Serializer.cpp
75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
//===- Serializer.cpp - MLIR SPIR-V Serialization -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the MLIR SPIR-V module to SPIR-V binary serialization.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/Serialization.h"
#include "mlir/Dialect/SPIRV/SPIRVAttributes.h"
#include "mlir/Dialect/SPIRV/SPIRVBinaryUtils.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/SPIRVTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "spirv-serialization"
using namespace mlir;
/// Encodes an SPIR-V instruction with the given `opcode` and `operands` into
/// the given `binary` vector.
static LogicalResult encodeInstructionInto(SmallVectorImpl<uint32_t> &binary,
spirv::Opcode op,
ArrayRef<uint32_t> operands) {
uint32_t wordCount = 1 + operands.size();
binary.push_back(spirv::getPrefixedOpcode(wordCount, op));
binary.append(operands.begin(), operands.end());
return success();
}
/// A pre-order depth-first visitor function for processing basic blocks.
///
/// Visits the basic blocks starting from the given `headerBlock` in pre-order
/// depth-first manner and calls `blockHandler` on each block. Skips handling
/// blocks in the `skipBlocks` list. If `skipHeader` is true, `blockHandler`
/// will not be invoked in `headerBlock` but still handles all `headerBlock`'s
/// successors.
///
/// SPIR-V spec "2.16.1. Universal Validation Rules" requires that "the order
/// of blocks in a function must satisfy the rule that blocks appear before
/// all blocks they dominate." This can be achieved by a pre-order CFG
/// traversal algorithm. To make the serialization output more logical and
/// readable to human, we perform depth-first CFG traversal and delay the
/// serialization of the merge block and the continue block, if exists, until
/// after all other blocks have been processed.
static LogicalResult
visitInPrettyBlockOrder(Block *headerBlock,
function_ref<LogicalResult(Block *)> blockHandler,
bool skipHeader = false, BlockRange skipBlocks = {}) {
llvm::df_iterator_default_set<Block *, 4> doneBlocks;
doneBlocks.insert(skipBlocks.begin(), skipBlocks.end());
for (Block *block : llvm::depth_first_ext(headerBlock, doneBlocks)) {
if (skipHeader && block == headerBlock)
continue;
if (failed(blockHandler(block)))
return failure();
}
return success();
}
/// Returns the merge block if the given `op` is a structured control flow op.
/// Otherwise returns nullptr.
static Block *getStructuredControlFlowOpMergeBlock(Operation *op) {
if (auto selectionOp = dyn_cast<spirv::SelectionOp>(op))
return selectionOp.getMergeBlock();
if (auto loopOp = dyn_cast<spirv::LoopOp>(op))
return loopOp.getMergeBlock();
return nullptr;
}
/// Given a predecessor `block` for a block with arguments, returns the block
/// that should be used as the parent block for SPIR-V OpPhi instructions
/// corresponding to the block arguments.
static Block *getPhiIncomingBlock(Block *block) {
// If the predecessor block in question is the entry block for a spv.loop,
// we jump to this spv.loop from its enclosing block.
if (block->isEntryBlock()) {
if (auto loopOp = dyn_cast<spirv::LoopOp>(block->getParentOp())) {
// Then the incoming parent block for OpPhi should be the merge block of
// the structured control flow op before this loop.
Operation *op = loopOp.getOperation();
while ((op = op->getPrevNode()) != nullptr)
if (Block *incomingBlock = getStructuredControlFlowOpMergeBlock(op))
return incomingBlock;
// Or the enclosing block itself if no structured control flow ops
// exists before this loop.
return loopOp.getOperation()->getBlock();
}
}
// Otherwise, we jump from the given predecessor block. Try to see if there is
// a structured control flow op inside it.
for (Operation &op : llvm::reverse(block->getOperations())) {
if (Block *incomingBlock = getStructuredControlFlowOpMergeBlock(&op))
return incomingBlock;
}
return block;
}
namespace {
/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words with the layout:
///
/// | <word-count>|<opcode> | <operand> | <operand> | ... |
/// | <------ word -------> | <-- word --> | <-- word --> | ... |
///
/// For the first word, the 16 high-order bits are the word count of the
/// instruction, the 16 low-order bits are the opcode enumerant. The
/// instructions then belong to different sections, which must be laid out in
/// the particular order as specified in "2.4 Logical Layout of a Module" of
/// the SPIR-V spec.
class Serializer {
public:
/// Creates a serializer for the given SPIR-V `module`.
explicit Serializer(spirv::ModuleOp module, bool emitDebugInfo = false);
/// Serializes the remembered SPIR-V module.
