AffineExpr.cpp
41.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
//===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineExpr.h"
#include "AffineExprDetail.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/TypeID.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
using namespace mlir::detail;
MLIRContext *AffineExpr::getContext() const { return expr->context; }
AffineExprKind AffineExpr::getKind() const { return expr->kind; }
/// Walk all of the AffineExprs in this subgraph in postorder.
void AffineExpr::walk(std::function<void(AffineExpr)> callback) const {
struct AffineExprWalker : public AffineExprVisitor<AffineExprWalker> {
std::function<void(AffineExpr)> callback;
AffineExprWalker(std::function<void(AffineExpr)> callback)
: callback(callback) {}
void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { callback(expr); }
void visitConstantExpr(AffineConstantExpr expr) { callback(expr); }
void visitDimExpr(AffineDimExpr expr) { callback(expr); }
void visitSymbolExpr(AffineSymbolExpr expr) { callback(expr); }
};
AffineExprWalker(callback).walkPostOrder(*this);
}
// Dispatch affine expression construction based on kind.
AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs,
AffineExpr rhs) {
if (kind == AffineExprKind::Add)
return lhs + rhs;
if (kind == AffineExprKind::Mul)
return lhs * rhs;
if (kind == AffineExprKind::FloorDiv)
return lhs.floorDiv(rhs);
if (kind == AffineExprKind::CeilDiv)
return lhs.ceilDiv(rhs);
if (kind == AffineExprKind::Mod)
return lhs % rhs;
llvm_unreachable("unknown binary operation on affine expressions");
}
/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) and returns the modified expression tree.
AffineExpr
AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
ArrayRef<AffineExpr> symReplacements) const {
switch (getKind()) {
case AffineExprKind::Constant:
return *this;
case AffineExprKind::DimId: {
unsigned dimId = cast<AffineDimExpr>().getPosition();
if (dimId >= dimReplacements.size())
return *this;
return dimReplacements[dimId];
}
case AffineExprKind::SymbolId: {
unsigned symId = cast<AffineSymbolExpr>().getPosition();
if (symId >= symReplacements.size())
return *this;
return symReplacements[symId];
}
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod:
auto binOp = cast<AffineBinaryOpExpr>();
auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
if (newLHS == lhs && newRHS == rhs)
return *this;
return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
}
llvm_unreachable("Unknown AffineExpr");
}
/// Replace symbols[0 .. numDims - 1] by symbols[shift .. shift + numDims - 1].
AffineExpr AffineExpr::shiftSymbols(unsigned numSymbols, unsigned shift) const {
SmallVector<AffineExpr, 4> symbols;
for (unsigned idx = 0; idx < numSymbols; ++idx)
symbols.push_back(getAffineSymbolExpr(idx + shift, getContext()));
return replaceDimsAndSymbols({}, symbols);
}
/// Sparse replace method. Return the modified expression tree.
AffineExpr
AffineExpr::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
auto it = map.find(*this);
if (it != map.end())
return it->second;
switch (getKind()) {
default:
return *this;
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod:
auto binOp = cast<AffineBinaryOpExpr>();
auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
auto newLHS = lhs.replace(map);
auto newRHS = rhs.replace(map);
if (newLHS == lhs && newRHS == rhs)
return *this;
return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
}
llvm_unreachable("Unknown AffineExpr");
}
/// Sparse replace method. Return the modified expression tree.
AffineExpr AffineExpr::replace(AffineExpr expr, AffineExpr replacement) const {
DenseMap<AffineExpr, AffineExpr> map;
map.insert(std::make_pair(expr, replacement));
return replace(map);
}
/// Returns true if this expression is made out of only symbols and
/// constants (no dimensional identifiers).
bool AffineExpr::isSymbolicOrConstant() const {
switch (getKind()) {
case AffineExprKind::Constant:
return true;
case AffineExprKind::DimId:
return false;
case AffineExprKind::SymbolId:
return true;
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod: {
auto expr = this->cast<AffineBinaryOpExpr>();
return expr.getLHS().isSymbolicOrConstant() &&
expr.getRHS().isSymbolicOrConstant();
}
}
llvm_unreachable("Unknown AffineExpr");
}
/// Returns true if this is a pure affine expression, i.e., multiplication,
/// floordiv, ceildiv, and mod is only allowed w.r.t constants.
