VectorTransforms.cpp
105 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
//===- VectorTransforms.cpp - Conversion within the Vector dialect --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites as 1->N patterns.
//
//===----------------------------------------------------------------------===//
#include <type_traits>
#include "mlir/Dialect/Affine/EDSC/Builders.h"
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
#include "mlir/Dialect/SCF/EDSC/Intrinsics.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/Dialect/Vector/VectorTransforms.h"
#include "mlir/Dialect/Vector/VectorUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Types.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "vector-to-vector"
using namespace mlir;
using llvm::dbgs;
// Helper to find an index in an affine map.
static Optional<int64_t> getResultIndex(AffineMap map, int64_t index) {
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
int64_t idx = map.getResult(i).cast<AffineDimExpr>().getPosition();
if (idx == index)
return i;
}
return None;
}
// Helper to construct iterator types with one index removed.
static SmallVector<Attribute, 4> adjustIter(ArrayAttr iteratorTypes,
int64_t index) {
SmallVector<Attribute, 4> results;
for (auto it : llvm::enumerate(iteratorTypes)) {
int64_t idx = it.index();
if (idx == index)
continue;
results.push_back(it.value());
}
return results;
}
// Helper to construct an affine map with one index removed.
static AffineMap adjustMap(AffineMap map, int64_t index,
PatternRewriter &rewriter) {
auto *ctx = rewriter.getContext();
SmallVector<AffineExpr, 4> results;
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
int64_t idx = map.getResult(i).cast<AffineDimExpr>().getPosition();
if (idx == index)
continue;
// Re-insert remaining indices, but renamed when occurring
// after the removed index.
auto targetExpr = getAffineDimExpr(idx < index ? idx : idx - 1, ctx);
results.push_back(targetExpr);
}
return AffineMap::get(map.getNumDims() - 1, 0, results, ctx);
}
// Helper to drop dimension from vector type.
static Type adjustType(VectorType tp, int64_t index) {
int64_t rank = tp.getRank();
Type eltType = tp.getElementType();
if (rank == 1) {
assert(index == 0 && "index for scalar result out of bounds");
return eltType;
}
SmallVector<int64_t, 4> adjustedShape;
for (int64_t i = 0; i < rank; ++i) {
// Omit dimension at the given index.
if (i == index)
continue;
// Otherwise, add dimension back.
adjustedShape.push_back(tp.getDimSize(i));
}
return VectorType::get(adjustedShape, eltType);
}
// Helper method to possibly drop a dimension in a load.
// TODO
static Value reshapeLoad(Location loc, Value val, VectorType type,
int64_t index, int64_t pos,
PatternRewriter &rewriter) {
if (index == -1)
return val;
Type lowType = adjustType(type, 0);
// At extraction dimension?
if (index == 0) {
auto posAttr = rewriter.getI64ArrayAttr(pos);
return rewriter.create<vector::ExtractOp>(loc, lowType, val, posAttr);
}
// Unroll leading dimensions.
VectorType vType = lowType.cast<VectorType>();
VectorType resType = adjustType(type, index).cast<VectorType>();
Value result =
rewriter.create<ConstantOp>(loc, resType, rewriter.getZeroAttr(resType));
for (int64_t d = 0, e = resType.getDimSize(0); d < e; d++) {
auto posAttr = rewriter.getI64ArrayAttr(d);
Value ext = rewriter.create<vector::ExtractOp>(loc, vType, val, posAttr);
Value load = reshapeLoad(loc, ext, vType, index - 1, pos, rewriter);
result =
rewriter.create<vector::InsertOp>(loc, resType, load, result, posAttr);
}
return result;
}
// Helper method to possibly drop a dimension in a store.
// TODO
static Value reshapeStore(Location loc, Value val, Value result,
VectorType type, int64_t index, int64_t pos,
PatternRewriter &rewriter) {
// Unmodified?
if (index == -1)
return val;
// At insertion dimension?
if (index == 0) {
auto posAttr = rewriter.getI64ArrayAttr(pos);
return rewriter.create<vector::InsertOp>(loc, type, val, result, posAttr);
}
// Unroll leading dimensions.
Type lowType = adjustType(type, 0);
VectorType vType = lowType.cast<VectorType>();
Type insType = adjustType(vType, 0);
for (int64_t d = 0, e = type.getDimSize(0); d < e; d++) {
auto posAttr = rewriter.getI64ArrayAttr(d);
Value ext = rewriter.create<vector::ExtractOp>(loc, vType, result, posAttr);
Value ins = rewriter.create<vector::ExtractOp>(loc, insType, val, posAttr);
Value sto = reshapeStore(loc, ins, ext, vType, index - 1, pos, rewriter);
result = rewriter.create<vector::InsertOp>(loc, type, sto, result, posAttr);
}
return result;
}
// Clones `op` into a new operations that takes `operands` and returns
// `resultTypes`.
static Operation *cloneOpWithOperandsAndTypes(OpBuilder &builder, Location loc,
Operation *op,
ArrayRef<Value> operands,
ArrayRef<Type> resultTypes) {
OperationState res(loc, op->getName().getStringRef(), operands, resultTypes,
op->getAttrs());
return builder.createOperation(res);
}
// Populates 'resultElements[indexMap[i]]' with elements from 'inputElements[i]'
// for each index 'i' in inputElements with a valid mapping in 'indexMap'.
static void getMappedElements(const DenseMap<int64_t, int64_t> &indexMap,
ArrayRef<int64_t> inputElements,
SmallVectorImpl<int64_t> &resultElements) {
assert(indexMap.size() == resultElements.size());
assert(inputElements.size() >= resultElements.size());
for (unsigned i = 0, e = inputElements.size(); i < e; ++i) {
auto it = indexMap.find(i);
if (it != indexMap.end())
resultElements[it->second] = inputElements[i];
}
}
// Returns a tuple type with vector element types for each resulting slice
// of 'vectorType' unrolled by 'sizes' and 'strides'.
// TODO: Move this to a utility function and share it with
// Extract/InsertSlicesOp verification.
static TupleType generateExtractSlicesOpResultType(VectorType vectorType,
ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides,
OpBuilder &builder) {
assert(llvm::all_of(strides, [](int64_t s) { return s == 1; }));
assert(static_cast<int64_t>(sizes.size()) == vectorType.getRank());
assert(static_cast<int64_t>(strides.size()) == vectorType.getRank());
// Compute shape ratio of 'shape' and 'sizes'.
auto shape = vectorType.getShape();
auto maybeDimSliceCounts = shapeRatio(shape, sizes);
assert(maybeDimSliceCounts.hasValue());
auto sliceDimCounts = *maybeDimSliceCounts;
// Compute strides w.r.t number of slices in each dimension.
auto sliceStrides = computeStrides(sliceDimCounts);
int64_t sliceCount = computeMaxLinearIndex(sliceDimCounts);
SmallVector<Type, 4> vectorTypes(sliceCount);
for (unsigned i = 0; i < sliceCount; ++i) {
auto vectorOffsets = delinearize(sliceStrides, i);
auto elementOffsets =
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
auto sliceSizes = computeSliceSizes(shape, sizes, elementOffsets);
// Create Vector type and add to 'vectorTypes[i]'.
vectorTypes[i] = VectorType::get(sliceSizes, vectorType.getElementType());
}
return TupleType::get(vectorTypes, builder.getContext());
}
// UnrolledVectorState aggregates per-operand/result vector state required for
// unrolling.
struct UnrolledVectorState {
SmallVector<int64_t, 4> unrolledShape;
SmallVector<int64_t, 4> unrollFactors;
SmallVector<int64_t, 8> basis;
int64_t numInstances;
Value slicesTuple;
};
// Populates 'state' with unrolled shape, unroll factors, basis and
// num unrolled instances for 'vectorType'.
static void initUnrolledVectorState(VectorType vectorType, Value initValue,
const DenseMap<int64_t, int64_t> &indexMap,
ArrayRef<int64_t> targetShape,
UnrolledVectorState &state,
OpBuilder &builder) {
// Compute unrolled shape of 'vectorType'.
state.unrolledShape.resize(vectorType.getRank());
getMappedElements(indexMap, targetShape, state.unrolledShape);
// Compute unroll factors for unrolled shape.
auto maybeUnrollFactors =
shapeRatio(vectorType.getShape(), state.unrolledShape);
assert(maybeUnrollFactors.hasValue());
state.unrollFactors = *maybeUnrollFactors;
// Compute 'basis' and 'numInstances' based on 'state.unrollFactors'.
state.basis = computeStrides(state.unrollFactors);
state.numInstances = computeMaxLinearIndex(state.unrollFactors);
state.slicesTuple = nullptr;
if (initValue != nullptr) {
// Create ExtractSlicesOp.
SmallVector<int64_t, 4> sizes(state.unrolledShape);
SmallVector<int64_t, 4> strides(state.unrollFactors.size(), 1);
auto tupleType =
generateExtractSlicesOpResultType(vectorType, sizes, strides, builder);
state.slicesTuple = builder.create<vector::ExtractSlicesOp>(
initValue.getLoc(), tupleType, initValue, sizes, strides);
}
}
// Computes and returns the linear index of the unrolled vector at
// 'vectorOffsets' within the vector represented by 'state'.
static int64_t
getUnrolledVectorLinearIndex(UnrolledVectorState &state,
ArrayRef<int64_t> vectorOffsets,
DenseMap<int64_t, int64_t> &indexMap) {
// Compute vector offsets.
SmallVector<int64_t, 4> sliceOffsets(state.unrolledShape.size());
getMappedElements(indexMap, vectorOffsets, sliceOffsets);
// Compute and return linear index of 'sliceOffsets' w.r.t 'state.basis'.
return linearize(sliceOffsets, state.basis);
}
// Returns an unrolled vector at 'vectorOffsets' within the vector
// represented by 'state'. The vector is created from a slice of 'initValue'
// if not present in 'cache'.
static Value getOrCreateUnrolledVectorSlice(
Location loc, UnrolledVectorState &state, ArrayRef<int64_t> vectorOffsets,
ArrayRef<int64_t> offsets, DenseMap<int64_t, int64_t> &indexMap,
Value initValue, SmallVectorImpl<Value> &cache, OpBuilder &builder) {
// Compute slice offsets.
SmallVector<int64_t, 4> sliceOffsets(state.unrolledShape.size());
getMappedElements(indexMap, offsets, sliceOffsets);
// TODO: Support non-1 strides.
SmallVector<int64_t, 4> sliceStrides(state.unrolledShape.size(), 1);
// Compute linear index of 'sliceOffsets' w.r.t 'state.basis'.
int64_t sliceLinearIndex =
getUnrolledVectorLinearIndex(state, vectorOffsets, indexMap);
assert(sliceLinearIndex < static_cast<int64_t>(cache.size()));
auto valueSlice = cache[sliceLinearIndex];
if (valueSlice == nullptr) {
// Return tuple element at 'sliceLinearIndex'.
auto tupleIndex = builder.getI64IntegerAttr(sliceLinearIndex);
auto initValueType = initValue.getType().cast<VectorType>();
auto vectorType =
VectorType::get(state.unrolledShape, initValueType.getElementType());
// Initialize 'cache' with slice from 'initValue'.
valueSlice = builder.create<vector::TupleGetOp>(
loc, vectorType, state.slicesTuple, tupleIndex);
// Store value back to 'cache'.
cache[sliceLinearIndex] = valueSlice;
}
return valueSlice;
}
// VectorState aggregates per-operand/result vector state required for
// creating slices of vector operands, and clones of the operation being
// unrolled.
struct VectorState {
// The type of this vector.
VectorType type;
// Map from iteration space index to vector dimension index.
DenseMap<int64_t, int64_t> indexMap;
// Index of this value in operation's operand list (-1 if not an operand).
int64_t operandIndex = -1;
// Accumulator iterator flag.
bool isAcc = false;
};
//
// unrollSingleResultStructuredOp
//
// Returns a value representing the result of structured operation 'op'
// with iteration bounds 'iterationBounds' unrolled to 'targetShape'.
// A list of VectorState objects must be specified in 'vectors', where
// each VectorState in the list represents a vector operand or vector result
// (if the operation does not have an accumulator operand).
// The VectorState at index 'resultIndex' in the list must be the state
// associated with the operations single result (i.e. either its accumulator
// operand or vector result value).
