AffineExpr.cpp 41.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
//===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/AffineExpr.h"
#include "AffineExprDetail.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/TypeID.h"
#include "llvm/ADT/STLExtras.h"

using namespace mlir;
using namespace mlir::detail;

MLIRContext *AffineExpr::getContext() const { return expr->context; }

AffineExprKind AffineExpr::getKind() const { return expr->kind; }

/// Walk all of the AffineExprs in this subgraph in postorder.
void AffineExpr::walk(std::function<void(AffineExpr)> callback) const {
  struct AffineExprWalker : public AffineExprVisitor<AffineExprWalker> {
    std::function<void(AffineExpr)> callback;

    AffineExprWalker(std::function<void(AffineExpr)> callback)
        : callback(callback) {}

    void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { callback(expr); }
    void visitConstantExpr(AffineConstantExpr expr) { callback(expr); }
    void visitDimExpr(AffineDimExpr expr) { callback(expr); }
    void visitSymbolExpr(AffineSymbolExpr expr) { callback(expr); }
  };

  AffineExprWalker(callback).walkPostOrder(*this);
}

// Dispatch affine expression construction based on kind.
AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs,
                                       AffineExpr rhs) {
  if (kind == AffineExprKind::Add)
    return lhs + rhs;
  if (kind == AffineExprKind::Mul)
    return lhs * rhs;
  if (kind == AffineExprKind::FloorDiv)
    return lhs.floorDiv(rhs);
  if (kind == AffineExprKind::CeilDiv)
    return lhs.ceilDiv(rhs);
  if (kind == AffineExprKind::Mod)
    return lhs % rhs;

  llvm_unreachable("unknown binary operation on affine expressions");
}

/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) and returns the modified expression tree.
AffineExpr
AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
                                  ArrayRef<AffineExpr> symReplacements) const {
  switch (getKind()) {
  case AffineExprKind::Constant:
    return *this;
  case AffineExprKind::DimId: {
    unsigned dimId = cast<AffineDimExpr>().getPosition();
    if (dimId >= dimReplacements.size())
      return *this;
    return dimReplacements[dimId];
  }
  case AffineExprKind::SymbolId: {
    unsigned symId = cast<AffineSymbolExpr>().getPosition();
    if (symId >= symReplacements.size())
      return *this;
    return symReplacements[symId];
  }
  case AffineExprKind::Add:
  case AffineExprKind::Mul:
  case AffineExprKind::FloorDiv:
  case AffineExprKind::CeilDiv:
  case AffineExprKind::Mod:
    auto binOp = cast<AffineBinaryOpExpr>();
    auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
    auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
    auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements);
    if (newLHS == lhs && newRHS == rhs)
      return *this;
    return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
  }
  llvm_unreachable("Unknown AffineExpr");
}

/// Replace symbols[0 .. numDims - 1] by symbols[shift .. shift + numDims - 1].
AffineExpr AffineExpr::shiftSymbols(unsigned numSymbols, unsigned shift) const {
  SmallVector<AffineExpr, 4> symbols;
  for (unsigned idx = 0; idx < numSymbols; ++idx)
    symbols.push_back(getAffineSymbolExpr(idx + shift, getContext()));
  return replaceDimsAndSymbols({}, symbols);
}

/// Sparse replace method. Return the modified expression tree.
AffineExpr
AffineExpr::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
  auto it = map.find(*this);
  if (it != map.end())
    return it->second;
  switch (getKind()) {
  default:
    return *this;
  case AffineExprKind::Add:
  case AffineExprKind::Mul:
  case AffineExprKind::FloorDiv:
  case AffineExprKind::CeilDiv:
  case AffineExprKind::Mod:
    auto binOp = cast<AffineBinaryOpExpr>();
    auto lhs = binOp.getLHS(), rhs = binOp.getRHS();
    auto newLHS = lhs.replace(map);
    auto newRHS = rhs.replace(map);
    if (newLHS == lhs && newRHS == rhs)
      return *this;
    return getAffineBinaryOpExpr(getKind(), newLHS, newRHS);
  }
  llvm_unreachable("Unknown AffineExpr");
}