bool AffineExpr::isPureAffine() const {
switch (getKind()) {
case AffineExprKind::SymbolId:
case AffineExprKind::DimId:
case AffineExprKind::Constant:
return true;
case AffineExprKind::Add: {
auto op = cast<AffineBinaryOpExpr>();
return op.getLHS().isPureAffine() && op.getRHS().isPureAffine();
}
case AffineExprKind::Mul: {
// TODO: Canonicalize the constants in binary operators to the RHS when
// possible, allowing this to merge into the next case.
auto op = cast<AffineBinaryOpExpr>();
return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() &&
(op.getLHS().template isa<AffineConstantExpr>() ||
op.getRHS().template isa<AffineConstantExpr>());
}
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod: {
auto op = cast<AffineBinaryOpExpr>();
return op.getLHS().isPureAffine() &&
op.getRHS().template isa<AffineConstantExpr>();
}
}
llvm_unreachable("Unknown AffineExpr");
}
// Returns the greatest known integral divisor of this affine expression.
int64_t AffineExpr::getLargestKnownDivisor() const {
AffineBinaryOpExpr binExpr(nullptr);
switch (getKind()) {
case AffineExprKind::SymbolId:
LLVM_FALLTHROUGH;
case AffineExprKind::DimId:
return 1;
case AffineExprKind::Constant:
return std::abs(this->cast<AffineConstantExpr>().getValue());
case AffineExprKind::Mul: {
binExpr = this->cast<AffineBinaryOpExpr>();
return binExpr.getLHS().getLargestKnownDivisor() *
binExpr.getRHS().getLargestKnownDivisor();
}
case AffineExprKind::Add:
LLVM_FALLTHROUGH;
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod: {
binExpr = cast<AffineBinaryOpExpr>();
return llvm::GreatestCommonDivisor64(
binExpr.getLHS().getLargestKnownDivisor(),
binExpr.getRHS().getLargestKnownDivisor());
}
}
llvm_unreachable("Unknown AffineExpr");
}
bool AffineExpr::isMultipleOf(int64_t factor) const {
AffineBinaryOpExpr binExpr(nullptr);
uint64_t l, u;
switch (getKind()) {
case AffineExprKind::SymbolId:
LLVM_FALLTHROUGH;
case AffineExprKind::DimId:
return factor * factor == 1;
case AffineExprKind::Constant:
return cast<AffineConstantExpr>().getValue() % factor == 0;
case AffineExprKind::Mul: {
binExpr = cast<AffineBinaryOpExpr>();
// It's probably not worth optimizing this further (to not traverse the
// whole sub-tree under - it that would require a version of isMultipleOf
// that on a 'false' return also returns the largest known divisor).
return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 ||
(u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 ||
(l * u) % factor == 0;
}
case AffineExprKind::Add:
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod: {
binExpr = cast<AffineBinaryOpExpr>();
return llvm::GreatestCommonDivisor64(
binExpr.getLHS().getLargestKnownDivisor(),
binExpr.getRHS().getLargestKnownDivisor()) %
factor ==
0;
}
}
llvm_unreachable("Unknown AffineExpr");
}
bool AffineExpr::isFunctionOfDim(unsigned position) const {
if (getKind() == AffineExprKind::DimId) {
return *this == mlir::getAffineDimExpr(position, getContext());
}
if (auto expr = this->dyn_cast<AffineBinaryOpExpr>()) {
return expr.getLHS().isFunctionOfDim(position) ||
expr.getRHS().isFunctionOfDim(position);
}
return false;
}
AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr)
: AffineExpr(ptr) {}
AffineExpr AffineBinaryOpExpr::getLHS() const {
return static_cast<ImplType *>(expr)->lhs;
}
AffineExpr AffineBinaryOpExpr::getRHS() const {
return static_cast<ImplType *>(expr)->rhs;
}
AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {}
unsigned AffineDimExpr::getPosition() const {
return static_cast<ImplType *>(expr)->position;
}
/// Returns true if the expression is divisible by the given symbol with
/// position `symbolPos`. The argument `opKind` specifies here what kind of
/// division or mod operation called this division. It helps in implementing the
/// commutative property of the floordiv and ceildiv operations. If the argument
///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv
/// operation, then the commutative property can be used otherwise, the floordiv
/// operation is not divisible. The same argument holds for ceildiv operation.