//
// Example:
//
// // Before unrolling
//
// operand0 operand1 operand2
// \ | /
// -------------------- opA --------------------
//
// // After unrolling by 2
//
// operand0 operand1 operand2
// / \ / \ / \
// slice00 slice01 slice10 slice11 slice20 slice21
// \ | | | / |
// -------------------- opA0 -------------------- |
// | | | |
// \ | | /
// -------------------- opA1 -------------------
// | |
// \ /
// insertslice
// |
// TODO: Add the following canonicalization/simplification patterns:
// *) Add pattern which matches InsertStridedSlice -> StridedSlice and forwards
// InsertStridedSlice operand to StridedSlice.
// *) Add pattern which matches SourceOp -> StridedSlice -> UserOp which checks
// if there are duplicate identical StridedSlice ops from SourceOp, and
// rewrites itself to use the first duplicate. This transformation should
// cause users of identifical StridedSlice ops to reuse the same StridedSlice
// operation, and leave the duplicate StridedSlice ops with no users
// (removable with DCE).
// TODO: Generalize this to support structured ops beyond
// vector ContractionOp, and merge it with 'unrollSingleResultVectorOp'
static Value unrollSingleResultStructuredOp(Operation *op,
ArrayRef<int64_t> iterationBounds,
std::vector<VectorState> &vectors,
unsigned resultIndex,
ArrayRef<int64_t> targetShape,
OpBuilder &builder) {
auto shapedType = op->getResult(0).getType().dyn_cast_or_null<ShapedType>();
if (!shapedType || !shapedType.hasStaticShape())
assert(false && "Expected a statically shaped result type");
// Compute unroll factors for 'iterationBounds' based on 'targetShape'
auto maybeUnrollFactors = shapeRatio(iterationBounds, targetShape);
if (!maybeUnrollFactors.hasValue())
assert(false && "Failed to compute unroll factors for target shape");
auto unrollFactors = *maybeUnrollFactors;
// Compute unrolled vector state for each vector in 'vectors'.
unsigned numVectors = vectors.size();
SmallVector<UnrolledVectorState, 3> unrolledVectorState(numVectors);
for (unsigned i = 0; i < numVectors; ++i) {
int64_t operandIndex = vectors[i].operandIndex;
auto operand = operandIndex >= 0 ? op->getOperand(operandIndex) : nullptr;
initUnrolledVectorState(vectors[i].type, operand, vectors[i].indexMap,
targetShape, unrolledVectorState[i], builder);
}
// Compute number of total unrolled instances.
auto numUnrolledInstances = computeMaxLinearIndex(unrollFactors);
auto sliceStrides = computeStrides(unrollFactors);
auto &resultValueState = unrolledVectorState[resultIndex];
auto unrolledResultType = VectorType::get(resultValueState.unrolledShape,
shapedType.getElementType());
// Initialize caches for intermediate vector results.
std::vector<SmallVector<Value, 4>> caches(numVectors);
for (unsigned i = 0; i < numVectors; ++i)
caches[i].resize(unrolledVectorState[i].numInstances);
// Unroll 'numUnrolledInstances' of 'op', storing results in 'caches'.
for (unsigned i = 0; i < numUnrolledInstances; ++i) {
auto vectorOffsets = delinearize(sliceStrides, i);
auto elementOffsets =
computeElementOffsetsFromVectorSliceOffsets(targetShape, vectorOffsets);
// Get cached slice (or create slice) for each operand at 'offsets'.
SmallVector<Value, 3> operands;
operands.resize(op->getNumOperands());
for (unsigned i = 0; i < numVectors; ++i) {
int64_t operandIndex = vectors[i].operandIndex;
if (operandIndex < 0)
continue; // Output
auto operand = op->getOperand(operandIndex);
operands[operandIndex] = getOrCreateUnrolledVectorSlice(
op->getLoc(), unrolledVectorState[i], vectorOffsets, elementOffsets,
vectors[i].indexMap, operand, caches[i], builder);
}
// Create op on sliced vector arguments.
auto resultVector =
cloneOpWithOperandsAndTypes(builder, op->getLoc(), op, operands,
unrolledResultType)
->getResult(0);
// Compute linear result index.
int64_t linearIndex = getUnrolledVectorLinearIndex(
resultValueState, vectorOffsets, vectors[resultIndex].indexMap);
// Update result cache at 'linearIndex'.
caches[resultIndex][linearIndex] = resultVector;
}
// Create TupleOp of unrolled result vectors.
SmallVector<Type, 4> vectorTupleTypes(resultValueState.numInstances);
SmallVector<Value, 4> vectorTupleValues(resultValueState.numInstances);
for (unsigned i = 0; i < resultValueState.numInstances; ++i) {
vectorTupleTypes[i] = caches[resultIndex][i].getType().cast<VectorType>();
vectorTupleValues[i] = caches[resultIndex][i];
}
TupleType tupleType = builder.getTupleType(vectorTupleTypes);
Value tupleOp = builder.create<vector::TupleOp>(op->getLoc(), tupleType,
vectorTupleValues);
// Create InsertSlicesOp(Tuple(result_vectors)).
auto resultVectorType = op->getResult(0).getType().cast<VectorType>();
SmallVector<int64_t, 4> sizes(resultValueState.unrolledShape);
SmallVector<int64_t, 4> strides(resultValueState.unrollFactors.size(), 1);
Value insertSlicesOp = builder.create<vector::InsertSlicesOp>(
op->getLoc(), resultVectorType, tupleOp, builder.getI64ArrayAttr(sizes),
builder.getI64ArrayAttr(strides));
return insertSlicesOp;
}
static void getVectorContractionOpUnrollState(
vector::ContractionOp contractionOp, ArrayRef<int64_t> targetShape,
std::vector<VectorState> &vectors, unsigned &resultIndex) {
// Get map from iteration space index to lhs/rhs/result shape index.
std::vector<DenseMap<int64_t, int64_t>> iterationIndexMapList;
contractionOp.getIterationIndexMap(iterationIndexMapList);
unsigned numIterators = iterationIndexMapList.size();
vectors.resize(numIterators);
unsigned accOperandIndex = vector::ContractionOp::getAccOperandIndex();
for (unsigned i = 0; i < numIterators; ++i) {
vectors[i].type = contractionOp.getOperand(i).getType().cast<VectorType>();
vectors[i].indexMap = iterationIndexMapList[i];
vectors[i].operandIndex = i;
vectors[i].isAcc = i == accOperandIndex ? true : false;
}
if (llvm::size(contractionOp.masks()) == 2) {
// Add vectors for lhs/rhs vector mask arguments. Masks have the
// same vector shape lhs/rhs args, so copy their index maps.
vectors.push_back({contractionOp.getLHSVectorMaskType(),
vectors[0].indexMap, accOperandIndex + 1, false});
vectors.push_back({contractionOp.getRHSVectorMaskType(),
vectors[1].indexMap, accOperandIndex + 2, false});
}
// TODO: Use linalg style 'args_in'/'args_out' to partition
// 'vectors' instead of 'resultIndex'.
resultIndex = accOperandIndex;
}
static void getVectorElementwiseOpUnrollState(Operation *op,
ArrayRef<int64_t> targetShape,
std::vector<VectorState> &vectors,
unsigned &resultIndex) {
// Verify that operation and operands all have the same vector shape.
auto resultType = op->getResult(0).getType().dyn_cast_or_null<VectorType>();
assert(resultType && "Expected op with vector result type");
auto resultShape = resultType.getShape();
// Verify that all operands have the same vector type as result.
assert(llvm::all_of(op->getOperandTypes(),
[=](Type type) { return type == resultType; }));
// Create trivial elementwise identity index map based on 'resultShape'.
DenseMap<int64_t, int64_t> indexMap;
indexMap.reserve(resultShape.size());
for (unsigned i = 0; i < resultShape.size(); ++i)
indexMap[i] = i;
// Create VectorState each operand and single result.
unsigned numVectors = op->getNumOperands() + op->getNumResults();
vectors.resize(numVectors);
for (unsigned i = 0; i < op->getNumOperands(); ++i)
vectors[i] = {resultType, indexMap, i, false};
vectors[numVectors - 1] = {resultType, indexMap, -1, false};
resultIndex = numVectors - 1;
}
// Entry point for unrolling declarative pattern rewrites.
SmallVector<Value, 1>
mlir::vector::unrollSingleResultVectorOp(OpBuilder &builder, Operation *op,
ArrayRef<int64_t> targetShape) {
assert(op->getNumResults() == 1 && "Expected single result operation");
// Populate 'iterationBounds', 'vectors' and 'resultIndex' to unroll 'op'.
SmallVector<int64_t, 6> iterationBounds;
auto unrollableVectorOp = cast<VectorUnrollOpInterface>(op);
auto maybeUnrollShape = unrollableVectorOp.getShapeForUnroll();
assert(maybeUnrollShape && "Trying to unroll an incorrect vector op");
std::vector<VectorState> vectors;
unsigned resultIndex;
if (auto contractionOp = dyn_cast<vector::ContractionOp>(op)) {
// Populate state for vector ContractionOp.
getVectorContractionOpUnrollState(contractionOp, targetShape, vectors,
resultIndex);
} else {
// Populate state for vector elementwise op.
getVectorElementwiseOpUnrollState(op, targetShape, vectors, resultIndex);
}
// Unroll 'op' with 'iterationBounds' to 'targetShape'.
return SmallVector<Value, 1>{unrollSingleResultStructuredOp(
op, *maybeUnrollShape, vectors, resultIndex, targetShape, builder)};
}
/// Generates slices of 'vectorType' according to 'sizes' and 'strides, and
/// calls 'fn' with linear index and indices for each slice.
static void generateTransferOpSlices(
Type memrefElementType, VectorType vectorType, TupleType tupleType,
ArrayRef<int64_t> sizes, ArrayRef<int64_t> strides, ArrayRef<Value> indices,
OpBuilder &builder, function_ref<void(unsigned, ArrayRef<Value>)> fn) {
// Compute strides w.r.t. to slice counts in each dimension.
auto maybeDimSliceCounts = shapeRatio(vectorType.getShape(), sizes);
assert(maybeDimSliceCounts.hasValue());
auto sliceDimCounts = *maybeDimSliceCounts;
auto sliceStrides = computeStrides(sliceDimCounts);
int64_t numSlices = tupleType.size();
unsigned numSliceIndices = indices.size();
// Compute 'indexOffset' at which to update 'indices', which is equal
// to the memref rank (indices.size) minus the effective 'vectorRank'.
// The effective 'vectorRank', is equal to the rank of the vector type
// minus the rank of the memref vector element type (if it has one).
//
// For example:
//
// Given memref type 'memref<6x2x1xvector<2x4xf32>>' and vector
// transfer_read/write ops which read/write vectors of type
// 'vector<2x1x2x4xf32>'. The memref rank is 3, and the effective
// vector rank is 4 - 2 = 2, and so 'indexOffset' = 3 - 2 = 1.
//
unsigned vectorRank = vectorType.getRank();
if (auto memrefVectorElementType = memrefElementType.dyn_cast<VectorType>()) {
assert(vectorRank >= memrefVectorElementType.getRank());
vectorRank -= memrefVectorElementType.getRank();
}
unsigned indexOffset = numSliceIndices - vectorRank;
auto *ctx = builder.getContext();
for (unsigned i = 0; i < numSlices; ++i) {
auto vectorOffsets = delinearize(sliceStrides, i);
auto elementOffsets =
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
// Compute 'sliceIndices' by adding 'sliceOffsets[i]' to 'indices[i]'.
