;
  if (const auto *RT = T->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();
    const ASTRecordLayout &Layout = getASTRecordLayout(RD);
    UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
  } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
    UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
  } else {
    UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
  }

  MemoizedUnadjustedAlign[T] = UnadjustedAlign;
  return UnadjustedAlign;
}

unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
  unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
  // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
  if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
       getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
      getTargetInfo().getABI() == "elfv1-qpx" &&
      T->isSpecificBuiltinType(BuiltinType::Double))
    SimdAlign = 256;
  return SimdAlign;
}

/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
  return CharUnits::fromQuantity(BitSize / getCharWidth());
}

/// toBits - Convert a size in characters to a size in characters.
int64_t ASTContext::toBits(CharUnits CharSize) const {
  return CharSize.getQuantity() * getCharWidth();
}

/// getTypeSizeInChars - Return the size of the specified type, in characters.
/// This method does not work on incomplete types.
CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
  return getTypeInfoInChars(T).first;
}
CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
  return getTypeInfoInChars(T).first;
}

/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
/// characters. This method does not work on incomplete types.
CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
  return toCharUnitsFromBits(getTypeAlign(T));
}
CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
  return toCharUnitsFromBits(getTypeAlign(T));
}

/// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
/// type, in characters, before alignment adustments. This method does
/// not work on incomplete types.
CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
  return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
}
CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
  return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
}

/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
/// type for the current target in bits.  This can be different than the ABI
/// alignment in cases where it is beneficial for performance or backwards
/// compatibility preserving to overalign a data type. (Note: despite the name,
/// the preferred alignment is ABI-impacting, and not an optimization.)
unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
  TypeInfo TI = getTypeInfo(T);
  unsigned ABIAlign = TI.Align;

  T = T->getBaseElementTypeUnsafe();

  // The preferred alignment of member pointers is that of a pointer.
  if (T->isMemberPointerType())
    return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
 
  if (!Target->allowsLargerPreferedTypeAlignment())
    return ABIAlign;

  if (const auto *RT = T->getAs<RecordType>()) {
    if (TI.AlignIsRequired || RT->getDecl()->isInvalidDecl())
      return ABIAlign;

    unsigned PreferredAlign = static_cast<unsigned>(
        toBits(getASTRecordLayout(RT->getDecl()).PreferredAlignment));
    assert(PreferredAlign >= ABIAlign &&
           "PreferredAlign should be at least as large as ABIAlign.");
    return PreferredAlign;
  }

  // Double (and, for targets supporting AIX `power` alignment, long double) and
  // long long should be naturally aligned (despite requiring less alignment) if
  // possible.
  if (const auto *CT = T->getAs<ComplexType>())
    T = CT->getElementType().getTypePtr();
  if (const auto *ET = T->getAs<EnumType>())
    T = ET->getDecl()->getIntegerType().getTypePtr();
  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
      T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
      (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
       Target->defaultsToAIXPowerAlignment()))
    // Don't increase the alignment if an alignment attribute was specified on a
    // typedef declaration.
    if (!TI.AlignIsRequired)
      return std::max(ABIAlign, (unsigned)getTypeSize(T));

  return ABIAlign;
}

/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
/// for __attribute__((aligned)) on this target, to be used if no alignment
/// value is specified.
unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
  return getTargetInfo().getDefaultAlignForAttributeAligned();
}

/// getAlignOfGlobalVar - Return the alignment in bits that should be given
/// to a global variable of the specified type.
unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
  uint64_t TypeSize = getTypeSize(T.getTypePtr());
  return std::max(getPreferredTypeAlign(T),
                  getTargetInfo().getMinGlobalAlign(TypeSize));
}

/// getAlignOfGlobalVarInChars - Return the alignment in characters that
/// should be given to a global variable of the specified type.
CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
}

CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
  CharUnits Offset = CharUnits::Zero();
  const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
  while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
    Offset += Layout->getBaseClassOffset(Base);
    Layout = &getASTRecordLayout(Base);
  }
  return Offset;
}

/// DeepCollectObjCIvars -
/// This routine first collects all declared, but not synthesized, ivars in
/// super class and then collects all ivars, including those synthesized for
/// current class. This routine is used for implementation of current class
/// when all ivars, declared and synthesized are known.
void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
                                      bool leafClass,
                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
    DeepCollectObjCIvars(SuperClass, false, Ivars);
  if (!leafClass) {
    for (const auto *I : OI->ivars())
      Ivars.push_back(I);
  } else {
    auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
         Iv= Iv->getNextIvar())
      Ivars.push_back(Iv);
  }
}

/// CollectInheritedProtocols - Collect all protocols in current class and
/// those inherited by it.
void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
  if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
    // We can use protocol_iterator here instead of
    // all_referenced_protocol_iterator since we are walking all categories.
    for (auto *Proto : OI->all_referenced_protocols()) {
      CollectInheritedProtocols(Proto, Protocols);
    }

    // Categories of this Interface.
    for (const auto *Cat : OI->visible_categories())
      CollectInheritedProtocols(Cat, Protocols);

    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
      while (SD) {
        CollectInheritedProtocols(SD, Protocols);
        SD = SD->getSuperClass();
      }
  } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
    for (auto *Proto : OC->protocols()) {
      CollectInheritedProtocols(Proto, Protocols);
    }
  } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
    // Insert the protocol.
    if (!Protocols.insert(
          const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
      return;

    for (auto *Proto : OP->protocols())
      CollectInheritedProtocols(Proto, Protocols);
  }
}

static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
                                                const RecordDecl *RD) {
  assert(RD->isUnion() && "Must be union type");
  CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());

  for (const auto *Field : RD->fields()) {
    if (!Context.hasUniqueObjectRepresentations(Field->getType()))
      return false;
    CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
    if (FieldSize != UnionSize)
      return false;
  }
  return !RD->field_empty();
}

static bool isStructEmpty(QualType Ty) {
  const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();

  if (!RD->field_empty())
    return false;

  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
    return ClassDecl->isEmpty();

  return true;
}

static llvm::Optional<int64_t>
structHasUniqueObjectRepresentations(const ASTContext &Context,
                                     const RecordDecl *RD) {
  assert(!RD->isUnion() && "Must be struct/class type");
  const auto &Layout = Context.getASTRecordLayout(RD);

  int64_t CurOffsetInBits = 0;
  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
    if (ClassDecl->isDynamicClass())
      return llvm::None;

    SmallVector<std::pair<QualType, int64_t>, 4> Bases;
    for (const auto &Base : ClassDecl->bases()) {
      // Empty types can be inherited from, and non-empty types can potentially
      // have tail padding, so just make sure there isn't an error.
      if (!isStructEmpty(Base.getType())) {
        llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
            Context, Base.getType()->castAs<RecordType>()->getDecl());
        if (!Size)
          return llvm::None;
        Bases.emplace_back(Base.getType(), Size.getValue());
      }
    }

    llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
                          const std::pair<QualType, int64_t> &R) {
      return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
             Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
    });

    for (const auto &Base : Bases) {
      int64_t BaseOffset = Context.toBits(
          Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
      int64_t BaseSize = Base.second;
      if (BaseOffset != CurOffsetInBits)
        return llvm::None;
      CurOffsetInBits = BaseOffset + BaseSize;
    }
  }

  for (const auto *Field : RD->fields()) {
    if (!Field->getType()->isReferenceType() &&
        !Context.hasUniqueObjectRepresentations(Field->getType()))
      return llvm::None;

    int64_t FieldSizeInBits =
        Context.toBits(Context.getTypeSizeInChars(Field->getType()));
    if (Field->isBitField()) {
      int64_t BitfieldSize = Field->getBitWidthValue(Context);

      if (BitfieldSize > FieldSizeInBits)
        return llvm::None;
      FieldSizeInBits = BitfieldSize;
    }

    int64_t FieldOffsetInBits = Context.getFieldOffset(Field);

    if (FieldOffsetInBits != CurOffsetInBits)
      return llvm::None;

    CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
  }

  return CurOffsetInBits;
}

bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
  // C++17 [meta.unary.prop]:
  //   The predicate condition for a template specialization
  //   has_unique_object_representations<T> shall be
  //   satisfied if and only if:
  //     (9.1) - T is trivially copyable, and
  //     (9.2) - any two objects of type T with the same value have the same
  //     object representation, where two objects
  //   of array or non-union class type are considered to have the same value
  //   if their respective sequences of
  //   direct subobjects have the same values, and two objects of union type
  //   are considered to have the same
  //   value if they have the same active member and the corresponding members
  //   have the same value.
  //   The set of scalar types for which this condition holds is
  //   implementation-defined. [ Note: If a type has padding
  //   bits, the condition does not hold; otherwise, the condition holds true
  //   for unsigned integral types. -- end note ]
  assert(!Ty.isNull() && "Null QualType sent to unique object rep check");

  // Arrays are unique only if their element type is unique.
  if (Ty->isArrayType())
    return hasUniqueObjectRepresentations(getBaseElementType(Ty));

  // (9.1) - T is trivially copyable...
  if (!Ty.isTriviallyCopyableType(*this))
    return false;

  // All integrals and enums are unique.
  if (Ty->isIntegralOrEnumerationType())
    return true;

  // All other pointers are unique.
  if (Ty->isPointerType())
    return true;

  if (Ty->isMemberPointerType()) {
    const auto *MPT = Ty->getAs<MemberPointerType>();
    return !ABI->getMemberPointerInfo(MPT).HasPadding;
  }

  if (Ty->isRecordType()) {
    const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();

    if (Record->isInvalidDecl())
      return false;

    if (Record->isUnion())
      return unionHasUniqueObjectRepresentations(*this, Record);

    Optional<int64_t> StructSize =
        structHasUniqueObjectRepresentations(*this, Record);

    return StructSize &&
           StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
  }

  // FIXME: More cases to handle here (list by rsmith):
  // vectors (careful about, eg, vector of 3 foo)
  // _Complex int and friends
  // _Atomic T
  // Obj-C block pointers
  // Obj-C object pointers
  // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
  // clk_event_t, queue_t, reserve_id_t)
  // There're also Obj-C class types and the Obj-C selector type, but I think it
  // makes sense for those to return false here.

  return false;
}

unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
  unsigned count = 0;
  // Count ivars declared in class extension.
  for (const auto *Ext : OI->known_extensions())
    count += Ext->ivar_size();

  // Count ivar defined in this class's implementation.  This
  // includes synthesized ivars.
  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
    count += ImplDecl->ivar_size();

  return count;
}

bool ASTContext::isSentinelNullExpr(const Expr *E) {
  if (!E)
    return false;

  // nullptr_t is always treated as null.
  if (E->getType()->isNullPtrType()) return true;

  if (E->getType()->isAnyPointerType() &&
      E->IgnoreParenCasts()->isNullPointerConstant(*this,
                                                Expr::NPC_ValueDependentIsNull))
    return true;

  // Unfortunately, __null has type 'int'.
  if (isa<GNUNullExpr>(E)) return true;

  return false;
}

/// Get the implementation of ObjCInterfaceDecl, or nullptr if none
/// exists.
ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
    I = ObjCImpls.find(D);
  if (I != ObjCImpls.end())
    return cast<ObjCImplementationDecl>(I->second);
  return nullptr;
}

/// Get the implementation of ObjCCategoryDecl, or nullptr if none
/// exists.
ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
    I = ObjCImpls.find(D);
  if (I != ObjCImpls.end())
    return cast<ObjCCategoryImplDecl>(I->second);
  return nullptr;
}

/// Set the implementation of ObjCInterfaceDecl.
void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
                           ObjCImplementationDecl *ImplD) {
  assert(IFaceD && ImplD && "Passed null params");
  ObjCImpls[IFaceD] = ImplD;
}

/// Set the implementation of ObjCCategoryDecl.
void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
                           ObjCCategoryImplDecl *ImplD) {
  assert(CatD && ImplD && "Passed null params");
  ObjCImpls[CatD] = ImplD;
}

const ObjCMethodDecl *
ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
  return ObjCMethodRedecls.lookup(MD);
}

void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
                                            const ObjCMethodDecl *Redecl) {
  assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
  ObjCMethodRedecls[MD] = Redecl;
}

const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
                                              const NamedDecl *ND) const {
  if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
    return ID;
  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
    return CD->getClassInterface();
  if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
    return IMD->getClassInterface();

  return nullptr;
}

/// Get the copy initialization expression of VarDecl, or nullptr if
/// none exists.
BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
  assert(VD && "Passed null params");
  assert(VD->hasAttr<BlocksAttr>() &&
         "getBlockVarCopyInits - not __block var");
  auto I = BlockVarCopyInits.find(VD);
  if (I != BlockVarCopyInits.end())
    return I->second;
  return {nullptr, false};
}

/// Set the copy initialization expression of a block var decl.
void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
                                     bool CanThrow) {
  assert(VD && CopyExpr && "Passed null params");
  assert(VD->hasAttr<BlocksAttr>() &&
         "setBlockVarCopyInits - not __block var");
  BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
}

TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
                                                 unsigned DataSize) const {
  if (!DataSize)
    DataSize = TypeLoc::getFullDataSizeForType(T);
  else
    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
           "incorrect data size provided to CreateTypeSourceInfo!");

  auto *TInfo =
    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
  new (TInfo) TypeSourceInfo(T);
  return TInfo;
}

TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
                                                     SourceLocation L) const {
  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
  return DI;
}

const ASTRecordLayout &
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
  return getObjCLayout(D, nullptr);
}

const ASTRecordLayout &
ASTContext::getASTObjCImplementationLayout(
                                        const ObjCImplementationDecl *D) const {
  return getObjCLayout(D->getClassInterface(), D);
}

//===----------------------------------------------------------------------===//
//                   Type creation/memoization methods
//===----------------------------------------------------------------------===//

QualType
ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
  unsigned fastQuals = quals.getFastQualifiers();
  quals.removeFastQualifiers();

  // Check if we've already instantiated this type.
  llvm::FoldingSetNodeID ID;
  ExtQuals::Profile(ID, baseType, quals);
  void *insertPos = nullptr;
  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
    assert(eq->getQualifiers() == quals);
    return QualType(eq, fastQuals);
  }

  // If the base type is not canonical, make the appropriate canonical type.
  QualType canon;
  if (!baseType->isCanonicalUnqualified()) {
    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
    canonSplit.Quals.addConsistentQualifiers(quals);
    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);

    // Re-find the insert position.
    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
  }

  auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
  ExtQualNodes.InsertNode(eq, insertPos);
  return QualType(eq, fastQuals);
}

QualType ASTContext::getAddrSpaceQualType(QualType T,
                                          LangAS AddressSpace) const {
  QualType CanT = getCanonicalType(T);
  if (CanT.getAddressSpace() == AddressSpace)
    return T;

  // If we are composing extended qualifiers together, merge together
  // into one ExtQuals node.
  QualifierCollector Quals;
  const Type *TypeNode = Quals.strip(T);

  // If this type already has an address space specified, it cannot get
  // another one.
  assert(!Quals.hasAddressSpace() &&
         "Type cannot be in multiple addr spaces!");
  Quals.addAddressSpace(AddressSpace);

  return getExtQualType(TypeNode, Quals);
}

QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
  // If the type is not qualified with an address space, just return it
  // immediately.
  if (!T.hasAddressSpace())
    return T;

  // If we are composing extended qualifiers together, merge together
  // into one ExtQuals node.
  QualifierCollector Quals;
  const Type *TypeNode;

  while (T.hasAddressSpace()) {
    TypeNode = Quals.strip(T);

    // If the type no longer has an address space after stripping qualifiers,
    // jump out.
    if (!QualType(TypeNode, 0).hasAddressSpace())
      break;

    // There might be sugar in the way. Strip it and try again.
    T = T.getSingleStepDesugaredType(*this);
  }

  Quals.removeAddressSpace();

  // Removal of the address space can mean there are no longer any
  // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
  // or required.
  if (Quals.hasNonFastQualifiers())
    return getExtQualType(TypeNode, Quals);
  else
    return QualType(TypeNode, Quals.getFastQualifiers());
}

QualType ASTContext::getObjCGCQualType(QualType T,
                                       Qualifiers::GC GCAttr) const {
  QualType CanT = getCanonicalType(T);
  if (CanT.getObjCGCAttr() == GCAttr)
    return T;

  if (const auto *ptr = T->getAs<PointerType>()) {
    QualType Pointee = ptr->getPointeeType();
    if (Pointee->isAnyPointerType()) {
      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
      return getPointerType(ResultType);
    }
  }

  // If we are composing extended qualifiers together, merge together
  // into one ExtQuals node.
  QualifierCollector Quals;
  const Type *TypeNode = Quals.strip(T);

  // If this type already has an ObjCGC specified, it cannot get
  // another one.
  assert(!Quals.hasObjCGCAttr() &&
         "Type cannot have multiple ObjCGCs!");
  Quals.addObjCGCAttr(GCAttr);

  return getExtQualType(TypeNode, Quals);
}

QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
  if (const PointerType *Ptr = T->getAs<PointerType>()) {
    QualType Pointee = Ptr->getPointeeType();
    if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
      return getPointerType(removeAddrSpaceQualType(Pointee));
    }
  }
  return T;
}

const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
                                                   FunctionType::ExtInfo Info) {
  if (T->getExtInfo() == Info)
    return T;

  QualType Result;
  if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
    Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
  } else {
    const auto *FPT = cast<FunctionProtoType>(T);
    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
    EPI.ExtInfo = Info;
    Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
  }

  return cast<FunctionType>(Result.getTypePtr());
}

void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
                                                 QualType ResultType) {
  FD = FD->getMostRecentDecl();
  while (true) {
    const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
    FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
    if (FunctionDecl *Next = FD->getPreviousDecl())
      FD = Next;
    else
      break;
  }
  if (ASTMutationListener *L = getASTMutationListener())
    L->DeducedReturnType(FD, ResultType);
}

/// Get a function type and produce the equivalent function type with the
/// specified exception specification. Type sugar that can be present on a
/// declaration of a function with an exception specification is permitted
/// and preserved. Other type sugar (for instance, typedefs) is not.
QualType ASTContext::getFunctionTypeWithExceptionSpec(
    QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
  // Might have some parens.
  if (const auto *PT = dyn_cast<ParenType>(Orig))
    return getParenType(
        getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));

  // Might be wrapped in a macro qualified type.
  if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
    return getMacroQualifiedType(
        getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
        MQT->getMacroIdentifier());

  // Might have a calling-convention attribute.
  if (const auto *AT = dyn_cast<AttributedType>(Orig))
    return getAttributedType(
        AT->getAttrKind(),
        getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
        getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));

  // Anything else must be a function type. Rebuild it with the new exception
  // specification.
  const auto *Proto = Orig->castAs<FunctionProtoType>();
  return getFunctionType(
      Proto->getReturnType(), Proto->getParamTypes(),
      Proto->getExtProtoInfo().withExceptionSpec(ESI));
}

bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
                                                          QualType U) {
  return hasSameType(T, U) ||
         (getLangOpts().CPlusPlus17 &&
          hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
                      getFunctionTypeWithExceptionSpec(U, EST_None)));
}

QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
  if (const auto *Proto = T->getAs<FunctionProtoType>()) {
    QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
    SmallVector<QualType, 16> Args(Proto->param_types());
    for (unsigned i = 0, n = Args.size(); i != n; ++i)
      Args[i] = removePtrSizeAddrSpace(Args[i]);
    return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
  }

  if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
    QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
    return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
  }

  return T;
}

bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
  return hasSameType(T, U) ||
         hasSameType(getFunctionTypeWithoutPtrSizes(T),
                     getFunctionTypeWithoutPtrSizes(U));
}

void ASTContext::adjustExceptionSpec(
    FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
    bool AsWritten) {
  // Update the type.
  QualType Updated =
      getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
  FD->setType(Updated);

  if (!AsWritten)
    return;

  // Update the type in the type source information too.
  if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
    // If the type and the type-as-written differ, we may need to update
    // the type-as-written too.
    if (TSInfo->getType() != FD->getType())
      Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);

    // FIXME: When we get proper type location information for exceptions,
    // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
    // up the TypeSourceInfo;
    assert(TypeLoc::getFullDataSizeForType(Updated) ==
               TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
           "TypeLoc size mismatch from updating exception specification");
    TSInfo->overrideType(Updated);
  }
}

/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) const {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  ComplexType::Profile(ID, T);

  void *InsertPos = nullptr;
  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(CT, 0);

  // If the pointee type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!T.isCanonical()) {
    Canonical = getComplexType(getCanonicalType(T));

    // Get the new insert position for the node we care about.
    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }
  auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
  Types.push_back(New);
  ComplexTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) const {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  PointerType::Profile(ID, T);

  void *InsertPos = nullptr;
  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(PT, 0);

  // If the pointee type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!T.isCanonical()) {
    Canonical = getPointerType(getCanonicalType(T));

    // Get the new insert position for the node we care about.
    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }
  auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
  Types.push_back(New);
  PointerTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
  llvm::FoldingSetNodeID ID;
  AdjustedType::Profile(ID, Orig, New);
  void *InsertPos = nullptr;
  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (AT)
    return QualType(AT, 0);

  QualType Canonical = getCanonicalType(New);

  // Get the new insert position for the node we care about.
  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
  assert(!AT && "Shouldn't be in the map!");

  AT = new (*this, TypeAlignment)
      AdjustedType(Type::Adjusted, Orig, New, Canonical);
  Types.push_back(AT);
  AdjustedTypes.InsertNode(AT, InsertPos);
  return QualType(AT, 0);
}

QualType ASTContext::getDecayedType(QualType T) const {
  assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");

  QualType Decayed;

  // C99 6.7.5.3p7:
  //   A declaration of a parameter as "array of type" shall be
  //   adjusted to "qualified pointer to type", where the type
  //   qualifiers (if any) are those specified within the [ and ] of
  //   the array type derivation.
  if (T->isArrayType())
    Decayed = getArrayDecayedType(T);

  // C99 6.7.5.3p8:
  //   A declaration of a parameter as "function returning type"
  //   shall be adjusted to "pointer to function returning type", as
  //   in 6.3.2.1.
  if (T->isFunctionType())
    Decayed = getPointerType(T);

  llvm::FoldingSetNodeID ID;
  AdjustedType::Profile(ID, T, Decayed);
  void *InsertPos = nullptr;
  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (AT)
    return QualType(AT, 0);

  QualType Canonical = getCanonicalType(Decayed);

  // Get the new insert position for the node we care about.
  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
  assert(!AT && "Shouldn't be in the map!");

  AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
  Types.push_back(AT);
  AdjustedTypes.InsertNode(AT, InsertPos);
  return QualType(AT, 0);
}

/// getBlockPointerType - Return the uniqued reference to the type for
/// a pointer to the specified block.
QualType ASTContext::getBlockPointerType(QualType T) const {
  assert(T->isFunctionType() && "block of function types only");
  // Unique pointers, to guarantee there is only one block of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  BlockPointerType::Profile(ID, T);

  void *InsertPos = nullptr;
  if (BlockPointerType *PT =
        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(PT, 0);

  // If the block pointee type isn't canonical, this won't be a canonical
  // type either so fill in the canonical type field.
  QualType Canonical;
  if (!T.isCanonical()) {
    Canonical = getBlockPointerType(getCanonicalType(T));

    // Get the new insert position for the node we care about.
    BlockPointerType *NewIP =
      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }
  auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
  Types.push_back(New);
  BlockPointerTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getLValueReferenceType - Return the uniqued reference to the type for an
/// lvalue reference to the specified type.
QualType
ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
  assert(getCanonicalType(T) != OverloadTy &&
         "Unresolved overloaded function type");

  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  ReferenceType::Profile(ID, T, SpelledAsLValue);

  void *InsertPos = nullptr;
  if (LValueReferenceType *RT =
        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(RT, 0);

  const auto *InnerRef = T->getAs<ReferenceType>();

  // If the referencee type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.
  QualType Canonical;
  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));

    // Get the new insert position for the node we care about.
    LValueReferenceType *NewIP =
      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }

  auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
                                                             SpelledAsLValue);
  Types.push_back(New);
  LValueReferenceTypes.InsertNode(New, InsertPos);

  return QualType(New, 0);
}

/// getRValueReferenceType - Return the uniqued reference to the type for an
/// rvalue reference to the specified type.
QualType ASTContext::getRValueReferenceType(QualType T) const {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  ReferenceType::Profile(ID, T, false);

  void *InsertPos = nullptr;
  if (RValueReferenceType *RT =
        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(RT, 0);

  const auto *InnerRef = T->getAs<ReferenceType>();

  // If the referencee type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.
  QualType Canonical;
  if (InnerRef || !T.isCanonical()) {
    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));

    // Get the new insert position for the node we care about.
    RValueReferenceType *NewIP =
      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }

  auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
  Types.push_back(New);
  RValueReferenceTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getMemberPointerType - Return the uniqued reference to the type for a
/// member pointer to the specified type, in the specified class.
QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  MemberPointerType::Profile(ID, T, Cls);

  void *InsertPos = nullptr;
  if (MemberPointerType *PT =
      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(PT, 0);

  // If the pointee or class type isn't canonical, this won't be a canonical
  // type either, so fill in the canonical type field.
  QualType Canonical;
  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));

    // Get the new insert position for the node we care about.
    MemberPointerType *NewIP =
      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }
  auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
  Types.push_back(New);
  MemberPointerTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
                                          const llvm::APInt &ArySizeIn,
                                          const Expr *SizeExpr,
                                          ArrayType::ArraySizeModifier ASM,
                                          unsigned IndexTypeQuals) const {
  assert((EltTy->isDependentType() ||
          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
         "Constant array of VLAs is illegal!");

  // We only need the size as part of the type if it's instantiation-dependent.
  if (SizeExpr && !SizeExpr->isInstantiationDependent())
    SizeExpr = nullptr;

  // Convert the array size into a canonical width matching the pointer size for
  // the target.
  llvm::APInt ArySize(ArySizeIn);
  ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());

  llvm::FoldingSetNodeID ID;
  ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
                             IndexTypeQuals);

  void *InsertPos = nullptr;
  if (ConstantArrayType *ATP =
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(ATP, 0);

  // If the element type isn't canonical or has qualifiers, or the array bound
  // is instantiation-dependent, this won't be a canonical type either, so fill
  // in the canonical type field.
  QualType Canon;
  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
    SplitQualType canonSplit = getCanonicalType(EltTy).split();
    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
                                 ASM, IndexTypeQuals);
    Canon = getQualifiedType(Canon, canonSplit.Quals);

    // Get the new insert position for the node we care about.
    ConstantArrayType *NewIP =
      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }

  void *Mem = Allocate(
      ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
      TypeAlignment);
  auto *New = new (Mem)
    ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
  ConstantArrayTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getVariableArrayDecayedType - Turns the given type, which may be
/// variably-modified, into the corresponding type with all the known
/// sizes replaced with [*].
QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
  // Vastly most common case.
  if (!type->isVariablyModifiedType()) return type;

  QualType result;

  SplitQualType split = type.getSplitDesugaredType();
  const Type *ty = split.Ty;
  switch (ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.inc"
    llvm_unreachable("didn't desugar past all non-canonical types?");

  // These types should never be variably-modified.
  case Type::Builtin:
  case Type::Complex:
  case Type::Vector:
  case Type::DependentVector:
  case Type::ExtVector:
  case Type::DependentSizedExtVector:
  case Type::ConstantMatrix:
  case Type::DependentSizedMatrix:
  case Type::DependentAddressSpace:
  case Type::ObjCObject:
  case Type::ObjCInterface:
  case Type::ObjCObjectPointer:
  case Type::Record:
  case Type::Enum:
  case Type::UnresolvedUsing:
  case Type::TypeOfExpr:
  case Type::TypeOf:
  case Type::Decltype:
  case Type::UnaryTransform:
  case Type::DependentName:
  case Type::InjectedClassName:
  case Type::TemplateSpecialization:
  case Type::DependentTemplateSpecialization:
  case Type::TemplateTypeParm:
  case Type::SubstTemplateTypeParmPack:
  case Type::Auto:
  case Type::DeducedTemplateSpecialization:
  case Type::PackExpansion:
  case Type::ExtInt:
  case Type::DependentExtInt:
    llvm_unreachable("type should never be variably-modified");

  // These types can be variably-modified but should never need to
  // further decay.
  case Type::FunctionNoProto:
  case Type::FunctionProto:
  case Type::BlockPointer:
  case Type::MemberPointer:
  case Type::Pipe:
    return type;

  // These types can be variably-modified.  All these modifications
  // preserve structure except as noted by comments.
  // TODO: if we ever care about optimizing VLAs, there are no-op
  // optimizations available here.
  case Type::Pointer:
    result = getPointerType(getVariableArrayDecayedType(
                              cast<PointerType>(ty)->getPointeeType()));
    break;

  case Type::LValueReference: {
    const auto *lv = cast<LValueReferenceType>(ty);
    result = getLValueReferenceType(
                 getVariableArrayDecayedType(lv->getPointeeType()),
                                    lv->isSpelledAsLValue());
    break;
  }

  case Type::RValueReference: {
    const auto *lv = cast<RValueReferenceType>(ty);
    result = getRValueReferenceType(
                 getVariableArrayDecayedType(lv->getPointeeType()));
    break;
  }

  case Type::Atomic: {
    const auto *at = cast<AtomicType>(ty);
    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
    break;
  }

  case Type::ConstantArray: {
    const auto *cat = cast<ConstantArrayType>(ty);
    result = getConstantArrayType(
                 getVariableArrayDecayedType(cat->getElementType()),
                                  cat->getSize(),
                                  cat->getSizeExpr(),
                                  cat->getSizeModifier(),
                                  cat->getIndexTypeCVRQualifiers());
    break;
  }

  case Type::DependentSizedArray: {
    const auto *dat = cast<DependentSizedArrayType>(ty);
    result = getDependentSizedArrayType(
                 getVariableArrayDecayedType(dat->getElementType()),
                                        dat->getSizeExpr(),
                                        dat->getSizeModifier(),
                                        dat->getIndexTypeCVRQualifiers(),
                                        dat->getBracketsRange());
    break;
  }

  // Turn incomplete types into [*] types.
  case Type::IncompleteArray: {
    const auto *iat = cast<IncompleteArrayType>(ty);
    result = getVariableArrayType(
                 getVariableArrayDecayedType(iat->getElementType()),
                                  /*size*/ nullptr,
                                  ArrayType::Normal,
                                  iat->getIndexTypeCVRQualifiers(),
                                  SourceRange());
    break;
  }

  // Turn VLA types into [*] types.
  case Type::VariableArray: {
    const auto *vat = cast<VariableArrayType>(ty);
    result = getVariableArrayType(
                 getVariableArrayDecayedType(vat->getElementType()),
                                  /*size*/ nullptr,
                                  ArrayType::Star,
                                  vat->getIndexTypeCVRQualifiers(),
                                  vat->getBracketsRange());
    break;
  }
  }

  // Apply the top-level qualifiers from the original.
  return getQualifiedType(result, split.Quals);
}

/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy,
                                          Expr *NumElts,
                                          ArrayType::ArraySizeModifier ASM,
                                          unsigned IndexTypeQuals,
                                          SourceRange Brackets) const {
  // Since we don't unique expressions, it isn't possible to unique VLA's
  // that have an expression provided for their size.
  QualType Canon;

  // Be sure to pull qualifiers off the element type.
  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
    SplitQualType canonSplit = getCanonicalType(EltTy).split();
    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
                                 IndexTypeQuals, Brackets);
    Canon = getQualifiedType(Canon, canonSplit.Quals);
  }

  auto *New = new (*this, TypeAlignment)
    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);

  VariableArrayTypes.push_back(New);
  Types.push_back(New);
  return QualType(New, 0);
}

/// getDependentSizedArrayType - Returns a non-unique reference to
/// the type for a dependently-sized array of the specified element
/// type.
QualType ASTContext::getDependentSizedArrayType(QualType elementType,
                                                Expr *numElements,
                                                ArrayType::ArraySizeModifier ASM,
                                                unsigned elementTypeQuals,
                                                SourceRange brackets) const {
  assert((!numElements || numElements->isTypeDependent() ||
          numElements->isValueDependent()) &&
         "Size must be type- or value-dependent!");

  // Dependently-sized array types that do not have a specified number
  // of elements will have their sizes deduced from a dependent
  // initializer.  We do no canonicalization here at all, which is okay
  // because they can't be used in most locations.
  if (!numElements) {
    auto *newType
      = new (*this, TypeAlignment)
          DependentSizedArrayType(*this, elementType, QualType(),
                                  numElements, ASM, elementTypeQuals,
                                  brackets);
    Types.push_back(newType);
    return QualType(newType, 0);
  }

  // Otherwise, we actually build a new type every time, but we
  // also build a canonical type.