LogicalResult serialize();
/// Collects the final SPIR-V `binary`.
void collect(SmallVectorImpl<uint32_t> &binary);
#ifndef NDEBUG
/// (For debugging) prints each value and its corresponding result <id>.
void printValueIDMap(raw_ostream &os);
#endif
private:
// Note that there are two main categories of methods in this class:
// * process*() methods are meant to fully serialize a SPIR-V module entity
// (header, type, op, etc.). They update internal vectors containing
// different binary sections. They are not meant to be called except the
// top-level serialization loop.
// * prepare*() methods are meant to be helpers that prepare for serializing
// certain entity. They may or may not update internal vectors containing
// different binary sections. They are meant to be called among themselves
// or by other process*() methods for subtasks.
//===--------------------------------------------------------------------===//
// <id>
//===--------------------------------------------------------------------===//
// Note that it is illegal to use id <0> in SPIR-V binary module. Various
// methods in this class, if using SPIR-V word (uint32_t) as interface,
// check or return id <0> to indicate error in processing.
/// Consumes the next unused <id>. This method will never return 0.
uint32_t getNextID() { return nextID++; }
//===--------------------------------------------------------------------===//
// Module structure
//===--------------------------------------------------------------------===//
uint32_t getSpecConstID(StringRef constName) const {
return specConstIDMap.lookup(constName);
}
uint32_t getVariableID(StringRef varName) const {
return globalVarIDMap.lookup(varName);
}
uint32_t getFunctionID(StringRef fnName) const {
return funcIDMap.lookup(fnName);
}
/// Gets the <id> for the function with the given name. Assigns the next
/// available <id> if the function haven't been deserialized.
uint32_t getOrCreateFunctionID(StringRef fnName);
void processCapability();
void processDebugInfo();
void processExtension();
void processMemoryModel();
LogicalResult processConstantOp(spirv::ConstantOp op);
LogicalResult processSpecConstantOp(spirv::SpecConstantOp op);
LogicalResult
processSpecConstantCompositeOp(spirv::SpecConstantCompositeOp op);
/// SPIR-V dialect supports OpUndef using spv.UndefOp that produces a SSA
/// value to use with other operations. The SPIR-V spec recommends that
/// OpUndef be generated at module level. The serialization generates an
/// OpUndef for each type needed at module level.
LogicalResult processUndefOp(spirv::UndefOp op);
/// Emit OpName for the given `resultID`.
LogicalResult processName(uint32_t resultID, StringRef name);
/// Processes a SPIR-V function op.
LogicalResult processFuncOp(spirv::FuncOp op);
LogicalResult processVariableOp(spirv::VariableOp op);
/// Process a SPIR-V GlobalVariableOp
LogicalResult processGlobalVariableOp(spirv::GlobalVariableOp varOp);
/// Process attributes that translate to decorations on the result <id>
LogicalResult processDecoration(Location loc, uint32_t resultID,
NamedAttribute attr);
template <typename DType>
LogicalResult processTypeDecoration(Location loc, DType type,
uint32_t resultId) {
return emitError(loc, "unhandled decoration for type:") << type;
}
/// Process member decoration
LogicalResult processMemberDecoration(
uint32_t structID,
const spirv::StructType::MemberDecorationInfo &memberDecorationInfo);
//===--------------------------------------------------------------------===//
// Types
//===--------------------------------------------------------------------===//
uint32_t getTypeID(Type type) const { return typeIDMap.lookup(type); }
Type getVoidType() { return mlirBuilder.getNoneType(); }
bool isVoidType(Type type) const { return type.isa<NoneType>(); }
/// Returns true if the given type is a pointer type to a struct in some
/// interface storage class.
bool isInterfaceStructPtrType(Type type) const;
/// Main dispatch method for serializing a type. The result <id> of the
/// serialized type will be returned as `typeID`.