SmallVector<Value, 4> sliceIndices(numSliceIndices);
for (unsigned j = 0; j < numSliceIndices; ++j) {
if (j < indexOffset) {
sliceIndices[j] = indices[j];
} else {
auto expr = getAffineDimExpr(0, ctx) +
getAffineConstantExpr(elementOffsets[j - indexOffset], ctx);
auto map = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
sliceIndices[j] = builder.create<AffineApplyOp>(
indices[j].getLoc(), map, ArrayRef<Value>(indices[j]));
}
}
// Call 'fn' to generate slice 'i' at 'sliceIndices'.
fn(i, sliceIndices);
}
}
/// Returns true if 'map' is a suffix of an identity affine map, false
/// otherwise. Example: affine_map<(d0, d1, d2, d3) -> (d2, d3)>
static bool isIdentitySuffix(AffineMap map) {
if (map.getNumDims() < map.getNumResults())
return false;
ArrayRef<AffineExpr> results = map.getResults();
Optional<int> lastPos;
for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
auto expr = results[i].dyn_cast<AffineDimExpr>();
if (!expr)
return false;
int currPos = static_cast<int>(expr.getPosition());
if (lastPos.hasValue() && currPos != lastPos.getValue() + 1)
return false;
lastPos = currPos;
}
return true;
}
namespace {
// Splits vector TransferReadOp into smaller TransferReadOps based on slicing
// scheme of its unique ExtractSlicesOp user.
struct SplitTransferReadOp : public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp xferReadOp,
PatternRewriter &rewriter) const override {
// TODO: Support splitting TransferReadOp with non-identity
// permutation maps. Repurpose code from MaterializeVectors transformation.
if (!isIdentitySuffix(xferReadOp.permutation_map()))
return failure();
// Return unless the unique 'xferReadOp' user is an ExtractSlicesOp.
Value xferReadResult = xferReadOp.getResult();
auto extractSlicesOp =
dyn_cast<vector::ExtractSlicesOp>(*xferReadResult.getUsers().begin());
if (!xferReadResult.hasOneUse() || !extractSlicesOp)
return failure();
// Get 'sizes' and 'strides' parameters from ExtractSlicesOp user.
auto sourceVectorType = extractSlicesOp.getSourceVectorType();
auto resultTupleType = extractSlicesOp.getResultTupleType();
SmallVector<int64_t, 4> sizes;
extractSlicesOp.getSizes(sizes);
SmallVector<int64_t, 4> strides;
extractSlicesOp.getStrides(strides);
assert(llvm::all_of(strides, [](int64_t s) { return s == 1; }));
Location loc = xferReadOp.getLoc();
auto memrefElementType =
xferReadOp.memref().getType().cast<MemRefType>().getElementType();
int64_t numSlices = resultTupleType.size();
SmallVector<Value, 4> vectorTupleValues(numSlices);
SmallVector<Value, 4> indices(xferReadOp.indices().begin(),
xferReadOp.indices().end());
auto createSlice = [&](unsigned index, ArrayRef<Value> sliceIndices) {
// Get VectorType for slice 'i'.
auto sliceVectorType = resultTupleType.getType(index);
// Create split TransferReadOp for 'sliceUser'.
// `masked` attribute propagates conservatively: if the coarse op didn't
// need masking, the fine op doesn't either.
vectorTupleValues[index] = rewriter.create<vector::TransferReadOp>(
loc, sliceVectorType, xferReadOp.memref(), sliceIndices,
xferReadOp.permutation_map(), xferReadOp.padding(),
xferReadOp.masked() ? *xferReadOp.masked() : ArrayAttr());
};
generateTransferOpSlices(memrefElementType, sourceVectorType,
resultTupleType, sizes, strides, indices, rewriter,
createSlice);
// Create tuple of splice xfer read operations.
Value tupleOp = rewriter.create<vector::TupleOp>(loc, resultTupleType,
vectorTupleValues);
// Replace 'xferReadOp' with result 'insertSlicesResult'.
rewriter.replaceOpWithNewOp<vector::InsertSlicesOp>(
xferReadOp, sourceVectorType, tupleOp, extractSlicesOp.sizes(),
extractSlicesOp.strides());
return success();
}
};
// Splits vector TransferWriteOp into smaller TransferWriteOps for each source.
struct SplitTransferWriteOp : public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp xferWriteOp,
PatternRewriter &rewriter) const override {
// TODO: Support splitting TransferWriteOp with non-identity
// permutation maps. Repurpose code from MaterializeVectors transformation.
if (!isIdentitySuffix(xferWriteOp.permutation_map()))
return failure();
// Return unless the 'xferWriteOp' 'vector' operand is an 'InsertSlicesOp'.
auto *vectorDefOp = xferWriteOp.vector().getDefiningOp();
auto insertSlicesOp = dyn_cast_or_null<vector::InsertSlicesOp>(vectorDefOp);
if (!insertSlicesOp)
return failure();
// Get TupleOp operand of 'insertSlicesOp'.
auto tupleOp = dyn_cast_or_null<vector::TupleOp>(
insertSlicesOp.vectors().getDefiningOp());
if (!tupleOp)
return failure();
// Get 'sizes' and 'strides' parameters from InsertSlicesOp user.
auto sourceTupleType = insertSlicesOp.getSourceTupleType();
auto resultVectorType = insertSlicesOp.getResultVectorType();
SmallVector<int64_t, 4> sizes;
insertSlicesOp.getSizes(sizes);
SmallVector<int64_t, 4> strides;
insertSlicesOp.getStrides(strides);
Location loc = xferWriteOp.getLoc();
auto memrefElementType =
xferWriteOp.memref().getType().cast<MemRefType>().getElementType();
SmallVector<Value, 4> indices(xferWriteOp.indices().begin(),
xferWriteOp.indices().end());
auto createSlice = [&](unsigned index, ArrayRef<Value> sliceIndices) {
// Create split TransferWriteOp for source vector 'tupleOp.operand[i]'.
// `masked` attribute propagates conservatively: if the coarse op didn't
// need masking, the fine op doesn't either.
rewriter.create<vector::TransferWriteOp>(
loc, tupleOp.getOperand(index), xferWriteOp.memref(), sliceIndices,
xferWriteOp.permutation_map(),
xferWriteOp.masked() ? *xferWriteOp.masked() : ArrayAttr());
};
generateTransferOpSlices(memrefElementType, resultVectorType,
sourceTupleType, sizes, strides, indices, rewriter,
createSlice);
// Erase old 'xferWriteOp'.
rewriter.eraseOp(xferWriteOp);
return success();
}
};
/// Decomposes ShapeCastOp on tuple-of-vectors to multiple ShapeCastOps, each
/// on vector types.
struct ShapeCastOpDecomposer : public OpRewritePattern<vector::ShapeCastOp> {
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
PatternRewriter &rewriter) const override {
// Check if 'shapeCastOp' has tuple source/result type.
auto sourceTupleType =
shapeCastOp.source().getType().dyn_cast_or_null<TupleType>();
auto resultTupleType =
shapeCastOp.result().getType().dyn_cast_or_null<TupleType>();
if (!sourceTupleType || !resultTupleType)
return failure();
assert(sourceTupleType.size() == resultTupleType.size());
// Create single-vector ShapeCastOp for each source tuple element.
Location loc = shapeCastOp.getLoc();
SmallVector<Value, 8> resultElements;
resultElements.reserve(resultTupleType.size());
for (unsigned i = 0, e = sourceTupleType.size(); i < e; ++i) {
auto sourceElement = rewriter.create<vector::TupleGetOp>(
loc, sourceTupleType.getType(i), shapeCastOp.source(),
rewriter.getI64IntegerAttr(i));
resultElements.push_back(rewriter.create<vector::ShapeCastOp>(
loc, resultTupleType.getType(i), sourceElement));
}
// Replace 'shapeCastOp' with tuple of 'resultElements'.
rewriter.replaceOpWithNewOp<vector::TupleOp>(shapeCastOp, resultTupleType,
resultElements);
return success();
}
};
/// Returns the producer Value of the same type as 'consumerValue', by tracking
/// the tuple index and offsets of the consumer vector value through the
/// chain of operations (TupleGetOp, InsertSlicesOp, ExtractSlicesOp, TupleOp,
/// and ShapeCastOp) from consumer to producer. Each operation in the chain is
/// structured, and so the tuple index and offsets can be mapped from result to
/// input, while visiting each operation in the chain.
/// Returns nullptr on failure.
static Value getProducerValue(Value consumerValue) {
auto consumerVectorType = consumerValue.getType().cast<VectorType>();
// A tupleIndex == -1 indicates that 'offsets' are w.r.t a vector type.
int64_t tupleIndex = -1;
SmallVector<int64_t, 4> offsets(consumerVectorType.getRank(), 0);
auto *op = consumerValue.getDefiningOp();
while (op != nullptr) {
if (auto tupleGetOp = dyn_cast<vector::TupleGetOp>(op)) {
assert(tupleIndex == -1 && "TupleGetOp must have vector result type");
// Update 'tupleIndex' and next defining 'op' to visit.
tupleIndex = tupleGetOp.getIndex();
op = tupleGetOp.vectors().getDefiningOp();
} else if (auto extractSlicesOp = dyn_cast<vector::ExtractSlicesOp>(op)) {
assert(tupleIndex >= 0);
// Compute slice strides for 'extractSlicesOp'.
SmallVector<int64_t, 4> sizes;
extractSlicesOp.getSizes(sizes);
auto sliceStrides = computeStrides(
extractSlicesOp.getSourceVectorType().getShape(), sizes);
// Compute 'elementOffsets' into 'extractSlicesOp' input vector type,
// of 'extractSlicesOp' result vector tuple element at 'tupleIndex'.
auto vectorOffsets = delinearize(sliceStrides, tupleIndex);
auto elementOffsets =
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
// Add 'elementOffsets' to 'offsets' so that 'offsets' are now relative
// to the 'extractSlicesOp' input vector type.
assert(offsets.size() == elementOffsets.size());
for (unsigned i = 0, e = offsets.size(); i < e; ++i)
offsets[i] += elementOffsets[i];
// Clear 'tupleIndex' and update next defining 'op' to visit.
tupleIndex = -1;
op = extractSlicesOp.vector().getDefiningOp();
} else if (auto insertSlicesOp = dyn_cast<vector::InsertSlicesOp>(op)) {
assert(tupleIndex == -1);
// Compute slice strides for 'insertSlicesOp'.
SmallVector<int64_t, 4> sizes;
insertSlicesOp.getSizes(sizes);
auto sliceStrides = computeStrides(
insertSlicesOp.getResultVectorType().getShape(), sizes);
// Compute 'vectorOffsets' of 'insertSlicesOp' input vector slice,
// of 'insertSlicesOp' result vector type at 'offsets'.
SmallVector<int64_t, 4> vectorOffsets(offsets.size());
assert(offsets.size() == sizes.size());
for (unsigned i = 0, e = offsets.size(); i < e; ++i)
vectorOffsets[i] = offsets[i] / sizes[i];
// Compute the source tuple element index.
tupleIndex = linearize(vectorOffsets, sliceStrides);
// Subtract 'elementOffsets' from 'offsets' so that 'offsets' are now
// relative to input tuple element vector type at 'tupleIndex'.
auto elementOffsets =
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
assert(offsets.size() == elementOffsets.size());
for (unsigned i = 0, e = offsets.size(); i < e; ++i) {
offsets[i] -= elementOffsets[i];
assert(offsets[i] >= 0);
}
// Update next defining 'op' to visit.
op = insertSlicesOp.vectors().getDefiningOp();
} else if (auto tupleOp = dyn_cast<vector::TupleOp>(op)) {
assert(tupleIndex >= 0);
// Return tuple element 'value' at 'tupleIndex' if it matches type.
auto value = tupleOp.getOperand(tupleIndex);
if (value.getType() == consumerVectorType)
return value;
// Update 'tupleIndex' and next defining 'op' to visit.
tupleIndex = -1;
op = value.getDefiningOp();
} else if (auto shapeCastOp = dyn_cast<vector::ShapeCastOp>(op)) {
if (shapeCastOp.source().getType().isa<TupleType>())
return nullptr;
assert(tupleIndex == -1);
auto sourceVectorType = shapeCastOp.getSourceVectorType();
auto sourceVectorShape = sourceVectorType.getShape();
unsigned sourceVectorRank = sourceVectorType.getRank();
auto resultVectorType = shapeCastOp.getResultVectorType();
auto resultVectorShape = resultVectorType.getShape();
unsigned resultVectorRank = resultVectorType.getRank();
int i = sourceVectorRank - 1;
int j = resultVectorRank - 1;
// Check that source/result vector shape prefixes match while updating
// 'newOffsets'.
SmallVector<int64_t, 4> newOffsets(sourceVectorRank, 0);
for (auto it : llvm::zip(llvm::reverse(sourceVectorShape),
llvm::reverse(resultVectorShape))) {
if (std::get<0>(it) != std::get<1>(it))
return nullptr;
newOffsets[i--] = offsets[j--];
}
// Check that remaining prefix of source/result vector shapes are all 1s.