static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
AffineExprKind opKind) {
// The argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
opKind == AffineExprKind::CeilDiv) &&
"unexpected opKind");
switch (expr.getKind()) {
case AffineExprKind::Constant:
if (expr.cast<AffineConstantExpr>().getValue())
return false;
return true;
case AffineExprKind::DimId:
return false;
case AffineExprKind::SymbolId:
return (expr.cast<AffineSymbolExpr>().getPosition() == symbolPos);
// Checks divisibility by the given symbol for both operands.
case AffineExprKind::Add: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) &&
isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
}
// Checks divisibility by the given symbol for both operands. Consider the
// expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`,
// this is a division by s1 and both the operands of modulo are divisible by
// s1 but it is not divisible by s1 always. The third argument is
// `AffineExprKind::Mod` for this reason.
case AffineExprKind::Mod: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos,
AffineExprKind::Mod) &&
isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos,
AffineExprKind::Mod);
}
// Checks if any of the operand divisible by the given symbol.
case AffineExprKind::Mul: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) ||
isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
}
// Floordiv and ceildiv are divisible by the given symbol when the first
// operand is divisible, and the affine expression kind of the argument expr
// is same as the argument `opKind`. This can be inferred from commutative
// property of floordiv and ceildiv operations and are as follow:
// (exp1 floordiv exp2) floordiv exp3 = (exp1 floordiv exp3) floordiv exp2
// (exp1 ceildiv exp2) ceildiv exp3 = (exp1 ceildiv exp3) ceildiv expr2
// It will fail if operations are not same. For example:
// (exps1 ceildiv exp2) floordiv exp3 can not be simplified.
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
if (opKind != expr.getKind())
return false;
return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind());
}
}
llvm_unreachable("Unknown AffineExpr");
}
/// Divides the given expression by the given symbol at position `symbolPos`. It
/// considers the divisibility condition is checked before calling itself. A
/// null expression is returned whenever the divisibility condition fails.
static AffineExpr symbolicDivide(AffineExpr expr, unsigned symbolPos,
AffineExprKind opKind) {
// THe argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
opKind == AffineExprKind::CeilDiv) &&
"unexpected opKind");
switch (expr.getKind()) {
case AffineExprKind::Constant:
if (expr.cast<AffineConstantExpr>().getValue() != 0)
return nullptr;
return getAffineConstantExpr(0, expr.getContext());
case AffineExprKind::DimId:
return nullptr;
case AffineExprKind::SymbolId:
return getAffineConstantExpr(1, expr.getContext());
// Dividing both operands by the given symbol.
case AffineExprKind::Add: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return getAffineBinaryOpExpr(
expr.getKind(), symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind),
symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind));
}
// Dividing both operands by the given symbol.
case AffineExprKind::Mod: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return getAffineBinaryOpExpr(
expr.getKind(),
symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()),
symbolicDivide(binaryExpr.getRHS(), symbolPos, expr.getKind()));
}
// Dividing any of the operand by the given symbol.
case AffineExprKind::Mul: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind))
return binaryExpr.getLHS() *
symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind);
return symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind) *
binaryExpr.getRHS();
}
// Dividing first operand only by the given symbol.