LogicalResult processType(Location loc, Type type, uint32_t &typeID);
/// Method for preparing basic SPIR-V type serialization. Returns the type's
/// opcode and operands for the instruction via `typeEnum` and `operands`.
LogicalResult prepareBasicType(Location loc, Type type, uint32_t resultID,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands);
LogicalResult prepareFunctionType(Location loc, FunctionType type,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands);
//===--------------------------------------------------------------------===//
// Constant
//===--------------------------------------------------------------------===//
uint32_t getConstantID(Attribute value) const {
return constIDMap.lookup(value);
}
/// Main dispatch method for processing a constant with the given `constType`
/// and `valueAttr`. `constType` is needed here because we can interpret the
/// `valueAttr` as a different type than the type of `valueAttr` itself; for
/// example, ArrayAttr, whose type is NoneType, is used for spirv::ArrayType
/// constants.
uint32_t prepareConstant(Location loc, Type constType, Attribute valueAttr);
/// Prepares array attribute serialization. This method emits corresponding
/// OpConstant* and returns the result <id> associated with it. Returns 0 if
/// failed.
uint32_t prepareArrayConstant(Location loc, Type constType, ArrayAttr attr);
/// Prepares bool/int/float DenseElementsAttr serialization. This method
/// iterates the DenseElementsAttr to construct the constant array, and
/// returns the result <id> associated with it. Returns 0 if failed. Note
/// that the size of `index` must match the rank.
/// TODO: Consider to enhance splat elements cases. For splat cases,
/// we don't need to loop over all elements, especially when the splat value
/// is zero. We can use OpConstantNull when the value is zero.
uint32_t prepareDenseElementsConstant(Location loc, Type constType,
DenseElementsAttr valueAttr, int dim,
MutableArrayRef<uint64_t> index);
/// Prepares scalar attribute serialization. This method emits corresponding
/// OpConstant* and returns the result <id> associated with it. Returns 0 if
/// the attribute is not for a scalar bool/integer/float value. If `isSpec` is
/// true, then the constant will be serialized as a specialization constant.
uint32_t prepareConstantScalar(Location loc, Attribute valueAttr,
bool isSpec = false);
uint32_t prepareConstantBool(Location loc, BoolAttr boolAttr,
bool isSpec = false);
uint32_t prepareConstantInt(Location loc, IntegerAttr intAttr,
bool isSpec = false);
uint32_t prepareConstantFp(Location loc, FloatAttr floatAttr,
bool isSpec = false);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// Returns the result <id> for the given block.
uint32_t getBlockID(Block *block) const { return blockIDMap.lookup(block); }
/// Returns the result <id> for the given block. If no <id> has been assigned,
/// assigns the next available <id>
uint32_t getOrCreateBlockID(Block *block);
/// Processes the given `block` and emits SPIR-V instructions for all ops
/// inside. Does not emit OpLabel for this block if `omitLabel` is true.
/// `actionBeforeTerminator` is a callback that will be invoked before
/// handling the terminator op. It can be used to inject the Op*Merge
/// instruction if this is a SPIR-V selection/loop header block.
LogicalResult
processBlock(Block *block, bool omitLabel = false,
function_ref<void()> actionBeforeTerminator = nullptr);
/// Emits OpPhi instructions for the given block if it has block arguments.
LogicalResult emitPhiForBlockArguments(Block *block);
LogicalResult processSelectionOp(spirv::SelectionOp selectionOp);
LogicalResult processLoopOp(spirv::LoopOp loopOp);
LogicalResult processBranchConditionalOp(spirv::BranchConditionalOp);
LogicalResult processBranchOp(spirv::BranchOp branchOp);
//===--------------------------------------------------------------------===//
// Operations
//===--------------------------------------------------------------------===//
LogicalResult encodeExtensionInstruction(Operation *op,
StringRef extensionSetName,
uint32_t opcode,
ArrayRef<uint32_t> operands);
uint32_t getValueID(Value val) const { return valueIDMap.lookup(val); }
LogicalResult processAddressOfOp(spirv::AddressOfOp addressOfOp);
LogicalResult processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp);
/// Main dispatch method for serializing an operation.