// Currently we only support producer/consumer tracking through trivial
// shape cast ops. Examples:
// %1 = vector.shape_cast %0 : vector<1x1x2x4xf32> to vector<2x4xf32>
// %3 = vector.shape_cast %2 : vector<16x8xf32> to vector<1x16x8xf32>
assert(i == -1 || j == -1);
if (i >= 0 &&
!std::all_of(sourceVectorShape.begin(), sourceVectorShape.begin() + i,
[](int64_t v) { return v == 1; }))
return nullptr;
if (j >= 0 &&
!std::all_of(resultVectorShape.begin(), resultVectorShape.begin() + j,
[](int64_t v) { return v == 1; }))
return nullptr;
offsets.swap(newOffsets);
op = shapeCastOp.source().getDefiningOp();
} else {
// Check if 'op' produces a Value with the same type as 'consumerValue'.
if (op->getNumResults() == 1 &&
op->getResult(0).getType() == consumerVectorType)
return op->getResult(0);
return nullptr;
}
}
return nullptr;
}
/// ShapeCastOpFolder folds cancelling ShapeCastOps away.
//
// Example:
//
// The following MLIR with cancelling ShapeCastOps:
//
// %0 = source : vector<5x4x2xf32>
// %1 = shape_cast %0 : vector<5x4x2xf32> to vector<20x2xf32>
// %2 = shape_cast %1 : vector<20x2xf32> to vector<5x4x2xf32>
// %3 = user %2 : vector<5x4x2xf32>
//
// Should canonicalize to the following:
//
// %0 = source : vector<5x4x2xf32>
// %1 = user %0 : vector<5x4x2xf32>
//
struct ShapeCastOpFolder : public OpRewritePattern<vector::ShapeCastOp> {
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
PatternRewriter &rewriter) const override {
// Check if we can replace 'shapeCastOp' result with its producer.
if (auto producer = getProducerValue(shapeCastOp.getResult())) {
rewriter.replaceOp(shapeCastOp, producer);
return success();
}
// Check if 'shapeCastOp' has vector source/result type.
auto sourceVectorType =
shapeCastOp.source().getType().dyn_cast_or_null<VectorType>();
auto resultVectorType =
shapeCastOp.result().getType().dyn_cast_or_null<VectorType>();
if (!sourceVectorType || !resultVectorType)
return failure();
// Check if shape cast op source operand is also a shape cast op.
auto sourceShapeCastOp = dyn_cast_or_null<vector::ShapeCastOp>(
shapeCastOp.source().getDefiningOp());
if (!sourceShapeCastOp)
return failure();
auto operandSourceVectorType =
sourceShapeCastOp.source().getType().cast<VectorType>();
auto operandResultVectorType =
sourceShapeCastOp.result().getType().cast<VectorType>();
// Check if shape cast operations invert each other.
if (operandSourceVectorType != resultVectorType ||
operandResultVectorType != sourceVectorType)
return failure();
rewriter.replaceOp(shapeCastOp, sourceShapeCastOp.source());
return success();
}
};
// Patter rewrite which forward tuple elements to their users.
// User(TupleGetOp(ExtractSlicesOp(InsertSlicesOp(TupleOp(Producer)))))
// -> User(Producer)
struct TupleGetFolderOp : public OpRewritePattern<vector::TupleGetOp> {
using OpRewritePattern<vector::TupleGetOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TupleGetOp tupleGetOp,
PatternRewriter &rewriter) const override {
if (auto producer = getProducerValue(tupleGetOp.getResult())) {
rewriter.replaceOp(tupleGetOp, producer);
return success();
}
return failure();
}
};
/// Progressive lowering of ExtractSlicesOp to tuple of ExtractStridedSliceOp.
/// One:
/// %x = vector.extract_slices %0
/// is replaced by:
/// %a = vector.strided_slice %0
/// %b = vector.strided_slice %0
/// ..
/// %x = vector.tuple %a, %b, ..
class ExtractSlicesOpLowering
: public OpRewritePattern<vector::ExtractSlicesOp> {
public:
using OpRewritePattern<vector::ExtractSlicesOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ExtractSlicesOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
VectorType vectorType = op.getSourceVectorType();
auto shape = vectorType.getShape();
SmallVector<int64_t, 4> sizes;
op.getSizes(sizes);
SmallVector<int64_t, 4> strides;
op.getStrides(strides); // all-ones at the moment
// For each element in the tuple, generate the proper strided slice.
TupleType tupleType = op.getResultTupleType();
int64_t tupleSize = tupleType.size();
SmallVector<Value, 4> tupleValues(tupleSize);
auto sliceStrides = computeStrides(shape, sizes);
for (int64_t i = 0; i < tupleSize; ++i) {
auto vectorOffsets = delinearize(sliceStrides, i);
auto elementOffsets =
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
auto sliceSizes = computeSliceSizes(shape, sizes, elementOffsets);
// Insert in tuple.
tupleValues[i] = rewriter.create<vector::ExtractStridedSliceOp>(
loc, op.vector(), elementOffsets, sliceSizes, strides);
}
rewriter.replaceOpWithNewOp<vector::TupleOp>(op, tupleType, tupleValues);
return success();
}
};
/// Progressive lowering of InsertSlicesOp to series of InsertStridedSliceOp.
/// One:
/// %x = vector.insert_slices %0
/// is replaced by:
/// %r0 = zero-result
/// %t1 = vector.tuple_get %0, 0
/// %r1 = vector.insert_strided_slice %r0, %t1
/// %t2 = vector.tuple_get %0, 1
/// %r2 = vector.insert_strided_slice %r1, %t2
/// ..
/// %x = ..
class InsertSlicesOpLowering : public OpRewritePattern<vector::InsertSlicesOp> {
public:
using OpRewritePattern<vector::InsertSlicesOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InsertSlicesOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
VectorType vectorType = op.getResultVectorType();
auto shape = vectorType.getShape();
SmallVector<int64_t, 4> sizes;
op.getSizes(sizes);
SmallVector<int64_t, 4> strides;
op.getStrides(strides); // all-ones at the moment
// Prepare result.
Value result = rewriter.create<ConstantOp>(
loc, vectorType, rewriter.getZeroAttr(vectorType));
// For each element in the tuple, extract the proper strided slice.
TupleType tupleType = op.getSourceTupleType();
int64_t tupleSize = tupleType.size();
auto sliceStrides = computeStrides(shape, sizes);
for (int64_t i = 0; i < tupleSize; ++i) {
auto vectorOffsets = delinearize(sliceStrides, i);
auto elementOffsets =
computeElementOffsetsFromVectorSliceOffsets(sizes, vectorOffsets);
// Extract from tuple into the result.
auto index = rewriter.getI64IntegerAttr(i);
auto tupleGet = rewriter.create<vector::TupleGetOp>(
loc, tupleType.getType(i), op.getOperand(), index);
result = rewriter.create<vector::InsertStridedSliceOp>(
loc, tupleGet, result, elementOffsets, strides);
}
rewriter.replaceOp(op, result);
return success();
}
};
/// Progressive lowering of BroadcastOp.
class BroadcastOpLowering : public OpRewritePattern<vector::BroadcastOp> {
public:
using OpRewritePattern<vector::BroadcastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::BroadcastOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
VectorType dstType = op.getVectorType();
VectorType srcType = op.getSourceType().dyn_cast<VectorType>();
Type eltType = dstType.getElementType();
// Determine rank of source and destination.
int64_t srcRank = srcType ? srcType.getRank() : 0;
int64_t dstRank = dstType.getRank();
// Duplicate this rank.
// For example:
// %x = broadcast %y : k-D to n-D, k < n
// becomes:
// %b = broadcast %y : k-D to (n-1)-D
// %x = [%b,%b,%b,%b] : n-D
// becomes:
// %b = [%y,%y] : (n-1)-D
// %x = [%b,%b,%b,%b] : n-D
if (srcRank < dstRank) {
// Scalar to any vector can use splat.
if (srcRank == 0) {
rewriter.replaceOpWithNewOp<SplatOp>(op, dstType, op.source());
return success();
}
// Duplication.
VectorType resType =
VectorType::get(dstType.getShape().drop_front(), eltType);
Value bcst =
rewriter.create<vector::BroadcastOp>(loc, resType, op.source());
Value result = rewriter.create<ConstantOp>(loc, dstType,
rewriter.getZeroAttr(dstType));
for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
rewriter.replaceOp(op, result);
return success();
}
// Find non-matching dimension, if any.
assert(srcRank == dstRank);
int64_t m = -1;
for (int64_t r = 0; r < dstRank; r++)
if (srcType.getDimSize(r) != dstType.getDimSize(r)) {
m = r;
break;
}
// All trailing dimensions are the same. Simply pass through.
if (m == -1) {
rewriter.replaceOp(op, op.source());
return success();
}
// Stretching scalar inside vector (e.g. vector<1xf32>) can use splat.
if (srcRank == 1) {
assert(m == 0);
Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0);
rewriter.replaceOpWithNewOp<SplatOp>(op, dstType, ext);
return success();
}
// Any non-matching dimension forces a stretch along this rank.
// For example:
// %x = broadcast %y : vector<4x1x2xf32> to vector<4x2x2xf32>
// becomes:
// %a = broadcast %y[0] : vector<1x2xf32> to vector<2x2xf32>
// %b = broadcast %y[1] : vector<1x2xf32> to vector<2x2xf32>
// %c = broadcast %y[2] : vector<1x2xf32> to vector<2x2xf32>
// %d = broadcast %y[3] : vector<1x2xf32> to vector<2x2xf32>
// %x = [%a,%b,%c,%d]
// becomes:
// %u = broadcast %y[0][0] : vector<2xf32> to vector <2x2xf32>
// %v = broadcast %y[1][0] : vector<2xf32> to vector <2x2xf32>
// %a = [%u, %v]
// ..
// %x = [%a,%b,%c,%d]
VectorType resType =
VectorType::get(dstType.getShape().drop_front(), eltType);
Value result = rewriter.create<ConstantOp>(loc, dstType,
rewriter.getZeroAttr(dstType));
if (m == 0) {
// Stetch at start.
Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), 0);
Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d)
result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
} else {
// Stetch not at start.
for (int64_t d = 0, dim = dstType.getDimSize(0); d < dim; ++d) {
Value ext = rewriter.create<vector::ExtractOp>(loc, op.source(), d);
Value bcst = rewriter.create<vector::BroadcastOp>(loc, resType, ext);
result = rewriter.create<vector::InsertOp>(loc, bcst, result, d);
}
}
rewriter.replaceOp(op, result);
return success();
}
};
/// Progressive lowering of TransposeOp.
/// One:
/// %x = vector.transpose %y, [1, 0]
/// is replaced by:
/// %z = constant dense<0.000000e+00>
/// %0 = vector.extract %y[0, 0]
/// %1 = vector.insert %0, %z [0, 0]
/// ..
/// %x = vector.insert .., .. [.., ..]
class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
public:
using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
TransposeOpLowering(vector::VectorTransformsOptions vectorTransformsOptions,
MLIRContext *context)
: OpRewritePattern<vector::TransposeOp>(context),
vectorTransformsOptions(vectorTransformsOptions) {}
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
VectorType resType = op.getResultType();
// Set up convenience transposition table.
SmallVector<int64_t, 4> transp;
for (auto attr : op.transp())
transp.push_back(attr.cast<IntegerAttr>().getInt());
// Handle a true 2-D matrix transpose differently when requested.
if (vectorTransformsOptions.vectorTransposeLowering ==
vector::VectorTransposeLowering::Flat &&
resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) {
Type flattenedType =
VectorType::get(resType.getNumElements(), resType.getElementType());
auto matrix =
rewriter.create<vector::ShapeCastOp>(loc, flattenedType, op.vector());
auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
Value trans = rewriter.create<vector::FlatTransposeOp>(
loc, flattenedType, matrix, rows, columns);
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
return success();
}
// Generate fully unrolled extract/insert ops.
Value result = rewriter.create<ConstantOp>(loc, resType,
rewriter.getZeroAttr(resType));
SmallVector<int64_t, 4> lhs(transp.size(), 0);
SmallVector<int64_t, 4> rhs(transp.size(), 0);
rewriter.replaceOp(op, expandIndices(loc, resType, 0, transp, lhs, rhs,
op.vector(), result, rewriter));
return success();
}
private:
// Builds the indices arrays for the lhs and rhs. Generates the extract/insert
// operation when al ranks are exhausted.