  SplitQualType canonElementType = getCanonicalType(elementType).split();

  void *insertPos = nullptr;
  llvm::FoldingSetNodeID ID;
  DependentSizedArrayType::Profile(ID, *this,
                                   QualType(canonElementType.Ty, 0),
                                   ASM, elementTypeQuals, numElements);

  // Look for an existing type with these properties.
  DependentSizedArrayType *canonTy =
    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);

  // If we don't have one, build one.
  if (!canonTy) {
    canonTy = new (*this, TypeAlignment)
      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
                              QualType(), numElements, ASM, elementTypeQuals,
                              brackets);
    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
    Types.push_back(canonTy);
  }

  // Apply qualifiers from the element type to the array.
  QualType canon = getQualifiedType(QualType(canonTy,0),
                                    canonElementType.Quals);

  // If we didn't need extra canonicalization for the element type or the size
  // expression, then just use that as our result.
  if (QualType(canonElementType.Ty, 0) == elementType &&
      canonTy->getSizeExpr() == numElements)
    return canon;

  // Otherwise, we need to build a type which follows the spelling
  // of the element type.
  auto *sugaredType
    = new (*this, TypeAlignment)
        DependentSizedArrayType(*this, elementType, canon, numElements,
                                ASM, elementTypeQuals, brackets);
  Types.push_back(sugaredType);
  return QualType(sugaredType, 0);
}

QualType ASTContext::getIncompleteArrayType(QualType elementType,
                                            ArrayType::ArraySizeModifier ASM,
                                            unsigned elementTypeQuals) const {
  llvm::FoldingSetNodeID ID;
  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);

  void *insertPos = nullptr;
  if (IncompleteArrayType *iat =
       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
    return QualType(iat, 0);

  // If the element type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.  We also have to pull
  // qualifiers off the element type.
  QualType canon;

  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
    SplitQualType canonSplit = getCanonicalType(elementType).split();
    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
                                   ASM, elementTypeQuals);
    canon = getQualifiedType(canon, canonSplit.Quals);

    // Get the new insert position for the node we care about.
    IncompleteArrayType *existing =
      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
    assert(!existing && "Shouldn't be in the map!"); (void) existing;
  }

  auto *newType = new (*this, TypeAlignment)
    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);

  IncompleteArrayTypes.InsertNode(newType, insertPos);
  Types.push_back(newType);
  return QualType(newType, 0);
}

ASTContext::BuiltinVectorTypeInfo
ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
#define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
  {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
   NUMVECTORS};

#define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
  {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};

  switch (Ty->getKind()) {
  default:
    llvm_unreachable("Unsupported builtin vector type");
  case BuiltinType::SveInt8:
    return SVE_INT_ELTTY(8, 16, true, 1);
  case BuiltinType::SveUint8:
    return SVE_INT_ELTTY(8, 16, false, 1);
  case BuiltinType::SveInt8x2:
    return SVE_INT_ELTTY(8, 16, true, 2);
  case BuiltinType::SveUint8x2:
    return SVE_INT_ELTTY(8, 16, false, 2);
  case BuiltinType::SveInt8x3:
    return SVE_INT_ELTTY(8, 16, true, 3);
  case BuiltinType::SveUint8x3:
    return SVE_INT_ELTTY(8, 16, false, 3);
  case BuiltinType::SveInt8x4:
    return SVE_INT_ELTTY(8, 16, true, 4);
  case BuiltinType::SveUint8x4:
    return SVE_INT_ELTTY(8, 16, false, 4);
  case BuiltinType::SveInt16:
    return SVE_INT_ELTTY(16, 8, true, 1);
  case BuiltinType::SveUint16:
    return SVE_INT_ELTTY(16, 8, false, 1);
  case BuiltinType::SveInt16x2:
    return SVE_INT_ELTTY(16, 8, true, 2);
  case BuiltinType::SveUint16x2:
    return SVE_INT_ELTTY(16, 8, false, 2);
  case BuiltinType::SveInt16x3:
    return SVE_INT_ELTTY(16, 8, true, 3);
  case BuiltinType::SveUint16x3:
    return SVE_INT_ELTTY(16, 8, false, 3);
  case BuiltinType::SveInt16x4:
    return SVE_INT_ELTTY(16, 8, true, 4);
  case BuiltinType::SveUint16x4:
    return SVE_INT_ELTTY(16, 8, false, 4);
  case BuiltinType::SveInt32:
    return SVE_INT_ELTTY(32, 4, true, 1);
  case BuiltinType::SveUint32:
    return SVE_INT_ELTTY(32, 4, false, 1);
  case BuiltinType::SveInt32x2:
    return SVE_INT_ELTTY(32, 4, true, 2);
  case BuiltinType::SveUint32x2:
    return SVE_INT_ELTTY(32, 4, false, 2);
  case BuiltinType::SveInt32x3:
    return SVE_INT_ELTTY(32, 4, true, 3);
  case BuiltinType::SveUint32x3:
    return SVE_INT_ELTTY(32, 4, false, 3);
  case BuiltinType::SveInt32x4:
    return SVE_INT_ELTTY(32, 4, true, 4);
  case BuiltinType::SveUint32x4:
    return SVE_INT_ELTTY(32, 4, false, 4);
  case BuiltinType::SveInt64:
    return SVE_INT_ELTTY(64, 2, true, 1);
  case BuiltinType::SveUint64:
    return SVE_INT_ELTTY(64, 2, false, 1);
  case BuiltinType::SveInt64x2:
    return SVE_INT_ELTTY(64, 2, true, 2);
  case BuiltinType::SveUint64x2:
    return SVE_INT_ELTTY(64, 2, false, 2);
  case BuiltinType::SveInt64x3:
    return SVE_INT_ELTTY(64, 2, true, 3);
  case BuiltinType::SveUint64x3:
    return SVE_INT_ELTTY(64, 2, false, 3);
  case BuiltinType::SveInt64x4:
    return SVE_INT_ELTTY(64, 2, true, 4);
  case BuiltinType::SveUint64x4:
    return SVE_INT_ELTTY(64, 2, false, 4);
  case BuiltinType::SveBool:
    return SVE_ELTTY(BoolTy, 16, 1);
  case BuiltinType::SveFloat16:
    return SVE_ELTTY(HalfTy, 8, 1);
  case BuiltinType::SveFloat16x2:
    return SVE_ELTTY(HalfTy, 8, 2);
  case BuiltinType::SveFloat16x3:
    return SVE_ELTTY(HalfTy, 8, 3);
  case BuiltinType::SveFloat16x4:
    return SVE_ELTTY(HalfTy, 8, 4);
  case BuiltinType::SveFloat32:
    return SVE_ELTTY(FloatTy, 4, 1);
  case BuiltinType::SveFloat32x2:
    return SVE_ELTTY(FloatTy, 4, 2);
  case BuiltinType::SveFloat32x3:
    return SVE_ELTTY(FloatTy, 4, 3);
  case BuiltinType::SveFloat32x4:
    return SVE_ELTTY(FloatTy, 4, 4);
  case BuiltinType::SveFloat64:
    return SVE_ELTTY(DoubleTy, 2, 1);
  case BuiltinType::SveFloat64x2:
    return SVE_ELTTY(DoubleTy, 2, 2);
  case BuiltinType::SveFloat64x3:
    return SVE_ELTTY(DoubleTy, 2, 3);
  case BuiltinType::SveFloat64x4:
    return SVE_ELTTY(DoubleTy, 2, 4);
  case BuiltinType::SveBFloat16:
    return SVE_ELTTY(BFloat16Ty, 8, 1);
  case BuiltinType::SveBFloat16x2:
    return SVE_ELTTY(BFloat16Ty, 8, 2);
  case BuiltinType::SveBFloat16x3:
    return SVE_ELTTY(BFloat16Ty, 8, 3);
  case BuiltinType::SveBFloat16x4:
    return SVE_ELTTY(BFloat16Ty, 8, 4);
  }
}

/// getScalableVectorType - Return the unique reference to a scalable vector
/// type of the specified element type and size. VectorType must be a built-in
/// type.
QualType ASTContext::getScalableVectorType(QualType EltTy,
                                           unsigned NumElts) const {
  if (Target->hasAArch64SVETypes()) {
    uint64_t EltTySize = getTypeSize(EltTy);
#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
                        IsSigned, IsFP, IsBF)                                  \
  if (!EltTy->isBooleanType() &&                                               \
      ((EltTy->hasIntegerRepresentation() &&                                   \
        EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
       (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
        IsFP && !IsBF) ||                                                      \
       (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
        IsBF && !IsFP)) &&                                                     \
      EltTySize == ElBits && NumElts == NumEls) {                              \
    return SingletonId;                                                        \
  }
#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
  if (EltTy->isBooleanType() && NumElts == NumEls)                             \
    return SingletonId;
#include "clang/Basic/AArch64SVEACLETypes.def"
  }
  return QualType();
}

/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
                                   VectorType::VectorKind VecKind) const {
  assert(vecType->isBuiltinType());

  // Check if we've already instantiated a vector of this type.
  llvm::FoldingSetNodeID ID;
  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);

  void *InsertPos = nullptr;
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(VTP, 0);

  // If the element type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!vecType.isCanonical()) {
    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);

    // Get the new insert position for the node we care about.
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }
  auto *New = new (*this, TypeAlignment)
    VectorType(vecType, NumElts, Canonical, VecKind);
  VectorTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

QualType
ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
                                   SourceLocation AttrLoc,
                                   VectorType::VectorKind VecKind) const {
  llvm::FoldingSetNodeID ID;
  DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
                               VecKind);
  void *InsertPos = nullptr;
  DependentVectorType *Canon =
      DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
  DependentVectorType *New;

  if (Canon) {
    New = new (*this, TypeAlignment) DependentVectorType(
        *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
  } else {
    QualType CanonVecTy = getCanonicalType(VecType);
    if (CanonVecTy == VecType) {
      New = new (*this, TypeAlignment) DependentVectorType(
          *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);

      DependentVectorType *CanonCheck =
          DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
      assert(!CanonCheck &&
             "Dependent-sized vector_size canonical type broken");
      (void)CanonCheck;
      DependentVectorTypes.InsertNode(New, InsertPos);
    } else {
      QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
                                                SourceLocation(), VecKind);
      New = new (*this, TypeAlignment) DependentVectorType(
          *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
    }
  }

  Types.push_back(New);
  return QualType(New, 0);
}

/// getExtVectorType - Return the unique reference to an extended vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType
ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
  assert(vecType->isBuiltinType() || vecType->isDependentType());

  // Check if we've already instantiated a vector of this type.
  llvm::FoldingSetNodeID ID;
  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
                      VectorType::GenericVector);
  void *InsertPos = nullptr;
  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(VTP, 0);

  // If the element type isn't canonical, this won't be a canonical type either,
  // so fill in the canonical type field.
  QualType Canonical;
  if (!vecType.isCanonical()) {
    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);

    // Get the new insert position for the node we care about.
    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }
  auto *New = new (*this, TypeAlignment)
    ExtVectorType(vecType, NumElts, Canonical);
  VectorTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

QualType
ASTContext::getDependentSizedExtVectorType(QualType vecType,
                                           Expr *SizeExpr,
                                           SourceLocation AttrLoc) const {
  llvm::FoldingSetNodeID ID;
  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
                                       SizeExpr);

  void *InsertPos = nullptr;
  DependentSizedExtVectorType *Canon
    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
  DependentSizedExtVectorType *New;
  if (Canon) {
    // We already have a canonical version of this array type; use it as
    // the canonical type for a newly-built type.
    New = new (*this, TypeAlignment)
      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
                                  SizeExpr, AttrLoc);
  } else {
    QualType CanonVecTy = getCanonicalType(vecType);
    if (CanonVecTy == vecType) {
      New = new (*this, TypeAlignment)
        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
                                    AttrLoc);

      DependentSizedExtVectorType *CanonCheck
        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
      (void)CanonCheck;
      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
    } else {
      QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
                                                           SourceLocation());
      New = new (*this, TypeAlignment) DependentSizedExtVectorType(
          *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
    }
  }

  Types.push_back(New);
  return QualType(New, 0);
}

QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
                                           unsigned NumColumns) const {
  llvm::FoldingSetNodeID ID;
  ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
                              Type::ConstantMatrix);

  assert(MatrixType::isValidElementType(ElementTy) &&
         "need a valid element type");
  assert(ConstantMatrixType::isDimensionValid(NumRows) &&
         ConstantMatrixType::isDimensionValid(NumColumns) &&
         "need valid matrix dimensions");
  void *InsertPos = nullptr;
  if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(MTP, 0);

  QualType Canonical;
  if (!ElementTy.isCanonical()) {
    Canonical =
        getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);

    ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Matrix type shouldn't already exist in the map");
    (void)NewIP;
  }

  auto *New = new (*this, TypeAlignment)
      ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
  MatrixTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
                                                 Expr *RowExpr,
                                                 Expr *ColumnExpr,
                                                 SourceLocation AttrLoc) const {
  QualType CanonElementTy = getCanonicalType(ElementTy);
  llvm::FoldingSetNodeID ID;
  DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
                                    ColumnExpr);

  void *InsertPos = nullptr;
  DependentSizedMatrixType *Canon =
      DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);

  if (!Canon) {
    Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
        *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
#ifndef NDEBUG
    DependentSizedMatrixType *CanonCheck =
        DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
#endif
    DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
    Types.push_back(Canon);
  }

  // Already have a canonical version of the matrix type
  //
  // If it exactly matches the requested type, use it directly.
  if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
      Canon->getRowExpr() == ColumnExpr)
    return QualType(Canon, 0);

  // Use Canon as the canonical type for newly-built type.
  DependentSizedMatrixType *New = new (*this, TypeAlignment)
      DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
                               ColumnExpr, AttrLoc);
  Types.push_back(New);
  return QualType(New, 0);
}

QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
                                                  Expr *AddrSpaceExpr,
                                                  SourceLocation AttrLoc) const {
  assert(AddrSpaceExpr->isInstantiationDependent());

  QualType canonPointeeType = getCanonicalType(PointeeType);

  void *insertPos = nullptr;
  llvm::FoldingSetNodeID ID;
  DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
                                     AddrSpaceExpr);

  DependentAddressSpaceType *canonTy =
    DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);

  if (!canonTy) {
    canonTy = new (*this, TypeAlignment)
      DependentAddressSpaceType(*this, canonPointeeType,
                                QualType(), AddrSpaceExpr, AttrLoc);
    DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
    Types.push_back(canonTy);
  }

  if (canonPointeeType == PointeeType &&
      canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
    return QualType(canonTy, 0);

  auto *sugaredType
    = new (*this, TypeAlignment)
        DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
                                  AddrSpaceExpr, AttrLoc);
  Types.push_back(sugaredType);
  return QualType(sugaredType, 0);
}

/// Determine whether \p T is canonical as the result type of a function.
static bool isCanonicalResultType(QualType T) {
  return T.isCanonical() &&
         (T.getObjCLifetime() == Qualifiers::OCL_None ||
          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
}

/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
QualType
ASTContext::getFunctionNoProtoType(QualType ResultTy,
                                   const FunctionType::ExtInfo &Info) const {
  // Unique functions, to guarantee there is only one function of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  FunctionNoProtoType::Profile(ID, ResultTy, Info);

  void *InsertPos = nullptr;
  if (FunctionNoProtoType *FT =
        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(FT, 0);

  QualType Canonical;
  if (!isCanonicalResultType(ResultTy)) {
    Canonical =
      getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);

    // Get the new insert position for the node we care about.
    FunctionNoProtoType *NewIP =
      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }

  auto *New = new (*this, TypeAlignment)
    FunctionNoProtoType(ResultTy, Canonical, Info);
  Types.push_back(New);
  FunctionNoProtoTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

CanQualType
ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
  CanQualType CanResultType = getCanonicalType(ResultType);

  // Canonical result types do not have ARC lifetime qualifiers.
  if (CanResultType.getQualifiers().hasObjCLifetime()) {
    Qualifiers Qs = CanResultType.getQualifiers();
    Qs.removeObjCLifetime();
    return CanQualType::CreateUnsafe(
             getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
  }

  return CanResultType;
}

static bool isCanonicalExceptionSpecification(
    const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
  if (ESI.Type == EST_None)
    return true;
  if (!NoexceptInType)
    return false;

  // C++17 onwards: exception specification is part of the type, as a simple
  // boolean "can this function type throw".
  if (ESI.Type == EST_BasicNoexcept)
    return true;

  // A noexcept(expr) specification is (possibly) canonical if expr is
  // value-dependent.
  if (ESI.Type == EST_DependentNoexcept)
    return true;

  // A dynamic exception specification is canonical if it only contains pack
  // expansions (so we can't tell whether it's non-throwing) and all its
  // contained types are canonical.
  if (ESI.Type == EST_Dynamic) {
    bool AnyPackExpansions = false;
    for (QualType ET : ESI.Exceptions) {
      if (!ET.isCanonical())
        return false;
      if (ET->getAs<PackExpansionType>())
        AnyPackExpansions = true;
    }
    return AnyPackExpansions;
  }

  return false;
}

QualType ASTContext::getFunctionTypeInternal(
    QualType ResultTy, ArrayRef<QualType> ArgArray,
    const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
  size_t NumArgs = ArgArray.size();

  // Unique functions, to guarantee there is only one function of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
                             *this, true);

  QualType Canonical;
  bool Unique = false;

  void *InsertPos = nullptr;
  if (FunctionProtoType *FPT =
        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
    QualType Existing = QualType(FPT, 0);

    // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
    // it so long as our exception specification doesn't contain a dependent
    // noexcept expression, or we're just looking for a canonical type.
    // Otherwise, we're going to need to create a type
    // sugar node to hold the concrete expression.
    if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
        EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
      return Existing;

    // We need a new type sugar node for this one, to hold the new noexcept
    // expression. We do no canonicalization here, but that's OK since we don't
    // expect to see the same noexcept expression much more than once.
    Canonical = getCanonicalType(Existing);
    Unique = true;
  }

  bool NoexceptInType = getLangOpts().CPlusPlus17;
  bool IsCanonicalExceptionSpec =
      isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);

  // Determine whether the type being created is already canonical or not.
  bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
                     isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
    if (!ArgArray[i].isCanonicalAsParam())
      isCanonical = false;

  if (OnlyWantCanonical)
    assert(isCanonical &&
           "given non-canonical parameters constructing canonical type");

  // If this type isn't canonical, get the canonical version of it if we don't
  // already have it. The exception spec is only partially part of the
  // canonical type, and only in C++17 onwards.
  if (!isCanonical && Canonical.isNull()) {
    SmallVector<QualType, 16> CanonicalArgs;
    CanonicalArgs.reserve(NumArgs);
    for (unsigned i = 0; i != NumArgs; ++i)
      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));

    llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
    CanonicalEPI.HasTrailingReturn = false;

    if (IsCanonicalExceptionSpec) {
      // Exception spec is already OK.
    } else if (NoexceptInType) {
      switch (EPI.ExceptionSpec.Type) {
      case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
        // We don't know yet. It shouldn't matter what we pick here; no-one
        // should ever look at this.
        LLVM_FALLTHROUGH;
      case EST_None: case EST_MSAny: case EST_NoexceptFalse:
        CanonicalEPI.ExceptionSpec.Type = EST_None;
        break;

        // A dynamic exception specification is almost always "not noexcept",
        // with the exception that a pack expansion might expand to no types.
      case EST_Dynamic: {
        bool AnyPacks = false;
        for (QualType ET : EPI.ExceptionSpec.Exceptions) {
          if (ET->getAs<PackExpansionType>())
            AnyPacks = true;
          ExceptionTypeStorage.push_back(getCanonicalType(ET));
        }
        if (!AnyPacks)
          CanonicalEPI.ExceptionSpec.Type = EST_None;
        else {
          CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
          CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
        }
        break;
      }

      case EST_DynamicNone:
      case EST_BasicNoexcept:
      case EST_NoexceptTrue:
      case EST_NoThrow:
        CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
        break;

      case EST_DependentNoexcept:
        llvm_unreachable("dependent noexcept is already canonical");
      }
    } else {
      CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
    }

    // Adjust the canonical function result type.
    CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
    Canonical =
        getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);

    // Get the new insert position for the node we care about.
    FunctionProtoType *NewIP =
      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }

  // Compute the needed size to hold this FunctionProtoType and the
  // various trailing objects.
  auto ESH = FunctionProtoType::getExceptionSpecSize(
      EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
  size_t Size = FunctionProtoType::totalSizeToAlloc<
      QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
      FunctionType::ExceptionType, Expr *, FunctionDecl *,
      FunctionProtoType::ExtParameterInfo, Qualifiers>(
      NumArgs, EPI.Variadic,
      FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
      ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
      EPI.ExtParameterInfos ? NumArgs : 0,
      EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);

  auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
  FunctionProtoType::ExtProtoInfo newEPI = EPI;
  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
  Types.push_back(FTP);
  if (!Unique)
    FunctionProtoTypes.InsertNode(FTP, InsertPos);
  return QualType(FTP, 0);
}

QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
  llvm::FoldingSetNodeID ID;
  PipeType::Profile(ID, T, ReadOnly);

  void *InsertPos = nullptr;
  if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(PT, 0);

  // If the pipe element type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.
  QualType Canonical;
  if (!T.isCanonical()) {
    Canonical = getPipeType(getCanonicalType(T), ReadOnly);

    // Get the new insert position for the node we care about.
    PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!");
    (void)NewIP;
  }
  auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
  Types.push_back(New);
  PipeTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
  // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
  return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
                         : Ty;
}

QualType ASTContext::getReadPipeType(QualType T) const {
  return getPipeType(T, true);
}

QualType ASTContext::getWritePipeType(QualType T) const {
  return getPipeType(T, false);
}

QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const {
  llvm::FoldingSetNodeID ID;
  ExtIntType::Profile(ID, IsUnsigned, NumBits);

  void *InsertPos = nullptr;
  if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(EIT, 0);

  auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits);
  ExtIntTypes.InsertNode(New, InsertPos);
  Types.push_back(New);
  return QualType(New, 0);
}

QualType ASTContext::getDependentExtIntType(bool IsUnsigned,
                                            Expr *NumBitsExpr) const {
  assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
  llvm::FoldingSetNodeID ID;
  DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);

  void *InsertPos = nullptr;
  if (DependentExtIntType *Existing =
          DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(Existing, 0);

  auto *New = new (*this, TypeAlignment)
      DependentExtIntType(*this, IsUnsigned, NumBitsExpr);
  DependentExtIntTypes.InsertNode(New, InsertPos);

  Types.push_back(New);
  return QualType(New, 0);
}

#ifndef NDEBUG
static bool NeedsInjectedClassNameType(const RecordDecl *D) {
  if (!isa<CXXRecordDecl>(D)) return false;
  const auto *RD = cast<CXXRecordDecl>(D);
  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
    return true;
  if (RD->getDescribedClassTemplate() &&
      !isa<ClassTemplateSpecializationDecl>(RD))
    return true;
  return false;
}
#endif

/// getInjectedClassNameType - Return the unique reference to the
/// injected class name type for the specified templated declaration.
QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
                                              QualType TST) const {
  assert(NeedsInjectedClassNameType(Decl));
  if (Decl->TypeForDecl) {
    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
    Decl->TypeForDecl = PrevDecl->TypeForDecl;
    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
  } else {
    Type *newType =
      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
    Decl->TypeForDecl = newType;
    Types.push_back(newType);
  }
  return QualType(Decl->TypeForDecl, 0);
}

/// getTypeDeclType - Return the unique reference to the type for the
/// specified type declaration.
QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
  assert(Decl && "Passed null for Decl param");
  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");

  if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
    return getTypedefType(Typedef);

  assert(!isa<TemplateTypeParmDecl>(Decl) &&
         "Template type parameter types are always available.");

  if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
    assert(Record->isFirstDecl() && "struct/union has previous declaration");
    assert(!NeedsInjectedClassNameType(Record));
    return getRecordType(Record);
  } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
    assert(Enum->isFirstDecl() && "enum has previous declaration");
    return getEnumType(Enum);
  } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
    Decl->TypeForDecl = newType;
    Types.push_back(newType);
  } else
    llvm_unreachable("TypeDecl without a type?");

  return QualType(Decl->TypeForDecl, 0);
}

/// getTypedefType - Return the unique reference to the type for the
/// specified typedef name decl.
QualType
ASTContext::getTypedefType(const TypedefNameDecl *Decl,
                           QualType Canonical) const {
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);

  if (Canonical.isNull())
    Canonical = getCanonicalType(Decl->getUnderlyingType());
  auto *newType = new (*this, TypeAlignment)
    TypedefType(Type::Typedef, Decl, Canonical);
  Decl->TypeForDecl = newType;
  Types.push_back(newType);
  return QualType(newType, 0);
}

QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);

  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
    if (PrevDecl->TypeForDecl)
      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);

  auto *newType = new (*this, TypeAlignment) RecordType(Decl);
  Decl->TypeForDecl = newType;
  Types.push_back(newType);
  return QualType(newType, 0);
}

QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);

  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
    if (PrevDecl->TypeForDecl)
      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);

  auto *newType = new (*this, TypeAlignment) EnumType(Decl);
  Decl->TypeForDecl = newType;
  Types.push_back(newType);
  return QualType(newType, 0);
}

QualType ASTContext::getAttributedType(attr::Kind attrKind,
                                       QualType modifiedType,
                                       QualType equivalentType) {
  llvm::FoldingSetNodeID id;
  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);

  void *insertPos = nullptr;
  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
  if (type) return QualType(type, 0);

  QualType canon = getCanonicalType(equivalentType);
  type = new (*this, TypeAlignment)
      AttributedType(canon, attrKind, modifiedType, equivalentType);

  Types.push_back(type);
  AttributedTypes.InsertNode(type, insertPos);

  return QualType(type, 0);
}

/// Retrieve a substitution-result type.
QualType
ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
                                         QualType Replacement) const {
  assert(Replacement.isCanonical()
         && "replacement types must always be canonical");

  llvm::FoldingSetNodeID ID;
  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
  void *InsertPos = nullptr;
  SubstTemplateTypeParmType *SubstParm
    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);

  if (!SubstParm) {
    SubstParm = new (*this, TypeAlignment)
      SubstTemplateTypeParmType(Parm, Replacement);
    Types.push_back(SubstParm);
    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
  }

  return QualType(SubstParm, 0);
}

/// Retrieve a
QualType ASTContext::getSubstTemplateTypeParmPackType(
                                          const TemplateTypeParmType *Parm,
                                              const TemplateArgument &ArgPack) {
#ifndef NDEBUG
  for (const auto &P : ArgPack.pack_elements()) {
    assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
    assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
  }
#endif

  llvm::FoldingSetNodeID ID;
  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
  void *InsertPos = nullptr;
  if (SubstTemplateTypeParmPackType *SubstParm
        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(SubstParm, 0);

  QualType Canon;
  if (!Parm->isCanonicalUnqualified()) {
    Canon = getCanonicalType(QualType(Parm, 0));
    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
                                             ArgPack);
    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
  }

  auto *SubstParm
    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
                                                               ArgPack);
  Types.push_back(SubstParm);
  SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
  return QualType(SubstParm, 0);
}

/// Retrieve the template type parameter type for a template
/// parameter or parameter pack with the given depth, index, and (optionally)
/// name.
QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
                                             bool ParameterPack,
                                             TemplateTypeParmDecl *TTPDecl) const {
  llvm::FoldingSetNodeID ID;
  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
  void *InsertPos = nullptr;
  TemplateTypeParmType *TypeParm
    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);

  if (TypeParm)
    return QualType(TypeParm, 0);

  if (TTPDecl) {
    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);

    TemplateTypeParmType *TypeCheck
      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!TypeCheck && "Template type parameter canonical type broken");
    (void)TypeCheck;
  } else
    TypeParm = new (*this, TypeAlignment)
      TemplateTypeParmType(Depth, Index, ParameterPack);

  Types.push_back(TypeParm);
  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);

  return QualType(TypeParm, 0);
}

TypeSourceInfo *
ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
                                              SourceLocation NameLoc,
                                        const TemplateArgumentListInfo &Args,
                                              QualType Underlying) const {
  assert(!Name.getAsDependentTemplateName() &&
         "No dependent template names here!");
  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);

  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
  TemplateSpecializationTypeLoc TL =
      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
  TL.setTemplateKeywordLoc(SourceLocation());
  TL.setTemplateNameLoc(NameLoc);
  TL.setLAngleLoc(Args.getLAngleLoc());
  TL.setRAngleLoc(Args.getRAngleLoc());
  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
    TL.setArgLocInfo(i, Args[i].getLocInfo());
  return DI;
}

QualType
ASTContext::getTemplateSpecializationType(TemplateName Template,
                                          const TemplateArgumentListInfo &Args,
                                          QualType Underlying) const {
  assert(!Template.getAsDependentTemplateName() &&
         "No dependent template names here!");

  SmallVector<TemplateArgument, 4> ArgVec;
  ArgVec.reserve(Args.size());
  for (const TemplateArgumentLoc &Arg : Args.arguments())
    ArgVec.push_back(Arg.getArgument());

  return getTemplateSpecializationType(Template, ArgVec, Underlying);
}

#ifndef NDEBUG
static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
  for (const TemplateArgument &Arg : Args)
    if (Arg.isPackExpansion())
      return true;

  return true;
}
#endif

QualType
ASTContext::getTemplateSpecializationType(TemplateName Template,
                                          ArrayRef<TemplateArgument> Args,
                                          QualType Underlying) const {
  assert(!Template.getAsDependentTemplateName() &&
         "No dependent template names here!");
  // Look through qualified template names.
  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
    Template = TemplateName(QTN->getTemplateDecl());

  bool IsTypeAlias =
    Template.getAsTemplateDecl() &&
    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
  QualType CanonType;
  if (!Underlying.isNull())
    CanonType = getCanonicalType(Underlying);
  else {
    // We can get here with an alias template when the specialization contains
    // a pack expansion that does not match up with a parameter pack.
    assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
           "Caller must compute aliased type");
    IsTypeAlias = false;
    CanonType = getCanonicalTemplateSpecializationType(Template, Args);
  }