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return getAffineBinaryOpExpr(
expr.getKind(),
symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()),
binaryExpr.getRHS());
}
}
llvm_unreachable("Unknown AffineExpr");
}
/// Simplify a semi-affine expression by handling modulo, floordiv, or ceildiv
/// operations when the second operand simplifies to a symbol and the first
/// operand is divisible by that symbol. It can be applied to any semi-affine
/// expression. Returned expression can either be a semi-affine or pure affine
/// expression.
static AffineExpr simplifySemiAffine(AffineExpr expr) {
switch (expr.getKind()) {
case AffineExprKind::Constant:
case AffineExprKind::DimId:
case AffineExprKind::SymbolId:
return expr;
case AffineExprKind::Add:
case AffineExprKind::Mul: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
return getAffineBinaryOpExpr(expr.getKind(),
simplifySemiAffine(binaryExpr.getLHS()),
simplifySemiAffine(binaryExpr.getRHS()));
}
// Check if the simplification of the second operand is a symbol, and the
// first operand is divisible by it. If the operation is a modulo, a constant
// zero expression is returned. In the case of floordiv and ceildiv, the
// symbol from the simplification of the second operand divides the first
// operand. Otherwise, simplification is not possible.
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv:
case AffineExprKind::Mod: {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
AffineExpr sLHS = simplifySemiAffine(binaryExpr.getLHS());
AffineExpr sRHS = simplifySemiAffine(binaryExpr.getRHS());
AffineSymbolExpr symbolExpr =
simplifySemiAffine(binaryExpr.getRHS()).dyn_cast<AffineSymbolExpr>();
if (!symbolExpr)
return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS);
unsigned symbolPos = symbolExpr.getPosition();
if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind()))
return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS);
if (expr.getKind() == AffineExprKind::Mod)
return getAffineConstantExpr(0, expr.getContext());
return symbolicDivide(sLHS, symbolPos, expr.getKind());
}
}
llvm_unreachable("Unknown AffineExpr");
}
static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position,
MLIRContext *context) {
auto assignCtx = [context](AffineDimExprStorage *storage) {
storage->context = context;
};
StorageUniquer &uniquer = context->getAffineUniquer();
return uniquer.get<AffineDimExprStorage>(
assignCtx, static_cast<unsigned>(kind), position);
}
AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
return getAffineDimOrSymbol(AffineExprKind::DimId, position, context);
}
AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr)
: AffineExpr(ptr) {}
unsigned AffineSymbolExpr::getPosition() const {
return static_cast<ImplType *>(expr)->position;
}
AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context);
;
}
AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr)
: AffineExpr(ptr) {}
int64_t AffineConstantExpr::getValue() const {
return static_cast<ImplType *>(expr)->constant;
}
bool AffineExpr::operator==(int64_t v) const {
return *this == getAffineConstantExpr(v, getContext());
}
AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
auto assignCtx = [context](AffineConstantExprStorage *storage) {
storage->context = context;
};
StorageUniquer &uniquer = context->getAffineUniquer();
return uniquer.get<AffineConstantExprStorage>(assignCtx, constant);
}
/// Simplify add expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
// Fold if both LHS, RHS are a constant.
if (lhsConst && rhsConst)
return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(),
lhs.getContext());
// Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
// If only one of them is a symbolic expressions, make it the RHS.
if (lhs.isa<AffineConstantExpr>() ||
(lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
return rhs + lhs;
}
// At this point, if there was a constant, it would be on the right.
// Addition with a zero is a noop, return the other input.
if (rhsConst) {
if (rhsConst.getValue() == 0)
return lhs;
}
// Fold successive additions like (d0 + 2) + 3 into d0 + 5.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
}
// Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr".
// c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their
// respective multiplicands.
Optional<int64_t> rLhsConst, rRhsConst;
AffineExpr firstExpr, secondExpr;
AffineConstantExpr rLhsConstExpr;
auto lBinOpExpr = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul &&
(rLhsConstExpr = lBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) {
rLhsConst = rLhsConstExpr.getValue();
firstExpr = lBinOpExpr.getLHS();
} else {
rLhsConst = 1;
firstExpr = lhs;
}
auto rBinOpExpr = rhs.dyn_cast<AffineBinaryOpExpr>();
AffineConstantExpr rRhsConstExpr;
if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul &&
(rRhsConstExpr = rBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) {
rRhsConst = rRhsConstExpr.getValue();
secondExpr = rBinOpExpr.getLHS();
} else {
rRhsConst = 1;
secondExpr = rhs;
}
if (rLhsConst && rRhsConst && firstExpr == secondExpr)
return getAffineBinaryOpExpr(
AffineExprKind::Mul, firstExpr,
getAffineConstantExpr(rLhsConst.getValue() + rRhsConst.getValue(),
lhs.getContext()));
// When doing successive additions, bring constant to the right: turn (d0 + 2)
// + d1 into (d0 + d1) + 2.