/// Sparse replace method. Return the modified expression tree.
AffineExpr AffineExpr::replace(AffineExpr expr, AffineExpr replacement) const {
  DenseMap<AffineExpr, AffineExpr> map;
  map.insert(std::make_pair(expr, replacement));
  return replace(map);
}
/// Returns true if this expression is made out of only symbols and
/// constants (no dimensional identifiers).
bool AffineExpr::isSymbolicOrConstant() const {
  switch (getKind()) {
  case AffineExprKind::Constant:
    return true;
  case AffineExprKind::DimId:
    return false;
  case AffineExprKind::SymbolId:
    return true;

  case AffineExprKind::Add:
  case AffineExprKind::Mul:
  case AffineExprKind::FloorDiv:
  case AffineExprKind::CeilDiv:
  case AffineExprKind::Mod: {
    auto expr = this->cast<AffineBinaryOpExpr>();
    return expr.getLHS().isSymbolicOrConstant() &&
           expr.getRHS().isSymbolicOrConstant();
  }
  }
  llvm_unreachable("Unknown AffineExpr");
}

/// Returns true if this is a pure affine expression, i.e., multiplication,
/// floordiv, ceildiv, and mod is only allowed w.r.t constants.
bool AffineExpr::isPureAffine() const {
  switch (getKind()) {
  case AffineExprKind::SymbolId:
  case AffineExprKind::DimId:
  case AffineExprKind::Constant:
    return true;
  case AffineExprKind::Add: {
    auto op = cast<AffineBinaryOpExpr>();
    return op.getLHS().isPureAffine() && op.getRHS().isPureAffine();
  }

  case AffineExprKind::Mul: {
    // TODO: Canonicalize the constants in binary operators to the RHS when
    // possible, allowing this to merge into the next case.
    auto op = cast<AffineBinaryOpExpr>();
    return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() &&
           (op.getLHS().template isa<AffineConstantExpr>() ||
            op.getRHS().template isa<AffineConstantExpr>());
  }
  case AffineExprKind::FloorDiv:
  case AffineExprKind::CeilDiv:
  case AffineExprKind::Mod: {
    auto op = cast<AffineBinaryOpExpr>();
    return op.getLHS().isPureAffine() &&
           op.getRHS().template isa<AffineConstantExpr>();
  }
  }
  llvm_unreachable("Unknown AffineExpr");
}

// Returns the greatest known integral divisor of this affine expression.
int64_t AffineExpr::getLargestKnownDivisor() const {
  AffineBinaryOpExpr binExpr(nullptr);
  switch (getKind()) {
  case AffineExprKind::SymbolId:
    LLVM_FALLTHROUGH;
  case AffineExprKind::DimId:
    return 1;
  case AffineExprKind::Constant:
    return std::abs(this->cast<AffineConstantExpr>().getValue());
  case AffineExprKind::Mul: {
    binExpr = this->cast<AffineBinaryOpExpr>();
    return binExpr.getLHS().getLargestKnownDivisor() *
           binExpr.getRHS().getLargestKnownDivisor();
  }
  case AffineExprKind::Add:
    LLVM_FALLTHROUGH;
  case AffineExprKind::FloorDiv:
  case AffineExprKind::CeilDiv:
  case AffineExprKind::Mod: {
    binExpr = cast<AffineBinaryOpExpr>();
    return llvm::GreatestCommonDivisor64(
        binExpr.getLHS().getLargestKnownDivisor(),
        binExpr.getRHS().getLargestKnownDivisor());
  }
  }
  llvm_unreachable("Unknown AffineExpr");
}

bool AffineExpr::isMultipleOf(int64_t factor) const {
  AffineBinaryOpExpr binExpr(nullptr);
  uint64_t l, u;
  switch (getKind()) {
  case AffineExprKind::SymbolId:
    LLVM_FALLTHROUGH;
  case AffineExprKind::DimId:
    return factor * factor == 1;
  case AffineExprKind::Constant:
    return cast<AffineConstantExpr>().getValue() % factor == 0;
  case AffineExprKind::Mul: {
    binExpr = cast<AffineBinaryOpExpr>();
    // It's probably not worth optimizing this further (to not traverse the
    // whole sub-tree under - it that would require a version of isMultipleOf
    // that on a 'false' return also returns the largest known divisor).
    return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 ||
           (u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 ||
           (l * u) % factor == 0;
  }
  case AffineExprKind::Add:
  case AffineExprKind::FloorDiv:
  case AffineExprKind::CeilDiv:
  case AffineExprKind::Mod: {
    binExpr = cast<AffineBinaryOpExpr>();
    return llvm::GreatestCommonDivisor64(
               binExpr.getLHS().getLargestKnownDivisor(),
               binExpr.getRHS().getLargestKnownDivisor()) %
               factor ==
           0;
  }
  }
  llvm_unreachable("Unknown AffineExpr");
}

bool AffineExpr::isFunctionOfDim(unsigned position) const {
  if (getKind() == AffineExprKind::DimId) {
    return *this == mlir::getAffineDimExpr(position, getContext());
  }
  if (auto expr = this->dyn_cast<AffineBinaryOpExpr>()) {
    return expr.getLHS().isFunctionOfDim(position) ||
           expr.getRHS().isFunctionOfDim(position);
  }
  return false;
}

AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr)
    : AffineExpr(ptr) {}
AffineExpr AffineBinaryOpExpr::getLHS() const {
  return static_cast<ImplType *>(expr)->lhs;
}
AffineExpr AffineBinaryOpExpr::getRHS() const {
  return static_cast<ImplType *>(expr)->rhs;
}

AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {}
unsigned AffineDimExpr::getPosition() const {
  return static_cast<ImplType *>(expr)->position;
}

/// Returns true if the expression is divisible by the given symbol with
/// position `symbolPos`. The argument `opKind` specifies here what kind of
/// division or mod operation called this division. It helps in implementing the
/// commutative property of the floordiv and ceildiv operations. If the argument
///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv
/// operation, then the commutative property can be used otherwise, the floordiv
/// operation is not divisible. The same argument holds for ceildiv operation.
static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
                                AffineExprKind opKind) {
  // The argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
  assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
          opKind == AffineExprKind::CeilDiv) &&
         "unexpected opKind");
  switch (expr.getKind()) {
  case AffineExprKind::Constant:
    if (expr.cast<AffineConstantExpr>().getValue())
      return false;
    return true;
  case AffineExprKind::DimId:
    return false;
  case AffineExprKind::SymbolId:
    return (expr.cast<AffineSymbolExpr>().getPosition() == symbolPos);
  // Checks divisibility by the given symbol for both operands.
  case AffineExprKind::Add: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) &&
           isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
  }
  // Checks divisibility by the given symbol for both operands. Consider the
  // expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`,
  // this is a division by s1 and both the operands of modulo are divisible by
  // s1 but it is not divisible by s1 always. The third argument is
  // `AffineExprKind::Mod` for this reason.
  case AffineExprKind::Mod: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos,
                               AffineExprKind::Mod) &&
           isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos,
                               AffineExprKind::Mod);
  }
  // Checks if any of the operand divisible by the given symbol.
  case AffineExprKind::Mul: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) ||
           isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
  }
  // Floordiv and ceildiv are divisible by the given symbol when the first
  // operand is divisible, and the affine expression kind of the argument expr
  // is same as the argument `opKind`. This can be inferred from commutative
  // property of floordiv and ceildiv operations and are as follow:
  // (exp1 floordiv exp2) floordiv exp3 = (exp1 floordiv exp3) floordiv exp2
  // (exp1 ceildiv exp2) ceildiv exp3 = (exp1 ceildiv exp3) ceildiv expr2
  // It will fail if operations are not same. For example:
  // (exps1 ceildiv exp2) floordiv exp3 can not be simplified.
  case AffineExprKind::FloorDiv:
  case AffineExprKind::CeilDiv: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    if (opKind != expr.getKind())
      return false;
    return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind());
  }
  }
  llvm_unreachable("Unknown AffineExpr");
}

/// Divides the given expression by the given symbol at position `symbolPos`. It
/// considers the divisibility condition is checked before calling itself. A
/// null expression is returned whenever the divisibility condition fails.
static AffineExpr symbolicDivide(AffineExpr expr, unsigned symbolPos,
                                 AffineExprKind opKind) {
  // THe argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
  assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
          opKind == AffineExprKind::CeilDiv) &&
         "unexpected opKind");
  switch (expr.getKind()) {
  case AffineExprKind::Constant:
    if (expr.cast<AffineConstantExpr>().getValue() != 0)
      return nullptr;
    return getAffineConstantExpr(0, expr.getContext());
  case AffineExprKind::DimId:
    return nullptr;
  case AffineExprKind::SymbolId:
    return getAffineConstantExpr(1, expr.getContext());
  // Dividing both operands by the given symbol.
  case AffineExprKind::Add: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    return getAffineBinaryOpExpr(
        expr.getKind(), symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind),
        symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind));
  }
  // Dividing both operands by the given symbol.
  case AffineExprKind::Mod: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    return getAffineBinaryOpExpr(
        expr.getKind(),
        symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()),
        symbolicDivide(binaryExpr.getRHS(), symbolPos, expr.getKind()));
  }
  // Dividing any of the operand by the given symbol.
  case AffineExprKind::Mul: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind))
      return binaryExpr.getLHS() *
             symbolicDivide(binaryExpr.getRHS(), symbolPos, opKind);
    return symbolicDivide(binaryExpr.getLHS(), symbolPos, opKind) *
           binaryExpr.getRHS();
  }
  // Dividing first operand only by the given symbol.
  case AffineExprKind::FloorDiv:
  case AffineExprKind::CeilDiv: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    return getAffineBinaryOpExpr(
        expr.getKind(),
        symbolicDivide(binaryExpr.getLHS(), symbolPos, expr.getKind()),
        binaryExpr.getRHS());
  }
  }
  llvm_unreachable("Unknown AffineExpr");
}