Value expandIndices(Location loc, VectorType resType, int64_t pos,
SmallVector<int64_t, 4> &transp,
SmallVector<int64_t, 4> &lhs,
SmallVector<int64_t, 4> &rhs, Value input, Value result,
PatternRewriter &rewriter) const {
if (pos >= resType.getRank()) {
auto ridx = rewriter.getI64ArrayAttr(rhs);
auto lidx = rewriter.getI64ArrayAttr(lhs);
Type eltType = resType.getElementType();
Value e = rewriter.create<vector::ExtractOp>(loc, eltType, input, ridx);
return rewriter.create<vector::InsertOp>(loc, resType, e, result, lidx);
}
for (int64_t d = 0, e = resType.getDimSize(pos); d < e; ++d) {
lhs[pos] = d;
rhs[transp[pos]] = d;
result = expandIndices(loc, resType, pos + 1, transp, lhs, rhs, input,
result, rewriter);
}
return result;
}
/// Options to control the vector patterns.
vector::VectorTransformsOptions vectorTransformsOptions;
};
/// Progressive lowering of OuterProductOp.
/// One:
/// %x = vector.outerproduct %lhs, %rhs, %acc
/// is replaced by:
/// %z = zero-result
/// %0 = vector.extract %lhs[0]
/// %1 = vector.broadcast %0
/// %2 = vector.extract %acc[0]
/// %3 = vector.fma %1, %rhs, %2
/// %4 = vector.insert %3, %z[0]
/// ..
/// %x = vector.insert %.., %..[N-1]
///
class OuterProductOpLowering : public OpRewritePattern<vector::OuterProductOp> {
public:
using OpRewritePattern<vector::OuterProductOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::OuterProductOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
VectorType lhsType = op.getOperandVectorTypeLHS();
VectorType rhsType = op.getOperandTypeRHS().dyn_cast<VectorType>();
VectorType resType = op.getVectorType();
Type eltType = resType.getElementType();
bool isInt = eltType.isa<IntegerType>();
Value acc = (op.acc().empty()) ? nullptr : op.acc()[0];
if (!rhsType) {
// Special case: AXPY operation.
Value b = rewriter.create<vector::BroadcastOp>(loc, lhsType, op.rhs());
rewriter.replaceOp(op, genMult(loc, op.lhs(), b, acc, isInt, rewriter));
return success();
}
Value result = rewriter.create<ConstantOp>(loc, resType,
rewriter.getZeroAttr(resType));
for (int64_t d = 0, e = resType.getDimSize(0); d < e; ++d) {
auto pos = rewriter.getI64ArrayAttr(d);
Value x = rewriter.create<vector::ExtractOp>(loc, eltType, op.lhs(), pos);
Value a = rewriter.create<vector::BroadcastOp>(loc, rhsType, x);
Value r = nullptr;
if (acc)
r = rewriter.create<vector::ExtractOp>(loc, rhsType, acc, pos);
Value m = genMult(loc, a, op.rhs(), r, isInt, rewriter);
result = rewriter.create<vector::InsertOp>(loc, resType, m, result, pos);
}
rewriter.replaceOp(op, result);
return success();
}
private:
static Value genMult(Location loc, Value x, Value y, Value acc, bool isInt,
PatternRewriter &rewriter) {
if (acc) {
if (isInt)
return rewriter.create<AddIOp>(loc, rewriter.create<MulIOp>(loc, x, y),
acc);
return rewriter.create<vector::FMAOp>(loc, x, y, acc);
}
if (isInt)
return rewriter.create<MulIOp>(loc, x, y);
return rewriter.create<MulFOp>(loc, x, y);
}
};
/// Progressive lowering of ConstantMaskOp.
/// One:
/// %x = vector.constant_mask [a,b]
/// is replaced by:
/// %z = zero-result
/// %l = vector.constant_mask [b]
/// %4 = vector.insert %l, %z[0]
/// ..
/// %x = vector.insert %l, %..[a-1]
/// until a one-dimensional vector is reached. All these operations
/// will be folded at LLVM IR level.
class ConstantMaskOpLowering : public OpRewritePattern<vector::ConstantMaskOp> {
public:
using OpRewritePattern<vector::ConstantMaskOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ConstantMaskOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto dstType = op.getResult().getType().cast<VectorType>();
auto eltType = dstType.getElementType();
auto dimSizes = op.mask_dim_sizes();
int64_t rank = dimSizes.size();
int64_t trueDim = std::min(dstType.getDimSize(0),
dimSizes[0].cast<IntegerAttr>().getInt());
if (rank == 1) {
// Express constant 1-D case in explicit vector form:
// [T,..,T,F,..,F].
SmallVector<bool, 4> values(dstType.getDimSize(0));
for (int64_t d = 0; d < trueDim; d++)
values[d] = true;
rewriter.replaceOpWithNewOp<ConstantOp>(
op, dstType, rewriter.getBoolVectorAttr(values));
return success();
}
VectorType lowType =
VectorType::get(dstType.getShape().drop_front(), eltType);
SmallVector<int64_t, 4> newDimSizes;
for (int64_t r = 1; r < rank; r++)
newDimSizes.push_back(dimSizes[r].cast<IntegerAttr>().getInt());
Value trueVal = rewriter.create<vector::ConstantMaskOp>(
loc, lowType, rewriter.getI64ArrayAttr(newDimSizes));
Value result = rewriter.create<ConstantOp>(loc, dstType,
rewriter.getZeroAttr(dstType));
for (int64_t d = 0; d < trueDim; d++) {
auto pos = rewriter.getI64ArrayAttr(d);
result =
rewriter.create<vector::InsertOp>(loc, dstType, trueVal, result, pos);
}
rewriter.replaceOp(op, result);
return success();
}
};
/// Progressive lowering of CreateMaskOp.
/// One:
/// %x = vector.create_mask %a, ... : vector<dx...>
/// is replaced by:
/// %l = vector.create_mask ... : vector<...> ; one lower rank
/// %0 = cmpi "slt", %ci, %a |
/// %1 = select %0, %l, %zeroes |
/// %r = vector.insert %1, %pr [i] | d-times
/// %x = ....
/// until a one-dimensional vector is reached.
class CreateMaskOpLowering : public OpRewritePattern<vector::CreateMaskOp> {
public:
using OpRewritePattern<vector::CreateMaskOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::CreateMaskOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto dstType = op.getResult().getType().cast<VectorType>();
auto eltType = dstType.getElementType();
int64_t dim = dstType.getDimSize(0);
int64_t rank = dstType.getRank();
Value idx = op.getOperand(0);
if (rank == 1)
return failure(); // leave for lowering
VectorType lowType =
VectorType::get(dstType.getShape().drop_front(), eltType);
Value trueVal = rewriter.create<vector::CreateMaskOp>(
loc, lowType, op.getOperands().drop_front());
Value falseVal = rewriter.create<ConstantOp>(loc, lowType,
rewriter.getZeroAttr(lowType));
Value result = rewriter.create<ConstantOp>(loc, dstType,
rewriter.getZeroAttr(dstType));
for (int64_t d = 0; d < dim; d++) {
Value bnd = rewriter.create<ConstantOp>(loc, rewriter.getIndexAttr(d));
Value val = rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, bnd, idx);
Value sel = rewriter.create<SelectOp>(loc, val, trueVal, falseVal);
auto pos = rewriter.getI64ArrayAttr(d);
result =
rewriter.create<vector::InsertOp>(loc, dstType, sel, result, pos);
}
rewriter.replaceOp(op, result);
return success();
}
};
/// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
/// vectors progressively on the way to target llvm.matrix intrinsics.
/// This iterates over the most major dimension of the 2-D vector and performs
/// rewrites into:
/// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
class ShapeCastOp2DDownCastRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
return failure();
auto loc = op.getLoc();
Value desc = rewriter.create<ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
Value vec = rewriter.create<vector::ExtractOp>(loc, op.source(), i);
desc = rewriter.create<vector::InsertStridedSliceOp>(
loc, vec, desc,
/*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
}
rewriter.replaceOp(op, desc);
return success();
}
};
/// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
/// vectors progressively on the way from targeting llvm.matrix intrinsics.
/// This iterates over the most major dimension of the 2-D vector and performs
/// rewrites into:
/// vector.strided_slice from 1-D + vector.insert into 2-D
class ShapeCastOp2DUpCastRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
return failure();
auto loc = op.getLoc();
Value desc = rewriter.create<ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, op.source(), /*offsets=*/i * mostMinorVectorSize,
/*sizes=*/mostMinorVectorSize,
/*strides=*/1);
desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
// We typically should not lower general shape cast operations into data
// movement instructions, since the assumption is that these casts are
// optimized away during progressive lowering. For completeness, however,
// we fall back to a reference implementation that moves all elements
// into the right place if we get here.
class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
// Intended 2D/1D lowerings with better implementations.
int64_t srcRank = sourceVectorType.getRank();
int64_t resRank = resultVectorType.getRank();
if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
return failure();
// Compute number of elements involved in the reshape.
int64_t numElts = 1;
for (int64_t r = 0; r < srcRank; r++)
numElts *= sourceVectorType.getDimSize(r);
// Replace with data movement operations:
// x[0,0,0] = y[0,0]
// x[0,0,1] = y[0,1]
// x[0,1,0] = y[0,2]
// etc., incrementing the two index vectors "row-major"
// within the source and result shape.
SmallVector<int64_t, 4> srcIdx(srcRank);
SmallVector<int64_t, 4> resIdx(resRank);
Value result = rewriter.create<ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
for (int64_t i = 0; i < numElts; i++) {
if (i != 0) {
incIdx(srcIdx, sourceVectorType, srcRank - 1);
incIdx(resIdx, resultVectorType, resRank - 1);
}
Value e = rewriter.create<vector::ExtractOp>(loc, op.source(), srcIdx);
result = rewriter.create<vector::InsertOp>(loc, e, result, resIdx);
}
rewriter.replaceOp(op, result);
return success();
}
private:
static void incIdx(SmallVector<int64_t, 4> &idx, VectorType tp, int64_t r) {
assert(0 <= r && r < tp.getRank());
if (++idx[r] == tp.getDimSize(r)) {
idx[r] = 0;
incIdx(idx, tp, r - 1);
}
}
};
} // namespace
namespace mlir {
/// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
/// semantics to:
/// ```
/// %flattened_a = vector.shape_cast %a
/// %flattened_b = vector.shape_cast %b
/// %flattened_d = vector.matmul %flattened_a, %flattened_b
/// %d = vector.shape_cast %%flattened_d
/// %e = add %c, %d
/// ```
/// `vector.matmul` later lowers to `llvm.matrix.multiply`.
//
/// This only kicks in when VectorTransformsOptions is set to OuterProduct and
/// the vector.contract op is a row-major matrix multiply.
LogicalResult ContractionOpToMatmulOpLowering::matchAndRewrite(
vector::ContractionOp op, PatternRewriter &rewriter) const {
// TODO: implement masks
if (llvm::size(op.masks()) != 0)
return failure();
if (vectorTransformsOptions.vectorContractLowering !=
vector::VectorContractLowering::Matmul)
return failure();
if (failed(filter(op)))
return failure();
auto iteratorTypes = op.iterator_types().getValue();
if (!isParallelIterator(iteratorTypes[0]) ||
!isParallelIterator(iteratorTypes[1]) ||
!isReductionIterator(iteratorTypes[2]))
return failure();
if (!isRowMajorMatmul(op.indexing_maps()))
return failure();
Type elementType = op.getLhsType().getElementType();
if (!elementType.isIntOrFloat())
return failure();
VectorType lhsType = op.getLhsType();
VectorType rhsType = op.getRhsType();
int64_t lhsRows = lhsType.getDimSize(0);
int64_t lhsColumns = lhsType.getDimSize(1);
int64_t rhsColumns = rhsType.getDimSize(1);
Type flattenedLHSType =
VectorType::get(lhsType.getNumElements(), lhsType.getElementType());
Type flattenedRHSType =
VectorType::get(rhsType.getNumElements(), rhsType.getElementType());
auto lhs = rewriter.create<vector::ShapeCastOp>(op.getLoc(), flattenedLHSType,
op.lhs());
auto rhs = rewriter.create<vector::ShapeCastOp>(op.getLoc(), flattenedRHSType,
op.rhs());
Value mul = rewriter.create<vector::MatmulOp>(op.getLoc(), lhs, rhs, lhsRows,
lhsColumns, rhsColumns);
mul = rewriter.create<vector::ShapeCastOp>(op.getLoc(), op.acc().getType(),
mul);
if (elementType.isa<IntegerType>())
rewriter.replaceOpWithNewOp<AddIOp>(op, op.acc(), mul);
else
rewriter.replaceOpWithNewOp<AddFOp>(op, op.acc(), mul);
return success();
}
/// Progressively lower a `vector.contract %a, %b, %c` with row-major matmul
/// semantics to a reduction_size-unrolled sequence:
/// ```
/// %at = vector.transpose %a, [1, 0]
/// %bRow0 = vector.extract %b[0]
/// %atRow0 = vector.extract %at[0]
/// %c0 = vector.outerproduct %atRow0, %bRow0, %c
/// ...