  // Allocate the (non-canonical) template specialization type, but don't
  // try to unique it: these types typically have location information that
  // we don't unique and don't want to lose.
  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
                       sizeof(TemplateArgument) * Args.size() +
                       (IsTypeAlias? sizeof(QualType) : 0),
                       TypeAlignment);
  auto *Spec
    = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
                                         IsTypeAlias ? Underlying : QualType());

  Types.push_back(Spec);
  return QualType(Spec, 0);
}

QualType ASTContext::getCanonicalTemplateSpecializationType(
    TemplateName Template, ArrayRef<TemplateArgument> Args) const {
  assert(!Template.getAsDependentTemplateName() &&
         "No dependent template names here!");

  // Look through qualified template names.
  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
    Template = TemplateName(QTN->getTemplateDecl());

  // Build the canonical template specialization type.
  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
  SmallVector<TemplateArgument, 4> CanonArgs;
  unsigned NumArgs = Args.size();
  CanonArgs.reserve(NumArgs);
  for (const TemplateArgument &Arg : Args)
    CanonArgs.push_back(getCanonicalTemplateArgument(Arg));

  // Determine whether this canonical template specialization type already
  // exists.
  llvm::FoldingSetNodeID ID;
  TemplateSpecializationType::Profile(ID, CanonTemplate,
                                      CanonArgs, *this);

  void *InsertPos = nullptr;
  TemplateSpecializationType *Spec
    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);

  if (!Spec) {
    // Allocate a new canonical template specialization type.
    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
                          sizeof(TemplateArgument) * NumArgs),
                         TypeAlignment);
    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
                                                CanonArgs,
                                                QualType(), QualType());
    Types.push_back(Spec);
    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
  }

  assert(Spec->isDependentType() &&
         "Non-dependent template-id type must have a canonical type");
  return QualType(Spec, 0);
}

QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
                                       NestedNameSpecifier *NNS,
                                       QualType NamedType,
                                       TagDecl *OwnedTagDecl) const {
  llvm::FoldingSetNodeID ID;
  ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);

  void *InsertPos = nullptr;
  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (T)
    return QualType(T, 0);

  QualType Canon = NamedType;
  if (!Canon.isCanonical()) {
    Canon = getCanonicalType(NamedType);
    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!CheckT && "Elaborated canonical type broken");
    (void)CheckT;
  }

  void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
                       TypeAlignment);
  T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);

  Types.push_back(T);
  ElaboratedTypes.InsertNode(T, InsertPos);
  return QualType(T, 0);
}

QualType
ASTContext::getParenType(QualType InnerType) const {
  llvm::FoldingSetNodeID ID;
  ParenType::Profile(ID, InnerType);

  void *InsertPos = nullptr;
  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (T)
    return QualType(T, 0);

  QualType Canon = InnerType;
  if (!Canon.isCanonical()) {
    Canon = getCanonicalType(InnerType);
    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!CheckT && "Paren canonical type broken");
    (void)CheckT;
  }

  T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
  Types.push_back(T);
  ParenTypes.InsertNode(T, InsertPos);
  return QualType(T, 0);
}

QualType
ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
                                  const IdentifierInfo *MacroII) const {
  QualType Canon = UnderlyingTy;
  if (!Canon.isCanonical())
    Canon = getCanonicalType(UnderlyingTy);

  auto *newType = new (*this, TypeAlignment)
      MacroQualifiedType(UnderlyingTy, Canon, MacroII);
  Types.push_back(newType);
  return QualType(newType, 0);
}

QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
                                          NestedNameSpecifier *NNS,
                                          const IdentifierInfo *Name,
                                          QualType Canon) const {
  if (Canon.isNull()) {
    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
    if (CanonNNS != NNS)
      Canon = getDependentNameType(Keyword, CanonNNS, Name);
  }

  llvm::FoldingSetNodeID ID;
  DependentNameType::Profile(ID, Keyword, NNS, Name);

  void *InsertPos = nullptr;
  DependentNameType *T
    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (T)
    return QualType(T, 0);

  T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
  Types.push_back(T);
  DependentNameTypes.InsertNode(T, InsertPos);
  return QualType(T, 0);
}

QualType
ASTContext::getDependentTemplateSpecializationType(
                                 ElaboratedTypeKeyword Keyword,
                                 NestedNameSpecifier *NNS,
                                 const IdentifierInfo *Name,
                                 const TemplateArgumentListInfo &Args) const {
  // TODO: avoid this copy
  SmallVector<TemplateArgument, 16> ArgCopy;
  for (unsigned I = 0, E = Args.size(); I != E; ++I)
    ArgCopy.push_back(Args[I].getArgument());
  return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
}

QualType
ASTContext::getDependentTemplateSpecializationType(
                                 ElaboratedTypeKeyword Keyword,
                                 NestedNameSpecifier *NNS,
                                 const IdentifierInfo *Name,
                                 ArrayRef<TemplateArgument> Args) const {
  assert((!NNS || NNS->isDependent()) &&
         "nested-name-specifier must be dependent");

  llvm::FoldingSetNodeID ID;
  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
                                               Name, Args);

  void *InsertPos = nullptr;
  DependentTemplateSpecializationType *T
    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (T)
    return QualType(T, 0);

  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);

  ElaboratedTypeKeyword CanonKeyword = Keyword;
  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;

  bool AnyNonCanonArgs = false;
  unsigned NumArgs = Args.size();
  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
  for (unsigned I = 0; I != NumArgs; ++I) {
    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
    if (!CanonArgs[I].structurallyEquals(Args[I]))
      AnyNonCanonArgs = true;
  }

  QualType Canon;
  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
                                                   Name,
                                                   CanonArgs);

    // Find the insert position again.
    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
  }

  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
                        sizeof(TemplateArgument) * NumArgs),
                       TypeAlignment);
  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
                                                    Name, Args, Canon);
  Types.push_back(T);
  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
  return QualType(T, 0);
}

TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
  TemplateArgument Arg;
  if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
    QualType ArgType = getTypeDeclType(TTP);
    if (TTP->isParameterPack())
      ArgType = getPackExpansionType(ArgType, None);

    Arg = TemplateArgument(ArgType);
  } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
    Expr *E = new (*this) DeclRefExpr(
        *this, NTTP, /*enclosing*/ false,
        NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this),
        Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());

    if (NTTP->isParameterPack())
      E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
                                        None);
    Arg = TemplateArgument(E);
  } else {
    auto *TTP = cast<TemplateTemplateParmDecl>(Param);
    if (TTP->isParameterPack())
      Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
    else
      Arg = TemplateArgument(TemplateName(TTP));
  }

  if (Param->isTemplateParameterPack())
    Arg = TemplateArgument::CreatePackCopy(*this, Arg);

  return Arg;
}

void
ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
                                    SmallVectorImpl<TemplateArgument> &Args) {
  Args.reserve(Args.size() + Params->size());

  for (NamedDecl *Param : *Params)
    Args.push_back(getInjectedTemplateArg(Param));
}

QualType ASTContext::getPackExpansionType(QualType Pattern,
                                          Optional<unsigned> NumExpansions,
                                          bool ExpectPackInType) {
  assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
         "Pack expansions must expand one or more parameter packs");

  llvm::FoldingSetNodeID ID;
  PackExpansionType::Profile(ID, Pattern, NumExpansions);

  void *InsertPos = nullptr;
  PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
  if (T)
    return QualType(T, 0);

  QualType Canon;
  if (!Pattern.isCanonical()) {
    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
                                 /*ExpectPackInType=*/false);

    // Find the insert position again, in case we inserted an element into
    // PackExpansionTypes and invalidated our insert position.
    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
  }

  T = new (*this, TypeAlignment)
      PackExpansionType(Pattern, Canon, NumExpansions);
  Types.push_back(T);
  PackExpansionTypes.InsertNode(T, InsertPos);
  return QualType(T, 0);
}

/// CmpProtocolNames - Comparison predicate for sorting protocols
/// alphabetically.
static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
                            ObjCProtocolDecl *const *RHS) {
  return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
}

static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
  if (Protocols.empty()) return true;

  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
    return false;

  for (unsigned i = 1; i != Protocols.size(); ++i)
    if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
        Protocols[i]->getCanonicalDecl() != Protocols[i])
      return false;
  return true;
}

static void
SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
  // Sort protocols, keyed by name.
  llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);

  // Canonicalize.
  for (ObjCProtocolDecl *&P : Protocols)
    P = P->getCanonicalDecl();

  // Remove duplicates.
  auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
  Protocols.erase(ProtocolsEnd, Protocols.end());
}

QualType ASTContext::getObjCObjectType(QualType BaseType,
                                       ObjCProtocolDecl * const *Protocols,
                                       unsigned NumProtocols) const {
  return getObjCObjectType(BaseType, {},
                           llvm::makeArrayRef(Protocols, NumProtocols),
                           /*isKindOf=*/false);
}

QualType ASTContext::getObjCObjectType(
           QualType baseType,
           ArrayRef<QualType> typeArgs,
           ArrayRef<ObjCProtocolDecl *> protocols,
           bool isKindOf) const {
  // If the base type is an interface and there aren't any protocols or
  // type arguments to add, then the interface type will do just fine.
  if (typeArgs.empty() && protocols.empty() && !isKindOf &&
      isa<ObjCInterfaceType>(baseType))
    return baseType;

  // Look in the folding set for an existing type.
  llvm::FoldingSetNodeID ID;
  ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
  void *InsertPos = nullptr;
  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(QT, 0);

  // Determine the type arguments to be used for canonicalization,
  // which may be explicitly specified here or written on the base
  // type.
  ArrayRef<QualType> effectiveTypeArgs = typeArgs;
  if (effectiveTypeArgs.empty()) {
    if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
      effectiveTypeArgs = baseObject->getTypeArgs();
  }

  // Build the canonical type, which has the canonical base type and a
  // sorted-and-uniqued list of protocols and the type arguments
  // canonicalized.
  QualType canonical;
  bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
                                          effectiveTypeArgs.end(),
                                          [&](QualType type) {
                                            return type.isCanonical();
                                          });
  bool protocolsSorted = areSortedAndUniqued(protocols);
  if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
    // Determine the canonical type arguments.
    ArrayRef<QualType> canonTypeArgs;
    SmallVector<QualType, 4> canonTypeArgsVec;
    if (!typeArgsAreCanonical) {
      canonTypeArgsVec.reserve(effectiveTypeArgs.size());
      for (auto typeArg : effectiveTypeArgs)
        canonTypeArgsVec.push_back(getCanonicalType(typeArg));
      canonTypeArgs = canonTypeArgsVec;
    } else {
      canonTypeArgs = effectiveTypeArgs;
    }

    ArrayRef<ObjCProtocolDecl *> canonProtocols;
    SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
    if (!protocolsSorted) {
      canonProtocolsVec.append(protocols.begin(), protocols.end());
      SortAndUniqueProtocols(canonProtocolsVec);
      canonProtocols = canonProtocolsVec;
    } else {
      canonProtocols = protocols;
    }

    canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
                                  canonProtocols, isKindOf);

    // Regenerate InsertPos.
    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
  }

  unsigned size = sizeof(ObjCObjectTypeImpl);
  size += typeArgs.size() * sizeof(QualType);
  size += protocols.size() * sizeof(ObjCProtocolDecl *);
  void *mem = Allocate(size, TypeAlignment);
  auto *T =
    new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
                                 isKindOf);

  Types.push_back(T);
  ObjCObjectTypes.InsertNode(T, InsertPos);
  return QualType(T, 0);
}

/// Apply Objective-C protocol qualifiers to the given type.
/// If this is for the canonical type of a type parameter, we can apply
/// protocol qualifiers on the ObjCObjectPointerType.
QualType
ASTContext::applyObjCProtocolQualifiers(QualType type,
                  ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
                  bool allowOnPointerType) const {
  hasError = false;

  if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
    return getObjCTypeParamType(objT->getDecl(), protocols);
  }

  // Apply protocol qualifiers to ObjCObjectPointerType.
  if (allowOnPointerType) {
    if (const auto *objPtr =
            dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
      const ObjCObjectType *objT = objPtr->getObjectType();
      // Merge protocol lists and construct ObjCObjectType.
      SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
      protocolsVec.append(objT->qual_begin(),
                          objT->qual_end());
      protocolsVec.append(protocols.begin(), protocols.end());
      ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
      type = getObjCObjectType(
             objT->getBaseType(),
             objT->getTypeArgsAsWritten(),
             protocols,
             objT->isKindOfTypeAsWritten());
      return getObjCObjectPointerType(type);
    }
  }

  // Apply protocol qualifiers to ObjCObjectType.
  if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
    // FIXME: Check for protocols to which the class type is already
    // known to conform.

    return getObjCObjectType(objT->getBaseType(),
                             objT->getTypeArgsAsWritten(),
                             protocols,
                             objT->isKindOfTypeAsWritten());
  }

  // If the canonical type is ObjCObjectType, ...
  if (type->isObjCObjectType()) {
    // Silently overwrite any existing protocol qualifiers.
    // TODO: determine whether that's the right thing to do.

    // FIXME: Check for protocols to which the class type is already
    // known to conform.
    return getObjCObjectType(type, {}, protocols, false);
  }

  // id<protocol-list>
  if (type->isObjCIdType()) {
    const auto *objPtr = type->castAs<ObjCObjectPointerType>();
    type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
                                 objPtr->isKindOfType());
    return getObjCObjectPointerType(type);
  }

  // Class<protocol-list>
  if (type->isObjCClassType()) {
    const auto *objPtr = type->castAs<ObjCObjectPointerType>();
    type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
                                 objPtr->isKindOfType());
    return getObjCObjectPointerType(type);
  }

  hasError = true;
  return type;
}

QualType
ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
                                 ArrayRef<ObjCProtocolDecl *> protocols) const {
  // Look in the folding set for an existing type.
  llvm::FoldingSetNodeID ID;
  ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
  void *InsertPos = nullptr;
  if (ObjCTypeParamType *TypeParam =
      ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(TypeParam, 0);

  // We canonicalize to the underlying type.
  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
  if (!protocols.empty()) {
    // Apply the protocol qualifers.
    bool hasError;
    Canonical = getCanonicalType(applyObjCProtocolQualifiers(
        Canonical, protocols, hasError, true /*allowOnPointerType*/));
    assert(!hasError && "Error when apply protocol qualifier to bound type");
  }

  unsigned size = sizeof(ObjCTypeParamType);
  size += protocols.size() * sizeof(ObjCProtocolDecl *);
  void *mem = Allocate(size, TypeAlignment);
  auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);

  Types.push_back(newType);
  ObjCTypeParamTypes.InsertNode(newType, InsertPos);
  return QualType(newType, 0);
}

void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
                                              ObjCTypeParamDecl *New) const {
  New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
  // Update TypeForDecl after updating TypeSourceInfo.
  auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
  SmallVector<ObjCProtocolDecl *, 8> protocols;
  protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
  QualType UpdatedTy = getObjCTypeParamType(New, protocols);
  New->setTypeForDecl(UpdatedTy.getTypePtr());
}

/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
/// protocol list adopt all protocols in QT's qualified-id protocol
/// list.
bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
                                                ObjCInterfaceDecl *IC) {
  if (!QT->isObjCQualifiedIdType())
    return false;

  if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
    // If both the right and left sides have qualifiers.
    for (auto *Proto : OPT->quals()) {
      if (!IC->ClassImplementsProtocol(Proto, false))
        return false;
    }
    return true;
  }
  return false;
}

/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
/// QT's qualified-id protocol list adopt all protocols in IDecl's list
/// of protocols.
bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
                                                ObjCInterfaceDecl *IDecl) {
  if (!QT->isObjCQualifiedIdType())
    return false;
  const auto *OPT = QT->getAs<ObjCObjectPointerType>();
  if (!OPT)
    return false;
  if (!IDecl->hasDefinition())
    return false;
  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
  CollectInheritedProtocols(IDecl, InheritedProtocols);
  if (InheritedProtocols.empty())
    return false;
  // Check that if every protocol in list of id<plist> conforms to a protocol
  // of IDecl's, then bridge casting is ok.
  bool Conforms = false;
  for (auto *Proto : OPT->quals()) {
    Conforms = false;
    for (auto *PI : InheritedProtocols) {
      if (ProtocolCompatibleWithProtocol(Proto, PI)) {
        Conforms = true;
        break;
      }
    }
    if (!Conforms)
      break;
  }
  if (Conforms)
    return true;

  for (auto *PI : InheritedProtocols) {
    // If both the right and left sides have qualifiers.
    bool Adopts = false;
    for (auto *Proto : OPT->quals()) {
      // return 'true' if 'PI' is in the inheritance hierarchy of Proto
      if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
        break;
    }
    if (!Adopts)
      return false;
  }
  return true;
}

/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
/// the given object type.
QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
  llvm::FoldingSetNodeID ID;
  ObjCObjectPointerType::Profile(ID, ObjectT);

  void *InsertPos = nullptr;
  if (ObjCObjectPointerType *QT =
              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(QT, 0);

  // Find the canonical object type.
  QualType Canonical;
  if (!ObjectT.isCanonical()) {
    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));

    // Regenerate InsertPos.
    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
  }

  // No match.
  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
  auto *QType =
    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);

  Types.push_back(QType);
  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
  return QualType(QType, 0);
}

/// getObjCInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl. The list of protocols is optional.
QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
                                          ObjCInterfaceDecl *PrevDecl) const {
  if (Decl->TypeForDecl)
    return QualType(Decl->TypeForDecl, 0);

  if (PrevDecl) {
    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
    Decl->TypeForDecl = PrevDecl->TypeForDecl;
    return QualType(PrevDecl->TypeForDecl, 0);
  }

  // Prefer the definition, if there is one.
  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
    Decl = Def;

  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
  auto *T = new (Mem) ObjCInterfaceType(Decl);
  Decl->TypeForDecl = T;
  Types.push_back(T);
  return QualType(T, 0);
}

/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExprType AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
  TypeOfExprType *toe;
  if (tofExpr->isTypeDependent()) {
    llvm::FoldingSetNodeID ID;
    DependentTypeOfExprType::Profile(ID, *this, tofExpr);

    void *InsertPos = nullptr;
    DependentTypeOfExprType *Canon
      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
    if (Canon) {
      // We already have a "canonical" version of an identical, dependent
      // typeof(expr) type. Use that as our canonical type.
      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
                                          QualType((TypeOfExprType*)Canon, 0));
    } else {
      // Build a new, canonical typeof(expr) type.
      Canon
        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
      toe = Canon;
    }
  } else {
    QualType Canonical = getCanonicalType(tofExpr->getType());
    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
  }
  Types.push_back(toe);
  return QualType(toe, 0);
}

/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
/// TypeOfType nodes. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't affect the type checker, since it operates
/// on canonical types (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) const {
  QualType Canonical = getCanonicalType(tofType);
  auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
  Types.push_back(tot);
  return QualType(tot, 0);
}

/// Unlike many "get<Type>" functions, we don't unique DecltypeType
/// nodes. This would never be helpful, since each such type has its own
/// expression, and would not give a significant memory saving, since there
/// is an Expr tree under each such type.
QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
  DecltypeType *dt;

  // C++11 [temp.type]p2:
  //   If an expression e involves a template parameter, decltype(e) denotes a
  //   unique dependent type. Two such decltype-specifiers refer to the same
  //   type only if their expressions are equivalent (14.5.6.1).
  if (e->isInstantiationDependent()) {
    llvm::FoldingSetNodeID ID;
    DependentDecltypeType::Profile(ID, *this, e);

    void *InsertPos = nullptr;
    DependentDecltypeType *Canon
      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
    if (!Canon) {
      // Build a new, canonical decltype(expr) type.
      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
    }
    dt = new (*this, TypeAlignment)
        DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
  } else {
    dt = new (*this, TypeAlignment)
        DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
  }
  Types.push_back(dt);
  return QualType(dt, 0);
}

/// getUnaryTransformationType - We don't unique these, since the memory
/// savings are minimal and these are rare.
QualType ASTContext::getUnaryTransformType(QualType BaseType,
                                           QualType UnderlyingType,
                                           UnaryTransformType::UTTKind Kind)
    const {
  UnaryTransformType *ut = nullptr;

  if (BaseType->isDependentType()) {
    // Look in the folding set for an existing type.
    llvm::FoldingSetNodeID ID;
    DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);

    void *InsertPos = nullptr;
    DependentUnaryTransformType *Canon
      = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);

    if (!Canon) {
      // Build a new, canonical __underlying_type(type) type.
      Canon = new (*this, TypeAlignment)
             DependentUnaryTransformType(*this, getCanonicalType(BaseType),
                                         Kind);
      DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
    }
    ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
                                                        QualType(), Kind,
                                                        QualType(Canon, 0));
  } else {
    QualType CanonType = getCanonicalType(UnderlyingType);
    ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
                                                        UnderlyingType, Kind,
                                                        CanonType);
  }
  Types.push_back(ut);
  return QualType(ut, 0);
}

/// getAutoType - Return the uniqued reference to the 'auto' type which has been
/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
/// canonical deduced-but-dependent 'auto' type.
QualType
ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
                        bool IsDependent, bool IsPack,
                        ConceptDecl *TypeConstraintConcept,
                        ArrayRef<TemplateArgument> TypeConstraintArgs) const {
  assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
  if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
      !TypeConstraintConcept && !IsDependent)
    return getAutoDeductType();

  // Look in the folding set for an existing type.
  void *InsertPos = nullptr;
  llvm::FoldingSetNodeID ID;
  AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
                    TypeConstraintConcept, TypeConstraintArgs);
  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(AT, 0);

  void *Mem = Allocate(sizeof(AutoType) +
                       sizeof(TemplateArgument) * TypeConstraintArgs.size(),
                       TypeAlignment);
  auto *AT = new (Mem) AutoType(
      DeducedType, Keyword,
      (IsDependent ? TypeDependence::DependentInstantiation
                   : TypeDependence::None) |
          (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
      TypeConstraintConcept, TypeConstraintArgs);
  Types.push_back(AT);
  if (InsertPos)
    AutoTypes.InsertNode(AT, InsertPos);
  return QualType(AT, 0);
}

/// Return the uniqued reference to the deduced template specialization type
/// which has been deduced to the given type, or to the canonical undeduced
/// such type, or the canonical deduced-but-dependent such type.
QualType ASTContext::getDeducedTemplateSpecializationType(
    TemplateName Template, QualType DeducedType, bool IsDependent) const {
  // Look in the folding set for an existing type.
  void *InsertPos = nullptr;
  llvm::FoldingSetNodeID ID;
  DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
                                             IsDependent);
  if (DeducedTemplateSpecializationType *DTST =
          DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(DTST, 0);

  auto *DTST = new (*this, TypeAlignment)
      DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
  Types.push_back(DTST);
  if (InsertPos)
    DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
  return QualType(DTST, 0);
}

/// getAtomicType - Return the uniqued reference to the atomic type for
/// the given value type.
QualType ASTContext::getAtomicType(QualType T) const {
  // Unique pointers, to guarantee there is only one pointer of a particular
  // structure.
  llvm::FoldingSetNodeID ID;
  AtomicType::Profile(ID, T);

  void *InsertPos = nullptr;
  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
    return QualType(AT, 0);

  // If the atomic value type isn't canonical, this won't be a canonical type
  // either, so fill in the canonical type field.
  QualType Canonical;
  if (!T.isCanonical()) {
    Canonical = getAtomicType(getCanonicalType(T));

    // Get the new insert position for the node we care about.
    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
  }
  auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
  Types.push_back(New);
  AtomicTypes.InsertNode(New, InsertPos);
  return QualType(New, 0);
}

/// getAutoDeductType - Get type pattern for deducing against 'auto'.
QualType ASTContext::getAutoDeductType() const {
  if (AutoDeductTy.isNull())
    AutoDeductTy = QualType(new (*this, TypeAlignment)
                                AutoType(QualType(), AutoTypeKeyword::Auto,
                                         TypeDependence::None,
                                         /*concept*/ nullptr, /*args*/ {}),
                            0);
  return AutoDeductTy;
}

/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
QualType ASTContext::getAutoRRefDeductType() const {
  if (AutoRRefDeductTy.isNull())
    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
  return AutoRRefDeductTy;
}

/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
  assert(Decl);
  // FIXME: What is the design on getTagDeclType when it requires casting
  // away const?  mutable?
  return getTypeDeclType(const_cast<TagDecl*>(Decl));
}

/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
CanQualType ASTContext::getSizeType() const {
  return getFromTargetType(Target->getSizeType());
}

/// Return the unique signed counterpart of the integer type
/// corresponding to size_t.
CanQualType ASTContext::getSignedSizeType() const {
  return getFromTargetType(Target->getSignedSizeType());
}

/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
CanQualType ASTContext::getIntMaxType() const {
  return getFromTargetType(Target->getIntMaxType());
}

/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
CanQualType ASTContext::getUIntMaxType() const {
  return getFromTargetType(Target->getUIntMaxType());
}

/// getSignedWCharType - Return the type of "signed wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getSignedWCharType() const {
  // FIXME: derive from "Target" ?
  return WCharTy;
}

/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getUnsignedWCharType() const {
  // FIXME: derive from "Target" ?
  return UnsignedIntTy;
}

QualType ASTContext::getIntPtrType() const {
  return getFromTargetType(Target->getIntPtrType());
}

QualType ASTContext::getUIntPtrType() const {
  return getCorrespondingUnsignedType(getIntPtrType());
}

/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
  return getFromTargetType(Target->getPtrDiffType(0));
}

/// Return the unique unsigned counterpart of "ptrdiff_t"
/// integer type. The standard (C11 7.21.6.1p7) refers to this type
/// in the definition of %tu format specifier.
QualType ASTContext::getUnsignedPointerDiffType() const {
  return getFromTargetType(Target->getUnsignedPtrDiffType(0));
}

/// Return the unique type for "pid_t" defined in
/// <sys/types.h>. We need this to compute the correct type for vfork().
QualType ASTContext::getProcessIDType() const {
  return getFromTargetType(Target->getProcessIDType());
}

//===----------------------------------------------------------------------===//
//                              Type Operators
//===----------------------------------------------------------------------===//

CanQualType ASTContext::getCanonicalParamType(QualType T) const {
  // Push qualifiers into arrays, and then discard any remaining
  // qualifiers.
  T = getCanonicalType(T);
  T = getVariableArrayDecayedType(T);
  const Type *Ty = T.getTypePtr();
  QualType Result;
  if (isa<ArrayType>(Ty)) {
    Result = getArrayDecayedType(QualType(Ty,0));
  } else if (isa<FunctionType>(Ty)) {
    Result = getPointerType(QualType(Ty, 0));
  } else {
    Result = QualType(Ty, 0);
  }

  return CanQualType::CreateUnsafe(Result);
}

QualType ASTContext::getUnqualifiedArrayType(QualType type,
                                             Qualifiers &quals) {
  SplitQualType splitType = type.getSplitUnqualifiedType();

  // FIXME: getSplitUnqualifiedType() actually walks all the way to
  // the unqualified desugared type and then drops it on the floor.
  // We then have to strip that sugar back off with
  // getUnqualifiedDesugaredType(), which is silly.
  const auto *AT =
      dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());

  // If we don't have an array, just use the results in splitType.
  if (!AT) {
    quals = splitType.Quals;
    return QualType(splitType.Ty, 0);
  }

  // Otherwise, recurse on the array's element type.
  QualType elementType = AT->getElementType();
  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);

  // If that didn't change the element type, AT has no qualifiers, so we
  // can just use the results in splitType.
  if (elementType == unqualElementType) {
    assert(quals.empty()); // from the recursive call
    quals = splitType.Quals;
    return QualType(splitType.Ty, 0);
  }

  // Otherwise, add in the qualifiers from the outermost type, then
  // build the type back up.
  quals.addConsistentQualifiers(splitType.Quals);

  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
    return getConstantArrayType(unqualElementType, CAT->getSize(),
                                CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
  }

  if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
  }

  if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
    return getVariableArrayType(unqualElementType,
                                VAT->getSizeExpr(),
                                VAT->getSizeModifier(),
                                VAT->getIndexTypeCVRQualifiers(),
                                VAT->getBracketsRange());
  }

  const auto *DSAT = cast<DependentSizedArrayType>(AT);
  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
                                    DSAT->getSizeModifier(), 0,
                                    SourceRange());
}

/// Attempt to unwrap two types that may both be array types with the same bound
/// (or both be array types of unknown bound) for the purpose of comparing the
/// cv-decomposition of two types per C++ [conv.qual].
bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
  bool UnwrappedAny = false;
  while (true) {
    auto *AT1 = getAsArrayType(T1);
    if (!AT1) return UnwrappedAny;

    auto *AT2 = getAsArrayType(T2);
    if (!AT2) return UnwrappedAny;

    // If we don't have two array types with the same constant bound nor two
    // incomplete array types, we've unwrapped everything we can.
    if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
      auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
      if (!CAT2 || CAT1->getSize() != CAT2->getSize())
        return UnwrappedAny;
    } else if (!isa<IncompleteArrayType>(AT1) ||
               !isa<IncompleteArrayType>(AT2)) {
      return UnwrappedAny;
    }

    T1 = AT1->getElementType();
    T2 = AT2->getElementType();
    UnwrappedAny = true;
  }
}

/// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
///
/// If T1 and T2 are both pointer types of the same kind, or both array types
/// with the same bound, unwraps layers from T1 and T2 until a pointer type is
/// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
///
/// This function will typically be called in a loop that successively
/// "unwraps" pointer and pointer-to-member types to compare them at each
/// level.
///
/// \return \c true if a pointer type was unwrapped, \c false if we reached a
/// pair of types that can't be unwrapped further.
bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
  UnwrapSimilarArrayTypes(T1, T2);

  const auto *T1PtrType = T1->getAs<PointerType>();
  const auto *T2PtrType = T2->getAs<PointerType>();
  if (T1PtrType && T2PtrType) {
    T1 = T1PtrType->getPointeeType();
    T2 = T2PtrType->getPointeeType();
    return true;
  }

  const auto *T1MPType = T1->getAs<MemberPointerType>();
  const auto *T2MPType = T2->getAs<MemberPointerType>();
  if (T1MPType && T2MPType &&
      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
                             QualType(T2MPType->getClass(), 0))) {
    T1 = T1MPType->getPointeeType();
    T2 = T2MPType->getPointeeType();
    return true;
  }

  if (getLangOpts().ObjC) {
    const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
    const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
    if (T1OPType && T2OPType) {
      T1 = T1OPType->getPointeeType();
      T2 = T2OPType->getPointeeType();
      return true;
    }
  }

  // FIXME: Block pointers, too?

  return false;
}

bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
  while (true) {
    Qualifiers Quals;
    T1 = getUnqualifiedArrayType(T1, Quals);
    T2 = getUnqualifiedArrayType(T2, Quals);
    if (hasSameType(T1, T2))
      return true;
    if (!UnwrapSimilarTypes(T1, T2))
      return false;
  }
}

bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
  while (true) {
    Qualifiers Quals1, Quals2;
    T1 = getUnqualifiedArrayType(T1, Quals1);
    T2 = getUnqualifiedArrayType(T2, Quals2);