LogicalResult processOperation(Operation *op);
/// Method to dispatch to the serialization function for an operation in
/// SPIR-V dialect that is a mirror of an instruction in the SPIR-V spec.
/// This is auto-generated from ODS. Dispatch is handled for all operations
/// in SPIR-V dialect that have hasOpcode == 1.
LogicalResult dispatchToAutogenSerialization(Operation *op);
/// Method to serialize an operation in the SPIR-V dialect that is a mirror of
/// an instruction in the SPIR-V spec. This is auto generated if hasOpcode ==
/// 1 and autogenSerialization == 1 in ODS.
template <typename OpTy>
LogicalResult processOp(OpTy op) {
return op.emitError("unsupported op serialization");
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
/// Emits an OpDecorate instruction to decorate the given `target` with the
/// given `decoration`.
LogicalResult emitDecoration(uint32_t target, spirv::Decoration decoration,
ArrayRef<uint32_t> params = {});
/// Emits an OpLine instruction with the given `loc` location information into
/// the given `binary` vector.
LogicalResult emitDebugLine(SmallVectorImpl<uint32_t> &binary, Location loc);
private:
/// The SPIR-V module to be serialized.
spirv::ModuleOp module;
/// An MLIR builder for getting MLIR constructs.
mlir::Builder mlirBuilder;
/// A flag which indicates if the debuginfo should be emitted.
bool emitDebugInfo = false;
/// A flag which indicates if the last processed instruction was a merge
/// instruction.
/// According to SPIR-V spec: "If a branch merge instruction is used, the last
/// OpLine in the block must be before its merge instruction".
bool lastProcessedWasMergeInst = false;
/// The <id> of the OpString instruction, which specifies a file name, for
/// use by other debug instructions.
uint32_t fileID = 0;
/// The next available result <id>.
uint32_t nextID = 1;
// The following are for different SPIR-V instruction sections. They follow
// the logical layout of a SPIR-V module.
SmallVector<uint32_t, 4> capabilities;
SmallVector<uint32_t, 0> extensions;
SmallVector<uint32_t, 0> extendedSets;
SmallVector<uint32_t, 3> memoryModel;
SmallVector<uint32_t, 0> entryPoints;
SmallVector<uint32_t, 4> executionModes;
SmallVector<uint32_t, 0> debug;
SmallVector<uint32_t, 0> names;
SmallVector<uint32_t, 0> decorations;
SmallVector<uint32_t, 0> typesGlobalValues;
SmallVector<uint32_t, 0> functions;
/// `functionHeader` contains all the instructions that must be in the first
/// block in the function, and `functionBody` contains the rest. After
/// processing FuncOp, the encoded instructions of a function are appended to
/// `functions`. An example of instructions in `functionHeader` in order:
/// OpFunction ...
/// OpFunctionParameter ...
/// OpFunctionParameter ...
/// OpLabel ...
/// OpVariable ...
/// OpVariable ...
SmallVector<uint32_t, 0> functionHeader;
SmallVector<uint32_t, 0> functionBody;
/// Map from type used in SPIR-V module to their <id>s.
DenseMap<Type, uint32_t> typeIDMap;
/// Map from constant values to their <id>s.
DenseMap<Attribute, uint32_t> constIDMap;
/// Map from specialization constant names to their <id>s.
llvm::StringMap<uint32_t> specConstIDMap;
/// Map from GlobalVariableOps name to <id>s.
llvm::StringMap<uint32_t> globalVarIDMap;
/// Map from FuncOps name to <id>s.
llvm::StringMap<uint32_t> funcIDMap;
/// Map from blocks to their <id>s.
DenseMap<Block *, uint32_t> blockIDMap;
/// Map from the Type to the <id> that represents undef value of that type.
DenseMap<Type, uint32_t> undefValIDMap;
/// Map from results of normal operations to their <id>s.
DenseMap<Value, uint32_t> valueIDMap;
/// Map from extended instruction set name to <id>s.
llvm::StringMap<uint32_t> extendedInstSetIDMap;
/// Map from values used in OpPhi instructions to their offset in the
/// `functions` section.