if (lBin && lBin.getKind() == AffineExprKind::Add) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
return lBin.getLHS() + rhs + lrhs;
}
}
// Detect and transform "expr - c * (expr floordiv c)" to "expr mod c". This
// leads to a much more efficient form when 'c' is a power of two, and in
// general a more compact and readable form.
// Process '(expr floordiv c) * (-c)'.
if (!rBinOpExpr)
return nullptr;
auto lrhs = rBinOpExpr.getLHS();
auto rrhs = rBinOpExpr.getRHS();
// Process lrhs, which is 'expr floordiv c'.
AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>();
if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv)
return nullptr;
auto llrhs = lrBinOpExpr.getLHS();
auto rlrhs = lrBinOpExpr.getRHS();
if (lhs == llrhs && rlrhs == -rrhs) {
return lhs % rlrhs;
}
return nullptr;
}
AffineExpr AffineExpr::operator+(int64_t v) const {
return *this + getAffineConstantExpr(v, getContext());
}
AffineExpr AffineExpr::operator+(AffineExpr other) const {
if (auto simplified = simplifyAdd(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Add), *this, other);
}
/// Simplify a multiply expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
if (lhsConst && rhsConst)
return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(),
lhs.getContext());
assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant());
// Canonicalize the mul expression so that the constant/symbolic term is the
// RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
// constant. (Note that a constant is trivially symbolic).
if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) {
// At least one of them has to be symbolic.
return rhs * lhs;
}
// At this point, if there was a constant, it would be on the right.
// Multiplication with a one is a noop, return the other input.
if (rhsConst) {
if (rhsConst.getValue() == 1)
return lhs;
// Multiplication with zero.
if (rhsConst.getValue() == 0)
return rhsConst;
}
// Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
}
// When doing successive multiplication, bring constant to the right: turn (d0
// * 2) * d1 into (d0 * d1) * 2.
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
return (lBin.getLHS() * rhs) * lrhs;
}
}
return nullptr;
}
AffineExpr AffineExpr::operator*(int64_t v) const {
return *this * getAffineConstantExpr(v, getContext());
}
AffineExpr AffineExpr::operator*(AffineExpr other) const {
if (auto simplified = simplifyMul(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mul), *this, other);
}
// Unary minus, delegate to operator*.
AffineExpr AffineExpr::operator-() const {
return *this * getAffineConstantExpr(-1, getContext());
}
// Delegate to operator+.
AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); }
AffineExpr AffineExpr::operator-(AffineExpr other) const {
return *this + (-other);
}
static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
// mlir floordiv by zero or negative numbers is undefined and preserved as is.
if (!rhsConst || rhsConst.getValue() < 1)
return nullptr;
if (lhsConst)
return getAffineConstantExpr(
floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
// Fold floordiv of a multiply with a constant that is a multiple of the
// divisor. Eg: (i * 128) floordiv 64 = i * 2.
if (rhsConst == 1)
return lhs;
// Simplify (expr * const) floordiv divConst when expr is known to be a
// multiple of divConst.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
// rhsConst is known to be a positive constant.
if (lrhs.getValue() % rhsConst.getValue() == 0)
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
}
}
// Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is
// known to be a multiple of divConst.
if (lBin && lBin.getKind() == AffineExprKind::Add) {
int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
// rhsConst is known to be a positive constant.