/// Simplify a semi-affine expression by handling modulo, floordiv, or ceildiv
/// operations when the second operand simplifies to a symbol and the first
/// operand is divisible by that symbol. It can be applied to any semi-affine
/// expression. Returned expression can either be a semi-affine or pure affine
/// expression.
static AffineExpr simplifySemiAffine(AffineExpr expr) {
  switch (expr.getKind()) {
  case AffineExprKind::Constant:
  case AffineExprKind::DimId:
  case AffineExprKind::SymbolId:
    return expr;
  case AffineExprKind::Add:
  case AffineExprKind::Mul: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    return getAffineBinaryOpExpr(expr.getKind(),
                                 simplifySemiAffine(binaryExpr.getLHS()),
                                 simplifySemiAffine(binaryExpr.getRHS()));
  }
  // Check if the simplification of the second operand is a symbol, and the
  // first operand is divisible by it. If the operation is a modulo, a constant
  // zero expression is returned. In the case of floordiv and ceildiv, the
  // symbol from the simplification of the second operand divides the first
  // operand. Otherwise, simplification is not possible.
  case AffineExprKind::FloorDiv:
  case AffineExprKind::CeilDiv:
  case AffineExprKind::Mod: {
    AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
    AffineExpr sLHS = simplifySemiAffine(binaryExpr.getLHS());
    AffineExpr sRHS = simplifySemiAffine(binaryExpr.getRHS());
    AffineSymbolExpr symbolExpr =
        simplifySemiAffine(binaryExpr.getRHS()).dyn_cast<AffineSymbolExpr>();
    if (!symbolExpr)
      return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS);
    unsigned symbolPos = symbolExpr.getPosition();
    if (!isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind()))
      return getAffineBinaryOpExpr(expr.getKind(), sLHS, sRHS);
    if (expr.getKind() == AffineExprKind::Mod)
      return getAffineConstantExpr(0, expr.getContext());
    return symbolicDivide(sLHS, symbolPos, expr.getKind());
  }
  }
  llvm_unreachable("Unknown AffineExpr");
}

static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position,
                                       MLIRContext *context) {
  auto assignCtx = [context](AffineDimExprStorage *storage) {
    storage->context = context;
  };

  StorageUniquer &uniquer = context->getAffineUniquer();
  return uniquer.get<AffineDimExprStorage>(
      assignCtx, static_cast<unsigned>(kind), position);
}

AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
  return getAffineDimOrSymbol(AffineExprKind::DimId, position, context);
}

AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr)
    : AffineExpr(ptr) {}
unsigned AffineSymbolExpr::getPosition() const {
  return static_cast<ImplType *>(expr)->position;
}

AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
  return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context);
  ;
}

AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr)
    : AffineExpr(ptr) {}
int64_t AffineConstantExpr::getValue() const {
  return static_cast<ImplType *>(expr)->constant;
}

bool AffineExpr::operator==(int64_t v) const {
  return *this == getAffineConstantExpr(v, getContext());
}

AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
  auto assignCtx = [context](AffineConstantExprStorage *storage) {
    storage->context = context;
  };

  StorageUniquer &uniquer = context->getAffineUniquer();
  return uniquer.get<AffineConstantExprStorage>(assignCtx, constant);
}

/// Simplify add expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
  // Fold if both LHS, RHS are a constant.
  if (lhsConst && rhsConst)
    return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(),
                                 lhs.getContext());

  // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
  // If only one of them is a symbolic expressions, make it the RHS.
  if (lhs.isa<AffineConstantExpr>() ||
      (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
    return rhs + lhs;
  }

  // At this point, if there was a constant, it would be on the right.

  // Addition with a zero is a noop, return the other input.
  if (rhsConst) {
    if (rhsConst.getValue() == 0)
      return lhs;
  }
  // Fold successive additions like (d0 + 2) + 3 into d0 + 5.
  auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
      return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
  }

  // Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr".
  // c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their
  // respective multiplicands.
  Optional<int64_t> rLhsConst, rRhsConst;
  AffineExpr firstExpr, secondExpr;
  AffineConstantExpr rLhsConstExpr;
  auto lBinOpExpr = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul &&
      (rLhsConstExpr = lBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) {
    rLhsConst = rLhsConstExpr.getValue();
    firstExpr = lBinOpExpr.getLHS();
  } else {
    rLhsConst = 1;
    firstExpr = lhs;
  }

  auto rBinOpExpr = rhs.dyn_cast<AffineBinaryOpExpr>();
  AffineConstantExpr rRhsConstExpr;
  if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul &&
      (rRhsConstExpr = rBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) {
    rRhsConst = rRhsConstExpr.getValue();
    secondExpr = rBinOpExpr.getLHS();
  } else {
    rRhsConst = 1;
    secondExpr = rhs;
  }

  if (rLhsConst && rRhsConst && firstExpr == secondExpr)
    return getAffineBinaryOpExpr(
        AffineExprKind::Mul, firstExpr,
        getAffineConstantExpr(rLhsConst.getValue() + rRhsConst.getValue(),
                              lhs.getContext()));

  // When doing successive additions, bring constant to the right: turn (d0 + 2)
  // + d1 into (d0 + d1) + 2.
  if (lBin && lBin.getKind() == AffineExprKind::Add) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
      return lBin.getLHS() + rhs + lrhs;
    }
  }

  // Detect and transform "expr - c * (expr floordiv c)" to "expr mod c". This
  // leads to a much more efficient form when 'c' is a power of two, and in
  // general a more compact and readable form.

  // Process '(expr floordiv c) * (-c)'.
  if (!rBinOpExpr)
    return nullptr;

  auto lrhs = rBinOpExpr.getLHS();
  auto rrhs = rBinOpExpr.getRHS();

  // Process lrhs, which is 'expr floordiv c'.
  AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>();
  if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv)
    return nullptr;

  auto llrhs = lrBinOpExpr.getLHS();
  auto rlrhs = lrBinOpExpr.getRHS();

  if (lhs == llrhs && rlrhs == -rrhs) {
    return lhs % rlrhs;
  }
  return nullptr;
}

AffineExpr AffineExpr::operator+(int64_t v) const {
  return *this + getAffineConstantExpr(v, getContext());
}
AffineExpr AffineExpr::operator+(AffineExpr other) const {
  if (auto simplified = simplifyAdd(*this, other))
    return simplified;

  StorageUniquer &uniquer = getContext()->getAffineUniquer();
  return uniquer.get<AffineBinaryOpExprStorage>(
      /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Add), *this, other);
}

/// Simplify a multiply expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();

  if (lhsConst && rhsConst)
    return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(),
                                 lhs.getContext());

  assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant());

  // Canonicalize the mul expression so that the constant/symbolic term is the
  // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
  // constant. (Note that a constant is trivially symbolic).
  if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) {
    // At least one of them has to be symbolic.
    return rhs * lhs;
  }

  // At this point, if there was a constant, it would be on the right.

  // Multiplication with a one is a noop, return the other input.
  if (rhsConst) {
    if (rhsConst.getValue() == 1)
      return lhs;
    // Multiplication with zero.
    if (rhsConst.getValue() == 0)
      return rhsConst;
  }

  // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
  auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
      return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
  }

  // When doing successive multiplication, bring constant to the right: turn (d0
  // * 2) * d1 into (d0 * d1) * 2.
  if (lBin && lBin.getKind() == AffineExprKind::Mul) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
      return (lBin.getLHS() * rhs) * lrhs;
    }
  }

  return nullptr;
}

AffineExpr AffineExpr::operator*(int64_t v) const {
  return *this * getAffineConstantExpr(v, getContext());
}
AffineExpr AffineExpr::operator*(AffineExpr other) const {
  if (auto simplified = simplifyMul(*this, other))
    return simplified;

  StorageUniquer &uniquer = getContext()->getAffineUniquer();
  return uniquer.get<AffineBinaryOpExprStorage>(
      /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mul), *this, other);
}

// Unary minus, delegate to operator*.
AffineExpr AffineExpr::operator-() const {
  return *this * getAffineConstantExpr(-1, getContext());
}

// Delegate to operator+.
AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); }
AffineExpr AffineExpr::operator-(AffineExpr other) const {
  return *this + (-other);
}

static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();

  // mlir floordiv by zero or negative numbers is undefined and preserved as is.
  if (!rhsConst || rhsConst.getValue() < 1)
    return nullptr;

  if (lhsConst)
    return getAffineConstantExpr(
        floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());

  // Fold floordiv of a multiply with a constant that is a multiple of the
  // divisor. Eg: (i * 128) floordiv 64 = i * 2.
  if (rhsConst == 1)
    return lhs;

  // Simplify (expr * const) floordiv divConst when expr is known to be a
  // multiple of divConst.
  auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBin && lBin.getKind() == AffineExprKind::Mul) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
      // rhsConst is known to be a positive constant.
      if (lrhs.getValue() % rhsConst.getValue() == 0)
        return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
    }
  }

  // Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is
  // known to be a multiple of divConst.
  if (lBin && lBin.getKind() == AffineExprKind::Add) {
    int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
    int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
    // rhsConst is known to be a positive constant.
    if (llhsDiv % rhsConst.getValue() == 0 ||
        lrhsDiv % rhsConst.getValue() == 0)
      return lBin.getLHS().floorDiv(rhsConst.getValue()) +
             lBin.getRHS().floorDiv(rhsConst.getValue());
  }

  return nullptr;
}

AffineExpr AffineExpr::floorDiv(uint64_t v) const {
  return floorDiv(getAffineConstantExpr(v, getContext()));
}
AffineExpr AffineExpr::floorDiv(AffineExpr other) const {
  if (auto simplified = simplifyFloorDiv(*this, other))
    return simplified;

  StorageUniquer &uniquer = getContext()->getAffineUniquer();
  return uniquer.get<AffineBinaryOpExprStorage>(
      /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::FloorDiv), *this,
      other);
}

static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();

  if (!rhsConst || rhsConst.getValue() < 1)
    return nullptr;

  if (lhsConst)
    return getAffineConstantExpr(
        ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());

  // Fold ceildiv of a multiply with a constant that is a multiple of the
  // divisor. Eg: (i * 128) ceildiv 64 = i * 2.
  if (rhsConst.getValue() == 1)
    return lhs;

  // Simplify (expr * const) ceildiv divConst when const is known to be a
  // multiple of divConst.
  auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBin && lBin.getKind() == AffineExprKind::Mul) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
      // rhsConst is known to be a positive constant.
      if (lrhs.getValue() % rhsConst.getValue() == 0)
        return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
    }
  }

  return nullptr;
}

AffineExpr AffineExpr::ceilDiv(uint64_t v) const {
  return ceilDiv(getAffineConstantExpr(v, getContext()));
}
AffineExpr AffineExpr::ceilDiv(AffineExpr other) const {
  if (auto simplified = simplifyCeilDiv(*this, other))
    return simplified;

  StorageUniquer &uniquer = getContext()->getAffineUniquer();
  return uniquer.get<AffineBinaryOpExprStorage>(
      /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::CeilDiv), *this,
      other);
}

static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();

  // mod w.r.t zero or negative numbers is undefined and preserved as is.
  if (!rhsConst || rhsConst.getValue() < 1)
    return nullptr;

  if (lhsConst)
    return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
                                 lhs.getContext());

  // Fold modulo of an expression that is known to be a multiple of a constant
  // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
  // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
  if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
    return getAffineConstantExpr(0, lhs.getContext());

  // Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is
  // known to be a multiple of divConst.
  auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBin && lBin.getKind() == AffineExprKind::Add) {
    int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor();
    int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor();
    // rhsConst is known to be a positive constant.
    if (llhsDiv % rhsConst.getValue() == 0)
      return lBin.getRHS() % rhsConst.getValue();
    if (lrhsDiv % rhsConst.getValue() == 0)
      return lBin.getLHS() % rhsConst.getValue();
  }

  return nullptr;
}

AffineExpr AffineExpr::operator%(uint64_t v) const {
  return *this % getAffineConstantExpr(v, getContext());
}
AffineExpr AffineExpr::operator%(AffineExpr other) const {
  if (auto simplified = simplifyMod(*this, other))
    return simplified;

  StorageUniquer &uniquer = getContext()->getAffineUniquer();
  return uniquer.get<AffineBinaryOpExprStorage>(
      /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mod), *this, other);
}

AffineExpr AffineExpr::compose(AffineMap map) const {
  SmallVector<AffineExpr, 8> dimReplacements(map.getResults().begin(),
                                             map.getResults().end());
  return replaceDimsAndSymbols(dimReplacements, {});
}
raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) {
  expr.print(os);
  return os;
}

/// Constructs an affine expression from a flat ArrayRef. If there are local
/// identifiers (neither dimensional nor symbolic) that appear in the sum of
/// products expression, `localExprs` is expected to have the AffineExpr
/// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be
/// in the format [dims, symbols, locals, constant term].
AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs,
                                           unsigned numDims,
                                           unsigned numSymbols,
                                           ArrayRef<AffineExpr> localExprs,
                                           MLIRContext *context) {
  // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1.
  assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() &&
         "unexpected number of local expressions");

  auto expr = getAffineConstantExpr(0, context);
  // Dimensions and symbols.
  for (unsigned j = 0; j < numDims + numSymbols; j++) {
    if (flatExprs[j] == 0)
      continue;
    auto id = j < numDims ? getAffineDimExpr(j, context)
                          : getAffineSymbolExpr(j - numDims, context);
    expr = expr + id * flatExprs[j];
  }