///
/// When processing a block with arguments, we need to emit OpPhi
/// instructions to record the predecessor block <id>s and the values they
/// send to the block in question. But it's not guaranteed all values are
/// visited and thus assigned result <id>s. So we need this list to capture
/// the offsets into `functions` where a value is used so that we can fix it
/// up later after processing all the blocks in a function.
///
/// More concretely, say if we are visiting the following blocks:
///
/// ```mlir
/// ^phi(%arg0: i32):
/// ...
/// ^parent1:
/// ...
/// spv.Branch ^phi(%val0: i32)
/// ^parent2:
/// ...
/// spv.Branch ^phi(%val1: i32)
/// ```
///
/// When we are serializing the `^phi` block, we need to emit at the beginning
/// of the block OpPhi instructions which has the following parameters:
///
/// OpPhi id-for-i32 id-for-%arg0 id-for-%val0 id-for-^parent1
/// id-for-%val1 id-for-^parent2
///
/// But we don't know the <id> for %val0 and %val1 yet. One way is to visit
/// all the blocks twice and use the first visit to assign an <id> to each
/// value. But it's paying the overheads just for OpPhi emission. Instead,
/// we still visit the blocks once for emission. When we emit the OpPhi
/// instructions, we use 0 as a placeholder for the <id>s for %val0 and %val1.
/// At the same time, we record their offsets in the emitted binary (which is
/// placed inside `functions`) here. And then after emitting all blocks, we
/// replace the dummy <id> 0 with the real result <id> by overwriting
/// `functions[offset]`.
DenseMap<Value, SmallVector<size_t, 1>> deferredPhiValues;
};
} // namespace
Serializer::Serializer(spirv::ModuleOp module, bool emitDebugInfo)
: module(module), mlirBuilder(module.getContext()),
emitDebugInfo(emitDebugInfo) {}
LogicalResult Serializer::serialize() {
LLVM_DEBUG(llvm::dbgs() << "+++ starting serialization +++\n");
if (failed(module.verify()))
return failure();
// TODO: handle the other sections
processCapability();
processExtension();
processMemoryModel();
processDebugInfo();
// Iterate over the module body to serialize it. Assumptions are that there is
// only one basic block in the moduleOp
for (auto &op : module.getBlock()) {
if (failed(processOperation(&op))) {
return failure();
}
}
LLVM_DEBUG(llvm::dbgs() << "+++ completed serialization +++\n");
return success();
}
void Serializer::collect(SmallVectorImpl<uint32_t> &binary) {
auto moduleSize = spirv::kHeaderWordCount + capabilities.size() +
extensions.size() + extendedSets.size() +
memoryModel.size() + entryPoints.size() +
executionModes.size() + decorations.size() +
typesGlobalValues.size() + functions.size();
binary.clear();
binary.reserve(moduleSize);
spirv::appendModuleHeader(binary, module.vce_triple()->getVersion(), nextID);
binary.append(capabilities.begin(), capabilities.end());
binary.append(extensions.begin(), extensions.end());
binary.append(extendedSets.begin(), extendedSets.end());
binary.append(memoryModel.begin(), memoryModel.end());
binary.append(entryPoints.begin(), entryPoints.end());
binary.append(executionModes.begin(), executionModes.end());
binary.append(debug.begin(), debug.end());
binary.append(names.begin(), names.end());
binary.append(decorations.begin(), decorations.end());
binary.append(typesGlobalValues.begin(), typesGlobalValues.end());
binary.append(functions.begin(), functions.end());
}
#ifndef NDEBUG
void Serializer::printValueIDMap(raw_ostream &os) {
os << "\n= Value <id> Map =\n\n";
for (auto valueIDPair : valueIDMap) {
Value val = valueIDPair.first;
os << " " << val << " "
<< "id = " << valueIDPair.second << ' ';
if (auto *op = val.getDefiningOp()) {
os << "from op '" << op->getName() << "'";
} else if (auto arg = val.dyn_cast<BlockArgument>()) {
Block *block = arg.getOwner();
os << "from argument of block " << block << ' ';
os << " in op '" << block->getParentOp()->getName() << "'";
}
os << '\n';
}
}
#endif
//===----------------------------------------------------------------------===//
// Module structure
//===----------------------------------------------------------------------===//
uint32_t Serializer::getOrCreateFunctionID(StringRef fnName) {
auto funcID = funcIDMap.lookup(fnName);
if (!funcID) {
funcID = getNextID();
funcIDMap[fnName] = funcID;
}
return funcID;
}
void Serializer::processCapability() {
for (auto cap : module.vce_triple()->getCapabilities())
encodeInstructionInto(capabilities, spirv::Opcode::OpCapability,
{static_cast<uint32_t>(cap)});
}
void Serializer::processDebugInfo() {
if (!emitDebugInfo)
return;
auto fileLoc = module.getLoc().dyn_cast<FileLineColLoc>();
auto fileName = fileLoc ? fileLoc.getFilename() : "<unknown>";
fileID = getNextID();
SmallVector<uint32_t, 16> operands;
operands.push_back(fileID);
spirv::encodeStringLiteralInto(operands, fileName);
encodeInstructionInto(debug, spirv::Opcode::OpString, operands);
// TODO: Encode more debug instructions.