/// %bRowK = vector.extract %b[K]
/// %atRowK = vector.extract %at[K]
/// %cK = vector.outerproduct %atRowK, %bRowK, %cK-1
/// ```
///
/// This only kicks in when VectorTransformsOptions is set to OuterProduct but
/// otherwise supports any layout permutation of the matrix-multiply.
LogicalResult ContractionOpToOuterProductOpLowering::matchAndRewrite(
vector::ContractionOp op, PatternRewriter &rewriter) const {
// TODO: implement masks
if (llvm::size(op.masks()) != 0)
return failure();
if (vectorTransformsOptions.vectorContractLowering !=
vector::VectorContractLowering::OuterProduct)
return failure();
if (failed(filter(op)))
return failure();
Location loc = op.getLoc();
int64_t reductionSize = 0;
VectorType lhsType = op.getLhsType();
Value lhs = op.lhs(), rhs = op.rhs(), res = op.acc();
// Set up the parallel/reduction structure in right form.
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
AffineExpr m, n, k;
bindDims(rewriter.getContext(), m, n, k);
static constexpr std::array<int64_t, 2> perm = {1, 0};
auto iteratorTypes = op.iterator_types().getValue();
SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
if (isParallelIterator(iteratorTypes[0]) &&
isParallelIterator(iteratorTypes[1]) &&
isReductionIterator(iteratorTypes[2])) {
//
// Two outer parallel, one inner reduction (matmat flavor).
//
if (maps == infer({{m, k}, {k, n}, {m, n}})) {
// This is the classical row-major matmul. Just permute the lhs.
reductionSize = lhsType.getDimSize(1);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{m, k}, {n, k}, {m, n}})) {
// TODO: may be better to fail and use some vector<k> -> scalar reduction.
reductionSize = lhsType.getDimSize(1);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
} else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
// No need to permute anything.
reductionSize = lhsType.getDimSize(0);
} else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
// Just permute the rhs.
reductionSize = lhsType.getDimSize(0);
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
} else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
// This is the classical row-major matmul. Just permute the lhs.
reductionSize = lhsType.getDimSize(1);
Value tmp = rhs;
rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
lhs = tmp;
} else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
// TODO: may be better to fail and use some vector<k> -> scalar reduction.
reductionSize = lhsType.getDimSize(1);
Value tmp = rhs;
rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
lhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm);
} else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
// No need to permute anything, but still swap lhs and rhs.
reductionSize = lhsType.getDimSize(0);
std::swap(lhs, rhs);
} else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
// Just permute the rhs.
reductionSize = lhsType.getDimSize(0);
Value tmp = lhs;
lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
rhs = tmp;
} else {
return failure();
}
} else if (isParallelIterator(iteratorTypes[0]) &&
isReductionIterator(iteratorTypes[1])) {
//
// One outer parallel, one inner reduction (matvec flavor)
//
if (maps == infer({{m, n}, {n}, {m}})) {
// Case mat-vec: transpose.
reductionSize = lhsType.getDimSize(1);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{n, m}, {n}, {m}})) {
// Case mat-trans-vec: ready to go.
reductionSize = lhsType.getDimSize(0);
} else if (maps == infer({{n}, {m, n}, {m}})) {
// Case vec-mat: swap and transpose.
reductionSize = lhsType.getDimSize(0);
std::swap(lhs, rhs);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{n}, {n, m}, {m}})) {
// Case vec-mat-trans: swap and ready to go.
reductionSize = lhsType.getDimSize(0);
std::swap(lhs, rhs);
} else {
return failure();
}
} else {
return failure();
}
assert(reductionSize > 0);
// Unroll outer-products along reduction.
for (int64_t k = 0; k < reductionSize; ++k) {
Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, k);
Value b = rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, k);
res = rewriter.create<vector::OuterProductOp>(op.getLoc(), a, b, res);
}
rewriter.replaceOp(op, res);
return success();
}
LogicalResult
ContractionOpToDotLowering::matchAndRewrite(vector::ContractionOp op,
PatternRewriter &rewriter) const {
// TODO: implement masks
if (llvm::size(op.masks()) != 0)
return failure();
if (failed(filter(op)))
return failure();
if (vectorTransformsOptions.vectorContractLowering !=
vector::VectorContractLowering::Dot)
return failure();
auto iteratorTypes = op.iterator_types().getValue();
static constexpr std::array<int64_t, 2> perm = {1, 0};
Location loc = op.getLoc();
Value lhs = op.lhs(), rhs = op.rhs();
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
AffineExpr m, n, k;
bindDims(rewriter.getContext(), m, n, k);
SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
//
// In the following we wish to make the reduction dimension innermost so we
// can load vectors and just fmul + reduce into a scalar.
//
if (isParallelIterator(iteratorTypes[0]) &&
isParallelIterator(iteratorTypes[1]) &&
isReductionIterator(iteratorTypes[2])) {
//
// Two outer parallel, one inner reduction (matmat flavor).
//
if (maps == infer({{m, k}, {k, n}, {m, n}})) {
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
} else if (maps == infer({{m, k}, {n, k}, {m, n}})) {
// No need to permute anything.
} else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
} else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
// This is the classical row-major matmul. Just permute the lhs.
Value tmp = lhs;
lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
rhs = tmp;
} else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
std::swap(lhs, rhs);
} else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
Value tmp = lhs;
lhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
rhs = rewriter.create<vector::TransposeOp>(loc, tmp, perm);
} else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
Value tmp = rhs;
rhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
lhs = tmp;
} else {
return failure();
}
} else if (isParallelIterator(iteratorTypes[0]) &&
isReductionIterator(iteratorTypes[1])) {
//
// One outer parallel, one inner reduction (matvec flavor)
//
if (maps == infer({{m, n}, {n}, {m}})) {
// No need to permute anything.
} else if (maps == infer({{n, m}, {n}, {m}})) {
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{n}, {m, n}, {m}})) {
std::swap(lhs, rhs);
} else if (maps == infer({{n}, {n, m}, {m}})) {
std::swap(lhs, rhs);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else {
return failure();
}
} else {
return failure();
}
VectorType dstType = op.getResultType().cast<VectorType>();
assert(dstType.getRank() >= 1 && dstType.getRank() <= 2 &&
"Expected dst type of rank 1 or 2");
unsigned rank = dstType.getRank();
unsigned dstRows = dstType.getShape()[0];
unsigned dstColumns = rank == 1 ? 1 : dstType.getShape()[1];
// ExtractOp does not allow dynamic indexing, we must unroll explicitly.
Value res =
rewriter.create<ConstantOp>(loc, dstType, rewriter.getZeroAttr(dstType));
for (unsigned r = 0; r < dstRows; ++r) {
Value a = rewriter.create<vector::ExtractOp>(op.getLoc(), lhs, r);
for (unsigned c = 0; c < dstColumns; ++c) {
Value b = rank == 1
? rhs
: rewriter.create<vector::ExtractOp>(op.getLoc(), rhs, c);
Value m = rewriter.create<MulFOp>(op.getLoc(), a, b);
Value reduced = rewriter.create<vector::ReductionOp>(
op.getLoc(), dstType.getElementType(), rewriter.getStringAttr("add"),
m, ValueRange{});
SmallVector<int64_t, 2> pos = rank == 1 ? SmallVector<int64_t, 2>{r}
: SmallVector<int64_t, 2>{r, c};
res = rewriter.create<vector::InsertOp>(op.getLoc(), reduced, res, pos);
}
}
if (auto acc = op.acc())
res = rewriter.create<AddFOp>(op.getLoc(), res, acc);
rewriter.replaceOp(op, res);
return success();
}
/// Progressive lowering of ContractionOp.
/// One:
/// %x = vector.contract with at least one free/batch dimension
/// is replaced by:
/// %a = vector.contract with one less free/batch dimension
/// %b = vector.contract with one less free/batch dimension
/// ..
/// %x = combine %a %b ..
/// until a pure contraction is reached (no free/batch dimensions),
/// which is replaced by a dot-product.
///
/// This only kicks in when either VectorTransformsOptions is set
/// to DOT or when other contraction patterns fail.
//
// TODO: break down into transpose/reshape/cast ops
// when they become available to avoid code dup
// TODO: investigate lowering order impact on performance
LogicalResult
ContractionOpLowering::matchAndRewrite(vector::ContractionOp op,
PatternRewriter &rewriter) const {
// TODO: implement masks.
if (llvm::size(op.masks()) != 0)
return failure();
if (failed(filter(op)))
return failure();
// TODO: support mixed mode contract lowering.
if (op.getLhsType().getElementType() !=
getElementTypeOrSelf(op.getAccType()) ||
op.getRhsType().getElementType() != getElementTypeOrSelf(op.getAccType()))
return failure();
// TODO: implement benefits, cost models.
MLIRContext *ctx = op.getContext();
ContractionOpToMatmulOpLowering pat1(vectorTransformsOptions, ctx);
if (succeeded(pat1.matchAndRewrite(op, rewriter)))
return success();
ContractionOpToOuterProductOpLowering pat2(vectorTransformsOptions, ctx);
if (succeeded(pat2.matchAndRewrite(op, rewriter)))
return success();
ContractionOpToDotLowering pat3(vectorTransformsOptions, ctx);
if (succeeded(pat3.matchAndRewrite(op, rewriter)))
return success();
// Find first batch dimension in LHS/RHS, and lower when found.
std::vector<std::pair<int64_t, int64_t>> batchDimMap = op.getBatchDimMap();
if (!batchDimMap.empty()) {
int64_t lhsIndex = batchDimMap[0].first;
int64_t rhsIndex = batchDimMap[0].second;
rewriter.replaceOp(op, lowerParallel(op, lhsIndex, rhsIndex, rewriter));
return success();
}
// Collect contracting dimensions.
std::vector<std::pair<int64_t, int64_t>> contractingDimMap =
op.getContractingDimMap();
DenseSet<int64_t> lhsContractingDimSet;
DenseSet<int64_t> rhsContractingDimSet;
for (auto &dimPair : contractingDimMap) {
lhsContractingDimSet.insert(dimPair.first);
rhsContractingDimSet.insert(dimPair.second);
}
// Find first free dimension in LHS, and lower when found.
VectorType lhsType = op.getLhsType();
for (int64_t lhsIndex = 0, e = lhsType.getRank(); lhsIndex < e; ++lhsIndex) {
if (lhsContractingDimSet.count(lhsIndex) == 0) {
rewriter.replaceOp(
op, lowerParallel(op, lhsIndex, /*rhsIndex=*/-1, rewriter));
return success();
}
}
// Find first free dimension in RHS, and lower when found.
VectorType rhsType = op.getRhsType();
for (int64_t rhsIndex = 0, e = rhsType.getRank(); rhsIndex < e; ++rhsIndex) {
if (rhsContractingDimSet.count(rhsIndex) == 0) {
rewriter.replaceOp(
op, lowerParallel(op, /*lhsIndex=*/-1, rhsIndex, rewriter));
return success();
}
}
// Lower the first remaining reduction dimension.
if (!contractingDimMap.empty()) {
rewriter.replaceOp(op, lowerReduction(op, rewriter));
return success();
}
return failure();
}
// Lower one parallel dimension.
// TODO: consider reusing existing contract unrolling
Value ContractionOpLowering::lowerParallel(vector::ContractionOp op,
int64_t lhsIndex, int64_t rhsIndex,
PatternRewriter &rewriter) const {
VectorType lhsType = op.getLhsType();
VectorType rhsType = op.getRhsType();
VectorType resType = op.getResultType().cast<VectorType>();
// Find the iterator type index and result index.
SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
int64_t iterIndex = -1;
int64_t dimSize = -1;
if (lhsIndex >= 0) {
iterIndex = iMap[0].getResult(lhsIndex).cast<AffineDimExpr>().getPosition();
assert(
(rhsIndex < 0 ||
iterIndex ==
iMap[1].getResult(rhsIndex).cast<AffineDimExpr>().getPosition()) &&
"parallel index should be free in LHS or batch in LHS/RHS");
dimSize = lhsType.getDimSize(lhsIndex);
} else {
assert(rhsIndex >= 0 && "missing parallel index");
iterIndex = iMap[1].getResult(rhsIndex).cast<AffineDimExpr>().getPosition();
dimSize = rhsType.getDimSize(rhsIndex);
}
assert(iterIndex >= 0 && "parallel index not listed in operand mapping");
Optional<int64_t> lookup = getResultIndex(iMap[2], iterIndex);
assert(lookup.hasValue() && "parallel index not listed in reduction");
int64_t resIndex = lookup.getValue();
// Construct new iterator types and affine map array attribute.
std::array<AffineMap, 3> lowIndexingMaps = {
adjustMap(iMap[0], iterIndex, rewriter),
adjustMap(iMap[1], iterIndex, rewriter),
adjustMap(iMap[2], iterIndex, rewriter)};
auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
auto lowIter =
rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex));
// Unroll into a series of lower dimensional vector.contract ops.
Location loc = op.getLoc();
Value result =
rewriter.create<ConstantOp>(loc, resType, rewriter.getZeroAttr(resType));
for (int64_t d = 0; d < dimSize; ++d) {
auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter);
auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter);
auto acc = reshapeLoad(loc, op.acc(), resType, resIndex, d, rewriter);
Value lowContract = rewriter.create<vector::ContractionOp>(
loc, lhs, rhs, acc, lowAffine, lowIter);
result =
reshapeStore(loc, lowContract, result, resType, resIndex, d, rewriter);
}
return result;
}
// Lower one reduction dimension.
Value ContractionOpLowering::lowerReduction(vector::ContractionOp op,
PatternRewriter &rewriter) const {
auto loc = op.getLoc();
VectorType lhsType = op.getLhsType();
VectorType rhsType = op.getRhsType();
Type resType = op.getResultType();
assert(!resType.isa<VectorType>());
// Use iterator index 0.
int64_t iterIndex = 0;
SmallVector<AffineMap, 4> iMap = op.getIndexingMaps();
Optional<int64_t> lookupLhs = getResultIndex(iMap[0], iterIndex);
Optional<int64_t> lookupRhs = getResultIndex(iMap[1], iterIndex);
assert(lookupLhs.hasValue() && "missing LHS parallel index");
assert(lookupRhs.hasValue() && "missing RHS parallel index");
int64_t lhsIndex = lookupLhs.getValue();
int64_t rhsIndex = lookupRhs.getValue();
int64_t dimSize = lhsType.getDimSize(lhsIndex);
assert(dimSize == rhsType.getDimSize(rhsIndex) && "corrupt shape");
// Base case.
if (lhsType.getRank() == 1) {
assert(rhsType.getRank() == 1 && "corrupt contraction");
Value m = rewriter.create<MulFOp>(loc, op.lhs(), op.rhs());
StringAttr kind = rewriter.getStringAttr("add");
return rewriter.create<vector::ReductionOp>(loc, resType, kind, m,
op.acc());
}
// Construct new iterator types and affine map array attribute.
std::array<AffineMap, 3> lowIndexingMaps = {
adjustMap(iMap[0], iterIndex, rewriter),
adjustMap(iMap[1], iterIndex, rewriter),
adjustMap(iMap[2], iterIndex, rewriter)};
auto lowAffine = rewriter.getAffineMapArrayAttr(lowIndexingMaps);
auto lowIter =
rewriter.getArrayAttr(adjustIter(op.iterator_types(), iterIndex));
// Unroll into a series of lower dimensional vector.contract ops.
// By feeding the initial accumulator into the first contraction,
// and the result of each contraction into the next, eventually
// the sum of all reductions is computed.
Value result = op.acc();
for (int64_t d = 0; d < dimSize; ++d) {
auto lhs = reshapeLoad(loc, op.lhs(), lhsType, lhsIndex, d, rewriter);
auto rhs = reshapeLoad(loc, op.rhs(), rhsType, rhsIndex, d, rewriter);
result = rewriter.create<vector::ContractionOp>(loc, lhs, rhs, result,
lowAffine, lowIter);
}
return result;
}
} // namespace mlir
static Optional<int64_t> extractConstantIndex(Value v) {
if (auto cstOp = v.getDefiningOp<ConstantIndexOp>())
return cstOp.getValue();
if (auto affineApplyOp = v.getDefiningOp<AffineApplyOp>())
if (affineApplyOp.getAffineMap().isSingleConstant())
return affineApplyOp.getAffineMap().getSingleConstantResult();
return None;
}
// Missing foldings of scf.if make it necessary to perform poor man's folding
// eagerly, especially in the case of unrolling. In the future, this should go
// away once scf.if folds properly.
static Value createScopedFoldedSLE(Value v, Value ub) {
using namespace edsc::op;
auto maybeCstV = extractConstantIndex(v);
auto maybeCstUb = extractConstantIndex(ub);
if (maybeCstV && maybeCstUb && *maybeCstV < *maybeCstUb)
return Value();
return sle(v, ub);
}
// Operates under a scoped context to build the condition to ensure that a
// particular VectorTransferOpInterface is unmasked.
static Value createScopedInBoundsCond(VectorTransferOpInterface xferOp) {
assert(xferOp.permutation_map().isMinorIdentity() &&
"Expected minor identity map");
Value inBoundsCond;
xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) {
// Zip over the resulting vector shape and memref indices.
// If the dimension is known to be unmasked, it does not participate in the
// construction of `inBoundsCond`.
if (!xferOp.isMaskedDim(resultIdx))
return;
int64_t vectorSize = xferOp.getVectorType().getDimSize(resultIdx);
using namespace edsc::op;
using namespace edsc::intrinsics;
// Fold or create the check that `index + vector_size` <= `memref_size`.
Value sum = xferOp.indices()[indicesIdx] + std_constant_index(vectorSize);
Value cond =
createScopedFoldedSLE(sum, std_dim(xferOp.memref(), indicesIdx));
if (!cond)
return;
// Conjunction over all dims for which we are in-bounds.
inBoundsCond = inBoundsCond ? inBoundsCond && cond : cond;
});
return inBoundsCond;
}
LogicalResult mlir::vector::splitFullAndPartialTransferPrecondition(
VectorTransferOpInterface xferOp) {
// TODO: expand support to these 2 cases.
if (!xferOp.permutation_map().isMinorIdentity())
return failure();
// Must have some masked dimension to be a candidate for splitting.
if (!xferOp.hasMaskedDim())
return failure();
// Don't split transfer operations directly under IfOp, this avoids applying
// the pattern recursively.
// TODO: improve the filtering condition to make it more applicable.
if (isa<scf::IfOp>(xferOp.getOperation()->getParentOp()))
return failure();
return success();
}
/// Given two MemRefTypes `aT` and `bT`, return a MemRefType to which both can
/// be cast. If the MemRefTypes don't have the same rank or are not strided,
/// return null; otherwise:
/// 1. if `aT` and `bT` are cast-compatible, return `aT`.
/// 2. else return a new MemRefType obtained by iterating over the shape and
/// strides and:
/// a. keeping the ones that are static and equal across `aT` and `bT`.
/// b. using a dynamic shape and/or stride for the dimeniosns that don't
/// agree.
static MemRefType getCastCompatibleMemRefType(MemRefType aT, MemRefType bT) {
if (MemRefCastOp::areCastCompatible(aT, bT))
return aT;
if (aT.getRank() != bT.getRank())
return MemRefType();
int64_t aOffset, bOffset;
SmallVector<int64_t, 4> aStrides, bStrides;
if (failed(getStridesAndOffset(aT, aStrides, aOffset)) ||
failed(getStridesAndOffset(bT, bStrides, bOffset)) ||
aStrides.size() != bStrides.size())
return MemRefType();
ArrayRef<int64_t> aShape = aT.getShape(), bShape = bT.getShape();
int64_t resOffset;
SmallVector<int64_t, 4> resShape(aT.getRank(), 0),
resStrides(bT.getRank(), 0);
for (int64_t idx = 0, e = aT.getRank(); idx < e; ++idx) {
resShape[idx] =
(aShape[idx] == bShape[idx]) ? aShape[idx] : MemRefType::kDynamicSize;
resStrides[idx] = (aStrides[idx] == bStrides[idx])
? aStrides[idx]
: MemRefType::kDynamicStrideOrOffset;
}
resOffset =
(aOffset == bOffset) ? aOffset : MemRefType::kDynamicStrideOrOffset;
return MemRefType::get(
resShape, aT.getElementType(),
makeStridedLinearLayoutMap(resStrides, resOffset, aT.getContext()));
}
/// Operates under a scoped context to build the intersection between the
/// view `xferOp.memref()` @ `xferOp.indices()` and the view `alloc`.
// TODO: view intersection/union/differences should be a proper std op.
static Value createScopedSubViewIntersection(VectorTransferOpInterface xferOp,
Value alloc) {
using namespace edsc::intrinsics;
int64_t memrefRank = xferOp.getMemRefType().getRank();
// TODO: relax this precondition, will require rank-reducing subviews.
assert(memrefRank == alloc.getType().cast<MemRefType>().getRank() &&
"Expected memref rank to match the alloc rank");
Value one = std_constant_index(1);
ValueRange leadingIndices =
xferOp.indices().take_front(xferOp.getLeadingMemRefRank());
SmallVector<Value, 4> sizes;
sizes.append(leadingIndices.begin(), leadingIndices.end());
xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) {
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
Value dimMemRef = std_dim(xferOp.memref(), indicesIdx);
Value dimAlloc = std_dim(alloc, resultIdx);
Value index = xferOp.indices()[indicesIdx];
AffineExpr i, j, k;
bindDims(xferOp.getContext(), i, j, k);
SmallVector<AffineMap, 4> maps =
AffineMap::inferFromExprList(MapList{{i - j, k}});
// affine_min(%dimMemRef - %index, %dimAlloc)
Value affineMin = affine_min(index.getType(), maps[0],
ValueRange{dimMemRef, index, dimAlloc});
sizes.push_back(affineMin);
});
return std_sub_view(xferOp.memref(), xferOp.indices(), sizes,
SmallVector<Value, 4>(memrefRank, one));
}
/// Given an `xferOp` for which:
/// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed.
/// 2. a memref of single vector `alloc` has been allocated.
/// Produce IR resembling:
/// ```
/// %1:3 = scf.if (%inBounds) {
/// memref_cast %A: memref<A...> to compatibleMemRefType
/// scf.yield %view, ... : compatibleMemRefType, index, index
/// } else {
/// %2 = linalg.fill(%alloc, %pad)
/// %3 = subview %view [...][...][...]
/// linalg.copy(%3, %alloc)
/// memref_cast %alloc: memref<B...> to compatibleMemRefType
/// scf.yield %4, ... : compatibleMemRefType, index, index
/// }
/// ```
/// Return the produced scf::IfOp.
static scf::IfOp createScopedFullPartialLinalgCopy(
vector::TransferReadOp xferOp, TypeRange returnTypes, Value inBoundsCond,
MemRefType compatibleMemRefType, Value alloc) {
using namespace edsc;
using namespace edsc::intrinsics;
scf::IfOp fullPartialIfOp;
Value zero = std_constant_index(0);
Value memref = xferOp.memref();
conditionBuilder(
returnTypes, inBoundsCond,
[&]() -> scf::ValueVector {
Value res = memref;
if (compatibleMemRefType != xferOp.getMemRefType())
res = std_memref_cast(memref, compatibleMemRefType);
scf::ValueVector viewAndIndices{res};
viewAndIndices.insert(viewAndIndices.end(), xferOp.indices().begin(),
xferOp.indices().end());
return viewAndIndices;
},
[&]() -> scf::ValueVector {
linalg_fill(alloc, xferOp.padding());
// Take partial subview of memref which guarantees no dimension
// overflows.