    Quals1.removeCVRQualifiers();
    Quals2.removeCVRQualifiers();
    if (Quals1 != Quals2)
      return false;

    if (hasSameType(T1, T2))
      return true;

    if (!UnwrapSimilarTypes(T1, T2))
      return false;
  }
}

DeclarationNameInfo
ASTContext::getNameForTemplate(TemplateName Name,
                               SourceLocation NameLoc) const {
  switch (Name.getKind()) {
  case TemplateName::QualifiedTemplate:
  case TemplateName::Template:
    // DNInfo work in progress: CHECKME: what about DNLoc?
    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
                               NameLoc);

  case TemplateName::OverloadedTemplate: {
    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
    // DNInfo work in progress: CHECKME: what about DNLoc?
    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
  }

  case TemplateName::AssumedTemplate: {
    AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
    return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
  }

  case TemplateName::DependentTemplate: {
    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
    DeclarationName DName;
    if (DTN->isIdentifier()) {
      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
      return DeclarationNameInfo(DName, NameLoc);
    } else {
      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
      // DNInfo work in progress: FIXME: source locations?
      DeclarationNameLoc DNLoc;
      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
      return DeclarationNameInfo(DName, NameLoc, DNLoc);
    }
  }

  case TemplateName::SubstTemplateTemplateParm: {
    SubstTemplateTemplateParmStorage *subst
      = Name.getAsSubstTemplateTemplateParm();
    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
                               NameLoc);
  }

  case TemplateName::SubstTemplateTemplateParmPack: {
    SubstTemplateTemplateParmPackStorage *subst
      = Name.getAsSubstTemplateTemplateParmPack();
    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
                               NameLoc);
  }
  }

  llvm_unreachable("bad template name kind!");
}

TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
  switch (Name.getKind()) {
  case TemplateName::QualifiedTemplate:
  case TemplateName::Template: {
    TemplateDecl *Template = Name.getAsTemplateDecl();
    if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
      Template = getCanonicalTemplateTemplateParmDecl(TTP);

    // The canonical template name is the canonical template declaration.
    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
  }

  case TemplateName::OverloadedTemplate:
  case TemplateName::AssumedTemplate:
    llvm_unreachable("cannot canonicalize unresolved template");

  case TemplateName::DependentTemplate: {
    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
    assert(DTN && "Non-dependent template names must refer to template decls.");
    return DTN->CanonicalTemplateName;
  }

  case TemplateName::SubstTemplateTemplateParm: {
    SubstTemplateTemplateParmStorage *subst
      = Name.getAsSubstTemplateTemplateParm();
    return getCanonicalTemplateName(subst->getReplacement());
  }

  case TemplateName::SubstTemplateTemplateParmPack: {
    SubstTemplateTemplateParmPackStorage *subst
                                  = Name.getAsSubstTemplateTemplateParmPack();
    TemplateTemplateParmDecl *canonParameter
      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
    TemplateArgument canonArgPack
      = getCanonicalTemplateArgument(subst->getArgumentPack());
    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
  }
  }

  llvm_unreachable("bad template name!");
}

bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
  X = getCanonicalTemplateName(X);
  Y = getCanonicalTemplateName(Y);
  return X.getAsVoidPointer() == Y.getAsVoidPointer();
}

TemplateArgument
ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
  switch (Arg.getKind()) {
    case TemplateArgument::Null:
      return Arg;

    case TemplateArgument::Expression:
      return Arg;

    case TemplateArgument::Declaration: {
      auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
      return TemplateArgument(D, Arg.getParamTypeForDecl());
    }

    case TemplateArgument::NullPtr:
      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
                              /*isNullPtr*/true);

    case TemplateArgument::Template:
      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));

    case TemplateArgument::TemplateExpansion:
      return TemplateArgument(getCanonicalTemplateName(
                                         Arg.getAsTemplateOrTemplatePattern()),
                              Arg.getNumTemplateExpansions());

    case TemplateArgument::Integral:
      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));

    case TemplateArgument::Type:
      return TemplateArgument(getCanonicalType(Arg.getAsType()));

    case TemplateArgument::Pack: {
      if (Arg.pack_size() == 0)
        return Arg;

      auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
      unsigned Idx = 0;
      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
                                        AEnd = Arg.pack_end();
           A != AEnd; (void)++A, ++Idx)
        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);

      return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
    }
  }

  // Silence GCC warning
  llvm_unreachable("Unhandled template argument kind");
}

NestedNameSpecifier *
ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
  if (!NNS)
    return nullptr;

  switch (NNS->getKind()) {
  case NestedNameSpecifier::Identifier:
    // Canonicalize the prefix but keep the identifier the same.
    return NestedNameSpecifier::Create(*this,
                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
                                       NNS->getAsIdentifier());

  case NestedNameSpecifier::Namespace:
    // A namespace is canonical; build a nested-name-specifier with
    // this namespace and no prefix.
    return NestedNameSpecifier::Create(*this, nullptr,
                                 NNS->getAsNamespace()->getOriginalNamespace());

  case NestedNameSpecifier::NamespaceAlias:
    // A namespace is canonical; build a nested-name-specifier with
    // this namespace and no prefix.
    return NestedNameSpecifier::Create(*this, nullptr,
                                    NNS->getAsNamespaceAlias()->getNamespace()
                                                      ->getOriginalNamespace());

  case NestedNameSpecifier::TypeSpec:
  case NestedNameSpecifier::TypeSpecWithTemplate: {
    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));

    // If we have some kind of dependent-named type (e.g., "typename T::type"),
    // break it apart into its prefix and identifier, then reconsititute those
    // as the canonical nested-name-specifier. This is required to canonicalize
    // a dependent nested-name-specifier involving typedefs of dependent-name
    // types, e.g.,
    //   typedef typename T::type T1;
    //   typedef typename T1::type T2;
    if (const auto *DNT = T->getAs<DependentNameType>())
      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));

    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
    // first place?
    return NestedNameSpecifier::Create(*this, nullptr, false,
                                       const_cast<Type *>(T.getTypePtr()));
  }

  case NestedNameSpecifier::Global:
  case NestedNameSpecifier::Super:
    // The global specifier and __super specifer are canonical and unique.
    return NNS;
  }

  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
}

const ArrayType *ASTContext::getAsArrayType(QualType T) const {
  // Handle the non-qualified case efficiently.
  if (!T.hasLocalQualifiers()) {
    // Handle the common positive case fast.
    if (const auto *AT = dyn_cast<ArrayType>(T))
      return AT;
  }

  // Handle the common negative case fast.
  if (!isa<ArrayType>(T.getCanonicalType()))
    return nullptr;

  // Apply any qualifiers from the array type to the element type.  This
  // implements C99 6.7.3p8: "If the specification of an array type includes
  // any type qualifiers, the element type is so qualified, not the array type."

  // If we get here, we either have type qualifiers on the type, or we have
  // sugar such as a typedef in the way.  If we have type qualifiers on the type
  // we must propagate them down into the element type.

  SplitQualType split = T.getSplitDesugaredType();
  Qualifiers qs = split.Quals;

  // If we have a simple case, just return now.
  const auto *ATy = dyn_cast<ArrayType>(split.Ty);
  if (!ATy || qs.empty())
    return ATy;

  // Otherwise, we have an array and we have qualifiers on it.  Push the
  // qualifiers into the array element type and return a new array type.
  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);

  if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
                                                CAT->getSizeExpr(),
                                                CAT->getSizeModifier(),
                                           CAT->getIndexTypeCVRQualifiers()));
  if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
                                                  IAT->getSizeModifier(),
                                           IAT->getIndexTypeCVRQualifiers()));

  if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
    return cast<ArrayType>(
                     getDependentSizedArrayType(NewEltTy,
                                                DSAT->getSizeExpr(),
                                                DSAT->getSizeModifier(),
                                              DSAT->getIndexTypeCVRQualifiers(),
                                                DSAT->getBracketsRange()));

  const auto *VAT = cast<VariableArrayType>(ATy);
  return cast<ArrayType>(getVariableArrayType(NewEltTy,
                                              VAT->getSizeExpr(),
                                              VAT->getSizeModifier(),
                                              VAT->getIndexTypeCVRQualifiers(),
                                              VAT->getBracketsRange()));
}

QualType ASTContext::getAdjustedParameterType(QualType T) const {
  if (T->isArrayType() || T->isFunctionType())
    return getDecayedType(T);
  return T;
}

QualType ASTContext::getSignatureParameterType(QualType T) const {
  T = getVariableArrayDecayedType(T);
  T = getAdjustedParameterType(T);
  return T.getUnqualifiedType();
}

QualType ASTContext::getExceptionObjectType(QualType T) const {
  // C++ [except.throw]p3:
  //   A throw-expression initializes a temporary object, called the exception
  //   object, the type of which is determined by removing any top-level
  //   cv-qualifiers from the static type of the operand of throw and adjusting
  //   the type from "array of T" or "function returning T" to "pointer to T"
  //   or "pointer to function returning T", [...]
  T = getVariableArrayDecayedType(T);
  if (T->isArrayType() || T->isFunctionType())
    T = getDecayedType(T);
  return T.getUnqualifiedType();
}

/// getArrayDecayedType - Return the properly qualified result of decaying the
/// specified array type to a pointer.  This operation is non-trivial when
/// handling typedefs etc.  The canonical type of "T" must be an array type,
/// this returns a pointer to a properly qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType ASTContext::getArrayDecayedType(QualType Ty) const {
  // Get the element type with 'getAsArrayType' so that we don't lose any
  // typedefs in the element type of the array.  This also handles propagation
  // of type qualifiers from the array type into the element type if present
  // (C99 6.7.3p8).
  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
  assert(PrettyArrayType && "Not an array type!");

  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());

  // int x[restrict 4] ->  int *restrict
  QualType Result = getQualifiedType(PtrTy,
                                     PrettyArrayType->getIndexTypeQualifiers());

  // int x[_Nullable] -> int * _Nullable
  if (auto Nullability = Ty->getNullability(*this)) {
    Result = const_cast<ASTContext *>(this)->getAttributedType(
        AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
  }
  return Result;
}

QualType ASTContext::getBaseElementType(const ArrayType *array) const {
  return getBaseElementType(array->getElementType());
}

QualType ASTContext::getBaseElementType(QualType type) const {
  Qualifiers qs;
  while (true) {
    SplitQualType split = type.getSplitDesugaredType();
    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
    if (!array) break;

    type = array->getElementType();
    qs.addConsistentQualifiers(split.Quals);
  }

  return getQualifiedType(type, qs);
}

/// getConstantArrayElementCount - Returns number of constant array elements.
uint64_t
ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
  uint64_t ElementCount = 1;
  do {
    ElementCount *= CA->getSize().getZExtValue();
    CA = dyn_cast_or_null<ConstantArrayType>(
      CA->getElementType()->getAsArrayTypeUnsafe());
  } while (CA);
  return ElementCount;
}

/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static FloatingRank getFloatingRank(QualType T) {
  if (const auto *CT = T->getAs<ComplexType>())
    return getFloatingRank(CT->getElementType());

  switch (T->castAs<BuiltinType>()->getKind()) {
  default: llvm_unreachable("getFloatingRank(): not a floating type");
  case BuiltinType::Float16:    return Float16Rank;
  case BuiltinType::Half:       return HalfRank;
  case BuiltinType::Float:      return FloatRank;
  case BuiltinType::Double:     return DoubleRank;
  case BuiltinType::LongDouble: return LongDoubleRank;
  case BuiltinType::Float128:   return Float128Rank;
  case BuiltinType::BFloat16:   return BFloat16Rank;
  }
}

/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
                                                       QualType Domain) const {
  FloatingRank EltRank = getFloatingRank(Size);
  if (Domain->isComplexType()) {
    switch (EltRank) {
    case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported");
    case Float16Rank:
    case HalfRank: llvm_unreachable("Complex half is not supported");
    case FloatRank:      return FloatComplexTy;
    case DoubleRank:     return DoubleComplexTy;
    case LongDoubleRank: return LongDoubleComplexTy;
    case Float128Rank:   return Float128ComplexTy;
    }
  }

  assert(Domain->isRealFloatingType() && "Unknown domain!");
  switch (EltRank) {
  case Float16Rank:    return HalfTy;
  case BFloat16Rank:   return BFloat16Ty;
  case HalfRank:       return HalfTy;
  case FloatRank:      return FloatTy;
  case DoubleRank:     return DoubleTy;
  case LongDoubleRank: return LongDoubleTy;
  case Float128Rank:   return Float128Ty;
  }
  llvm_unreachable("getFloatingRank(): illegal value for rank");
}

/// getFloatingTypeOrder - Compare the rank of the two specified floating
/// point types, ignoring the domain of the type (i.e. 'double' ==
/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
  FloatingRank LHSR = getFloatingRank(LHS);
  FloatingRank RHSR = getFloatingRank(RHS);

  if (LHSR == RHSR)
    return 0;
  if (LHSR > RHSR)
    return 1;
  return -1;
}

int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
  if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
    return 0;
  return getFloatingTypeOrder(LHS, RHS);
}

/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum,
/// or if it is not canonicalized.
unsigned ASTContext::getIntegerRank(const Type *T) const {
  assert(T->isCanonicalUnqualified() && "T should be canonicalized");

  // Results in this 'losing' to any type of the same size, but winning if
  // larger.
  if (const auto *EIT = dyn_cast<ExtIntType>(T))
    return 0 + (EIT->getNumBits() << 3);

  switch (cast<BuiltinType>(T)->getKind()) {
  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
  case BuiltinType::Bool:
    return 1 + (getIntWidth(BoolTy) << 3);
  case BuiltinType::Char_S:
  case BuiltinType::Char_U:
  case BuiltinType::SChar:
  case BuiltinType::UChar:
    return 2 + (getIntWidth(CharTy) << 3);
  case BuiltinType::Short:
  case BuiltinType::UShort:
    return 3 + (getIntWidth(ShortTy) << 3);
  case BuiltinType::Int:
  case BuiltinType::UInt:
    return 4 + (getIntWidth(IntTy) << 3);
  case BuiltinType::Long:
  case BuiltinType::ULong:
    return 5 + (getIntWidth(LongTy) << 3);
  case BuiltinType::LongLong:
  case BuiltinType::ULongLong:
    return 6 + (getIntWidth(LongLongTy) << 3);
  case BuiltinType::Int128:
  case BuiltinType::UInt128:
    return 7 + (getIntWidth(Int128Ty) << 3);
  }
}

/// Whether this is a promotable bitfield reference according
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
///
/// \returns the type this bit-field will promote to, or NULL if no
/// promotion occurs.
QualType ASTContext::isPromotableBitField(Expr *E) const {
  if (E->isTypeDependent() || E->isValueDependent())
    return {};

  // C++ [conv.prom]p5:
  //    If the bit-field has an enumerated type, it is treated as any other
  //    value of that type for promotion purposes.
  if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
    return {};

  // FIXME: We should not do this unless E->refersToBitField() is true. This
  // matters in C where getSourceBitField() will find bit-fields for various
  // cases where the source expression is not a bit-field designator.

  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
  if (!Field)
    return {};

  QualType FT = Field->getType();

  uint64_t BitWidth = Field->getBitWidthValue(*this);
  uint64_t IntSize = getTypeSize(IntTy);
  // C++ [conv.prom]p5:
  //   A prvalue for an integral bit-field can be converted to a prvalue of type
  //   int if int can represent all the values of the bit-field; otherwise, it
  //   can be converted to unsigned int if unsigned int can represent all the
  //   values of the bit-field. If the bit-field is larger yet, no integral
  //   promotion applies to it.
  // C11 6.3.1.1/2:
  //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
  //   If an int can represent all values of the original type (as restricted by
  //   the width, for a bit-field), the value is converted to an int; otherwise,
  //   it is converted to an unsigned int.
  //
  // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
  //        We perform that promotion here to match GCC and C++.
  // FIXME: C does not permit promotion of an enum bit-field whose rank is
  //        greater than that of 'int'. We perform that promotion to match GCC.
  if (BitWidth < IntSize)
    return IntTy;

  if (BitWidth == IntSize)
    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;

  // Bit-fields wider than int are not subject to promotions, and therefore act
  // like the base type. GCC has some weird bugs in this area that we
  // deliberately do not follow (GCC follows a pre-standard resolution to
  // C's DR315 which treats bit-width as being part of the type, and this leaks
  // into their semantics in some cases).
  return {};
}

/// getPromotedIntegerType - Returns the type that Promotable will
/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
/// integer type.
QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
  assert(!Promotable.isNull());
  assert(Promotable->isPromotableIntegerType());
  if (const auto *ET = Promotable->getAs<EnumType>())
    return ET->getDecl()->getPromotionType();

  if (const auto *BT = Promotable->getAs<BuiltinType>()) {
    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
    // (3.9.1) can be converted to a prvalue of the first of the following
    // types that can represent all the values of its underlying type:
    // int, unsigned int, long int, unsigned long int, long long int, or
    // unsigned long long int [...]
    // FIXME: Is there some better way to compute this?
    if (BT->getKind() == BuiltinType::WChar_S ||
        BT->getKind() == BuiltinType::WChar_U ||
        BT->getKind() == BuiltinType::Char8 ||
        BT->getKind() == BuiltinType::Char16 ||
        BT->getKind() == BuiltinType::Char32) {
      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
      uint64_t FromSize = getTypeSize(BT);
      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
                                  LongLongTy, UnsignedLongLongTy };
      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
        if (FromSize < ToSize ||
            (FromSize == ToSize &&
             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
          return PromoteTypes[Idx];
      }
      llvm_unreachable("char type should fit into long long");
    }
  }

  // At this point, we should have a signed or unsigned integer type.
  if (Promotable->isSignedIntegerType())
    return IntTy;
  uint64_t PromotableSize = getIntWidth(Promotable);
  uint64_t IntSize = getIntWidth(IntTy);
  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
}

/// Recurses in pointer/array types until it finds an objc retainable
/// type and returns its ownership.
Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
  while (!T.isNull()) {
    if (T.getObjCLifetime() != Qualifiers::OCL_None)
      return T.getObjCLifetime();
    if (T->isArrayType())
      T = getBaseElementType(T);
    else if (const auto *PT = T->getAs<PointerType>())
      T = PT->getPointeeType();
    else if (const auto *RT = T->getAs<ReferenceType>())
      T = RT->getPointeeType();
    else
      break;
  }

  return Qualifiers::OCL_None;
}

static const Type *getIntegerTypeForEnum(const EnumType *ET) {
  // Incomplete enum types are not treated as integer types.
  // FIXME: In C++, enum types are never integer types.
  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
    return ET->getDecl()->getIntegerType().getTypePtr();
  return nullptr;
}

/// getIntegerTypeOrder - Returns the highest ranked integer type:
/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
  const Type *RHSC = getCanonicalType(RHS).getTypePtr();

  // Unwrap enums to their underlying type.
  if (const auto *ET = dyn_cast<EnumType>(LHSC))
    LHSC = getIntegerTypeForEnum(ET);
  if (const auto *ET = dyn_cast<EnumType>(RHSC))
    RHSC = getIntegerTypeForEnum(ET);

  if (LHSC == RHSC) return 0;

  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
  bool RHSUnsigned = RHSC->isUnsignedIntegerType();

  unsigned LHSRank = getIntegerRank(LHSC);
  unsigned RHSRank = getIntegerRank(RHSC);

  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
    if (LHSRank == RHSRank) return 0;
    return LHSRank > RHSRank ? 1 : -1;
  }

  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
  if (LHSUnsigned) {
    // If the unsigned [LHS] type is larger, return it.
    if (LHSRank >= RHSRank)
      return 1;

    // If the signed type can represent all values of the unsigned type, it
    // wins.  Because we are dealing with 2's complement and types that are
    // powers of two larger than each other, this is always safe.
    return -1;
  }

  // If the unsigned [RHS] type is larger, return it.
  if (RHSRank >= LHSRank)
    return -1;

  // If the signed type can represent all values of the unsigned type, it
  // wins.  Because we are dealing with 2's complement and types that are
  // powers of two larger than each other, this is always safe.
  return 1;
}

TypedefDecl *ASTContext::getCFConstantStringDecl() const {
  if (CFConstantStringTypeDecl)
    return CFConstantStringTypeDecl;

  assert(!CFConstantStringTagDecl &&
         "tag and typedef should be initialized together");
  CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
  CFConstantStringTagDecl->startDefinition();

  struct {
    QualType Type;
    const char *Name;
  } Fields[5];
  unsigned Count = 0;

  /// Objective-C ABI
  ///
  ///    typedef struct __NSConstantString_tag {
  ///      const int *isa;
  ///      int flags;
  ///      const char *str;
  ///      long length;
  ///    } __NSConstantString;
  ///
  /// Swift ABI (4.1, 4.2)
  ///
  ///    typedef struct __NSConstantString_tag {
  ///      uintptr_t _cfisa;
  ///      uintptr_t _swift_rc;
  ///      _Atomic(uint64_t) _cfinfoa;
  ///      const char *_ptr;
  ///      uint32_t _length;
  ///    } __NSConstantString;
  ///
  /// Swift ABI (5.0)
  ///
  ///    typedef struct __NSConstantString_tag {
  ///      uintptr_t _cfisa;
  ///      uintptr_t _swift_rc;
  ///      _Atomic(uint64_t) _cfinfoa;
  ///      const char *_ptr;
  ///      uintptr_t _length;
  ///    } __NSConstantString;

  const auto CFRuntime = getLangOpts().CFRuntime;
  if (static_cast<unsigned>(CFRuntime) <
      static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
    Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
    Fields[Count++] = { IntTy, "flags" };
    Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
    Fields[Count++] = { LongTy, "length" };
  } else {
    Fields[Count++] = { getUIntPtrType(), "_cfisa" };
    Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
    Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
    Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
    if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
        CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
      Fields[Count++] = { IntTy, "_ptr" };
    else
      Fields[Count++] = { getUIntPtrType(), "_ptr" };
  }

  // Create fields
  for (unsigned i = 0; i < Count; ++i) {
    FieldDecl *Field =
        FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
                          SourceLocation(), &Idents.get(Fields[i].Name),
                          Fields[i].Type, /*TInfo=*/nullptr,
                          /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
    Field->setAccess(AS_public);
    CFConstantStringTagDecl->addDecl(Field);
  }

  CFConstantStringTagDecl->completeDefinition();
  // This type is designed to be compatible with NSConstantString, but cannot
  // use the same name, since NSConstantString is an interface.
  auto tagType = getTagDeclType(CFConstantStringTagDecl);
  CFConstantStringTypeDecl =
      buildImplicitTypedef(tagType, "__NSConstantString");

  return CFConstantStringTypeDecl;
}

RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
  if (!CFConstantStringTagDecl)
    getCFConstantStringDecl(); // Build the tag and the typedef.
  return CFConstantStringTagDecl;
}

// getCFConstantStringType - Return the type used for constant CFStrings.
QualType ASTContext::getCFConstantStringType() const {
  return getTypedefType(getCFConstantStringDecl());
}

QualType ASTContext::getObjCSuperType() const {
  if (ObjCSuperType.isNull()) {
    RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
    TUDecl->addDecl(ObjCSuperTypeDecl);
    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
  }
  return ObjCSuperType;
}

void ASTContext::setCFConstantStringType(QualType T) {
  const auto *TD = T->castAs<TypedefType>();
  CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
  const auto *TagType =
      CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
  CFConstantStringTagDecl = TagType->getDecl();
}

QualType ASTContext::getBlockDescriptorType() const {
  if (BlockDescriptorType)
    return getTagDeclType(BlockDescriptorType);

  RecordDecl *RD;
  // FIXME: Needs the FlagAppleBlock bit.
  RD = buildImplicitRecord("__block_descriptor");
  RD->startDefinition();

  QualType FieldTypes[] = {
    UnsignedLongTy,
    UnsignedLongTy,
  };

  static const char *const FieldNames[] = {
    "reserved",
    "Size"
  };

  for (size_t i = 0; i < 2; ++i) {
    FieldDecl *Field = FieldDecl::Create(
        *this, RD, SourceLocation(), SourceLocation(),
        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
        /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
    Field->setAccess(AS_public);
    RD->addDecl(Field);
  }

  RD->completeDefinition();

  BlockDescriptorType = RD;

  return getTagDeclType(BlockDescriptorType);
}

QualType ASTContext::getBlockDescriptorExtendedType() const {
  if (BlockDescriptorExtendedType)
    return getTagDeclType(BlockDescriptorExtendedType);

  RecordDecl *RD;
  // FIXME: Needs the FlagAppleBlock bit.
  RD = buildImplicitRecord("__block_descriptor_withcopydispose");
  RD->startDefinition();

  QualType FieldTypes[] = {
    UnsignedLongTy,
    UnsignedLongTy,
    getPointerType(VoidPtrTy),
    getPointerType(VoidPtrTy)
  };

  static const char *const FieldNames[] = {
    "reserved",
    "Size",
    "CopyFuncPtr",
    "DestroyFuncPtr"
  };

  for (size_t i = 0; i < 4; ++i) {
    FieldDecl *Field = FieldDecl::Create(
        *this, RD, SourceLocation(), SourceLocation(),
        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
        /*BitWidth=*/nullptr,
        /*Mutable=*/false, ICIS_NoInit);
    Field->setAccess(AS_public);
    RD->addDecl(Field);
  }

  RD->completeDefinition();

  BlockDescriptorExtendedType = RD;
  return getTagDeclType(BlockDescriptorExtendedType);
}

OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
  const auto *BT = dyn_cast<BuiltinType>(T);

  if (!BT) {
    if (isa<PipeType>(T))
      return OCLTK_Pipe;

    return OCLTK_Default;
  }

  switch (BT->getKind()) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
  case BuiltinType::Id:                                                        \
    return OCLTK_Image;
#include "clang/Basic/OpenCLImageTypes.def"

  case BuiltinType::OCLClkEvent:
    return OCLTK_ClkEvent;

  case BuiltinType::OCLEvent:
    return OCLTK_Event;

  case BuiltinType::OCLQueue:
    return OCLTK_Queue;

  case BuiltinType::OCLReserveID:
    return OCLTK_ReserveID;

  case BuiltinType::OCLSampler:
    return OCLTK_Sampler;

  default:
    return OCLTK_Default;
  }
}

LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
  return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
}

/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
/// requires copy/dispose. Note that this must match the logic
/// in buildByrefHelpers.
bool ASTContext::BlockRequiresCopying(QualType Ty,
                                      const VarDecl *D) {
  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
    const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
    if (!copyExpr && record->hasTrivialDestructor()) return false;

    return true;
  }

  // The block needs copy/destroy helpers if Ty is non-trivial to destructively
  // move or destroy.
  if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
    return true;

  if (!Ty->isObjCRetainableType()) return false;

  Qualifiers qs = Ty.getQualifiers();

  // If we have lifetime, that dominates.
  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
    switch (lifetime) {
      case Qualifiers::OCL_None: llvm_unreachable("impossible");

      // These are just bits as far as the runtime is concerned.
      case Qualifiers::OCL_ExplicitNone:
      case Qualifiers::OCL_Autoreleasing:
        return false;

      // These cases should have been taken care of when checking the type's
      // non-triviality.
      case Qualifiers::OCL_Weak:
      case Qualifiers::OCL_Strong:
        llvm_unreachable("impossible");
    }
    llvm_unreachable("fell out of lifetime switch!");
  }
  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
          Ty->isObjCObjectPointerType());
}

bool ASTContext::getByrefLifetime(QualType Ty,
                              Qualifiers::ObjCLifetime &LifeTime,
                              bool &HasByrefExtendedLayout) const {
  if (!getLangOpts().ObjC ||
      getLangOpts().getGC() != LangOptions::NonGC)
    return false;

  HasByrefExtendedLayout = false;
  if (Ty->isRecordType()) {
    HasByrefExtendedLayout = true;
    LifeTime = Qualifiers::OCL_None;
  } else if ((LifeTime = Ty.getObjCLifetime())) {
    // Honor the ARC qualifiers.
  } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
    // The MRR rule.
    LifeTime = Qualifiers::OCL_ExplicitNone;
  } else {
    LifeTime = Qualifiers::OCL_None;
  }
  return true;
}

CanQualType ASTContext::getNSUIntegerType() const {
  assert(Target && "Expected target to be initialized");
  const llvm::Triple &T = Target->getTriple();
  // Windows is LLP64 rather than LP64
  if (T.isOSWindows() && T.isArch64Bit())
    return UnsignedLongLongTy;
  return UnsignedLongTy;
}

CanQualType ASTContext::getNSIntegerType() const {
  assert(Target && "Expected target to be initialized");
  const llvm::Triple &T = Target->getTriple();
  // Windows is LLP64 rather than LP64
  if (T.isOSWindows() && T.isArch64Bit())
    return LongLongTy;
  return LongTy;
}

TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
  if (!ObjCInstanceTypeDecl)
    ObjCInstanceTypeDecl =
        buildImplicitTypedef(getObjCIdType(), "instancetype");
  return ObjCInstanceTypeDecl;
}

// This returns true if a type has been typedefed to BOOL:
// typedef <type> BOOL;
static bool isTypeTypedefedAsBOOL(QualType T) {
  if (const auto *TT = dyn_cast<TypedefType>(T))
    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
      return II->isStr("BOOL");

  return false;
}

/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose.
CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
  if (!type->isIncompleteArrayType() && type->isIncompleteType())
    return CharUnits::Zero();

  CharUnits sz = getTypeSizeInChars(type);

  // Make all integer and enum types at least as large as an int
  if (sz.isPositive() && type->isIntegralOrEnumerationType())
    sz = std::max(sz, getTypeSizeInChars(IntTy));
  // Treat arrays as pointers, since that's how they're passed in.
  else if (type->isArrayType())
    sz = getTypeSizeInChars(VoidPtrTy);
  return sz;
}

bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
  return getTargetInfo().getCXXABI().isMicrosoft() &&
         VD->isStaticDataMember() &&
         VD->getType()->isIntegralOrEnumerationType() &&
         !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
}

ASTContext::InlineVariableDefinitionKind
ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
  if (!VD->isInline())
    return InlineVariableDefinitionKind::None;

  // In almost all cases, it's a weak definition.
  auto *First = VD->getFirstDecl();
  if (First->isInlineSpecified() || !First->isStaticDataMember())
    return InlineVariableDefinitionKind::Weak;

  // If there's a file-context declaration in this translation unit, it's a
  // non-discardable definition.
  for (auto *D : VD->redecls())
    if (D->getLexicalDeclContext()->isFileContext() &&
        !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
      return InlineVariableDefinitionKind::Strong;

  // If we've not seen one yet, we don't know.
  return InlineVariableDefinitionKind::WeakUnknown;
}

static std::string charUnitsToString(const CharUnits &CU) {
  return llvm::itostr(CU.getQuantity());
}

/// getObjCEncodingForBlock - Return the encoded type for this block
/// declaration.
std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
  std::string S;

  const BlockDecl *Decl = Expr->getBlockDecl();
  QualType BlockTy =
      Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
  QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
  // Encode result type.
  if (getLangOpts().EncodeExtendedBlockSig)
    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
                                      true /*Extended*/);
  else
    getObjCEncodingForType(BlockReturnTy, S);
  // Compute size of all parameters.
  // Start with computing size of a pointer in number of bytes.
  // FIXME: There might(should) be a better way of doing this computation!
  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
  CharUnits ParmOffset = PtrSize;
  for (auto PI : Decl->parameters()) {
    QualType PType = PI->getType();
    CharUnits sz = getObjCEncodingTypeSize(PType);
    if (sz.isZero())
      continue;
    assert(sz.isPositive() && "BlockExpr - Incomplete param type");
    ParmOffset += sz;
  }
  // Size of the argument frame
  S += charUnitsToString(ParmOffset);
  // Block pointer and offset.
  S += "@?0";