}
void Serializer::processExtension() {
llvm::SmallVector<uint32_t, 16> extName;
for (spirv::Extension ext : module.vce_triple()->getExtensions()) {
extName.clear();
spirv::encodeStringLiteralInto(extName, spirv::stringifyExtension(ext));
encodeInstructionInto(extensions, spirv::Opcode::OpExtension, extName);
}
}
void Serializer::processMemoryModel() {
uint32_t mm = module.getAttrOfType<IntegerAttr>("memory_model").getInt();
uint32_t am = module.getAttrOfType<IntegerAttr>("addressing_model").getInt();
encodeInstructionInto(memoryModel, spirv::Opcode::OpMemoryModel, {am, mm});
}
LogicalResult Serializer::processConstantOp(spirv::ConstantOp op) {
if (auto resultID = prepareConstant(op.getLoc(), op.getType(), op.value())) {
valueIDMap[op.getResult()] = resultID;
return success();
}
return failure();
}
LogicalResult Serializer::processSpecConstantOp(spirv::SpecConstantOp op) {
if (auto resultID = prepareConstantScalar(op.getLoc(), op.default_value(),
/*isSpec=*/true)) {
// Emit the OpDecorate instruction for SpecId.
if (auto specID = op.getAttrOfType<IntegerAttr>("spec_id")) {
auto val = static_cast<uint32_t>(specID.getInt());
emitDecoration(resultID, spirv::Decoration::SpecId, {val});
}
specConstIDMap[op.sym_name()] = resultID;
return processName(resultID, op.sym_name());
}
return failure();
}
LogicalResult
Serializer::processSpecConstantCompositeOp(spirv::SpecConstantCompositeOp op) {
uint32_t typeID = 0;
if (failed(processType(op.getLoc(), op.type(), typeID))) {
return failure();
}
auto resultID = getNextID();
SmallVector<uint32_t, 8> operands;
operands.push_back(typeID);
operands.push_back(resultID);
auto constituents = op.constituents();
for (auto index : llvm::seq<uint32_t>(0, constituents.size())) {
auto constituent = constituents[index].dyn_cast<FlatSymbolRefAttr>();
auto constituentName = constituent.getValue();
auto constituentID = getSpecConstID(constituentName);
if (!constituentID) {
return op.emitError("unknown result <id> for specialization constant ")
<< constituentName;
}
operands.push_back(constituentID);
}
encodeInstructionInto(typesGlobalValues,
spirv::Opcode::OpSpecConstantComposite, operands);
specConstIDMap[op.sym_name()] = resultID;
return processName(resultID, op.sym_name());
}
LogicalResult Serializer::processUndefOp(spirv::UndefOp op) {
auto undefType = op.getType();
auto &id = undefValIDMap[undefType];
if (!id) {
id = getNextID();
uint32_t typeID = 0;
if (failed(processType(op.getLoc(), undefType, typeID)) ||
failed(encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpUndef,
{typeID, id}))) {
return failure();
}
}
valueIDMap[op.getResult()] = id;
return success();
}
LogicalResult Serializer::processDecoration(Location loc, uint32_t resultID,
NamedAttribute attr) {
auto attrName = attr.first.strref();
auto decorationName = llvm::convertToCamelFromSnakeCase(attrName, true);
auto decoration = spirv::symbolizeDecoration(decorationName);
if (!decoration) {
return emitError(
loc, "non-argument attributes expected to have snake-case-ified "
"decoration name, unhandled attribute with name : ")