  // Local identifiers.
  for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e;
       j++) {
    if (flatExprs[j] == 0)
      continue;
    auto term = localExprs[j - numDims - numSymbols] * flatExprs[j];
    expr = expr + term;
  }

  // Constant term.
  int64_t constTerm = flatExprs[flatExprs.size() - 1];
  if (constTerm != 0)
    expr = expr + constTerm;
  return expr;
}

SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims,
                                                     unsigned numSymbols)
    : numDims(numDims), numSymbols(numSymbols), numLocals(0) {
  operandExprStack.reserve(8);
}

void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
  assert(operandExprStack.size() >= 2);
  // This is a pure affine expr; the RHS will be a constant.
  assert(expr.getRHS().isa<AffineConstantExpr>());
  // Get the RHS constant.
  auto rhsConst = operandExprStack.back()[getConstantIndex()];
  operandExprStack.pop_back();
  // Update the LHS in place instead of pop and push.
  auto &lhs = operandExprStack.back();
  for (unsigned i = 0, e = lhs.size(); i < e; i++) {
    lhs[i] *= rhsConst;
  }
}

void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
  assert(operandExprStack.size() >= 2);
  const auto &rhs = operandExprStack.back();
  auto &lhs = operandExprStack[operandExprStack.size() - 2];
  assert(lhs.size() == rhs.size());
  // Update the LHS in place.
  for (unsigned i = 0, e = rhs.size(); i < e; i++) {
    lhs[i] += rhs[i];
  }
  // Pop off the RHS.
  operandExprStack.pop_back();
}

//
// t = expr mod c   <=>  t = expr - c*q and c*q <= expr <= c*q + c - 1
//
// A mod expression "expr mod c" is thus flattened by introducing a new local
// variable q (= expr floordiv c), such that expr mod c is replaced with
// 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst.
void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
  assert(operandExprStack.size() >= 2);
  // This is a pure affine expr; the RHS will be a constant.
  assert(expr.getRHS().isa<AffineConstantExpr>());
  auto rhsConst = operandExprStack.back()[getConstantIndex()];
  operandExprStack.pop_back();
  auto &lhs = operandExprStack.back();
  // TODO: handle modulo by zero case when this issue is fixed
  // at the other places in the IR.
  assert(rhsConst > 0 && "RHS constant has to be positive");

  // Check if the LHS expression is a multiple of modulo factor.
  unsigned i, e;
  for (i = 0, e = lhs.size(); i < e; i++)
    if (lhs[i] % rhsConst != 0)
      break;
  // If yes, modulo expression here simplifies to zero.
  if (i == lhs.size()) {
    std::fill(lhs.begin(), lhs.end(), 0);
    return;
  }

  // Add a local variable for the quotient, i.e., expr % c is replaced by
  // (expr - q * c) where q = expr floordiv c. Do this while canceling out
  // the GCD of expr and c.
  SmallVector<int64_t, 8> floorDividend(lhs);
  uint64_t gcd = rhsConst;
  for (unsigned i = 0, e = lhs.size(); i < e; i++)
    gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
  // Simplify the numerator and the denominator.
  if (gcd != 1) {
    for (unsigned i = 0, e = floorDividend.size(); i < e; i++)
      floorDividend[i] = floorDividend[i] / static_cast<int64_t>(gcd);
  }
  int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd);

  // Construct the AffineExpr form of the floordiv to store in localExprs.
  MLIRContext *context = expr.getContext();
  auto dividendExpr = getAffineExprFromFlatForm(
      floorDividend, numDims, numSymbols, localExprs, context);
  auto divisorExpr = getAffineConstantExpr(floorDivisor, context);
  auto floorDivExpr = dividendExpr.floorDiv(divisorExpr);
  int loc;
  if ((loc = findLocalId(floorDivExpr)) == -1) {
    addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr);
    // Set result at top of stack to "lhs - rhsConst * q".
    lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst;
  } else {
    // Reuse the existing local id.
    lhs[getLocalVarStartIndex() + loc] = -rhsConst;
  }
}

void SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) {
  visitDivExpr(expr, /*isCeil=*/true);
}
void SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) {
  visitDivExpr(expr, /*isCeil=*/false);
}

void SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) {
  operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
  auto &eq = operandExprStack.back();
  assert(expr.getPosition() < numDims && "Inconsistent number of dims");
  eq[getDimStartIndex() + expr.getPosition()] = 1;
}

void SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) {
  operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
  auto &eq = operandExprStack.back();
  assert(expr.getPosition() < numSymbols && "inconsistent number of symbols");
  eq[getSymbolStartIndex() + expr.getPosition()] = 1;
}

void SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) {
  operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
  auto &eq = operandExprStack.back();
  eq[getConstantIndex()] = expr.getValue();
}