  // Argument types.
  ParmOffset = PtrSize;
  for (auto PVDecl : Decl->parameters()) {
    QualType PType = PVDecl->getOriginalType();
    if (const auto *AT =
            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
      // Use array's original type only if it has known number of
      // elements.
      if (!isa<ConstantArrayType>(AT))
        PType = PVDecl->getType();
    } else if (PType->isFunctionType())
      PType = PVDecl->getType();
    if (getLangOpts().EncodeExtendedBlockSig)
      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
                                      S, true /*Extended*/);
    else
      getObjCEncodingForType(PType, S);
    S += charUnitsToString(ParmOffset);
    ParmOffset += getObjCEncodingTypeSize(PType);
  }

  return S;
}

std::string
ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
  std::string S;
  // Encode result type.
  getObjCEncodingForType(Decl->getReturnType(), S);
  CharUnits ParmOffset;
  // Compute size of all parameters.
  for (auto PI : Decl->parameters()) {
    QualType PType = PI->getType();
    CharUnits sz = getObjCEncodingTypeSize(PType);
    if (sz.isZero())
      continue;

    assert(sz.isPositive() &&
           "getObjCEncodingForFunctionDecl - Incomplete param type");
    ParmOffset += sz;
  }
  S += charUnitsToString(ParmOffset);
  ParmOffset = CharUnits::Zero();

  // Argument types.
  for (auto PVDecl : Decl->parameters()) {
    QualType PType = PVDecl->getOriginalType();
    if (const auto *AT =
            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
      // Use array's original type only if it has known number of
      // elements.
      if (!isa<ConstantArrayType>(AT))
        PType = PVDecl->getType();
    } else if (PType->isFunctionType())
      PType = PVDecl->getType();
    getObjCEncodingForType(PType, S);
    S += charUnitsToString(ParmOffset);
    ParmOffset += getObjCEncodingTypeSize(PType);
  }

  return S;
}

/// getObjCEncodingForMethodParameter - Return the encoded type for a single
/// method parameter or return type. If Extended, include class names and
/// block object types.
void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
                                                   QualType T, std::string& S,
                                                   bool Extended) const {
  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
  getObjCEncodingForTypeQualifier(QT, S);
  // Encode parameter type.
  ObjCEncOptions Options = ObjCEncOptions()
                               .setExpandPointedToStructures()
                               .setExpandStructures()
                               .setIsOutermostType();
  if (Extended)
    Options.setEncodeBlockParameters().setEncodeClassNames();
  getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
}

/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
                                                     bool Extended) const {
  // FIXME: This is not very efficient.
  // Encode return type.
  std::string S;
  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
                                    Decl->getReturnType(), S, Extended);
  // Compute size of all parameters.
  // Start with computing size of a pointer in number of bytes.
  // FIXME: There might(should) be a better way of doing this computation!
  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
  // The first two arguments (self and _cmd) are pointers; account for
  // their size.
  CharUnits ParmOffset = 2 * PtrSize;
  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
       E = Decl->sel_param_end(); PI != E; ++PI) {
    QualType PType = (*PI)->getType();
    CharUnits sz = getObjCEncodingTypeSize(PType);
    if (sz.isZero())
      continue;

    assert(sz.isPositive() &&
           "getObjCEncodingForMethodDecl - Incomplete param type");
    ParmOffset += sz;
  }
  S += charUnitsToString(ParmOffset);
  S += "@0:";
  S += charUnitsToString(PtrSize);

  // Argument types.
  ParmOffset = 2 * PtrSize;
  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
       E = Decl->sel_param_end(); PI != E; ++PI) {
    const ParmVarDecl *PVDecl = *PI;
    QualType PType = PVDecl->getOriginalType();
    if (const auto *AT =
            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
      // Use array's original type only if it has known number of
      // elements.
      if (!isa<ConstantArrayType>(AT))
        PType = PVDecl->getType();
    } else if (PType->isFunctionType())
      PType = PVDecl->getType();
    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
                                      PType, S, Extended);
    S += charUnitsToString(ParmOffset);
    ParmOffset += getObjCEncodingTypeSize(PType);
  }

  return S;
}

ObjCPropertyImplDecl *
ASTContext::getObjCPropertyImplDeclForPropertyDecl(
                                      const ObjCPropertyDecl *PD,
                                      const Decl *Container) const {
  if (!Container)
    return nullptr;
  if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
    for (auto *PID : CID->property_impls())
      if (PID->getPropertyDecl() == PD)
        return PID;
  } else {
    const auto *OID = cast<ObjCImplementationDecl>(Container);
    for (auto *PID : OID->property_impls())
      if (PID->getPropertyDecl() == PD)
        return PID;
  }
  return nullptr;
}

/// getObjCEncodingForPropertyDecl - Return the encoded type for this
/// property declaration. If non-NULL, Container must be either an
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
/// NULL when getting encodings for protocol properties.
/// Property attributes are stored as a comma-delimited C string. The simple
/// attributes readonly and bycopy are encoded as single characters. The
/// parametrized attributes, getter=name, setter=name, and ivar=name, are
/// encoded as single characters, followed by an identifier. Property types
/// are also encoded as a parametrized attribute. The characters used to encode
/// these attributes are defined by the following enumeration:
/// @code
/// enum PropertyAttributes {
/// kPropertyReadOnly = 'R',   // property is read-only.
/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
/// kPropertyByref = '&',  // property is a reference to the value last assigned
/// kPropertyDynamic = 'D',    // property is dynamic
/// kPropertyGetter = 'G',     // followed by getter selector name
/// kPropertySetter = 'S',     // followed by setter selector name
/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
/// kPropertyType = 'T'              // followed by old-style type encoding.
/// kPropertyWeak = 'W'              // 'weak' property
/// kPropertyStrong = 'P'            // property GC'able
/// kPropertyNonAtomic = 'N'         // property non-atomic
/// };
/// @endcode
std::string
ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
                                           const Decl *Container) const {
  // Collect information from the property implementation decl(s).
  bool Dynamic = false;
  ObjCPropertyImplDecl *SynthesizePID = nullptr;

  if (ObjCPropertyImplDecl *PropertyImpDecl =
      getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
    if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
      Dynamic = true;
    else
      SynthesizePID = PropertyImpDecl;
  }

  // FIXME: This is not very efficient.
  std::string S = "T";

  // Encode result type.
  // GCC has some special rules regarding encoding of properties which
  // closely resembles encoding of ivars.
  getObjCEncodingForPropertyType(PD->getType(), S);

  if (PD->isReadOnly()) {
    S += ",R";
    if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
      S += ",C";
    if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
      S += ",&";
    if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
      S += ",W";
  } else {
    switch (PD->getSetterKind()) {
    case ObjCPropertyDecl::Assign: break;
    case ObjCPropertyDecl::Copy:   S += ",C"; break;
    case ObjCPropertyDecl::Retain: S += ",&"; break;
    case ObjCPropertyDecl::Weak:   S += ",W"; break;
    }
  }

  // It really isn't clear at all what this means, since properties
  // are "dynamic by default".
  if (Dynamic)
    S += ",D";

  if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
    S += ",N";

  if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
    S += ",G";
    S += PD->getGetterName().getAsString();
  }

  if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
    S += ",S";
    S += PD->getSetterName().getAsString();
  }

  if (SynthesizePID) {
    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
    S += ",V";
    S += OID->getNameAsString();
  }

  // FIXME: OBJCGC: weak & strong
  return S;
}

/// getLegacyIntegralTypeEncoding -
/// Another legacy compatibility encoding: 32-bit longs are encoded as
/// 'l' or 'L' , but not always.  For typedefs, we need to use
/// 'i' or 'I' instead if encoding a struct field, or a pointer!
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
    if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
        PointeeTy = UnsignedIntTy;
      else
        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
          PointeeTy = IntTy;
    }
  }
}

void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
                                        const FieldDecl *Field,
                                        QualType *NotEncodedT) const {
  // We follow the behavior of gcc, expanding structures which are
  // directly pointed to, and expanding embedded structures. Note that
  // these rules are sufficient to prevent recursive encoding of the
  // same type.
  getObjCEncodingForTypeImpl(T, S,
                             ObjCEncOptions()
                                 .setExpandPointedToStructures()
                                 .setExpandStructures()
                                 .setIsOutermostType(),
                             Field, NotEncodedT);
}

void ASTContext::getObjCEncodingForPropertyType(QualType T,
                                                std::string& S) const {
  // Encode result type.
  // GCC has some special rules regarding encoding of properties which
  // closely resembles encoding of ivars.
  getObjCEncodingForTypeImpl(T, S,
                             ObjCEncOptions()
                                 .setExpandPointedToStructures()
                                 .setExpandStructures()
                                 .setIsOutermostType()
                                 .setEncodingProperty(),
                             /*Field=*/nullptr);
}

static char getObjCEncodingForPrimitiveType(const ASTContext *C,
                                            const BuiltinType *BT) {
    BuiltinType::Kind kind = BT->getKind();
    switch (kind) {
    case BuiltinType::Void:       return 'v';
    case BuiltinType::Bool:       return 'B';
    case BuiltinType::Char8:
    case BuiltinType::Char_U:
    case BuiltinType::UChar:      return 'C';
    case BuiltinType::Char16:
    case BuiltinType::UShort:     return 'S';
    case BuiltinType::Char32:
    case BuiltinType::UInt:       return 'I';
    case BuiltinType::ULong:
        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
    case BuiltinType::UInt128:    return 'T';
    case BuiltinType::ULongLong:  return 'Q';
    case BuiltinType::Char_S:
    case BuiltinType::SChar:      return 'c';
    case BuiltinType::Short:      return 's';
    case BuiltinType::WChar_S:
    case BuiltinType::WChar_U:
    case BuiltinType::Int:        return 'i';
    case BuiltinType::Long:
      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
    case BuiltinType::LongLong:   return 'q';
    case BuiltinType::Int128:     return 't';
    case BuiltinType::Float:      return 'f';
    case BuiltinType::Double:     return 'd';
    case BuiltinType::LongDouble: return 'D';
    case BuiltinType::NullPtr:    return '*'; // like char*

    case BuiltinType::BFloat16:
    case BuiltinType::Float16:
    case BuiltinType::Float128:
    case BuiltinType::Half:
    case BuiltinType::ShortAccum:
    case BuiltinType::Accum:
    case BuiltinType::LongAccum:
    case BuiltinType::UShortAccum:
    case BuiltinType::UAccum:
    case BuiltinType::ULongAccum:
    case BuiltinType::ShortFract:
    case BuiltinType::Fract:
    case BuiltinType::LongFract:
    case BuiltinType::UShortFract:
    case BuiltinType::UFract:
    case BuiltinType::ULongFract:
    case BuiltinType::SatShortAccum:
    case BuiltinType::SatAccum:
    case BuiltinType::SatLongAccum:
    case BuiltinType::SatUShortAccum:
    case BuiltinType::SatUAccum:
    case BuiltinType::SatULongAccum:
    case BuiltinType::SatShortFract:
    case BuiltinType::SatFract:
    case BuiltinType::SatLongFract:
    case BuiltinType::SatUShortFract:
    case BuiltinType::SatUFract:
    case BuiltinType::SatULongFract:
      // FIXME: potentially need @encodes for these!
      return ' ';

#define SVE_TYPE(Name, Id, SingletonId) \
    case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
    {
      DiagnosticsEngine &Diags = C->getDiagnostics();
      unsigned DiagID = Diags.getCustomDiagID(
          DiagnosticsEngine::Error, "cannot yet @encode type %0");
      Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
      return ' ';
    }

    case BuiltinType::ObjCId:
    case BuiltinType::ObjCClass:
    case BuiltinType::ObjCSel:
      llvm_unreachable("@encoding ObjC primitive type");

    // OpenCL and placeholder types don't need @encodings.
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
    case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
    case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
    case BuiltinType::OCLEvent:
    case BuiltinType::OCLClkEvent:
    case BuiltinType::OCLQueue:
    case BuiltinType::OCLReserveID:
    case BuiltinType::OCLSampler:
    case BuiltinType::Dependent:
#define BUILTIN_TYPE(KIND, ID)
#define PLACEHOLDER_TYPE(KIND, ID) \
    case BuiltinType::KIND:
#include "clang/AST/BuiltinTypes.def"
      llvm_unreachable("invalid builtin type for @encode");
    }
    llvm_unreachable("invalid BuiltinType::Kind value");
}

static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
  EnumDecl *Enum = ET->getDecl();

  // The encoding of an non-fixed enum type is always 'i', regardless of size.
  if (!Enum->isFixed())
    return 'i';

  // The encoding of a fixed enum type matches its fixed underlying type.
  const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
  return getObjCEncodingForPrimitiveType(C, BT);
}

static void EncodeBitField(const ASTContext *Ctx, std::string& S,
                           QualType T, const FieldDecl *FD) {
  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
  S += 'b';
  // The NeXT runtime encodes bit fields as b followed by the number of bits.
  // The GNU runtime requires more information; bitfields are encoded as b,
  // then the offset (in bits) of the first element, then the type of the
  // bitfield, then the size in bits.  For example, in this structure:
  //
  // struct
  // {
  //    int integer;
  //    int flags:2;
  // };
  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
  // information is not especially sensible, but we're stuck with it for
  // compatibility with GCC, although providing it breaks anything that
  // actually uses runtime introspection and wants to work on both runtimes...
  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
    uint64_t Offset;

    if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
      Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
                                         IVD);
    } else {
      const RecordDecl *RD = FD->getParent();
      const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
      Offset = RL.getFieldOffset(FD->getFieldIndex());
    }

    S += llvm::utostr(Offset);

    if (const auto *ET = T->getAs<EnumType>())
      S += ObjCEncodingForEnumType(Ctx, ET);
    else {
      const auto *BT = T->castAs<BuiltinType>();
      S += getObjCEncodingForPrimitiveType(Ctx, BT);
    }
  }
  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
}

// FIXME: Use SmallString for accumulating string.
void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
                                            const ObjCEncOptions Options,
                                            const FieldDecl *FD,
                                            QualType *NotEncodedT) const {
  CanQualType CT = getCanonicalType(T);
  switch (CT->getTypeClass()) {
  case Type::Builtin:
  case Type::Enum:
    if (FD && FD->isBitField())
      return EncodeBitField(this, S, T, FD);
    if (const auto *BT = dyn_cast<BuiltinType>(CT))
      S += getObjCEncodingForPrimitiveType(this, BT);
    else
      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
    return;

  case Type::Complex:
    S += 'j';
    getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
                               ObjCEncOptions(),
                               /*Field=*/nullptr);
    return;

  case Type::Atomic:
    S += 'A';
    getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
                               ObjCEncOptions(),
                               /*Field=*/nullptr);
    return;

  // encoding for pointer or reference types.
  case Type::Pointer:
  case Type::LValueReference:
  case Type::RValueReference: {
    QualType PointeeTy;
    if (isa<PointerType>(CT)) {
      const auto *PT = T->castAs<PointerType>();
      if (PT->isObjCSelType()) {
        S += ':';
        return;
      }
      PointeeTy = PT->getPointeeType();
    } else {
      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
    }

    bool isReadOnly = false;
    // For historical/compatibility reasons, the read-only qualifier of the
    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
    // Also, do not emit the 'r' for anything but the outermost type!
    if (isa<TypedefType>(T.getTypePtr())) {
      if (Options.IsOutermostType() && T.isConstQualified()) {
        isReadOnly = true;
        S += 'r';
      }
    } else if (Options.IsOutermostType()) {
      QualType P = PointeeTy;
      while (auto PT = P->getAs<PointerType>())
        P = PT->getPointeeType();
      if (P.isConstQualified()) {
        isReadOnly = true;
        S += 'r';
      }
    }
    if (isReadOnly) {
      // Another legacy compatibility encoding. Some ObjC qualifier and type
      // combinations need to be rearranged.
      // Rewrite "in const" from "nr" to "rn"
      if (StringRef(S).endswith("nr"))
        S.replace(S.end()-2, S.end(), "rn");
    }

    if (PointeeTy->isCharType()) {
      // char pointer types should be encoded as '*' unless it is a
      // type that has been typedef'd to 'BOOL'.
      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
        S += '*';
        return;
      }
    } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
      // GCC binary compat: Need to convert "struct objc_class *" to "#".
      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
        S += '#';
        return;
      }
      // GCC binary compat: Need to convert "struct objc_object *" to "@".
      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
        S += '@';
        return;
      }
      // fall through...
    }
    S += '^';
    getLegacyIntegralTypeEncoding(PointeeTy);

    ObjCEncOptions NewOptions;
    if (Options.ExpandPointedToStructures())
      NewOptions.setExpandStructures();
    getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
                               /*Field=*/nullptr, NotEncodedT);
    return;
  }

  case Type::ConstantArray:
  case Type::IncompleteArray:
  case Type::VariableArray: {
    const auto *AT = cast<ArrayType>(CT);

    if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
      // Incomplete arrays are encoded as a pointer to the array element.
      S += '^';

      getObjCEncodingForTypeImpl(
          AT->getElementType(), S,
          Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
    } else {
      S += '[';

      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
        S += llvm::utostr(CAT->getSize().getZExtValue());
      else {
        //Variable length arrays are encoded as a regular array with 0 elements.
        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
               "Unknown array type!");
        S += '0';
      }

      getObjCEncodingForTypeImpl(
          AT->getElementType(), S,
          Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
          NotEncodedT);
      S += ']';
    }
    return;
  }

  case Type::FunctionNoProto:
  case Type::FunctionProto:
    S += '?';
    return;

  case Type::Record: {
    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
    S += RDecl->isUnion() ? '(' : '{';
    // Anonymous structures print as '?'
    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
      S += II->getName();
      if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
        llvm::raw_string_ostream OS(S);
        printTemplateArgumentList(OS, TemplateArgs.asArray(),
                                  getPrintingPolicy());
      }
    } else {
      S += '?';
    }
    if (Options.ExpandStructures()) {
      S += '=';
      if (!RDecl->isUnion()) {
        getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
      } else {
        for (const auto *Field : RDecl->fields()) {
          if (FD) {
            S += '"';
            S += Field->getNameAsString();
            S += '"';
          }

          // Special case bit-fields.
          if (Field->isBitField()) {
            getObjCEncodingForTypeImpl(Field->getType(), S,
                                       ObjCEncOptions().setExpandStructures(),
                                       Field);
          } else {
            QualType qt = Field->getType();
            getLegacyIntegralTypeEncoding(qt);
            getObjCEncodingForTypeImpl(
                qt, S,
                ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
                NotEncodedT);
          }
        }
      }
    }
    S += RDecl->isUnion() ? ')' : '}';
    return;
  }

  case Type::BlockPointer: {
    const auto *BT = T->castAs<BlockPointerType>();
    S += "@?"; // Unlike a pointer-to-function, which is "^?".
    if (Options.EncodeBlockParameters()) {
      const auto *FT = BT->getPointeeType()->castAs<FunctionType>();

      S += '<';
      // Block return type
      getObjCEncodingForTypeImpl(FT->getReturnType(), S,
                                 Options.forComponentType(), FD, NotEncodedT);
      // Block self
      S += "@?";
      // Block parameters
      if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
        for (const auto &I : FPT->param_types())
          getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
                                     NotEncodedT);
      }
      S += '>';
    }
    return;
  }

  case Type::ObjCObject: {
    // hack to match legacy encoding of *id and *Class
    QualType Ty = getObjCObjectPointerType(CT);
    if (Ty->isObjCIdType()) {
      S += "{objc_object=}";
      return;
    }
    else if (Ty->isObjCClassType()) {
      S += "{objc_class=}";
      return;
    }
    // TODO: Double check to make sure this intentionally falls through.
    LLVM_FALLTHROUGH;
  }

  case Type::ObjCInterface: {
    // Ignore protocol qualifiers when mangling at this level.
    // @encode(class_name)
    ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
    S += '{';
    S += OI->getObjCRuntimeNameAsString();
    if (Options.ExpandStructures()) {
      S += '=';
      SmallVector<const ObjCIvarDecl*, 32> Ivars;
      DeepCollectObjCIvars(OI, true, Ivars);
      for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
        const FieldDecl *Field = Ivars[i];
        if (Field->isBitField())
          getObjCEncodingForTypeImpl(Field->getType(), S,
                                     ObjCEncOptions().setExpandStructures(),
                                     Field);
        else
          getObjCEncodingForTypeImpl(Field->getType(), S,
                                     ObjCEncOptions().setExpandStructures(), FD,
                                     NotEncodedT);
      }
    }
    S += '}';
    return;
  }

  case Type::ObjCObjectPointer: {
    const auto *OPT = T->castAs<ObjCObjectPointerType>();
    if (OPT->isObjCIdType()) {
      S += '@';
      return;
    }

    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
      // Since this is a binary compatibility issue, need to consult with
      // runtime folks. Fortunately, this is a *very* obscure construct.
      S += '#';
      return;
    }

    if (OPT->isObjCQualifiedIdType()) {
      getObjCEncodingForTypeImpl(
          getObjCIdType(), S,
          Options.keepingOnly(ObjCEncOptions()
                                  .setExpandPointedToStructures()
                                  .setExpandStructures()),
          FD);
      if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
        // Note that we do extended encoding of protocol qualifer list
        // Only when doing ivar or property encoding.
        S += '"';
        for (const auto *I : OPT->quals()) {
          S += '<';
          S += I->getObjCRuntimeNameAsString();
          S += '>';
        }
        S += '"';
      }
      return;
    }

    S += '@';
    if (OPT->getInterfaceDecl() &&
        (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
      S += '"';
      S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
      for (const auto *I : OPT->quals()) {
        S += '<';
        S += I->getObjCRuntimeNameAsString();
        S += '>';
      }
      S += '"';
    }
    return;
  }

  // gcc just blithely ignores member pointers.
  // FIXME: we should do better than that.  'M' is available.
  case Type::MemberPointer:
  // This matches gcc's encoding, even though technically it is insufficient.
  //FIXME. We should do a better job than gcc.
  case Type::Vector:
  case Type::ExtVector:
  // Until we have a coherent encoding of these three types, issue warning.
    if (NotEncodedT)
      *NotEncodedT = T;
    return;

  case Type::ConstantMatrix:
    if (NotEncodedT)
      *NotEncodedT = T;
    return;

  // We could see an undeduced auto type here during error recovery.
  // Just ignore it.
  case Type::Auto:
  case Type::DeducedTemplateSpecialization:
    return;

  case Type::Pipe:
  case Type::ExtInt:
#define ABSTRACT_TYPE(KIND, BASE)
#define TYPE(KIND, BASE)
#define DEPENDENT_TYPE(KIND, BASE) \
  case Type::KIND:
#define NON_CANONICAL_TYPE(KIND, BASE) \
  case Type::KIND:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
  case Type::KIND:
#include "clang/AST/TypeNodes.inc"
    llvm_unreachable("@encode for dependent type!");
  }
  llvm_unreachable("bad type kind!");
}

void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
                                                 std::string &S,
                                                 const FieldDecl *FD,
                                                 bool includeVBases,
                                                 QualType *NotEncodedT) const {
  assert(RDecl && "Expected non-null RecordDecl");
  assert(!RDecl->isUnion() && "Should not be called for unions");
  if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
    return;

  const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);

  if (CXXRec) {
    for (const auto &BI : CXXRec->bases()) {
      if (!BI.isVirtual()) {
        CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
        if (base->isEmpty())
          continue;
        uint64_t offs = toBits(layout.getBaseClassOffset(base));
        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
                                  std::make_pair(offs, base));
      }
    }
  }

  unsigned i = 0;
  for (auto *Field : RDecl->fields()) {
    uint64_t offs = layout.getFieldOffset(i);
    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
                              std::make_pair(offs, Field));
    ++i;
  }

  if (CXXRec && includeVBases) {
    for (const auto &BI : CXXRec->vbases()) {
      CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
      if (base->isEmpty())
        continue;
      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
      if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
          FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
                                  std::make_pair(offs, base));
    }
  }

  CharUnits size;
  if (CXXRec) {
    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
  } else {
    size = layout.getSize();
  }

#ifndef NDEBUG
  uint64_t CurOffs = 0;
#endif
  std::multimap<uint64_t, NamedDecl *>::iterator
    CurLayObj = FieldOrBaseOffsets.begin();

  if (CXXRec && CXXRec->isDynamicClass() &&
      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
    if (FD) {
      S += "\"_vptr$";
      std::string recname = CXXRec->getNameAsString();
      if (recname.empty()) recname = "?";
      S += recname;
      S += '"';
    }
    S += "^^?";
#ifndef NDEBUG
    CurOffs += getTypeSize(VoidPtrTy);
#endif
  }

  if (!RDecl->hasFlexibleArrayMember()) {
    // Mark the end of the structure.
    uint64_t offs = toBits(size);
    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
                              std::make_pair(offs, nullptr));
  }

  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
#ifndef NDEBUG
    assert(CurOffs <= CurLayObj->first);
    if (CurOffs < CurLayObj->first) {
      uint64_t padding = CurLayObj->first - CurOffs;
      // FIXME: There doesn't seem to be a way to indicate in the encoding that
      // packing/alignment of members is different that normal, in which case
      // the encoding will be out-of-sync with the real layout.
      // If the runtime switches to just consider the size of types without
      // taking into account alignment, we could make padding explicit in the
      // encoding (e.g. using arrays of chars). The encoding strings would be
      // longer then though.
      CurOffs += padding;
    }
#endif

    NamedDecl *dcl = CurLayObj->second;
    if (!dcl)
      break; // reached end of structure.

    if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
      // We expand the bases without their virtual bases since those are going
      // in the initial structure. Note that this differs from gcc which
      // expands virtual bases each time one is encountered in the hierarchy,
      // making the encoding type bigger than it really is.
      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
                                      NotEncodedT);
      assert(!base->isEmpty());
#ifndef NDEBUG
      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
#endif
    } else {
      const auto *field = cast<FieldDecl>(dcl);
      if (FD) {
        S += '"';
        S += field->getNameAsString();
        S += '"';
      }

      if (field->isBitField()) {
        EncodeBitField(this, S, field->getType(), field);
#ifndef NDEBUG
        CurOffs += field->getBitWidthValue(*this);
#endif
      } else {
        QualType qt = field->getType();
        getLegacyIntegralTypeEncoding(qt);
        getObjCEncodingForTypeImpl(
            qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
            FD, NotEncodedT);
#ifndef NDEBUG
        CurOffs += getTypeSize(field->getType());
#endif
      }
    }
  }
}

void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
                                                 std::string& S) const {
  if (QT & Decl::OBJC_TQ_In)
    S += 'n';
  if (QT & Decl::OBJC_TQ_Inout)
    S += 'N';
  if (QT & Decl::OBJC_TQ_Out)
    S += 'o';
  if (QT & Decl::OBJC_TQ_Bycopy)
    S += 'O';
  if (QT & Decl::OBJC_TQ_Byref)
    S += 'R';
  if (QT & Decl::OBJC_TQ_Oneway)
    S += 'V';
}

TypedefDecl *ASTContext::getObjCIdDecl() const {
  if (!ObjCIdDecl) {
    QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
    T = getObjCObjectPointerType(T);
    ObjCIdDecl = buildImplicitTypedef(T, "id");
  }
  return ObjCIdDecl;
}

TypedefDecl *ASTContext::getObjCSelDecl() const {
  if (!ObjCSelDecl) {
    QualType T = getPointerType(ObjCBuiltinSelTy);
    ObjCSelDecl = buildImplicitTypedef(T, "SEL");
  }
  return ObjCSelDecl;
}

TypedefDecl *ASTContext::getObjCClassDecl() const {
  if (!ObjCClassDecl) {
    QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
    T = getObjCObjectPointerType(T);
    ObjCClassDecl = buildImplicitTypedef(T, "Class");
  }
  return ObjCClassDecl;
}

ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
  if (!ObjCProtocolClassDecl) {
    ObjCProtocolClassDecl
      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
                                  SourceLocation(),
                                  &Idents.get("Protocol"),
                                  /*typeParamList=*/nullptr,
                                  /*PrevDecl=*/nullptr,
                                  SourceLocation(), true);
  }

  return ObjCProtocolClassDecl;
}

//===----------------------------------------------------------------------===//
// __builtin_va_list Construction Functions
//===----------------------------------------------------------------------===//

static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
                                                 StringRef Name) {
  // typedef char* __builtin[_ms]_va_list;
  QualType T = Context->getPointerType(Context->CharTy);
  return Context->buildImplicitTypedef(T, Name);
}

static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
  return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
}

static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
  return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
}

static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
  // typedef void* __builtin_va_list;
  QualType T = Context->getPointerType(Context->VoidTy);
  return Context->buildImplicitTypedef(T, "__builtin_va_list");
}

static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
  // struct __va_list
  RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
  if (Context->getLangOpts().CPlusPlus) {
    // namespace std { struct __va_list {
    NamespaceDecl *NS;
    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
                               Context->getTranslationUnitDecl(),
                               /*Inline*/ false, SourceLocation(),
                               SourceLocation(), &Context->Idents.get("std"),
                               /*PrevDecl*/ nullptr);
    NS->setImplicit();
    VaListTagDecl->setDeclContext(NS);
  }

  VaListTagDecl->startDefinition();

  const size_t NumFields = 5;
  QualType FieldTypes[NumFields];
  const char *FieldNames[NumFields];

  // void *__stack;
  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
  FieldNames[0] = "__stack";

  // void *__gr_top;
  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
  FieldNames[1] = "__gr_top";

  // void *__vr_top;
  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
  FieldNames[2] = "__vr_top";

  // int __gr_offs;
  FieldTypes[3] = Context->IntTy;
  FieldNames[3] = "__gr_offs";

  // int __vr_offs;
  FieldTypes[4] = Context->IntTy;
  FieldNames[4] = "__vr_offs";

  // Create fields
  for (unsigned i = 0; i < NumFields; ++i) {
    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
                                         VaListTagDecl,
                                         SourceLocation(),
                                         SourceLocation(),
                                         &Context->Idents.get(FieldNames[i]),
                                         FieldTypes[i], /*TInfo=*/nullptr,
                                         /*BitWidth=*/nullptr,
                                         /*Mutable=*/false,
                                         ICIS_NoInit);
    Field->setAccess(AS_public);
    VaListTagDecl->addDecl(Field);
  }
  VaListTagDecl->completeDefinition();
  Context->VaListTagDecl = VaListTagDecl;
  QualType VaListTagType = Context->getRecordType(VaListTagDecl);

  // } __builtin_va_list;
  return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
}

static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
  // typedef struct __va_list_tag {
  RecordDecl *VaListTagDecl;

  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
  VaListTagDecl->startDefinition();

  const size_t NumFields = 5;
  QualType FieldTypes[NumFields];
  const char *FieldNames[NumFields];

  //   unsigned char gpr;
  FieldTypes[0] = Context->UnsignedCharTy;
  FieldNames[0] = "gpr";

  //   unsigned char fpr;
  FieldTypes[1] = Context->UnsignedCharTy;
  FieldNames[1] = "fpr";

  //   unsigned short reserved;
  FieldTypes[2] = Context->UnsignedShortTy;
  FieldNames[2] = "reserved";