<< attrName;
}
SmallVector<uint32_t, 1> args;
switch (decoration.getValue()) {
case spirv::Decoration::Binding:
case spirv::Decoration::DescriptorSet:
case spirv::Decoration::Location:
if (auto intAttr = attr.second.dyn_cast<IntegerAttr>()) {
args.push_back(intAttr.getValue().getZExtValue());
break;
}
return emitError(loc, "expected integer attribute for ") << attrName;
case spirv::Decoration::BuiltIn:
if (auto strAttr = attr.second.dyn_cast<StringAttr>()) {
auto enumVal = spirv::symbolizeBuiltIn(strAttr.getValue());
if (enumVal) {
args.push_back(static_cast<uint32_t>(enumVal.getValue()));
break;
}
return emitError(loc, "invalid ")
<< attrName << " attribute " << strAttr.getValue();
}
return emitError(loc, "expected string attribute for ") << attrName;
case spirv::Decoration::Flat:
case spirv::Decoration::NoPerspective:
if (auto unitAttr = attr.second.dyn_cast<UnitAttr>()) {
// For unit attributes, the args list has no values so we do nothing
break;
}
return emitError(loc, "expected unit attribute for ") << attrName;
default:
return emitError(loc, "unhandled decoration ") << decorationName;
}
return emitDecoration(resultID, decoration.getValue(), args);
}
LogicalResult Serializer::processName(uint32_t resultID, StringRef name) {
assert(!name.empty() && "unexpected empty string for OpName");
SmallVector<uint32_t, 4> nameOperands;
nameOperands.push_back(resultID);
if (failed(spirv::encodeStringLiteralInto(nameOperands, name))) {
return failure();
}
return encodeInstructionInto(names, spirv::Opcode::OpName, nameOperands);
}
namespace {
template <>
LogicalResult Serializer::processTypeDecoration<spirv::ArrayType>(
Location loc, spirv::ArrayType type, uint32_t resultID) {
if (unsigned stride = type.getArrayStride()) {
// OpDecorate %arrayTypeSSA ArrayStride strideLiteral
return emitDecoration(resultID, spirv::Decoration::ArrayStride, {stride});
}
return success();
}
template <>
LogicalResult Serializer::processTypeDecoration<spirv::RuntimeArrayType>(
Location Loc, spirv::RuntimeArrayType type, uint32_t resultID) {
if (unsigned stride = type.getArrayStride()) {
// OpDecorate %arrayTypeSSA ArrayStride strideLiteral
return emitDecoration(resultID, spirv::Decoration::ArrayStride, {stride});
}
return success();
}
LogicalResult Serializer::processMemberDecoration(
uint32_t structID,
const spirv::StructType::MemberDecorationInfo &memberDecoration) {
SmallVector<uint32_t, 4> args(
{structID, memberDecoration.memberIndex,
static_cast<uint32_t>(memberDecoration.decoration)});
if (memberDecoration.hasValue) {
args.push_back(memberDecoration.decorationValue);
}
return encodeInstructionInto(decorations, spirv::Opcode::OpMemberDecorate,
args);
}
} // namespace
LogicalResult Serializer::processFuncOp(spirv::FuncOp op) {
LLVM_DEBUG(llvm::dbgs() << "-- start function '" << op.getName() << "' --\n");
assert(functionHeader.empty() && functionBody.empty());
uint32_t fnTypeID = 0;
// Generate type of the function.
processType(op.getLoc(), op.getType(), fnTypeID);
// Add the function definition.