Value memRefSubView = createScopedSubViewIntersection(
cast<VectorTransferOpInterface>(xferOp.getOperation()), alloc);
linalg_copy(memRefSubView, alloc);
Value casted = std_memref_cast(alloc, compatibleMemRefType);
scf::ValueVector viewAndIndices{casted};
viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(),
zero);
return viewAndIndices;
},
&fullPartialIfOp);
return fullPartialIfOp;
}
/// Given an `xferOp` for which:
/// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed.
/// 2. a memref of single vector `alloc` has been allocated.
/// Produce IR resembling:
/// ```
/// %1:3 = scf.if (%inBounds) {
/// memref_cast %A: memref<A...> to compatibleMemRefType
/// scf.yield %view, ... : compatibleMemRefType, index, index
/// } else {
/// %2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...>
/// %3 = vector.type_cast %extra_alloc :
/// memref<...> to memref<vector<...>>
/// store %2, %3[] : memref<vector<...>>
/// %4 = memref_cast %alloc: memref<B...> to compatibleMemRefType
/// scf.yield %4, ... : compatibleMemRefType, index, index
/// }
/// ```
/// Return the produced scf::IfOp.
static scf::IfOp createScopedFullPartialVectorTransferRead(
vector::TransferReadOp xferOp, TypeRange returnTypes, Value inBoundsCond,
MemRefType compatibleMemRefType, Value alloc) {
using namespace edsc;
using namespace edsc::intrinsics;
scf::IfOp fullPartialIfOp;
Value zero = std_constant_index(0);
Value memref = xferOp.memref();
conditionBuilder(
returnTypes, inBoundsCond,
[&]() -> scf::ValueVector {
Value res = memref;
if (compatibleMemRefType != xferOp.getMemRefType())
res = std_memref_cast(memref, compatibleMemRefType);
scf::ValueVector viewAndIndices{res};
viewAndIndices.insert(viewAndIndices.end(), xferOp.indices().begin(),
xferOp.indices().end());
return viewAndIndices;
},
[&]() -> scf::ValueVector {
Operation *newXfer =
ScopedContext::getBuilderRef().clone(*xferOp.getOperation());
Value vector = cast<VectorTransferOpInterface>(newXfer).vector();
std_store(vector, vector_type_cast(
MemRefType::get({}, vector.getType()), alloc));
Value casted = std_memref_cast(alloc, compatibleMemRefType);
scf::ValueVector viewAndIndices{casted};
viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(),
zero);
return viewAndIndices;
},
&fullPartialIfOp);
return fullPartialIfOp;
}
/// Split a vector.transfer operation into an unmasked fastpath and a slowpath.
/// If `ifOp` is not null and the result is `success, the `ifOp` points to the
/// newly created conditional upon function return.
/// To accomodate for the fact that the original vector.transfer indexing may be
/// arbitrary and the slow path indexes @[0...0] in the temporary buffer, the
/// scf.if op returns a view and values of type index.
/// At this time, only vector.transfer_read case is implemented.
///
/// Example (a 2-D vector.transfer_read):
/// ```
/// %1 = vector.transfer_read %0[...], %pad : memref<A...>, vector<...>
/// ```
/// is transformed into:
/// ```
/// %1:3 = scf.if (%inBounds) {
/// // fastpath, direct cast
/// memref_cast %A: memref<A...> to compatibleMemRefType
/// scf.yield %view : compatibleMemRefType, index, index
/// } else {
/// // slowpath, masked vector.transfer or linalg.copy.
/// memref_cast %alloc: memref<B...> to compatibleMemRefType
/// scf.yield %4 : compatibleMemRefType, index, index
// }
/// %0 = vector.transfer_read %1#0[%1#1, %1#2] {masked = [false ... false]}
/// ```
/// where `alloc` is a top of the function alloca'ed buffer of one vector.
///
/// Preconditions:
/// 1. `xferOp.permutation_map()` must be a minor identity map
/// 2. the rank of the `xferOp.memref()` and the rank of the `xferOp.vector()`
/// must be equal. This will be relaxed in the future but requires
/// rank-reducing subviews.
LogicalResult mlir::vector::splitFullAndPartialTransfer(
OpBuilder &b, VectorTransferOpInterface xferOp,
VectorTransformsOptions options, scf::IfOp *ifOp) {
using namespace edsc;
using namespace edsc::intrinsics;
if (options.vectorTransferSplit == VectorTransferSplit::None)
return failure();
SmallVector<bool, 4> bools(xferOp.getTransferRank(), false);
auto unmaskedAttr = b.getBoolArrayAttr(bools);
if (options.vectorTransferSplit == VectorTransferSplit::ForceUnmasked) {
xferOp.setAttr(vector::TransferReadOp::getMaskedAttrName(), unmaskedAttr);
return success();
}
assert(succeeded(splitFullAndPartialTransferPrecondition(xferOp)) &&
"Expected splitFullAndPartialTransferPrecondition to hold");
auto xferReadOp = dyn_cast<vector::TransferReadOp>(xferOp.getOperation());
// TODO: add support for write case.
if (!xferReadOp)
return failure();
OpBuilder::InsertionGuard guard(b);
if (xferOp.memref().getDefiningOp())
b.setInsertionPointAfter(xferOp.memref().getDefiningOp());
else
b.setInsertionPoint(xferOp);
ScopedContext scope(b, xferOp.getLoc());
Value inBoundsCond = createScopedInBoundsCond(
cast<VectorTransferOpInterface>(xferOp.getOperation()));
if (!inBoundsCond)
return failure();
// Top of the function `alloc` for transient storage.
Value alloc;
{
FuncOp funcOp = xferOp.getParentOfType<FuncOp>();
OpBuilder::InsertionGuard guard(b);
b.setInsertionPointToStart(&funcOp.getRegion().front());
auto shape = xferOp.getVectorType().getShape();
Type elementType = xferOp.getVectorType().getElementType();
alloc = std_alloca(MemRefType::get(shape, elementType), ValueRange{},
b.getI64IntegerAttr(32));
}
MemRefType compatibleMemRefType = getCastCompatibleMemRefType(
xferOp.getMemRefType(), alloc.getType().cast<MemRefType>());
// Read case: full fill + partial copy -> unmasked vector.xfer_read.
SmallVector<Type, 4> returnTypes(1 + xferOp.getTransferRank(),
b.getIndexType());
returnTypes[0] = compatibleMemRefType;
scf::IfOp fullPartialIfOp =
options.vectorTransferSplit == VectorTransferSplit::VectorTransfer
? createScopedFullPartialVectorTransferRead(
xferReadOp, returnTypes, inBoundsCond, compatibleMemRefType,
alloc)
: createScopedFullPartialLinalgCopy(xferReadOp, returnTypes,
inBoundsCond,
compatibleMemRefType, alloc);
if (ifOp)
*ifOp = fullPartialIfOp;
// Unmask the existing read op, it always reads from a full buffer.
for (unsigned i = 0, e = returnTypes.size(); i != e; ++i)
xferReadOp.setOperand(i, fullPartialIfOp.getResult(i));
xferOp.setAttr(vector::TransferReadOp::getMaskedAttrName(), unmaskedAttr);
return success();
}
LogicalResult mlir::vector::VectorTransferFullPartialRewriter::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
auto xferOp = dyn_cast<VectorTransferOpInterface>(op);
if (!xferOp || failed(splitFullAndPartialTransferPrecondition(xferOp)) ||
failed(filter(xferOp)))
return failure();
rewriter.startRootUpdate(xferOp);
if (succeeded(splitFullAndPartialTransfer(rewriter, xferOp, options))) {
rewriter.finalizeRootUpdate(xferOp);
return success();
}
rewriter.cancelRootUpdate(xferOp);
return failure();
}
LogicalResult mlir::vector::PointwiseExtractPattern::matchAndRewrite(
ExtractMapOp extract, PatternRewriter &rewriter) const {
Operation *definedOp = extract.vector().getDefiningOp();
if (!definedOp || definedOp->getNumResults() != 1)
return failure();
// TODO: Create an interfaceOp for elementwise operations.
if (!isa<AddFOp>(definedOp))
return failure();
Location loc = extract.getLoc();
SmallVector<Value, 4> extractOperands;
for (OpOperand &operand : definedOp->getOpOperands())
extractOperands.push_back(rewriter.create<vector::ExtractMapOp>(
loc, operand.get(), extract.id(), extract.multiplicity()));
Operation *newOp = cloneOpWithOperandsAndTypes(
rewriter, loc, definedOp, extractOperands, extract.getResult().getType());
rewriter.replaceOp(extract, newOp->getResult(0));
return success();
}
Optional<mlir::vector::DistributeOps>
mlir::vector::distributPointwiseVectorOp(OpBuilder &builder, Operation *op,
Value id, int64_t multiplicity) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointAfter(op);
Location loc = op->getLoc();
Value result = op->getResult(0);
DistributeOps ops;
ops.extract =
builder.create<vector::ExtractMapOp>(loc, result, id, multiplicity);
ops.insert =
builder.create<vector::InsertMapOp>(loc, ops.extract, id, multiplicity);
return ops;
}
struct TransferReadExtractPattern
: public OpRewritePattern<vector::TransferReadOp> {
TransferReadExtractPattern(MLIRContext *context)
: OpRewritePattern<vector::TransferReadOp>(context) {}
LogicalResult matchAndRewrite(vector::TransferReadOp read,
PatternRewriter &rewriter) const override {
if (!read.getResult().hasOneUse())
return failure();
auto extract =
dyn_cast<vector::ExtractMapOp>(*read.getResult().getUsers().begin());
if (!extract)
return failure();
edsc::ScopedContext scope(rewriter, read.getLoc());
using mlir::edsc::op::operator+;
using namespace mlir::edsc::intrinsics;
SmallVector<Value, 4> indices(read.indices().begin(), read.indices().end());
indices.back() = indices.back() + extract.id();
Value newRead = vector_transfer_read(extract.getType(), read.memref(),
indices, read.permutation_map(),
read.padding(), ArrayAttr());
newRead = rewriter.create<vector::InsertMapOp>(
read.getLoc(), newRead, extract.id(), extract.multiplicity());
rewriter.replaceOp(read, newRead);
return success();
}
};
struct TransferWriteInsertPattern
: public OpRewritePattern<vector::TransferWriteOp> {
TransferWriteInsertPattern(MLIRContext *context)
: OpRewritePattern<vector::TransferWriteOp>(context) {}
LogicalResult matchAndRewrite(vector::TransferWriteOp write,
PatternRewriter &rewriter) const override {
auto insert = write.vector().getDefiningOp<vector::InsertMapOp>();
if (!insert)
return failure();
edsc::ScopedContext scope(rewriter, write.getLoc());
using mlir::edsc::op::operator+;
using namespace mlir::edsc::intrinsics;
SmallVector<Value, 4> indices(write.indices().begin(),
write.indices().end());
indices.back() = indices.back() + insert.id();
vector_transfer_write(insert.vector(), write.memref(), indices,
write.permutation_map(), ArrayAttr());
rewriter.eraseOp(write);
return success();
}
};
// TODO: Add pattern to rewrite ExtractSlices(ConstantMaskOp).
// TODO: Add this as DRR pattern.
void mlir::vector::populateVectorToVectorTransformationPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
// clang-format off
patterns.insert<ShapeCastOpDecomposer,
ShapeCastOpFolder,
SplitTransferReadOp,
SplitTransferWriteOp,
TupleGetFolderOp,
TransferReadExtractPattern,
TransferWriteInsertPattern>(context);
// clang-format on
}
void mlir::vector::populateVectorSlicesLoweringPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
patterns.insert<ExtractSlicesOpLowering, InsertSlicesOpLowering>(context);
}
void mlir::vector::populateVectorContractLoweringPatterns(
OwningRewritePatternList &patterns, MLIRContext *context,
VectorTransformsOptions parameters) {
// clang-format off
patterns.insert<BroadcastOpLowering,
CreateMaskOpLowering,
ConstantMaskOpLowering,
OuterProductOpLowering,
ShapeCastOp2DDownCastRewritePattern,
ShapeCastOp2DUpCastRewritePattern,
ShapeCastOpRewritePattern>(context);
patterns.insert<TransposeOpLowering,
ContractionOpLowering,
ContractionOpToMatmulOpLowering,
ContractionOpToOuterProductOpLowering>(parameters, context);
// clang-format on
}