if (llhsDiv % rhsConst.getValue() == 0 ||
lrhsDiv % rhsConst.getValue() == 0)
return lBin.getLHS().floorDiv(rhsConst.getValue()) +
lBin.getRHS().floorDiv(rhsConst.getValue());
}
return nullptr;
}
AffineExpr AffineExpr::floorDiv(uint64_t v) const {
return floorDiv(getAffineConstantExpr(v, getContext()));
}
AffineExpr AffineExpr::floorDiv(AffineExpr other) const {
if (auto simplified = simplifyFloorDiv(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::FloorDiv), *this,
other);
}
static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
if (!rhsConst || rhsConst.getValue() < 1)
return nullptr;
if (lhsConst)
return getAffineConstantExpr(
ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
// Fold ceildiv of a multiply with a constant that is a multiple of the
// divisor. Eg: (i * 128) ceildiv 64 = i * 2.
if (rhsConst.getValue() == 1)
return lhs;
// Simplify (expr * const) ceildiv divConst when const is known to be a
// multiple of divConst.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
// rhsConst is known to be a positive constant.
if (lrhs.getValue() % rhsConst.getValue() == 0)
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
}
}
return nullptr;
}
AffineExpr AffineExpr::ceilDiv(uint64_t v) const {
return ceilDiv(getAffineConstantExpr(v, getContext()));
}
AffineExpr AffineExpr::ceilDiv(AffineExpr other) const {
if (auto simplified = simplifyCeilDiv(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::CeilDiv), *this,
other);
}
static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
// mod w.r.t zero or negative numbers is undefined and preserved as is.
if (!rhsConst || rhsConst.getValue() < 1)
return nullptr;
if (lhsConst)
return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
lhs.getContext());
// Fold modulo of an expression that is known to be a multiple of a constant
// to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
// mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
return getAffineConstantExpr(0, lhs.getContext());
// Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is
// known to be a multiple of divConst.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && lBin.getKind() == AffineExprKind::Add) {
int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
// rhsConst is known to be a positive constant.
if (llhsDiv % rhsConst.getValue() == 0)
return lBin.getRHS() % rhsConst.getValue();
if (lrhsDiv % rhsConst.getValue() == 0)
return lBin.getLHS() % rhsConst.getValue();
}
return nullptr;
}
AffineExpr AffineExpr::operator%(uint64_t v) const {
return *this % getAffineConstantExpr(v, getContext());
}
AffineExpr AffineExpr::operator%(AffineExpr other) const {
if (auto simplified = simplifyMod(*this, other))
return simplified;
StorageUniquer &uniquer = getContext()->getAffineUniquer();
return uniquer.get<AffineBinaryOpExprStorage>(
/*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mod), *this, other);
}
AffineExpr AffineExpr::compose(AffineMap map) const {
SmallVector<AffineExpr, 8> dimReplacements(map.getResults().begin(),
map.getResults().end());
return replaceDimsAndSymbols(dimReplacements, {});
}
raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) {
expr.print(os);
return os;
}
/// Constructs an affine expression from a flat ArrayRef. If there are local
/// identifiers (neither dimensional nor symbolic) that appear in the sum of
/// products expression, `localExprs` is expected to have the AffineExpr
/// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be
/// in the format [dims, symbols, locals, constant term].
AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs,
unsigned numDims,
unsigned numSymbols,
ArrayRef<AffineExpr> localExprs,
MLIRContext *context) {
// Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1.
assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() &&
"unexpected number of local expressions");
auto expr = getAffineConstantExpr(0, context);
// Dimensions and symbols.
for (unsigned j = 0; j < numDims + numSymbols; j++) {
if (flatExprs[j] == 0)
continue;
auto id = j < numDims ? getAffineDimExpr(j, context)
: getAffineSymbolExpr(j - numDims, context);
expr = expr + id * flatExprs[j];
}
// Local identifiers.
for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e;
j++) {
if (flatExprs[j] == 0)
continue;
auto term = localExprs[j - numDims - numSymbols] * flatExprs[j];
expr = expr + term;
}
// Constant term.