  //   void* overflow_arg_area;
  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
  FieldNames[3] = "overflow_arg_area";

  //   void* reg_save_area;
  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
  FieldNames[4] = "reg_save_area";

  // Create fields
  for (unsigned i = 0; i < NumFields; ++i) {
    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
                                         SourceLocation(),
                                         SourceLocation(),
                                         &Context->Idents.get(FieldNames[i]),
                                         FieldTypes[i], /*TInfo=*/nullptr,
                                         /*BitWidth=*/nullptr,
                                         /*Mutable=*/false,
                                         ICIS_NoInit);
    Field->setAccess(AS_public);
    VaListTagDecl->addDecl(Field);
  }
  VaListTagDecl->completeDefinition();
  Context->VaListTagDecl = VaListTagDecl;
  QualType VaListTagType = Context->getRecordType(VaListTagDecl);

  // } __va_list_tag;
  TypedefDecl *VaListTagTypedefDecl =
      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");

  QualType VaListTagTypedefType =
    Context->getTypedefType(VaListTagTypedefDecl);

  // typedef __va_list_tag __builtin_va_list[1];
  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
  QualType VaListTagArrayType
    = Context->getConstantArrayType(VaListTagTypedefType,
                                    Size, nullptr, ArrayType::Normal, 0);
  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
}

static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
  // struct __va_list_tag {
  RecordDecl *VaListTagDecl;
  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
  VaListTagDecl->startDefinition();

  const size_t NumFields = 4;
  QualType FieldTypes[NumFields];
  const char *FieldNames[NumFields];

  //   unsigned gp_offset;
  FieldTypes[0] = Context->UnsignedIntTy;
  FieldNames[0] = "gp_offset";

  //   unsigned fp_offset;
  FieldTypes[1] = Context->UnsignedIntTy;
  FieldNames[1] = "fp_offset";

  //   void* overflow_arg_area;
  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
  FieldNames[2] = "overflow_arg_area";

  //   void* reg_save_area;
  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
  FieldNames[3] = "reg_save_area";

  // Create fields
  for (unsigned i = 0; i < NumFields; ++i) {
    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
                                         VaListTagDecl,
                                         SourceLocation(),
                                         SourceLocation(),
                                         &Context->Idents.get(FieldNames[i]),
                                         FieldTypes[i], /*TInfo=*/nullptr,
                                         /*BitWidth=*/nullptr,
                                         /*Mutable=*/false,
                                         ICIS_NoInit);
    Field->setAccess(AS_public);
    VaListTagDecl->addDecl(Field);
  }
  VaListTagDecl->completeDefinition();
  Context->VaListTagDecl = VaListTagDecl;
  QualType VaListTagType = Context->getRecordType(VaListTagDecl);

  // };

  // typedef struct __va_list_tag __builtin_va_list[1];
  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
  QualType VaListTagArrayType = Context->getConstantArrayType(
      VaListTagType, Size, nullptr, ArrayType::Normal, 0);
  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
}

static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
  // typedef int __builtin_va_list[4];
  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
  QualType IntArrayType = Context->getConstantArrayType(
      Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
  return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
}

static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
  // struct __va_list
  RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
  if (Context->getLangOpts().CPlusPlus) {
    // namespace std { struct __va_list {
    NamespaceDecl *NS;
    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
                               Context->getTranslationUnitDecl(),
                               /*Inline*/false, SourceLocation(),
                               SourceLocation(), &Context->Idents.get("std"),
                               /*PrevDecl*/ nullptr);
    NS->setImplicit();
    VaListDecl->setDeclContext(NS);
  }

  VaListDecl->startDefinition();

  // void * __ap;
  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
                                       VaListDecl,
                                       SourceLocation(),
                                       SourceLocation(),
                                       &Context->Idents.get("__ap"),
                                       Context->getPointerType(Context->VoidTy),
                                       /*TInfo=*/nullptr,
                                       /*BitWidth=*/nullptr,
                                       /*Mutable=*/false,
                                       ICIS_NoInit);
  Field->setAccess(AS_public);
  VaListDecl->addDecl(Field);

  // };
  VaListDecl->completeDefinition();
  Context->VaListTagDecl = VaListDecl;

  // typedef struct __va_list __builtin_va_list;
  QualType T = Context->getRecordType(VaListDecl);
  return Context->buildImplicitTypedef(T, "__builtin_va_list");
}

static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
  // struct __va_list_tag {
  RecordDecl *VaListTagDecl;
  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
  VaListTagDecl->startDefinition();

  const size_t NumFields = 4;
  QualType FieldTypes[NumFields];
  const char *FieldNames[NumFields];

  //   long __gpr;
  FieldTypes[0] = Context->LongTy;
  FieldNames[0] = "__gpr";

  //   long __fpr;
  FieldTypes[1] = Context->LongTy;
  FieldNames[1] = "__fpr";

  //   void *__overflow_arg_area;
  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
  FieldNames[2] = "__overflow_arg_area";

  //   void *__reg_save_area;
  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
  FieldNames[3] = "__reg_save_area";

  // Create fields
  for (unsigned i = 0; i < NumFields; ++i) {
    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
                                         VaListTagDecl,
                                         SourceLocation(),
                                         SourceLocation(),
                                         &Context->Idents.get(FieldNames[i]),
                                         FieldTypes[i], /*TInfo=*/nullptr,
                                         /*BitWidth=*/nullptr,
                                         /*Mutable=*/false,
                                         ICIS_NoInit);
    Field->setAccess(AS_public);
    VaListTagDecl->addDecl(Field);
  }
  VaListTagDecl->completeDefinition();
  Context->VaListTagDecl = VaListTagDecl;
  QualType VaListTagType = Context->getRecordType(VaListTagDecl);

  // };

  // typedef __va_list_tag __builtin_va_list[1];
  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
  QualType VaListTagArrayType = Context->getConstantArrayType(
      VaListTagType, Size, nullptr, ArrayType::Normal, 0);

  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
}

static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
  // typedef struct __va_list_tag {
  RecordDecl *VaListTagDecl;
  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
  VaListTagDecl->startDefinition();

  const size_t NumFields = 3;
  QualType FieldTypes[NumFields];
  const char *FieldNames[NumFields];

  //   void *CurrentSavedRegisterArea;
  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
  FieldNames[0] = "__current_saved_reg_area_pointer";

  //   void *SavedRegAreaEnd;
  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
  FieldNames[1] = "__saved_reg_area_end_pointer";

  //   void *OverflowArea;
  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
  FieldNames[2] = "__overflow_area_pointer";

  // Create fields
  for (unsigned i = 0; i < NumFields; ++i) {
    FieldDecl *Field = FieldDecl::Create(
        const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
        SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
        /*TInfo=*/0,
        /*BitWidth=*/0,
        /*Mutable=*/false, ICIS_NoInit);
    Field->setAccess(AS_public);
    VaListTagDecl->addDecl(Field);
  }
  VaListTagDecl->completeDefinition();
  Context->VaListTagDecl = VaListTagDecl;
  QualType VaListTagType = Context->getRecordType(VaListTagDecl);

  // } __va_list_tag;
  TypedefDecl *VaListTagTypedefDecl =
      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");

  QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);

  // typedef __va_list_tag __builtin_va_list[1];
  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
  QualType VaListTagArrayType = Context->getConstantArrayType(
      VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);

  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
}

static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
                                     TargetInfo::BuiltinVaListKind Kind) {
  switch (Kind) {
  case TargetInfo::CharPtrBuiltinVaList:
    return CreateCharPtrBuiltinVaListDecl(Context);
  case TargetInfo::VoidPtrBuiltinVaList:
    return CreateVoidPtrBuiltinVaListDecl(Context);
  case TargetInfo::AArch64ABIBuiltinVaList:
    return CreateAArch64ABIBuiltinVaListDecl(Context);
  case TargetInfo::PowerABIBuiltinVaList:
    return CreatePowerABIBuiltinVaListDecl(Context);
  case TargetInfo::X86_64ABIBuiltinVaList:
    return CreateX86_64ABIBuiltinVaListDecl(Context);
  case TargetInfo::PNaClABIBuiltinVaList:
    return CreatePNaClABIBuiltinVaListDecl(Context);
  case TargetInfo::AAPCSABIBuiltinVaList:
    return CreateAAPCSABIBuiltinVaListDecl(Context);
  case TargetInfo::SystemZBuiltinVaList:
    return CreateSystemZBuiltinVaListDecl(Context);
  case TargetInfo::HexagonBuiltinVaList:
    return CreateHexagonBuiltinVaListDecl(Context);
  }

  llvm_unreachable("Unhandled __builtin_va_list type kind");
}

TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
  if (!BuiltinVaListDecl) {
    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
    assert(BuiltinVaListDecl->isImplicit());
  }

  return BuiltinVaListDecl;
}

Decl *ASTContext::getVaListTagDecl() const {
  // Force the creation of VaListTagDecl by building the __builtin_va_list
  // declaration.
  if (!VaListTagDecl)
    (void)getBuiltinVaListDecl();

  return VaListTagDecl;
}

TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
  if (!BuiltinMSVaListDecl)
    BuiltinMSVaListDecl = CreateMSVaListDecl(this);

  return BuiltinMSVaListDecl;
}

bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
  return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
}

void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
  assert(ObjCConstantStringType.isNull() &&
         "'NSConstantString' type already set!");

  ObjCConstantStringType = getObjCInterfaceType(Decl);
}

/// Retrieve the template name that corresponds to a non-empty
/// lookup.
TemplateName
ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
                                      UnresolvedSetIterator End) const {
  unsigned size = End - Begin;
  assert(size > 1 && "set is not overloaded!");

  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
                          size * sizeof(FunctionTemplateDecl*));
  auto *OT = new (memory) OverloadedTemplateStorage(size);

  NamedDecl **Storage = OT->getStorage();
  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
    NamedDecl *D = *I;
    assert(isa<FunctionTemplateDecl>(D) ||
           isa<UnresolvedUsingValueDecl>(D) ||
           (isa<UsingShadowDecl>(D) &&
            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
    *Storage++ = D;
  }

  return TemplateName(OT);
}

/// Retrieve a template name representing an unqualified-id that has been
/// assumed to name a template for ADL purposes.
TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
  auto *OT = new (*this) AssumedTemplateStorage(Name);
  return TemplateName(OT);
}

/// Retrieve the template name that represents a qualified
/// template name such as \c std::vector.
TemplateName
ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
                                     bool TemplateKeyword,
                                     TemplateDecl *Template) const {
  assert(NNS && "Missing nested-name-specifier in qualified template name");

  // FIXME: Canonicalization?
  llvm::FoldingSetNodeID ID;
  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);

  void *InsertPos = nullptr;
  QualifiedTemplateName *QTN =
    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
  if (!QTN) {
    QTN = new (*this, alignof(QualifiedTemplateName))
        QualifiedTemplateName(NNS, TemplateKeyword, Template);
    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
  }

  return TemplateName(QTN);
}

/// Retrieve the template name that represents a dependent
/// template name such as \c MetaFun::template apply.
TemplateName
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
                                     const IdentifierInfo *Name) const {
  assert((!NNS || NNS->isDependent()) &&
         "Nested name specifier must be dependent");

  llvm::FoldingSetNodeID ID;
  DependentTemplateName::Profile(ID, NNS, Name);

  void *InsertPos = nullptr;
  DependentTemplateName *QTN =
    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);

  if (QTN)
    return TemplateName(QTN);

  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
  if (CanonNNS == NNS) {
    QTN = new (*this, alignof(DependentTemplateName))
        DependentTemplateName(NNS, Name);
  } else {
    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
    QTN = new (*this, alignof(DependentTemplateName))
        DependentTemplateName(NNS, Name, Canon);
    DependentTemplateName *CheckQTN =
      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
    assert(!CheckQTN && "Dependent type name canonicalization broken");
    (void)CheckQTN;
  }

  DependentTemplateNames.InsertNode(QTN, InsertPos);
  return TemplateName(QTN);
}

/// Retrieve the template name that represents a dependent
/// template name such as \c MetaFun::template operator+.
TemplateName
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
                                     OverloadedOperatorKind Operator) const {
  assert((!NNS || NNS->isDependent()) &&
         "Nested name specifier must be dependent");

  llvm::FoldingSetNodeID ID;
  DependentTemplateName::Profile(ID, NNS, Operator);

  void *InsertPos = nullptr;
  DependentTemplateName *QTN
    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);

  if (QTN)
    return TemplateName(QTN);

  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
  if (CanonNNS == NNS) {
    QTN = new (*this, alignof(DependentTemplateName))
        DependentTemplateName(NNS, Operator);
  } else {
    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
    QTN = new (*this, alignof(DependentTemplateName))
        DependentTemplateName(NNS, Operator, Canon);

    DependentTemplateName *CheckQTN
      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
    assert(!CheckQTN && "Dependent template name canonicalization broken");
    (void)CheckQTN;
  }

  DependentTemplateNames.InsertNode(QTN, InsertPos);
  return TemplateName(QTN);
}

TemplateName
ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
                                         TemplateName replacement) const {
  llvm::FoldingSetNodeID ID;
  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);

  void *insertPos = nullptr;
  SubstTemplateTemplateParmStorage *subst
    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);

  if (!subst) {
    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
  }

  return TemplateName(subst);
}

TemplateName
ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
                                       const TemplateArgument &ArgPack) const {
  auto &Self = const_cast<ASTContext &>(*this);
  llvm::FoldingSetNodeID ID;
  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);

  void *InsertPos = nullptr;
  SubstTemplateTemplateParmPackStorage *Subst
    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);

  if (!Subst) {
    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
                                                           ArgPack.pack_size(),
                                                         ArgPack.pack_begin());
    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
  }

  return TemplateName(Subst);
}

/// getFromTargetType - Given one of the integer types provided by
/// TargetInfo, produce the corresponding type. The unsigned @p Type
/// is actually a value of type @c TargetInfo::IntType.
CanQualType ASTContext::getFromTargetType(unsigned Type) const {
  switch (Type) {
  case TargetInfo::NoInt: return {};
  case TargetInfo::SignedChar: return SignedCharTy;
  case TargetInfo::UnsignedChar: return UnsignedCharTy;
  case TargetInfo::SignedShort: return ShortTy;
  case TargetInfo::UnsignedShort: return UnsignedShortTy;
  case TargetInfo::SignedInt: return IntTy;
  case TargetInfo::UnsignedInt: return UnsignedIntTy;
  case TargetInfo::SignedLong: return LongTy;
  case TargetInfo::UnsignedLong: return UnsignedLongTy;
  case TargetInfo::SignedLongLong: return LongLongTy;
  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
  }

  llvm_unreachable("Unhandled TargetInfo::IntType value");
}

//===----------------------------------------------------------------------===//
//                        Type Predicates.
//===----------------------------------------------------------------------===//

/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
/// garbage collection attribute.
///
Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
  if (getLangOpts().getGC() == LangOptions::NonGC)
    return Qualifiers::GCNone;

  assert(getLangOpts().ObjC);
  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();

  // Default behaviour under objective-C's gc is for ObjC pointers
  // (or pointers to them) be treated as though they were declared
  // as __strong.
  if (GCAttrs == Qualifiers::GCNone) {
    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
      return Qualifiers::Strong;
    else if (Ty->isPointerType())
      return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
  } else {
    // It's not valid to set GC attributes on anything that isn't a
    // pointer.
#ifndef NDEBUG
    QualType CT = Ty->getCanonicalTypeInternal();
    while (const auto *AT = dyn_cast<ArrayType>(CT))
      CT = AT->getElementType();
    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
#endif
  }
  return GCAttrs;
}

//===----------------------------------------------------------------------===//
//                        Type Compatibility Testing
//===----------------------------------------------------------------------===//

/// areCompatVectorTypes - Return true if the two specified vector types are
/// compatible.
static bool areCompatVectorTypes(const VectorType *LHS,
                                 const VectorType *RHS) {
  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
  return LHS->getElementType() == RHS->getElementType() &&
         LHS->getNumElements() == RHS->getNumElements();
}

/// areCompatMatrixTypes - Return true if the two specified matrix types are
/// compatible.
static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
                                 const ConstantMatrixType *RHS) {
  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
  return LHS->getElementType() == RHS->getElementType() &&
         LHS->getNumRows() == RHS->getNumRows() &&
         LHS->getNumColumns() == RHS->getNumColumns();
}

bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
                                          QualType SecondVec) {
  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");

  if (hasSameUnqualifiedType(FirstVec, SecondVec))
    return true;

  // Treat Neon vector types and most AltiVec vector types as if they are the
  // equivalent GCC vector types.
  const auto *First = FirstVec->castAs<VectorType>();
  const auto *Second = SecondVec->castAs<VectorType>();
  if (First->getNumElements() == Second->getNumElements() &&
      hasSameType(First->getElementType(), Second->getElementType()) &&
      First->getVectorKind() != VectorType::AltiVecPixel &&
      First->getVectorKind() != VectorType::AltiVecBool &&
      Second->getVectorKind() != VectorType::AltiVecPixel &&
      Second->getVectorKind() != VectorType::AltiVecBool)
    return true;

  return false;
}

bool ASTContext::areCompatibleSveTypes(QualType FirstType,
                                       QualType SecondType) {
  assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
          (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
         "Expected SVE builtin type and vector type!");

  auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
    if (const auto *BT = FirstType->getAs<BuiltinType>()) {
      if (const auto *VT = SecondType->getAs<VectorType>()) {
        // Predicates have the same representation as uint8 so we also have to
        // check the kind to make these types incompatible.
        if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
          return BT->getKind() == BuiltinType::SveBool;
        else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
          return VT->getElementType().getCanonicalType() ==
                 FirstType->getSveEltType(*this);
        else if (VT->getVectorKind() == VectorType::GenericVector)
          return getTypeSize(SecondType) == getLangOpts().ArmSveVectorBits &&
                 hasSameType(VT->getElementType(),
                             getBuiltinVectorTypeInfo(BT).ElementType);
      }
    }
    return false;
  };

  return IsValidCast(FirstType, SecondType) ||
         IsValidCast(SecondType, FirstType);
}

bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
  while (true) {
    // __strong id
    if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
      if (Attr->getAttrKind() == attr::ObjCOwnership)
        return true;

      Ty = Attr->getModifiedType();

    // X *__strong (...)
    } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
      Ty = Paren->getInnerType();

    // We do not want to look through typedefs, typeof(expr),
    // typeof(type), or any other way that the type is somehow
    // abstracted.
    } else {
      return false;
    }
  }
}

//===----------------------------------------------------------------------===//
// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
//===----------------------------------------------------------------------===//

/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
/// inheritance hierarchy of 'rProto'.
bool
ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
                                           ObjCProtocolDecl *rProto) const {
  if (declaresSameEntity(lProto, rProto))
    return true;
  for (auto *PI : rProto->protocols())
    if (ProtocolCompatibleWithProtocol(lProto, PI))
      return true;
  return false;
}

/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
/// Class<pr1, ...>.
bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
    const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
  for (auto *lhsProto : lhs->quals()) {
    bool match = false;
    for (auto *rhsProto : rhs->quals()) {
      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
        match = true;
        break;
      }
    }
    if (!match)
      return false;
  }
  return true;
}

/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
/// ObjCQualifiedIDType.
bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
    const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
    bool compare) {
  // Allow id<P..> and an 'id' in all cases.
  if (lhs->isObjCIdType() || rhs->isObjCIdType())
    return true;

  // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
  if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
      rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
    return false;

  if (lhs->isObjCQualifiedIdType()) {
    if (rhs->qual_empty()) {
      // If the RHS is a unqualified interface pointer "NSString*",
      // make sure we check the class hierarchy.
      if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
        for (auto *I : lhs->quals()) {
          // when comparing an id<P> on lhs with a static type on rhs,
          // see if static class implements all of id's protocols, directly or
          // through its super class and categories.
          if (!rhsID->ClassImplementsProtocol(I, true))
            return false;
        }
      }
      // If there are no qualifiers and no interface, we have an 'id'.
      return true;
    }
    // Both the right and left sides have qualifiers.
    for (auto *lhsProto : lhs->quals()) {
      bool match = false;

      // when comparing an id<P> on lhs with a static type on rhs,
      // see if static class implements all of id's protocols, directly or
      // through its super class and categories.
      for (auto *rhsProto : rhs->quals()) {
        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
          match = true;
          break;
        }
      }
      // If the RHS is a qualified interface pointer "NSString<P>*",
      // make sure we check the class hierarchy.
      if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
        for (auto *I : lhs->quals()) {
          // when comparing an id<P> on lhs with a static type on rhs,
          // see if static class implements all of id's protocols, directly or
          // through its super class and categories.
          if (rhsID->ClassImplementsProtocol(I, true)) {
            match = true;
            break;
          }
        }
      }
      if (!match)
        return false;
    }

    return true;
  }

  assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");

  if (lhs->getInterfaceType()) {
    // If both the right and left sides have qualifiers.
    for (auto *lhsProto : lhs->quals()) {
      bool match = false;

      // when comparing an id<P> on rhs with a static type on lhs,
      // see if static class implements all of id's protocols, directly or
      // through its super class and categories.
      // First, lhs protocols in the qualifier list must be found, direct
      // or indirect in rhs's qualifier list or it is a mismatch.
      for (auto *rhsProto : rhs->quals()) {
        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
          match = true;
          break;
        }
      }
      if (!match)
        return false;
    }

    // Static class's protocols, or its super class or category protocols
    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
    if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
      // This is rather dubious but matches gcc's behavior. If lhs has
      // no type qualifier and its class has no static protocol(s)
      // assume that it is mismatch.
      if (LHSInheritedProtocols.empty() && lhs->qual_empty())
        return false;
      for (auto *lhsProto : LHSInheritedProtocols) {
        bool match = false;
        for (auto *rhsProto : rhs->quals()) {
          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
            match = true;
            break;
          }
        }
        if (!match)
          return false;
      }
    }
    return true;
  }
  return false;
}

/// canAssignObjCInterfaces - Return true if the two interface types are
/// compatible for assignment from RHS to LHS.  This handles validation of any
/// protocol qualifiers on the LHS or RHS.
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
                                         const ObjCObjectPointerType *RHSOPT) {
  const ObjCObjectType* LHS = LHSOPT->getObjectType();
  const ObjCObjectType* RHS = RHSOPT->getObjectType();

  // If either type represents the built-in 'id' type, return true.
  if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
    return true;

  // Function object that propagates a successful result or handles
  // __kindof types.
  auto finish = [&](bool succeeded) -> bool {
    if (succeeded)
      return true;

    if (!RHS->isKindOfType())
      return false;

    // Strip off __kindof and protocol qualifiers, then check whether
    // we can assign the other way.
    return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
                                   LHSOPT->stripObjCKindOfTypeAndQuals(*this));
  };

  // Casts from or to id<P> are allowed when the other side has compatible
  // protocols.
  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
    return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
  }

  // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
    return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
  }

  // Casts from Class to Class<Foo>, or vice-versa, are allowed.
  if (LHS->isObjCClass() && RHS->isObjCClass()) {
    return true;
  }

  // If we have 2 user-defined types, fall into that path.
  if (LHS->getInterface() && RHS->getInterface()) {
    return finish(canAssignObjCInterfaces(LHS, RHS));
  }

  return false;
}

/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
/// for providing type-safety for objective-c pointers used to pass/return
/// arguments in block literals. When passed as arguments, passing 'A*' where
/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
/// not OK. For the return type, the opposite is not OK.
bool ASTContext::canAssignObjCInterfacesInBlockPointer(
                                         const ObjCObjectPointerType *LHSOPT,
                                         const ObjCObjectPointerType *RHSOPT,
                                         bool BlockReturnType) {

  // Function object that propagates a successful result or handles
  // __kindof types.
  auto finish = [&](bool succeeded) -> bool {
    if (succeeded)
      return true;

    const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
    if (!Expected->isKindOfType())
      return false;

    // Strip off __kindof and protocol qualifiers, then check whether
    // we can assign the other way.
    return canAssignObjCInterfacesInBlockPointer(
             RHSOPT->stripObjCKindOfTypeAndQuals(*this),
             LHSOPT->stripObjCKindOfTypeAndQuals(*this),
             BlockReturnType);
  };

  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
    return true;

  if (LHSOPT->isObjCBuiltinType()) {
    return finish(RHSOPT->isObjCBuiltinType() ||
                  RHSOPT->isObjCQualifiedIdType());
  }

  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
    if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
      // Use for block parameters previous type checking for compatibility.
      return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
                    // Or corrected type checking as in non-compat mode.
                    (!BlockReturnType &&
                     ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
    else
      return finish(ObjCQualifiedIdTypesAreCompatible(
          (BlockReturnType ? LHSOPT : RHSOPT),
          (BlockReturnType ? RHSOPT : LHSOPT), false));
  }

  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
  if (LHS && RHS)  { // We have 2 user-defined types.
    if (LHS != RHS) {
      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
        return finish(BlockReturnType);
      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
        return finish(!BlockReturnType);
    }
    else
      return true;
  }
  return false;
}

/// Comparison routine for Objective-C protocols to be used with
/// llvm::array_pod_sort.
static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
                                      ObjCProtocolDecl * const *rhs) {
  return (*lhs)->getName().compare((*rhs)->getName());
}

/// getIntersectionOfProtocols - This routine finds the intersection of set
/// of protocols inherited from two distinct objective-c pointer objects with
/// the given common base.
/// It is used to build composite qualifier list of the composite type of
/// the conditional expression involving two objective-c pointer objects.
static
void getIntersectionOfProtocols(ASTContext &Context,
                                const ObjCInterfaceDecl *CommonBase,
                                const ObjCObjectPointerType *LHSOPT,
                                const ObjCObjectPointerType *RHSOPT,
      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {

  const ObjCObjectType* LHS = LHSOPT->getObjectType();
  const ObjCObjectType* RHS = RHSOPT->getObjectType();
  assert(LHS->getInterface() && "LHS must have an interface base");
  assert(RHS->getInterface() && "RHS must have an interface base");

  // Add all of the protocols for the LHS.
  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;

  // Start with the protocol qualifiers.
  for (auto proto : LHS->quals()) {
    Context.CollectInheritedProtocols(proto, LHSProtocolSet);
  }

  // Also add the protocols associated with the LHS interface.
  Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);

  // Add all of the protocols for the RHS.
  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;

  // Start with the protocol qualifiers.
  for (auto proto : RHS->quals()) {
    Context.CollectInheritedProtocols(proto, RHSProtocolSet);
  }

  // Also add the protocols associated with the RHS interface.
  Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);

  // Compute the intersection of the collected protocol sets.
  for (auto proto : LHSProtocolSet) {
    if (RHSProtocolSet.count(proto))
      IntersectionSet.push_back(proto);
  }

  // Compute the set of protocols that is implied by either the common type or
  // the protocols within the intersection.
  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
  Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);

  // Remove any implied protocols from the list of inherited protocols.
  if (!ImpliedProtocols.empty()) {
    IntersectionSet.erase(
      std::remove_if(IntersectionSet.begin(),
                     IntersectionSet.end(),
                     [&](ObjCProtocolDecl *proto) -> bool {
                       return ImpliedProtocols.count(proto) > 0;
                     }),
      IntersectionSet.end());
  }

  // Sort the remaining protocols by name.
  llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
                       compareObjCProtocolsByName);
}

/// Determine whether the first type is a subtype of the second.
static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
                                     QualType rhs) {
  // Common case: two object pointers.
  const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
  const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
  if (lhsOPT && rhsOPT)
    return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);

  // Two block pointers.
  const auto *lhsBlock = lhs->getAs<BlockPointerType>();
  const auto *rhsBlock = rhs->getAs<BlockPointerType>();
  if (lhsBlock && rhsBlock)
    return ctx.typesAreBlockPointerCompatible(lhs, rhs);

  // If either is an unqualified 'id' and the other is a block, it's
  // acceptable.
  if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
      (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
    return true;

  return false;
}

// Check that the given Objective-C type argument lists are equivalent.
static bool sameObjCTypeArgs(ASTContext &ctx,
                             const ObjCInterfaceDecl *iface,
                             ArrayRef<QualType> lhsArgs,
                             ArrayRef<QualType> rhsArgs,
                             bool stripKindOf) {
  if (lhsArgs.size() != rhsArgs.size())
    return false;

  ObjCTypeParamList *typeParams = iface->getTypeParamList();
  for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
    if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
      continue;

    switch (typeParams->begin()[i]->getVariance()) {
    case ObjCTypeParamVariance::Invariant:
      if (!stripKindOf ||
          !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
                           rhsArgs[i].stripObjCKindOfType(ctx))) {
        return false;
      }
      break;

    case ObjCTypeParamVariance::Covariant:
      if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
        return false;
      break;

    case ObjCTypeParamVariance::Contravariant:
      if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
        return false;
      break;
    }
  }

  return true;
}

QualType ASTContext::areCommonBaseCompatible(
           const ObjCObjectPointerType *Lptr,
           const ObjCObjectPointerType *Rptr) {
  const ObjCObjectType *LHS = Lptr->getObjectType();
  const ObjCObjectType *RHS = Rptr->getObjectType();
  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
  const ObjCInterfaceDecl* RDecl = RHS->getInterface();

  if (!LDecl || !RDecl)
    return {};

  // When either LHS or RHS is a kindof type, we should return a kindof type.
  // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
  // kindof(A).
  bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();

  // Follow the left-hand side up the class hierarchy until we either hit a
  // root or find the RHS. Record the ancestors in case we don't find it.
  llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
    LHSAncestors;
  while (true) {
    // Record this ancestor. We'll need this if the common type isn't in the
    // path from the LHS to the root.
    LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;

    if (declaresSameEntity(LHS->getInterface(), RDecl)) {
      // Get the type arguments.
      ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
      bool anyChanges = false;
      if (LHS->isSpecialized() && RHS->isSpecialized()) {
        // Both have type arguments, compare them.
        if (!sameObjCTypeArgs(*this, LHS->getInterface(),
                              LHS->getTypeArgs(), RHS->getTypeArgs(),
                              /*stripKindOf=*/true))
          return {};
      } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
        // If only one has type arguments, the result will not have type
        // arguments.
        LHSTypeArgs = {};
        anyChanges = true;
      }

      // Compute the intersection of protocols.
      SmallVector<ObjCProtocolDecl *, 8> Protocols;
      getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
                                 Protocols);
      if (!Protocols.empty())
        anyChanges = true;

      // If anything in the LHS will have changed, build a new result type.
      // If we need to return a kindof type but LHS is not a kindof type, we
      // build a new result type.
      if (anyChanges || LHS->isKindOfType() != anyKindOf) {
        QualType Result = getObjCInterfaceType(LHS->getInterface());
        Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
                                   anyKindOf || LHS->isKindOfType());
        return getObjCObjectPointerType(Result);
      }

      return getObjCObjectPointerType(QualType(LHS, 0));
    }

    // Find the superclass.
    QualType LHSSuperType = LHS->getSuperClassType();
    if (LHSSuperType.isNull())
      break;

    LHS = LHSSuperType->castAs<ObjCObjectType>();
  }

  // We didn't find anything by following the LHS to its root; now check
  // the RHS against the cached set of ancestors.
  while (true) {
    auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
    if (KnownLHS != LHSAncestors.end()) {
      LHS = KnownLHS->second;