// t = expr floordiv c   <=> t = q, c * q <= expr <= c * q + c - 1
// A floordiv is thus flattened by introducing a new local variable q, and
// replacing that expression with 'q' while adding the constraints
// c * q <= expr <= c * q + c - 1 to localVarCst (done by
// FlatAffineConstraints::addLocalFloorDiv).
//
// A ceildiv is similarly flattened:
// t = expr ceildiv c   <=> t =  (expr + c - 1) floordiv c
void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
                                             bool isCeil) {
  assert(operandExprStack.size() >= 2);
  assert(expr.getRHS().isa<AffineConstantExpr>());

  // This is a pure affine expr; the RHS is a positive constant.
  int64_t rhsConst = operandExprStack.back()[getConstantIndex()];
  // TODO: handle division by zero at the same time the issue is
  // fixed at other places.
  assert(rhsConst > 0 && "RHS constant has to be positive");
  operandExprStack.pop_back();
  auto &lhs = operandExprStack.back();

  // Simplify the floordiv, ceildiv if possible by canceling out the greatest
  // common divisors of the numerator and denominator.
  uint64_t gcd = std::abs(rhsConst);
  for (unsigned i = 0, e = lhs.size(); i < e; i++)
    gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
  // Simplify the numerator and the denominator.
  if (gcd != 1) {
    for (unsigned i = 0, e = lhs.size(); i < e; i++)
      lhs[i] = lhs[i] / static_cast<int64_t>(gcd);
  }
  int64_t divisor = rhsConst / static_cast<int64_t>(gcd);
  // If the divisor becomes 1, the updated LHS is the result. (The
  // divisor can't be negative since rhsConst is positive).
  if (divisor == 1)
    return;

  // If the divisor cannot be simplified to one, we will have to retain
  // the ceil/floor expr (simplified up until here). Add an existential
  // quantifier to express its result, i.e., expr1 div expr2 is replaced
  // by a new identifier, q.
  MLIRContext *context = expr.getContext();
  auto a =
      getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context);
  auto b = getAffineConstantExpr(divisor, context);

  int loc;
  auto divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b);
  if ((loc = findLocalId(divExpr)) == -1) {
    if (!isCeil) {
      SmallVector<int64_t, 8> dividend(lhs);
      addLocalFloorDivId(dividend, divisor, divExpr);
    } else {
      // lhs ceildiv c <=>  (lhs + c - 1) floordiv c
      SmallVector<int64_t, 8> dividend(lhs);
      dividend.back() += divisor - 1;
      addLocalFloorDivId(dividend, divisor, divExpr);
    }
  }
  // Set the expression on stack to the local var introduced to capture the
  // result of the division (floor or ceil).
  std::fill(lhs.begin(), lhs.end(), 0);
  if (loc == -1)
    lhs[getLocalVarStartIndex() + numLocals - 1] = 1;
  else
    lhs[getLocalVarStartIndex() + loc] = 1;
}

// Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
// The local identifier added is always a floordiv of a pure add/mul affine
// function of other identifiers, coefficients of which are specified in
// dividend and with respect to a positive constant divisor. localExpr is the
// simplified tree expression (AffineExpr) corresponding to the quantifier.
void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend,
                                                   int64_t divisor,
                                                   AffineExpr localExpr) {
  assert(divisor > 0 && "positive constant divisor expected");
  for (auto &subExpr : operandExprStack)
    subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0);
  localExprs.push_back(localExpr);
  numLocals++;
  // dividend and divisor are not used here; an override of this method uses it.
}

int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) {
  SmallVectorImpl<AffineExpr>::iterator it;
  if ((it = llvm::find(localExprs, localExpr)) == localExprs.end())
    return -1;
  return it - localExprs.begin();
}

/// Simplify the affine expression by flattening it and reconstructing it.
AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims,
                                    unsigned numSymbols) {
  // Simplify semi-affine expressions separately.
  if (!expr.isPureAffine())
    expr = simplifySemiAffine(expr);
  if (!expr.isPureAffine())
    return expr;

  SimpleAffineExprFlattener flattener(numDims, numSymbols);
  flattener.walkPostOrder(expr);
  ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
  auto simplifiedExpr =
      getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
                                flattener.localExprs, expr.getContext());
  flattener.operandExprStack.pop_back();
  assert(flattener.operandExprStack.empty());

  return simplifiedExpr;
}