int64_t constTerm = flatExprs[flatExprs.size() - 1];
if (constTerm != 0)
expr = expr + constTerm;
return expr;
}
SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims,
unsigned numSymbols)
: numDims(numDims), numSymbols(numSymbols), numLocals(0) {
operandExprStack.reserve(8);
}
void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
assert(operandExprStack.size() >= 2);
// This is a pure affine expr; the RHS will be a constant.
assert(expr.getRHS().isa<AffineConstantExpr>());
// Get the RHS constant.
auto rhsConst = operandExprStack.back()[getConstantIndex()];
operandExprStack.pop_back();
// Update the LHS in place instead of pop and push.
auto &lhs = operandExprStack.back();
for (unsigned i = 0, e = lhs.size(); i < e; i++) {
lhs[i] *= rhsConst;
}
}
void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
assert(operandExprStack.size() >= 2);
const auto &rhs = operandExprStack.back();
auto &lhs = operandExprStack[operandExprStack.size() - 2];
assert(lhs.size() == rhs.size());
// Update the LHS in place.
for (unsigned i = 0, e = rhs.size(); i < e; i++) {
lhs[i] += rhs[i];
}
// Pop off the RHS.
operandExprStack.pop_back();
}
//
// t = expr mod c <=> t = expr - c*q and c*q <= expr <= c*q + c - 1
//
// A mod expression "expr mod c" is thus flattened by introducing a new local
// variable q (= expr floordiv c), such that expr mod c is replaced with
// 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst.
void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
assert(operandExprStack.size() >= 2);
// This is a pure affine expr; the RHS will be a constant.
assert(expr.getRHS().isa<AffineConstantExpr>());
auto rhsConst = operandExprStack.back()[getConstantIndex()];
operandExprStack.pop_back();
auto &lhs = operandExprStack.back();
// TODO: handle modulo by zero case when this issue is fixed
// at the other places in the IR.
assert(rhsConst > 0 && "RHS constant has to be positive");
// Check if the LHS expression is a multiple of modulo factor.
unsigned i, e;
for (i = 0, e = lhs.size(); i < e; i++)
if (lhs[i] % rhsConst != 0)
break;
// If yes, modulo expression here simplifies to zero.
if (i == lhs.size()) {
std::fill(lhs.begin(), lhs.end(), 0);
return;
}
// Add a local variable for the quotient, i.e., expr % c is replaced by
// (expr - q * c) where q = expr floordiv c. Do this while canceling out
// the GCD of expr and c.
SmallVector<int64_t, 8> floorDividend(lhs);
uint64_t gcd = rhsConst;
for (unsigned i = 0, e = lhs.size(); i < e; i++)
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
// Simplify the numerator and the denominator.
if (gcd != 1) {
for (unsigned i = 0, e = floorDividend.size(); i < e; i++)
floorDividend[i] = floorDividend[i] / static_cast<int64_t>(gcd);
}
int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd);
// Construct the AffineExpr form of the floordiv to store in localExprs.
MLIRContext *context = expr.getContext();
auto dividendExpr = getAffineExprFromFlatForm(
floorDividend, numDims, numSymbols, localExprs, context);
auto divisorExpr = getAffineConstantExpr(floorDivisor, context);
auto floorDivExpr = dividendExpr.floorDiv(divisorExpr);
int loc;
if ((loc = findLocalId(floorDivExpr)) == -1) {
addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr);
// Set result at top of stack to "lhs - rhsConst * q".
lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst;
} else {
// Reuse the existing local id.
lhs[getLocalVarStartIndex() + loc] = -rhsConst;
}
}
void SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) {
visitDivExpr(expr, /*isCeil=*/true);
}
void SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) {
visitDivExpr(expr, /*isCeil=*/false);
}
void SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
assert(expr.getPosition() < numDims && "Inconsistent number of dims");
eq[getDimStartIndex() + expr.getPosition()] = 1;
}
void SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
assert(expr.getPosition() < numSymbols && "inconsistent number of symbols");
eq[getSymbolStartIndex() + expr.getPosition()] = 1;
}
void SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getConstantIndex()] = expr.getValue();
}
// t = expr floordiv c <=> t = q, c * q <= expr <= c * q + c - 1
// A floordiv is thus flattened by introducing a new local variable q, and
// replacing that expression with 'q' while adding the constraints
// c * q <= expr <= c * q + c - 1 to localVarCst (done by
// FlatAffineConstraints::addLocalFloorDiv).