      // Get the type arguments.
      ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
      bool anyChanges = false;
      if (LHS->isSpecialized() && RHS->isSpecialized()) {
        // Both have type arguments, compare them.
        if (!sameObjCTypeArgs(*this, LHS->getInterface(),
                              LHS->getTypeArgs(), RHS->getTypeArgs(),
                              /*stripKindOf=*/true))
          return {};
      } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
        // If only one has type arguments, the result will not have type
        // arguments.
        RHSTypeArgs = {};
        anyChanges = true;
      }

      // Compute the intersection of protocols.
      SmallVector<ObjCProtocolDecl *, 8> Protocols;
      getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
                                 Protocols);
      if (!Protocols.empty())
        anyChanges = true;

      // If we need to return a kindof type but RHS is not a kindof type, we
      // build a new result type.
      if (anyChanges || RHS->isKindOfType() != anyKindOf) {
        QualType Result = getObjCInterfaceType(RHS->getInterface());
        Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
                                   anyKindOf || RHS->isKindOfType());
        return getObjCObjectPointerType(Result);
      }

      return getObjCObjectPointerType(QualType(RHS, 0));
    }

    // Find the superclass of the RHS.
    QualType RHSSuperType = RHS->getSuperClassType();
    if (RHSSuperType.isNull())
      break;

    RHS = RHSSuperType->castAs<ObjCObjectType>();
  }

  return {};
}

bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
                                         const ObjCObjectType *RHS) {
  assert(LHS->getInterface() && "LHS is not an interface type");
  assert(RHS->getInterface() && "RHS is not an interface type");

  // Verify that the base decls are compatible: the RHS must be a subclass of
  // the LHS.
  ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
  bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
  if (!IsSuperClass)
    return false;

  // If the LHS has protocol qualifiers, determine whether all of them are
  // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
  // LHS).
  if (LHS->getNumProtocols() > 0) {
    // OK if conversion of LHS to SuperClass results in narrowing of types
    // ; i.e., SuperClass may implement at least one of the protocols
    // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
    // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
    CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
    // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
    // qualifiers.
    for (auto *RHSPI : RHS->quals())
      CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
    // If there is no protocols associated with RHS, it is not a match.
    if (SuperClassInheritedProtocols.empty())
      return false;

    for (const auto *LHSProto : LHS->quals()) {
      bool SuperImplementsProtocol = false;
      for (auto *SuperClassProto : SuperClassInheritedProtocols)
        if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
          SuperImplementsProtocol = true;
          break;
        }
      if (!SuperImplementsProtocol)
        return false;
    }
  }

  // If the LHS is specialized, we may need to check type arguments.
  if (LHS->isSpecialized()) {
    // Follow the superclass chain until we've matched the LHS class in the
    // hierarchy. This substitutes type arguments through.
    const ObjCObjectType *RHSSuper = RHS;
    while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
      RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();

    // If the RHS is specializd, compare type arguments.
    if (RHSSuper->isSpecialized() &&
        !sameObjCTypeArgs(*this, LHS->getInterface(),
                          LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
                          /*stripKindOf=*/true)) {
      return false;
    }
  }

  return true;
}

bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
  // get the "pointed to" types
  const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
  const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();

  if (!LHSOPT || !RHSOPT)
    return false;

  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
         canAssignObjCInterfaces(RHSOPT, LHSOPT);
}

bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
  return canAssignObjCInterfaces(
      getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
      getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
}

/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the
/// same. See 6.7.[2,3,5] for additional rules.
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
                                    bool CompareUnqualified) {
  if (getLangOpts().CPlusPlus)
    return hasSameType(LHS, RHS);

  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
}

bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
  return typesAreCompatible(LHS, RHS);
}

bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
  return !mergeTypes(LHS, RHS, true).isNull();
}

/// mergeTransparentUnionType - if T is a transparent union type and a member
/// of T is compatible with SubType, return the merged type, else return
/// QualType()
QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
                                               bool OfBlockPointer,
                                               bool Unqualified) {
  if (const RecordType *UT = T->getAsUnionType()) {
    RecordDecl *UD = UT->getDecl();
    if (UD->hasAttr<TransparentUnionAttr>()) {
      for (const auto *I : UD->fields()) {
        QualType ET = I->getType().getUnqualifiedType();
        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
        if (!MT.isNull())
          return MT;
      }
    }
  }

  return {};
}

/// mergeFunctionParameterTypes - merge two types which appear as function
/// parameter types
QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
                                                 bool OfBlockPointer,
                                                 bool Unqualified) {
  // GNU extension: two types are compatible if they appear as a function
  // argument, one of the types is a transparent union type and the other
  // type is compatible with a union member
  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
                                              Unqualified);
  if (!lmerge.isNull())
    return lmerge;

  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
                                              Unqualified);
  if (!rmerge.isNull())
    return rmerge;

  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
}

QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
                                        bool OfBlockPointer, bool Unqualified,
                                        bool AllowCXX) {
  const auto *lbase = lhs->castAs<FunctionType>();
  const auto *rbase = rhs->castAs<FunctionType>();
  const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
  const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
  bool allLTypes = true;
  bool allRTypes = true;

  // Check return type
  QualType retType;
  if (OfBlockPointer) {
    QualType RHS = rbase->getReturnType();
    QualType LHS = lbase->getReturnType();
    bool UnqualifiedResult = Unqualified;
    if (!UnqualifiedResult)
      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
  }
  else
    retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
                         Unqualified);
  if (retType.isNull())
    return {};

  if (Unqualified)
    retType = retType.getUnqualifiedType();

  CanQualType LRetType = getCanonicalType(lbase->getReturnType());
  CanQualType RRetType = getCanonicalType(rbase->getReturnType());
  if (Unqualified) {
    LRetType = LRetType.getUnqualifiedType();
    RRetType = RRetType.getUnqualifiedType();
  }

  if (getCanonicalType(retType) != LRetType)
    allLTypes = false;
  if (getCanonicalType(retType) != RRetType)
    allRTypes = false;

  // FIXME: double check this
  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
  //                           rbase->getRegParmAttr() != 0 &&
  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();

  // Compatible functions must have compatible calling conventions
  if (lbaseInfo.getCC() != rbaseInfo.getCC())
    return {};

  // Regparm is part of the calling convention.
  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
    return {};
  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
    return {};

  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
    return {};
  if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
    return {};
  if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
    return {};

  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();

  if (lbaseInfo.getNoReturn() != NoReturn)
    allLTypes = false;
  if (rbaseInfo.getNoReturn() != NoReturn)
    allRTypes = false;

  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);

  if (lproto && rproto) { // two C99 style function prototypes
    assert((AllowCXX ||
            (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
           "C++ shouldn't be here");
    // Compatible functions must have the same number of parameters
    if (lproto->getNumParams() != rproto->getNumParams())
      return {};

    // Variadic and non-variadic functions aren't compatible
    if (lproto->isVariadic() != rproto->isVariadic())
      return {};

    if (lproto->getMethodQuals() != rproto->getMethodQuals())
      return {};

    SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
    bool canUseLeft, canUseRight;
    if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
                               newParamInfos))
      return {};

    if (!canUseLeft)
      allLTypes = false;
    if (!canUseRight)
      allRTypes = false;

    // Check parameter type compatibility
    SmallVector<QualType, 10> types;
    for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
      QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
      QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
      QualType paramType = mergeFunctionParameterTypes(
          lParamType, rParamType, OfBlockPointer, Unqualified);
      if (paramType.isNull())
        return {};

      if (Unqualified)
        paramType = paramType.getUnqualifiedType();

      types.push_back(paramType);
      if (Unqualified) {
        lParamType = lParamType.getUnqualifiedType();
        rParamType = rParamType.getUnqualifiedType();
      }

      if (getCanonicalType(paramType) != getCanonicalType(lParamType))
        allLTypes = false;
      if (getCanonicalType(paramType) != getCanonicalType(rParamType))
        allRTypes = false;
    }

    if (allLTypes) return lhs;
    if (allRTypes) return rhs;

    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
    EPI.ExtInfo = einfo;
    EPI.ExtParameterInfos =
        newParamInfos.empty() ? nullptr : newParamInfos.data();
    return getFunctionType(retType, types, EPI);
  }

  if (lproto) allRTypes = false;
  if (rproto) allLTypes = false;

  const FunctionProtoType *proto = lproto ? lproto : rproto;
  if (proto) {
    assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
    if (proto->isVariadic())
      return {};
    // Check that the types are compatible with the types that
    // would result from default argument promotions (C99 6.7.5.3p15).
    // The only types actually affected are promotable integer
    // types and floats, which would be passed as a different
    // type depending on whether the prototype is visible.
    for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
      QualType paramTy = proto->getParamType(i);

      // Look at the converted type of enum types, since that is the type used
      // to pass enum values.
      if (const auto *Enum = paramTy->getAs<EnumType>()) {
        paramTy = Enum->getDecl()->getIntegerType();
        if (paramTy.isNull())
          return {};
      }

      if (paramTy->isPromotableIntegerType() ||
          getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
        return {};
    }

    if (allLTypes) return lhs;
    if (allRTypes) return rhs;

    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
    EPI.ExtInfo = einfo;
    return getFunctionType(retType, proto->getParamTypes(), EPI);
  }

  if (allLTypes) return lhs;
  if (allRTypes) return rhs;
  return getFunctionNoProtoType(retType, einfo);
}

/// Given that we have an enum type and a non-enum type, try to merge them.
static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
                                     QualType other, bool isBlockReturnType) {
  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
  // a signed integer type, or an unsigned integer type.
  // Compatibility is based on the underlying type, not the promotion
  // type.
  QualType underlyingType = ET->getDecl()->getIntegerType();
  if (underlyingType.isNull())
    return {};
  if (Context.hasSameType(underlyingType, other))
    return other;

  // In block return types, we're more permissive and accept any
  // integral type of the same size.
  if (isBlockReturnType && other->isIntegerType() &&
      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
    return other;

  return {};
}

QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
                                bool OfBlockPointer,
                                bool Unqualified, bool BlockReturnType) {
  // C++ [expr]: If an expression initially has the type "reference to T", the
  // type is adjusted to "T" prior to any further analysis, the expression
  // designates the object or function denoted by the reference, and the
  // expression is an lvalue unless the reference is an rvalue reference and
  // the expression is a function call (possibly inside parentheses).
  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");

  if (Unqualified) {
    LHS = LHS.getUnqualifiedType();
    RHS = RHS.getUnqualifiedType();
  }

  QualType LHSCan = getCanonicalType(LHS),
           RHSCan = getCanonicalType(RHS);

  // If two types are identical, they are compatible.
  if (LHSCan == RHSCan)
    return LHS;

  // If the qualifiers are different, the types aren't compatible... mostly.
  Qualifiers LQuals = LHSCan.getLocalQualifiers();
  Qualifiers RQuals = RHSCan.getLocalQualifiers();
  if (LQuals != RQuals) {
    // If any of these qualifiers are different, we have a type
    // mismatch.
    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
        LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
        LQuals.hasUnaligned() != RQuals.hasUnaligned())
      return {};

    // Exactly one GC qualifier difference is allowed: __strong is
    // okay if the other type has no GC qualifier but is an Objective
    // C object pointer (i.e. implicitly strong by default).  We fix
    // this by pretending that the unqualified type was actually
    // qualified __strong.
    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");

    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
      return {};

    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
    }
    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
    }
    return {};
  }

  // Okay, qualifiers are equal.

  Type::TypeClass LHSClass = LHSCan->getTypeClass();
  Type::TypeClass RHSClass = RHSCan->getTypeClass();

  // We want to consider the two function types to be the same for these
  // comparisons, just force one to the other.
  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;

  // Same as above for arrays
  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
    LHSClass = Type::ConstantArray;
  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
    RHSClass = Type::ConstantArray;

  // ObjCInterfaces are just specialized ObjCObjects.
  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;

  // Canonicalize ExtVector -> Vector.
  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;

  // If the canonical type classes don't match.
  if (LHSClass != RHSClass) {
    // Note that we only have special rules for turning block enum
    // returns into block int returns, not vice-versa.
    if (const auto *ETy = LHS->getAs<EnumType>()) {
      return mergeEnumWithInteger(*this, ETy, RHS, false);
    }
    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
    }
    // allow block pointer type to match an 'id' type.
    if (OfBlockPointer && !BlockReturnType) {
       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
         return LHS;
      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
        return RHS;
    }

    return {};
  }

  // The canonical type classes match.
  switch (LHSClass) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.inc"
    llvm_unreachable("Non-canonical and dependent types shouldn't get here");

  case Type::Auto:
  case Type::DeducedTemplateSpecialization:
  case Type::LValueReference:
  case Type::RValueReference:
  case Type::MemberPointer:
    llvm_unreachable("C++ should never be in mergeTypes");

  case Type::ObjCInterface:
  case Type::IncompleteArray:
  case Type::VariableArray:
  case Type::FunctionProto:
  case Type::ExtVector:
    llvm_unreachable("Types are eliminated above");

  case Type::Pointer:
  {
    // Merge two pointer types, while trying to preserve typedef info
    QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
    QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
    if (Unqualified) {
      LHSPointee = LHSPointee.getUnqualifiedType();
      RHSPointee = RHSPointee.getUnqualifiedType();
    }
    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
                                     Unqualified);
    if (ResultType.isNull())
      return {};
    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
      return LHS;
    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
      return RHS;
    return getPointerType(ResultType);
  }
  case Type::BlockPointer:
  {
    // Merge two block pointer types, while trying to preserve typedef info
    QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
    QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
    if (Unqualified) {
      LHSPointee = LHSPointee.getUnqualifiedType();
      RHSPointee = RHSPointee.getUnqualifiedType();
    }
    if (getLangOpts().OpenCL) {
      Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
      Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
      // Blocks can't be an expression in a ternary operator (OpenCL v2.0
      // 6.12.5) thus the following check is asymmetric.
      if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
        return {};
      LHSPteeQual.removeAddressSpace();
      RHSPteeQual.removeAddressSpace();
      LHSPointee =
          QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
      RHSPointee =
          QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
    }
    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
                                     Unqualified);
    if (ResultType.isNull())
      return {};
    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
      return LHS;
    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
      return RHS;
    return getBlockPointerType(ResultType);
  }
  case Type::Atomic:
  {
    // Merge two pointer types, while trying to preserve typedef info
    QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
    QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
    if (Unqualified) {
      LHSValue = LHSValue.getUnqualifiedType();
      RHSValue = RHSValue.getUnqualifiedType();
    }
    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
                                     Unqualified);
    if (ResultType.isNull())
      return {};
    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
      return LHS;
    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
      return RHS;
    return getAtomicType(ResultType);
  }
  case Type::ConstantArray:
  {
    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
      return {};

    QualType LHSElem = getAsArrayType(LHS)->getElementType();
    QualType RHSElem = getAsArrayType(RHS)->getElementType();
    if (Unqualified) {
      LHSElem = LHSElem.getUnqualifiedType();
      RHSElem = RHSElem.getUnqualifiedType();
    }

    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
    if (ResultType.isNull())
      return {};

    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);

    // If either side is a variable array, and both are complete, check whether
    // the current dimension is definite.
    if (LVAT || RVAT) {
      auto SizeFetch = [this](const VariableArrayType* VAT,
          const ConstantArrayType* CAT)
          -> std::pair<bool,llvm::APInt> {
        if (VAT) {
          Optional<llvm::APSInt> TheInt;
          Expr *E = VAT->getSizeExpr();
          if (E && (TheInt = E->getIntegerConstantExpr(*this)))
            return std::make_pair(true, *TheInt);
          return std::make_pair(false, llvm::APSInt());
        }
        if (CAT)
          return std::make_pair(true, CAT->getSize());
        return std::make_pair(false, llvm::APInt());
      };

      bool HaveLSize, HaveRSize;
      llvm::APInt LSize, RSize;
      std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
      std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
      if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
        return {}; // Definite, but unequal, array dimension
    }

    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
      return LHS;
    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
      return RHS;
    if (LCAT)
      return getConstantArrayType(ResultType, LCAT->getSize(),
                                  LCAT->getSizeExpr(),
                                  ArrayType::ArraySizeModifier(), 0);
    if (RCAT)
      return getConstantArrayType(ResultType, RCAT->getSize(),
                                  RCAT->getSizeExpr(),
                                  ArrayType::ArraySizeModifier(), 0);
    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
      return LHS;
    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
      return RHS;
    if (LVAT) {
      // FIXME: This isn't correct! But tricky to implement because
      // the array's size has to be the size of LHS, but the type
      // has to be different.
      return LHS;
    }
    if (RVAT) {
      // FIXME: This isn't correct! But tricky to implement because
      // the array's size has to be the size of RHS, but the type
      // has to be different.
      return RHS;
    }
    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
    return getIncompleteArrayType(ResultType,
                                  ArrayType::ArraySizeModifier(), 0);
  }
  case Type::FunctionNoProto:
    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
  case Type::Record:
  case Type::Enum:
    return {};
  case Type::Builtin:
    // Only exactly equal builtin types are compatible, which is tested above.
    return {};
  case Type::Complex:
    // Distinct complex types are incompatible.
    return {};
  case Type::Vector:
    // FIXME: The merged type should be an ExtVector!
    if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
                             RHSCan->castAs<VectorType>()))
      return LHS;
    return {};
  case Type::ConstantMatrix:
    if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
                             RHSCan->castAs<ConstantMatrixType>()))
      return LHS;
    return {};
  case Type::ObjCObject: {
    // Check if the types are assignment compatible.
    // FIXME: This should be type compatibility, e.g. whether
    // "LHS x; RHS x;" at global scope is legal.
    if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
                                RHS->castAs<ObjCObjectType>()))
      return LHS;
    return {};
  }
  case Type::ObjCObjectPointer:
    if (OfBlockPointer) {
      if (canAssignObjCInterfacesInBlockPointer(
              LHS->castAs<ObjCObjectPointerType>(),
              RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
        return LHS;
      return {};
    }
    if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
                                RHS->castAs<ObjCObjectPointerType>()))
      return LHS;
    return {};
  case Type::Pipe:
    assert(LHS != RHS &&
           "Equivalent pipe types should have already been handled!");
    return {};
  case Type::ExtInt: {
    // Merge two ext-int types, while trying to preserve typedef info.
    bool LHSUnsigned  = LHS->castAs<ExtIntType>()->isUnsigned();
    bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned();
    unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits();
    unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits();

    // Like unsigned/int, shouldn't have a type if they dont match.
    if (LHSUnsigned != RHSUnsigned)
      return {};

    if (LHSBits != RHSBits)
      return {};
    return LHS;
  }
  }

  llvm_unreachable("Invalid Type::Class!");
}

bool ASTContext::mergeExtParameterInfo(
    const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
    bool &CanUseFirst, bool &CanUseSecond,
    SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
  assert(NewParamInfos.empty() && "param info list not empty");
  CanUseFirst = CanUseSecond = true;
  bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
  bool SecondHasInfo = SecondFnType->hasExtParameterInfos();

  // Fast path: if the first type doesn't have ext parameter infos,
  // we match if and only if the second type also doesn't have them.
  if (!FirstHasInfo && !SecondHasInfo)
    return true;

  bool NeedParamInfo = false;
  size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
                          : SecondFnType->getExtParameterInfos().size();

  for (size_t I = 0; I < E; ++I) {
    FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
    if (FirstHasInfo)
      FirstParam = FirstFnType->getExtParameterInfo(I);
    if (SecondHasInfo)
      SecondParam = SecondFnType->getExtParameterInfo(I);

    // Cannot merge unless everything except the noescape flag matches.
    if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
      return false;

    bool FirstNoEscape = FirstParam.isNoEscape();
    bool SecondNoEscape = SecondParam.isNoEscape();
    bool IsNoEscape = FirstNoEscape && SecondNoEscape;
    NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
    if (NewParamInfos.back().getOpaqueValue())
      NeedParamInfo = true;
    if (FirstNoEscape != IsNoEscape)
      CanUseFirst = false;
    if (SecondNoEscape != IsNoEscape)
      CanUseSecond = false;
  }

  if (!NeedParamInfo)
    NewParamInfos.clear();

  return true;
}

void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
  ObjCLayouts[CD] = nullptr;
}

/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
/// 'RHS' attributes and returns the merged version; including for function
/// return types.
QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
  QualType LHSCan = getCanonicalType(LHS),
  RHSCan = getCanonicalType(RHS);
  // If two types are identical, they are compatible.
  if (LHSCan == RHSCan)
    return LHS;
  if (RHSCan->isFunctionType()) {
    if (!LHSCan->isFunctionType())
      return {};
    QualType OldReturnType =
        cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
    QualType NewReturnType =
        cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
    QualType ResReturnType =
      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
    if (ResReturnType.isNull())
      return {};
    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
      // In either case, use OldReturnType to build the new function type.
      const auto *F = LHS->castAs<FunctionType>();
      if (const auto *FPT = cast<FunctionProtoType>(F)) {
        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
        EPI.ExtInfo = getFunctionExtInfo(LHS);
        QualType ResultType =
            getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
        return ResultType;
      }
    }
    return {};
  }

  // If the qualifiers are different, the types can still be merged.
  Qualifiers LQuals = LHSCan.getLocalQualifiers();
  Qualifiers RQuals = RHSCan.getLocalQualifiers();
  if (LQuals != RQuals) {
    // If any of these qualifiers are different, we have a type mismatch.
    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
        LQuals.getAddressSpace() != RQuals.getAddressSpace())
      return {};

    // Exactly one GC qualifier difference is allowed: __strong is
    // okay if the other type has no GC qualifier but is an Objective
    // C object pointer (i.e. implicitly strong by default).  We fix
    // this by pretending that the unqualified type was actually
    // qualified __strong.
    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");

    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
      return {};

    if (GC_L == Qualifiers::Strong)
      return LHS;
    if (GC_R == Qualifiers::Strong)
      return RHS;
    return {};
  }

  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
    QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
    QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
    if (ResQT == LHSBaseQT)
      return LHS;
    if (ResQT == RHSBaseQT)
      return RHS;
  }
  return {};
}

//===----------------------------------------------------------------------===//
//                         Integer Predicates
//===----------------------------------------------------------------------===//

unsigned ASTContext::getIntWidth(QualType T) const {
  if (const auto *ET = T->getAs<EnumType>())
    T = ET->getDecl()->getIntegerType();
  if (T->isBooleanType())
    return 1;
  if(const auto *EIT = T->getAs<ExtIntType>())
    return EIT->getNumBits();
  // For builtin types, just use the standard type sizing method
  return (unsigned)getTypeSize(T);
}

QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
  assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
         "Unexpected type");

  // Turn <4 x signed int> -> <4 x unsigned int>
  if (const auto *VTy = T->getAs<VectorType>())
    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
                         VTy->getNumElements(), VTy->getVectorKind());

  // For enums, we return the unsigned version of the base type.
  if (const auto *ETy = T->getAs<EnumType>())
    T = ETy->getDecl()->getIntegerType();

  switch (T->castAs<BuiltinType>()->getKind()) {
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    return UnsignedCharTy;
  case BuiltinType::Short:
    return UnsignedShortTy;
  case BuiltinType::Int:
    return UnsignedIntTy;
  case BuiltinType::Long:
    return UnsignedLongTy;
  case BuiltinType::LongLong:
    return UnsignedLongLongTy;
  case BuiltinType::Int128:
    return UnsignedInt128Ty;

  case BuiltinType::ShortAccum:
    return UnsignedShortAccumTy;
  case BuiltinType::Accum:
    return UnsignedAccumTy;
  case BuiltinType::LongAccum:
    return UnsignedLongAccumTy;
  case BuiltinType::SatShortAccum:
    return SatUnsignedShortAccumTy;
  case BuiltinType::SatAccum:
    return SatUnsignedAccumTy;
  case BuiltinType::SatLongAccum:
    return SatUnsignedLongAccumTy;
  case BuiltinType::ShortFract:
    return UnsignedShortFractTy;
  case BuiltinType::Fract:
    return UnsignedFractTy;
  case BuiltinType::LongFract:
    return UnsignedLongFractTy;
  case BuiltinType::SatShortFract:
    return SatUnsignedShortFractTy;
  case BuiltinType::SatFract:
    return SatUnsignedFractTy;
  case BuiltinType::SatLongFract:
    return SatUnsignedLongFractTy;
  default:
    llvm_unreachable("Unexpected signed integer or fixed point type");
  }
}

ASTMutationListener::~ASTMutationListener() = default;

void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
                                            QualType ReturnType) {}

//===----------------------------------------------------------------------===//
//                          Builtin Type Computation
//===----------------------------------------------------------------------===//

/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
/// pointer over the consumed characters.  This returns the resultant type.  If
/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
/// a vector of "i*".
///
/// RequiresICE is filled in on return to indicate whether the value is required
/// to be an Integer Constant Expression.
static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
                                  ASTContext::GetBuiltinTypeError &Error,
                                  bool &RequiresICE,
                                  bool AllowTypeModifiers) {
  // Modifiers.
  int HowLong = 0;
  bool Signed = false, Unsigned = false;
  RequiresICE = false;

  // Read the prefixed modifiers first.
  bool Done = false;
  #ifndef NDEBUG
  bool IsSpecial = false;
  #endif
  while (!Done) {
    switch (*Str++) {
    default: Done = true; --Str; break;
    case 'I':
      RequiresICE = true;
      break;
    case 'S':
      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
      assert(!Signed && "Can't use 'S' modifier multiple times!");
      Signed = true;
      break;
    case 'U':
      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
      assert(!Unsigned && "Can't use 'U' modifier multiple times!");
      Unsigned = true;
      break;
    case 'L':
      assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
      assert(HowLong <= 2 && "Can't have LLLL modifier");
      ++HowLong;
      break;
    case 'N':
      // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
      assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
      #ifndef NDEBUG
      IsSpecial = true;
      #endif
      if (Context.getTargetInfo().getLongWidth() == 32)
        ++HowLong;
      break;
    case 'W':
      // This modifier represents int64 type.
      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
      assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
      #ifndef NDEBUG
      IsSpecial = true;
      #endif
      switch (Context.getTargetInfo().getInt64Type()) {
      default:
        llvm_unreachable("Unexpected integer type");
      case TargetInfo::SignedLong:
        HowLong = 1;
        break;
      case TargetInfo::SignedLongLong:
        HowLong = 2;
        break;
      }
      break;
    case 'Z':
      // This modifier represents int32 type.
      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
      assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
      #ifndef NDEBUG
      IsSpecial = true;
      #endif
      switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
      default:
        llvm_unreachable("Unexpected integer type");
      case TargetInfo::SignedInt:
        HowLong = 0;
        break;
      case TargetInfo::SignedLong:
        HowLong = 1;
        break;
      case TargetInfo::SignedLongLong:
        HowLong = 2;
        break;
      }
      break;
    case 'O':
      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
      assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
      #ifndef NDEBUG
      IsSpecial = true;
      #endif
      if (Context.getLangOpts().OpenCL)
        HowLong = 1;
      else
        HowLong = 2;
      break;
    }
  }

  QualType Type;

  // Read the base type.
  switch (*Str++) {
  default: llvm_unreachable("Unknown builtin type letter!");
  case 'y':
    assert(HowLong == 0 && !Signed && !Unsigned &&
           "Bad modifiers used with 'y'!");
    Type = Context.BFloat16Ty;
    break;
  case 'v':
    assert(HowLong == 0 && !Signed && !Unsigned &&
           "Bad modifiers used with 'v'!");
    Type = Context.VoidTy;
    break;
  case 'h':
    assert(HowLong == 0 && !Signed && !Unsigned &&
           "Bad modifiers used with 'h'!");
    Type = Context.HalfTy;
    break;
  case 'f':
    assert(HowLong == 0 && !Signed && !Unsigned &&
           "Bad modifiers used with 'f'!");
    Type = Context.FloatTy;
    break;
  case 'd':
    assert(HowLong < 3 && !Signed && !Unsigned &&
           "Bad modifiers used with 'd'!");
    if (HowLong == 1)
      Type = Context.LongDoubleTy;
    else if (HowLong == 2)
      Type = Context.Float128Ty;
    else
      Type = Context.DoubleTy;
    break;
  case 's':
    assert(HowLong == 0 && "Bad modifiers used with 's'!");
    if (Unsigned)
      Type = Context.UnsignedShortTy;
    else
      Type = Context.ShortTy;
    break;
  case 'i':
    if (HowLong == 3)
      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
    else if (HowLong == 2)
      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
    else if (HowLong == 1)
      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
    else
      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
    break;
  case 'c':
    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
    if (Signed)
      Type = Context.SignedCharTy;
    else if (Unsigned)
      Type = Context.UnsignedCharTy;
    else
      Type = Context.CharTy;
    break;
  case 'b': // boolean
    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
    Type = Context.BoolTy;
    break;
  case 'z':  // size_t.
    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
    Type = Context.getSizeType();
    break;
  case 'w':  // wchar_t.
    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
    Type = Context.getWideCharType();
    break;
  case 'F':
    Type = Context.getCFConstantStringType();
    break;
  case 'G':
    Type = Context.getObjCIdType();
    break;
  case 'H':
    Type = Context.getObjCSelType();
    break;
  case 'M':
    Type = Context.getObjCSuperType();
    break;
  case 'a':
    Type = Context.getBuiltinVaListType();
    assert(!Type.isNull() && "builtin va list type not initialized!");
    break;
  case 'A':
    // This is a "reference" to a va_list; however, what exactly
    // this means depends on how va_list is defined. There are two
    // different kinds of va_list: ones passed by value, and ones
    // passed by reference.  An example of a by-value va_list is
    // x86, where va_list is a char*. An example of by-ref va_list
    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
    // we want this argument to be a char*&; for x86-64, we want
    // it to be a __va_list_tag*.
    Type = Context.getBuiltinVaListType();
    assert(!Type.isNull() && "builtin va list type not initialized!");
    if (Type->isArrayType())
      Type = Context.getArrayDecayedType(Type);
    else
      Type = Context.getLValueReferenceType(Type);
    break;
  case 'q': {
    char *End;
    unsigned NumElements = strtoul(Str, &End, 10);
    assert(End != Str && "Missing vector size");
    Str = End;

    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
                                             RequiresICE, false);
    assert(!RequiresICE && "Can't require vector ICE");

    Type = Context.getScalableVectorType(ElementType, NumElements);
    break;
  }
  case 'V': {
    char *End;
    unsigned NumElements = strtoul(Str, &End, 10);
    assert(End != Str && "Missing vector size");
    Str = End;

    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
                                             RequiresICE, false);
    assert(!RequiresICE && "Can't require vector ICE");

    // TODO: No way to make AltiVec vectors in builtins yet.
    Type = Context.getVectorType(ElementType, NumElements,
                                 VectorType::GenericVector);
    break;
  }
  case 'E': {
    char *End;

    unsigned NumElements = strtoul(Str, &End, 10);
    assert(End != Str && "Missing vector size");

    Str = End;

    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
                                             false);
    Type = Context.getExtVectorType(ElementType, NumElements);
    break;
  }
  case 'X': {
    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
                                             false);
    assert(!RequiresICE && "Can't require complex ICE");
    Type = Context.getComplexType(ElementType);
    break;
  }
  case 'Y':
    Type = Context.getPointerDiffType();
    break;
  case 'P':
    Type = Context.getFILEType();
    if (Type.isNull()) {
      Error = ASTContext::GE_Missing_stdio;
      return {};
    }
    break;
  case 'J':
    if (Signed)
      Type = Context.getsigjmp_bufType();
    else
      Type = Context.getjmp_bufType();

    if (Type.isNull()) {
      Error = ASTContext::GE_Missing_setjmp;
      return {};
    }
    break;
  case 'K':
    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
    Type = Context.getucontext_tType();

    if (Type.isNull()) {
      Error = ASTContext::GE_Missing_ucontext;
      return {};
    }
    break;
  case 'p':
    Type = Context.getProcessIDType();
    break;
  }

  // If there are modifiers and if we're allowed to parse them, go for it.
  Done = !AllowTypeModifiers;
  while (!Done) {
    switch (char c = *Str++) {
    default: Done = true; --Str; break;
    case '*':
    case '&': {
      // Both pointers and references can have their pointee types
      // qualified with an address space.
      char *End;
      unsigned AddrSpace = strtoul(Str, &End, 10);
      if (End != Str) {
        // Note AddrSpace == 0 is not the same as an unspecified address space.
        Type = Context.getAddrSpaceQualType(
          Type,
          Context.getLangASForBuiltinAddressSpace(AddrSpace));
        Str = End;
      }
      if (c == '*')
        Type = Context.getPointerType(Type);
      else
        Type = Context.getLValueReferenceType(Type);
      break;
    }
    // FIXME: There's no way to have a built-in with an rvalue ref arg.
    case 'C':
      Type = Type.withConst();
      break;
    case 'D':
      Type = Context.getVolatileType(Type);
      break;
    case 'R':
      Type = Type.withRestrict();
      break;
    }
  }

  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
         "Integer constant 'I' type must be an integer");

  return Type;
}

/// GetBuiltinType - Return the type for the specified builtin.
QualType ASTContext::GetBuiltinType(unsigned Id,
                                    GetBuiltinTypeError &Error,
                                    unsigned *IntegerConstantArgs) const {
  const char *TypeStr = BuiltinInfo.getTypeString(Id);
  if (TypeStr[0] == '\0') {
    Error = GE_Missing_type;
    return {};
  }

  SmallVector<QualType, 8> ArgTypes;

  bool RequiresICE = false;
  Error = GE_None;
  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
                                       RequiresICE, true);
  if (Error != GE_None)
    return {};

  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");

  while (TypeStr[0] && TypeStr[0] != '.') {
    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
    if (Error != GE_None)
      return {};

    // If this argument is required to be an IntegerConstantExpression and the
    // caller cares, fill in the bitmask we return.
    if (RequiresICE && IntegerConstantArgs)
      *IntegerConstantArgs |= 1 << ArgTypes.size();

    // Do array -> pointer decay.  The builtin should use the decayed type.
    if (Ty->isArrayType())
      Ty = getArrayDecayedType(Ty);

    ArgTypes.push_back(Ty);
  }

  if (Id == Builtin::BI__GetExceptionInfo)
    return {};

  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
         "'.' should only occur at end of builtin type list!");

  bool Variadic = (TypeStr[0] == '.');

  FunctionType::ExtInfo EI(getDefaultCallingConvention(
      Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);


  // We really shouldn't be making a no-proto type here.
  if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
    return getFunctionNoProtoType(ResType, EI);

  FunctionProtoType::ExtProtoInfo EPI;
  EPI.ExtInfo = EI;
  EPI.Variadic = Variadic;
  if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
    EPI.ExceptionSpec.Type =
        getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;

  return getFunctionType(ResType, ArgTypes, EPI);
}

static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
                                             const FunctionDecl *FD) {
  if (!FD->isExternallyVisible())
    return GVA_Internal;

  // Non-user-provided functions get emitted as weak definitions with every
  // use, no matter whether they've been explicitly instantiated etc.
  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
    if (!MD->isUserProvided())
      return GVA_DiscardableODR;

  GVALinkage External;
  switch (FD->getTemplateSpecializationKind()) {
  case TSK_Undeclared:
  case TSK_ExplicitSpecialization:
    External = GVA_StrongExternal;
    break;

  case TSK_ExplicitInstantiationDefinition:
    return GVA_StrongODR;

  // C++11 [temp.explicit]p10:
  //   [ Note: The intent is that an inline function that is the subject of
  //   an explicit instantiation declaration will still be implicitly
  //   instantiated when used so that the body can be considered for
  //   inlining, but that no out-of-line copy of the inline function would be
  //   generated in the translation unit. -- end note ]
  case TSK_ExplicitInstantiationDeclaration:
    return GVA_AvailableExternally;

  case TSK_ImplicitInstantiation:
    External = GVA_DiscardableODR;
    break;
  }

  if (!FD->isInlined())
    return External;

  if ((!Context.getLangOpts().CPlusPlus &&
       !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
       !FD->hasAttr<DLLExportAttr>()) ||
      FD->hasAttr<GNUInlineAttr>()) {
    // FIXME: This doesn't match gcc's behavior for dllexport inline functions.