//
// A ceildiv is similarly flattened:
// t = expr ceildiv c <=> t = (expr + c - 1) floordiv c
void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
bool isCeil) {
assert(operandExprStack.size() >= 2);
assert(expr.getRHS().isa<AffineConstantExpr>());
// This is a pure affine expr; the RHS is a positive constant.
int64_t rhsConst = operandExprStack.back()[getConstantIndex()];
// TODO: handle division by zero at the same time the issue is
// fixed at other places.
assert(rhsConst > 0 && "RHS constant has to be positive");
operandExprStack.pop_back();
auto &lhs = operandExprStack.back();
// Simplify the floordiv, ceildiv if possible by canceling out the greatest
// common divisors of the numerator and denominator.
uint64_t gcd = std::abs(rhsConst);
for (unsigned i = 0, e = lhs.size(); i < e; i++)
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
// Simplify the numerator and the denominator.
if (gcd != 1) {
for (unsigned i = 0, e = lhs.size(); i < e; i++)
lhs[i] = lhs[i] / static_cast<int64_t>(gcd);
}
int64_t divisor = rhsConst / static_cast<int64_t>(gcd);
// If the divisor becomes 1, the updated LHS is the result. (The
// divisor can't be negative since rhsConst is positive).
if (divisor == 1)
return;
// If the divisor cannot be simplified to one, we will have to retain
// the ceil/floor expr (simplified up until here). Add an existential
// quantifier to express its result, i.e., expr1 div expr2 is replaced
// by a new identifier, q.
MLIRContext *context = expr.getContext();
auto a =
getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context);
auto b = getAffineConstantExpr(divisor, context);
int loc;
auto divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b);
if ((loc = findLocalId(divExpr)) == -1) {
if (!isCeil) {
SmallVector<int64_t, 8> dividend(lhs);
addLocalFloorDivId(dividend, divisor, divExpr);
} else {
// lhs ceildiv c <=> (lhs + c - 1) floordiv c
SmallVector<int64_t, 8> dividend(lhs);
dividend.back() += divisor - 1;
addLocalFloorDivId(dividend, divisor, divExpr);
}
}
// Set the expression on stack to the local var introduced to capture the
// result of the division (floor or ceil).
std::fill(lhs.begin(), lhs.end(), 0);
if (loc == -1)
lhs[getLocalVarStartIndex() + numLocals - 1] = 1;
else
lhs[getLocalVarStartIndex() + loc] = 1;
}
// Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
// The local identifier added is always a floordiv of a pure add/mul affine
// function of other identifiers, coefficients of which are specified in
// dividend and with respect to a positive constant divisor. localExpr is the
// simplified tree expression (AffineExpr) corresponding to the quantifier.
void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend,
int64_t divisor,
AffineExpr localExpr) {
assert(divisor > 0 && "positive constant divisor expected");
for (auto &subExpr : operandExprStack)
subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0);
localExprs.push_back(localExpr);
numLocals++;
// dividend and divisor are not used here; an override of this method uses it.
}
int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) {
SmallVectorImpl<AffineExpr>::iterator it;
if ((it = llvm::find(localExprs, localExpr)) == localExprs.end())
return -1;
return it - localExprs.begin();
}
/// Simplify the affine expression by flattening it and reconstructing it.
AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims,
unsigned numSymbols) {
// Simplify semi-affine expressions separately.
if (!expr.isPureAffine())
expr = simplifySemiAffine(expr);
if (!expr.isPureAffine())
return expr;
SimpleAffineExprFlattener flattener(numDims, numSymbols);
flattener.walkPostOrder(expr);
ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
auto simplifiedExpr =
getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
flattener.localExprs, expr.getContext());
flattener.operandExprStack.pop_back();
assert(flattener.operandExprStack.empty());
return simplifiedExpr;
}