    // GNU or C99 inline semantics. Determine whether this symbol should be
    // externally visible.
    if (FD->isInlineDefinitionExternallyVisible())
      return External;

    // C99 inline semantics, where the symbol is not externally visible.
    return GVA_AvailableExternally;
  }

  // Functions specified with extern and inline in -fms-compatibility mode
  // forcibly get emitted.  While the body of the function cannot be later
  // replaced, the function definition cannot be discarded.
  if (FD->isMSExternInline())
    return GVA_StrongODR;

  return GVA_DiscardableODR;
}

static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
                                                const Decl *D, GVALinkage L) {
  // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
  // dllexport/dllimport on inline functions.
  if (D->hasAttr<DLLImportAttr>()) {
    if (L == GVA_DiscardableODR || L == GVA_StrongODR)
      return GVA_AvailableExternally;
  } else if (D->hasAttr<DLLExportAttr>()) {
    if (L == GVA_DiscardableODR)
      return GVA_StrongODR;
  } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
    // Device-side functions with __global__ attribute must always be
    // visible externally so they can be launched from host.
    if (D->hasAttr<CUDAGlobalAttr>() &&
        (L == GVA_DiscardableODR || L == GVA_Internal))
      return GVA_StrongODR;
    // Single source offloading languages like CUDA/HIP need to be able to
    // access static device variables from host code of the same compilation
    // unit. This is done by externalizing the static variable.
    if (Context.shouldExternalizeStaticVar(D))
      return GVA_StrongExternal;
  }
  return L;
}

/// Adjust the GVALinkage for a declaration based on what an external AST source
/// knows about whether there can be other definitions of this declaration.
static GVALinkage
adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
                                          GVALinkage L) {
  ExternalASTSource *Source = Ctx.getExternalSource();
  if (!Source)
    return L;

  switch (Source->hasExternalDefinitions(D)) {
  case ExternalASTSource::EK_Never:
    // Other translation units rely on us to provide the definition.
    if (L == GVA_DiscardableODR)
      return GVA_StrongODR;
    break;

  case ExternalASTSource::EK_Always:
    return GVA_AvailableExternally;

  case ExternalASTSource::EK_ReplyHazy:
    break;
  }
  return L;
}

GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
  return adjustGVALinkageForExternalDefinitionKind(*this, FD,
           adjustGVALinkageForAttributes(*this, FD,
             basicGVALinkageForFunction(*this, FD)));
}

static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
                                             const VarDecl *VD) {
  if (!VD->isExternallyVisible())
    return GVA_Internal;

  if (VD->isStaticLocal()) {
    const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
    while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
      LexicalContext = LexicalContext->getLexicalParent();

    // ObjC Blocks can create local variables that don't have a FunctionDecl
    // LexicalContext.
    if (!LexicalContext)
      return GVA_DiscardableODR;

    // Otherwise, let the static local variable inherit its linkage from the
    // nearest enclosing function.
    auto StaticLocalLinkage =
        Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));

    // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
    // be emitted in any object with references to the symbol for the object it
    // contains, whether inline or out-of-line."
    // Similar behavior is observed with MSVC. An alternative ABI could use
    // StrongODR/AvailableExternally to match the function, but none are
    // known/supported currently.
    if (StaticLocalLinkage == GVA_StrongODR ||
        StaticLocalLinkage == GVA_AvailableExternally)
      return GVA_DiscardableODR;
    return StaticLocalLinkage;
  }

  // MSVC treats in-class initialized static data members as definitions.
  // By giving them non-strong linkage, out-of-line definitions won't
  // cause link errors.
  if (Context.isMSStaticDataMemberInlineDefinition(VD))
    return GVA_DiscardableODR;

  // Most non-template variables have strong linkage; inline variables are
  // linkonce_odr or (occasionally, for compatibility) weak_odr.
  GVALinkage StrongLinkage;
  switch (Context.getInlineVariableDefinitionKind(VD)) {
  case ASTContext::InlineVariableDefinitionKind::None:
    StrongLinkage = GVA_StrongExternal;
    break;
  case ASTContext::InlineVariableDefinitionKind::Weak:
  case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
    StrongLinkage = GVA_DiscardableODR;
    break;
  case ASTContext::InlineVariableDefinitionKind::Strong:
    StrongLinkage = GVA_StrongODR;
    break;
  }

  switch (VD->getTemplateSpecializationKind()) {
  case TSK_Undeclared:
    return StrongLinkage;

  case TSK_ExplicitSpecialization:
    return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
                   VD->isStaticDataMember()
               ? GVA_StrongODR
               : StrongLinkage;

  case TSK_ExplicitInstantiationDefinition:
    return GVA_StrongODR;

  case TSK_ExplicitInstantiationDeclaration:
    return GVA_AvailableExternally;

  case TSK_ImplicitInstantiation:
    return GVA_DiscardableODR;
  }

  llvm_unreachable("Invalid Linkage!");
}

GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
  return adjustGVALinkageForExternalDefinitionKind(*this, VD,
           adjustGVALinkageForAttributes(*this, VD,
             basicGVALinkageForVariable(*this, VD)));
}

bool ASTContext::DeclMustBeEmitted(const Decl *D) {
  if (const auto *VD = dyn_cast<VarDecl>(D)) {
    if (!VD->isFileVarDecl())
      return false;
    // Global named register variables (GNU extension) are never emitted.
    if (VD->getStorageClass() == SC_Register)
      return false;
    if (VD->getDescribedVarTemplate() ||
        isa<VarTemplatePartialSpecializationDecl>(VD))
      return false;
  } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
    // We never need to emit an uninstantiated function template.
    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
      return false;
  } else if (isa<PragmaCommentDecl>(D))
    return true;
  else if (isa<PragmaDetectMismatchDecl>(D))
    return true;
  else if (isa<OMPRequiresDecl>(D))
    return true;
  else if (isa<OMPThreadPrivateDecl>(D))
    return !D->getDeclContext()->isDependentContext();
  else if (isa<OMPAllocateDecl>(D))
    return !D->getDeclContext()->isDependentContext();
  else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
    return !D->getDeclContext()->isDependentContext();
  else if (isa<ImportDecl>(D))
    return true;
  else
    return false;

  // If this is a member of a class template, we do not need to emit it.
  if (D->getDeclContext()->isDependentContext())
    return false;

  // Weak references don't produce any output by themselves.
  if (D->hasAttr<WeakRefAttr>())
    return false;

  // Aliases and used decls are required.
  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
    return true;

  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
    // Forward declarations aren't required.
    if (!FD->doesThisDeclarationHaveABody())
      return FD->doesDeclarationForceExternallyVisibleDefinition();

    // Constructors and destructors are required.
    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
      return true;

    // The key function for a class is required.  This rule only comes
    // into play when inline functions can be key functions, though.
    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
      if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
        const CXXRecordDecl *RD = MD->getParent();
        if (MD->isOutOfLine() && RD->isDynamicClass()) {
          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
            return true;
        }
      }
    }

    GVALinkage Linkage = GetGVALinkageForFunction(FD);

    // static, static inline, always_inline, and extern inline functions can
    // always be deferred.  Normal inline functions can be deferred in C99/C++.
    // Implicit template instantiations can also be deferred in C++.
    return !isDiscardableGVALinkage(Linkage);
  }

  const auto *VD = cast<VarDecl>(D);
  assert(VD->isFileVarDecl() && "Expected file scoped var");

  // If the decl is marked as `declare target to`, it should be emitted for the
  // host and for the device.
  if (LangOpts.OpenMP &&
      OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
    return true;

  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
      !isMSStaticDataMemberInlineDefinition(VD))
    return false;

  // Variables that can be needed in other TUs are required.
  auto Linkage = GetGVALinkageForVariable(VD);
  if (!isDiscardableGVALinkage(Linkage))
    return true;

  // We never need to emit a variable that is available in another TU.
  if (Linkage == GVA_AvailableExternally)
    return false;

  // Variables that have destruction with side-effects are required.
  if (VD->needsDestruction(*this))
    return true;

  // Variables that have initialization with side-effects are required.
  if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
      // We can get a value-dependent initializer during error recovery.
      (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
    return true;

  // Likewise, variables with tuple-like bindings are required if their
  // bindings have side-effects.
  if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
    for (const auto *BD : DD->bindings())
      if (const auto *BindingVD = BD->getHoldingVar())
        if (DeclMustBeEmitted(BindingVD))
          return true;

  return false;
}

void ASTContext::forEachMultiversionedFunctionVersion(
    const FunctionDecl *FD,
    llvm::function_ref<void(FunctionDecl *)> Pred) const {
  assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
  llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
  FD = FD->getMostRecentDecl();
  for (auto *CurDecl :
       FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
    FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
    if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
        std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
      SeenDecls.insert(CurFD);
      Pred(CurFD);
    }
  }
}

CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
                                                    bool IsCXXMethod,
                                                    bool IsBuiltin) const {
  // Pass through to the C++ ABI object
  if (IsCXXMethod)
    return ABI->getDefaultMethodCallConv(IsVariadic);

  // Builtins ignore user-specified default calling convention and remain the
  // Target's default calling convention.
  if (!IsBuiltin) {
    switch (LangOpts.getDefaultCallingConv()) {
    case LangOptions::DCC_None:
      break;
    case LangOptions::DCC_CDecl:
      return CC_C;
    case LangOptions::DCC_FastCall:
      if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
        return CC_X86FastCall;
      break;
    case LangOptions::DCC_StdCall:
      if (!IsVariadic)
        return CC_X86StdCall;
      break;
    case LangOptions::DCC_VectorCall:
      // __vectorcall cannot be applied to variadic functions.
      if (!IsVariadic)
        return CC_X86VectorCall;
      break;
    case LangOptions::DCC_RegCall:
      // __regcall cannot be applied to variadic functions.
      if (!IsVariadic)
        return CC_X86RegCall;
      break;
    }
  }
  return Target->getDefaultCallingConv();
}

bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
  // Pass through to the C++ ABI object
  return ABI->isNearlyEmpty(RD);
}

VTableContextBase *ASTContext::getVTableContext() {
  if (!VTContext.get()) {
    auto ABI = Target->getCXXABI();
    if (ABI.isMicrosoft())
      VTContext.reset(new MicrosoftVTableContext(*this));
    else {
      auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
                                 ? ItaniumVTableContext::Relative
                                 : ItaniumVTableContext::Pointer;
      VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
    }
  }
  return VTContext.get();
}

MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
  if (!T)
    T = Target;
  switch (T->getCXXABI().getKind()) {
  case TargetCXXABI::Fuchsia:
  case TargetCXXABI::GenericAArch64:
  case TargetCXXABI::GenericItanium:
  case TargetCXXABI::GenericARM:
  case TargetCXXABI::GenericMIPS:
  case TargetCXXABI::iOS:
  case TargetCXXABI::iOS64:
  case TargetCXXABI::WebAssembly:
  case TargetCXXABI::WatchOS:
  case TargetCXXABI::XL:
    return ItaniumMangleContext::create(*this, getDiagnostics());
  case TargetCXXABI::Microsoft:
    return MicrosoftMangleContext::create(*this, getDiagnostics());
  }
  llvm_unreachable("Unsupported ABI");
}

CXXABI::~CXXABI() = default;

size_t ASTContext::getSideTableAllocatedMemory() const {
  return ASTRecordLayouts.getMemorySize() +
         llvm::capacity_in_bytes(ObjCLayouts) +
         llvm::capacity_in_bytes(KeyFunctions) +
         llvm::capacity_in_bytes(ObjCImpls) +
         llvm::capacity_in_bytes(BlockVarCopyInits) +
         llvm::capacity_in_bytes(DeclAttrs) +
         llvm::capacity_in_bytes(TemplateOrInstantiation) +
         llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
         llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
         llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
         llvm::capacity_in_bytes(OverriddenMethods) +
         llvm::capacity_in_bytes(Types) +
         llvm::capacity_in_bytes(VariableArrayTypes);
}

/// getIntTypeForBitwidth -
/// sets integer QualTy according to specified details:
/// bitwidth, signed/unsigned.
/// Returns empty type if there is no appropriate target types.
QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
                                           unsigned Signed) const {
  TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
  CanQualType QualTy = getFromTargetType(Ty);
  if (!QualTy && DestWidth == 128)
    return Signed ? Int128Ty : UnsignedInt128Ty;
  return QualTy;
}

/// getRealTypeForBitwidth -
/// sets floating point QualTy according to specified bitwidth.
/// Returns empty type if there is no appropriate target types.
QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
                                            bool ExplicitIEEE) const {
  TargetInfo::RealType Ty =
      getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE);
  switch (Ty) {
  case TargetInfo::Float:
    return FloatTy;
  case TargetInfo::Double:
    return DoubleTy;
  case TargetInfo::LongDouble:
    return LongDoubleTy;
  case TargetInfo::Float128:
    return Float128Ty;
  case TargetInfo::NoFloat:
    return {};
  }

  llvm_unreachable("Unhandled TargetInfo::RealType value");
}

void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
  if (Number > 1)
    MangleNumbers[ND] = Number;
}

unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
  auto I = MangleNumbers.find(ND);
  return I != MangleNumbers.end() ? I->second : 1;
}

void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
  if (Number > 1)
    StaticLocalNumbers[VD] = Number;
}

unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
  auto I = StaticLocalNumbers.find(VD);
  return I != StaticLocalNumbers.end() ? I->second : 1;
}

MangleNumberingContext &
ASTContext::getManglingNumberContext(const DeclContext *DC) {
  assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
  std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
  if (!MCtx)
    MCtx = createMangleNumberingContext();
  return *MCtx;
}

MangleNumberingContext &
ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
  assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
  std::unique_ptr<MangleNumberingContext> &MCtx =
      ExtraMangleNumberingContexts[D];
  if (!MCtx)
    MCtx = createMangleNumberingContext();
  return *MCtx;
}

std::unique_ptr<MangleNumberingContext>
ASTContext::createMangleNumberingContext() const {
  return ABI->createMangleNumberingContext();
}

const CXXConstructorDecl *
ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
  return ABI->getCopyConstructorForExceptionObject(
      cast<CXXRecordDecl>(RD->getFirstDecl()));
}

void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
                                                      CXXConstructorDecl *CD) {
  return ABI->addCopyConstructorForExceptionObject(
      cast<CXXRecordDecl>(RD->getFirstDecl()),
      cast<CXXConstructorDecl>(CD->getFirstDecl()));
}

void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
                                                 TypedefNameDecl *DD) {
  return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
}

TypedefNameDecl *
ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
  return ABI->getTypedefNameForUnnamedTagDecl(TD);
}

void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
                                                DeclaratorDecl *DD) {
  return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
}

DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
  return ABI->getDeclaratorForUnnamedTagDecl(TD);
}

void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
  ParamIndices[D] = index;
}

unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
  assert(I != ParamIndices.end() &&
         "ParmIndices lacks entry set by ParmVarDecl");
  return I->second;
}

QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
                                               unsigned Length) const {
  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
    EltTy = EltTy.withConst();

  EltTy = adjustStringLiteralBaseType(EltTy);

  // Get an array type for the string, according to C99 6.4.5. This includes
  // the null terminator character.
  return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
                              ArrayType::Normal, /*IndexTypeQuals*/ 0);
}

StringLiteral *
ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
  StringLiteral *&Result = StringLiteralCache[Key];
  if (!Result)
    Result = StringLiteral::Create(
        *this, Key, StringLiteral::Ascii,
        /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
        SourceLocation());
  return Result;
}

MSGuidDecl *
ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
  assert(MSGuidTagDecl && "building MS GUID without MS extensions?");

  llvm::FoldingSetNodeID ID;
  MSGuidDecl::Profile(ID, Parts);

  void *InsertPos;
  if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
    return Existing;

  QualType GUIDType = getMSGuidType().withConst();
  MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
  MSGuidDecls.InsertNode(New, InsertPos);
  return New;
}

bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
  const llvm::Triple &T = getTargetInfo().getTriple();
  if (!T.isOSDarwin())
    return false;

  if (!(T.isiOS() && T.isOSVersionLT(7)) &&
      !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
    return false;

  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
  CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
  uint64_t Size = sizeChars.getQuantity();
  CharUnits alignChars = getTypeAlignInChars(AtomicTy);
  unsigned Align = alignChars.getQuantity();
  unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
  return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
}

bool
ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
                                const ObjCMethodDecl *MethodImpl) {
  // No point trying to match an unavailable/deprecated mothod.
  if (MethodDecl->hasAttr<UnavailableAttr>()
      || MethodDecl->hasAttr<DeprecatedAttr>())
    return false;
  if (MethodDecl->getObjCDeclQualifier() !=
      MethodImpl->getObjCDeclQualifier())
    return false;
  if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
    return false;

  if (MethodDecl->param_size() != MethodImpl->param_size())
    return false;

  for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
       IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
       EF = MethodDecl->param_end();
       IM != EM && IF != EF; ++IM, ++IF) {
    const ParmVarDecl *DeclVar = (*IF);
    const ParmVarDecl *ImplVar = (*IM);
    if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
      return false;
    if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
      return false;
  }

  return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
}

uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
  LangAS AS;
  if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
    AS = LangAS::Default;
  else
    AS = QT->getPointeeType().getAddressSpace();

  return getTargetInfo().getNullPointerValue(AS);
}

unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
  if (isTargetAddressSpace(AS))
    return toTargetAddressSpace(AS);
  else
    return (*AddrSpaceMap)[(unsigned)AS];
}

QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
  assert(Ty->isFixedPointType());

  if (Ty->isSaturatedFixedPointType()) return Ty;

  switch (Ty->castAs<BuiltinType>()->getKind()) {
    default:
      llvm_unreachable("Not a fixed point type!");
    case BuiltinType::ShortAccum:
      return SatShortAccumTy;
    case BuiltinType::Accum:
      return SatAccumTy;
    case BuiltinType::LongAccum:
      return SatLongAccumTy;
    case BuiltinType::UShortAccum:
      return SatUnsignedShortAccumTy;
    case BuiltinType::UAccum:
      return SatUnsignedAccumTy;
    case BuiltinType::ULongAccum:
      return SatUnsignedLongAccumTy;
    case BuiltinType::ShortFract:
      return SatShortFractTy;
    case BuiltinType::Fract:
      return SatFractTy;
    case BuiltinType::LongFract:
      return SatLongFractTy;
    case BuiltinType::UShortFract:
      return SatUnsignedShortFractTy;
    case BuiltinType::UFract:
      return SatUnsignedFractTy;
    case BuiltinType::ULongFract:
      return SatUnsignedLongFractTy;
  }
}

LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
  if (LangOpts.OpenCL)
    return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);

  if (LangOpts.CUDA)
    return getTargetInfo().getCUDABuiltinAddressSpace(AS);

  return getLangASFromTargetAS(AS);
}

// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
// doesn't include ASTContext.h
template
clang::LazyGenerationalUpdatePtr<
    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
clang::LazyGenerationalUpdatePtr<
    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
        const clang::ASTContext &Ctx, Decl *Value);

unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
  assert(Ty->isFixedPointType());

  const TargetInfo &Target = getTargetInfo();
  switch (Ty->castAs<BuiltinType>()->getKind()) {
    default:
      llvm_unreachable("Not a fixed point type!");
    case BuiltinType::ShortAccum:
    case BuiltinType::SatShortAccum:
      return Target.getShortAccumScale();
    case BuiltinType::Accum:
    case BuiltinType::SatAccum:
      return Target.getAccumScale();
    case BuiltinType::LongAccum:
    case BuiltinType::SatLongAccum:
      return Target.getLongAccumScale();
    case BuiltinType::UShortAccum:
    case BuiltinType::SatUShortAccum:
      return Target.getUnsignedShortAccumScale();
    case BuiltinType::UAccum:
    case BuiltinType::SatUAccum:
      return Target.getUnsignedAccumScale();
    case BuiltinType::ULongAccum:
    case BuiltinType::SatULongAccum:
      return Target.getUnsignedLongAccumScale();
    case BuiltinType::ShortFract:
    case BuiltinType::SatShortFract:
      return Target.getShortFractScale();
    case BuiltinType::Fract:
    case BuiltinType::SatFract:
      return Target.getFractScale();
    case BuiltinType::LongFract:
    case BuiltinType::SatLongFract:
      return Target.getLongFractScale();
    case BuiltinType::UShortFract:
    case BuiltinType::SatUShortFract:
      return Target.getUnsignedShortFractScale();
    case BuiltinType::UFract:
    case BuiltinType::SatUFract:
      return Target.getUnsignedFractScale();
    case BuiltinType::ULongFract:
    case BuiltinType::SatULongFract:
      return Target.getUnsignedLongFractScale();
  }
}

unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
  assert(Ty->isFixedPointType());

  const TargetInfo &Target = getTargetInfo();
  switch (Ty->castAs<BuiltinType>()->getKind()) {
    default:
      llvm_unreachable("Not a fixed point type!");
    case BuiltinType::ShortAccum:
    case BuiltinType::SatShortAccum:
      return Target.getShortAccumIBits();
    case BuiltinType::Accum:
    case BuiltinType::SatAccum:
      return Target.getAccumIBits();
    case BuiltinType::LongAccum:
    case BuiltinType::SatLongAccum:
      return Target.getLongAccumIBits();
    case BuiltinType::UShortAccum:
    case BuiltinType::SatUShortAccum:
      return Target.getUnsignedShortAccumIBits();
    case BuiltinType::UAccum:
    case BuiltinType::SatUAccum:
      return Target.getUnsignedAccumIBits();
    case BuiltinType::ULongAccum:
    case BuiltinType::SatULongAccum:
      return Target.getUnsignedLongAccumIBits();
    case BuiltinType::ShortFract:
    case BuiltinType::SatShortFract:
    case BuiltinType::Fract:
    case BuiltinType::SatFract:
    case BuiltinType::LongFract:
    case BuiltinType::SatLongFract:
    case BuiltinType::UShortFract:
    case BuiltinType::SatUShortFract:
    case BuiltinType::UFract:
    case BuiltinType::SatUFract:
    case BuiltinType::ULongFract:
    case BuiltinType::SatULongFract:
      return 0;
  }
}

llvm::FixedPointSemantics
ASTContext::getFixedPointSemantics(QualType Ty) const {
  assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
         "Can only get the fixed point semantics for a "
         "fixed point or integer type.");
  if (Ty->isIntegerType())
    return llvm::FixedPointSemantics::GetIntegerSemantics(
        getIntWidth(Ty), Ty->isSignedIntegerType());

  bool isSigned = Ty->isSignedFixedPointType();
  return llvm::FixedPointSemantics(
      static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
      Ty->isSaturatedFixedPointType(),
      !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
}

llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
  assert(Ty->isFixedPointType());
  return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
}

llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
  assert(Ty->isFixedPointType());
  return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
}

QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
  assert(Ty->isUnsignedFixedPointType() &&
         "Expected unsigned fixed point type");

  switch (Ty->castAs<BuiltinType>()->getKind()) {
  case BuiltinType::UShortAccum:
    return ShortAccumTy;
  case BuiltinType::UAccum:
    return AccumTy;
  case BuiltinType::ULongAccum:
    return LongAccumTy;
  case BuiltinType::SatUShortAccum:
    return SatShortAccumTy;
  case BuiltinType::SatUAccum:
    return SatAccumTy;
  case BuiltinType::SatULongAccum:
    return SatLongAccumTy;
  case BuiltinType::UShortFract:
    return ShortFractTy;
  case BuiltinType::UFract:
    return FractTy;
  case BuiltinType::ULongFract:
    return LongFractTy;
  case BuiltinType::SatUShortFract:
    return SatShortFractTy;
  case BuiltinType::SatUFract:
    return SatFractTy;
  case BuiltinType::SatULongFract:
    return SatLongFractTy;
  default:
    llvm_unreachable("Unexpected unsigned fixed point type");
  }
}

ParsedTargetAttr
ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
  assert(TD != nullptr);
  ParsedTargetAttr ParsedAttr = TD->parse();

  ParsedAttr.Features.erase(
      llvm::remove_if(ParsedAttr.Features,
                      [&](const std::string &Feat) {
                        return !Target->isValidFeatureName(
                            StringRef{Feat}.substr(1));
                      }),
      ParsedAttr.Features.end());
  return ParsedAttr;
}

void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
                                       const FunctionDecl *FD) const {
  if (FD)
    getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
  else
    Target->initFeatureMap(FeatureMap, getDiagnostics(),
                           Target->getTargetOpts().CPU,
                           Target->getTargetOpts().Features);
}

// Fills in the supplied string map with the set of target features for the
// passed in function.
void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
                                       GlobalDecl GD) const {
  StringRef TargetCPU = Target->getTargetOpts().CPU;
  const FunctionDecl *FD = GD.getDecl()->getAsFunction();
  if (const auto *TD = FD->getAttr<TargetAttr>()) {
    ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);

    // Make a copy of the features as passed on the command line into the
    // beginning of the additional features from the function to override.
    ParsedAttr.Features.insert(
        ParsedAttr.Features.begin(),
        Target->getTargetOpts().FeaturesAsWritten.begin(),
        Target->getTargetOpts().FeaturesAsWritten.end());

    if (ParsedAttr.Architecture != "" &&
        Target->isValidCPUName(ParsedAttr.Architecture))
      TargetCPU = ParsedAttr.Architecture;

    // Now populate the feature map, first with the TargetCPU which is either
    // the default or a new one from the target attribute string. Then we'll use
    // the passed in features (FeaturesAsWritten) along with the new ones from
    // the attribute.
    Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
                           ParsedAttr.Features);
  } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
    llvm::SmallVector<StringRef, 32> FeaturesTmp;
    Target->getCPUSpecificCPUDispatchFeatures(
        SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
    std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
    Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
  } else {
    FeatureMap = Target->getTargetOpts().FeatureMap;
  }
}

OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
  OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
  return *OMPTraitInfoVector.back();
}

const DiagnosticBuilder &
clang::operator<<(const DiagnosticBuilder &DB,
                  const ASTContext::SectionInfo &Section) {
  if (Section.Decl)
    return DB << Section.Decl;
  return DB << "a prior #pragma section";
}

bool ASTContext::mayExternalizeStaticVar(const Decl *D) const {
  return !getLangOpts().GPURelocatableDeviceCode &&
         ((D->hasAttr<CUDADeviceAttr>() &&
           !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
          (D->hasAttr<CUDAConstantAttr>() &&
           !D->getAttr<CUDAConstantAttr>()->isImplicit())) &&
         isa<VarDecl>(D) && cast<VarDecl>(D)->isFileVarDecl() &&
         cast<VarDecl>(D)->getStorageClass() == SC_Static;
}

bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const {
  return mayExternalizeStaticVar(D) &&
         CUDAStaticDeviceVarReferencedByHost.count(cast<VarDecl>(D));
}