SmallVector<uint32_t, 4> operands;
uint32_t resTypeID = 0;
auto resultTypes = op.getType().getResults();
if (resultTypes.size() > 1) {
return op.emitError("cannot serialize function with multiple return types");
}
if (failed(processType(op.getLoc(),
(resultTypes.empty() ? getVoidType() : resultTypes[0]),
resTypeID))) {
return failure();
}
operands.push_back(resTypeID);
auto funcID = getOrCreateFunctionID(op.getName());
operands.push_back(funcID);
operands.push_back(static_cast<uint32_t>(op.function_control()));
operands.push_back(fnTypeID);
encodeInstructionInto(functionHeader, spirv::Opcode::OpFunction, operands);
// Add function name.
if (failed(processName(funcID, op.getName()))) {
return failure();
}
// Declare the parameters.
for (auto arg : op.getArguments()) {
uint32_t argTypeID = 0;
if (failed(processType(op.getLoc(), arg.getType(), argTypeID))) {
return failure();
}
auto argValueID = getNextID();
valueIDMap[arg] = argValueID;
encodeInstructionInto(functionHeader, spirv::Opcode::OpFunctionParameter,
{argTypeID, argValueID});
}
// Process the body.
if (op.isExternal()) {
return op.emitError("external function is unhandled");
}
// Some instructions (e.g., OpVariable) in a function must be in the first
// block in the function. These instructions will be put in functionHeader.
// Thus, we put the label in functionHeader first, and omit it from the first
// block.
encodeInstructionInto(functionHeader, spirv::Opcode::OpLabel,
{getOrCreateBlockID(&op.front())});
processBlock(&op.front(), /*omitLabel=*/true);
if (failed(visitInPrettyBlockOrder(
&op.front(), [&](Block *block) { return processBlock(block); },
/*skipHeader=*/true))) {
return failure();
}
// There might be OpPhi instructions who have value references needing to fix.
for (auto deferredValue : deferredPhiValues) {
Value value = deferredValue.first;
uint32_t id = getValueID(value);
LLVM_DEBUG(llvm::dbgs() << "[phi] fix reference of value " << value
<< " to id = " << id << '\n');
assert(id && "OpPhi references undefined value!");
for (size_t offset : deferredValue.second)
functionBody[offset] = id;
}
deferredPhiValues.clear();
LLVM_DEBUG(llvm::dbgs() << "-- completed function '" << op.getName()
<< "' --\n");
// Insert OpFunctionEnd.
if (failed(encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionEnd,
{}))) {
return failure();
}
functions.append(functionHeader.begin(), functionHeader.end());
functions.append(functionBody.begin(), functionBody.end());
functionHeader.clear();
functionBody.clear();
return success();
}
LogicalResult Serializer::processVariableOp(spirv::VariableOp op) {
SmallVector<uint32_t, 4> operands;
SmallVector<StringRef, 2> elidedAttrs;
uint32_t resultID = 0;
uint32_t resultTypeID = 0;
if (failed(processType(op.getLoc(), op.getType(), resultTypeID))) {
return failure();
}
operands.push_back(resultTypeID);
resultID = getNextID();
valueIDMap[op.getResult()] = resultID;
operands.push_back(resultID);
auto attr = op.getAttr(spirv::attributeName<spirv::StorageClass>());
if (attr) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back(spirv::attributeName<spirv::StorageClass>());
for (auto arg : op.getODSOperands(0)) {
auto argID = getValueID(arg);
if (!argID) {
return emitError(op.getLoc(), "operand 0 has a use before def");
}
operands.push_back(argID);
}
emitDebugLine(functionHeader, op.getLoc());
encodeInstructionInto(functionHeader, spirv::Opcode::OpVariable, operands);
for (auto attr : op.getAttrs()) {
if (llvm::any_of(elidedAttrs,
[&](StringRef elided) { return attr.first == elided; })) {
continue;
}
if (failed(processDecoration(op.getLoc(), resultID, attr))) {
return failure();
}
}
return success();
}
LogicalResult
Serializer::processGlobalVariableOp(spirv::GlobalVariableOp varOp) {
// Get TypeID.
uint32_t resultTypeID = 0;
SmallVector<StringRef, 4> elidedAttrs;
if (failed(processType(varOp.getLoc(), varOp.type(), resultTypeID))) {
return failure();
}
if (isInterfaceStructPtrType(varOp.type())) {
auto structType = varOp.type()
.cast<spirv::PointerType>()
.getPointeeType()
.cast<spirv::StructType>();
if (failed(
emitDecoration(getTypeID(structType), spirv::Decoration::Block))) {
return varOp.emitError("cannot decorate ")
<< structType << " with Block decoration";
}
}
elidedAttrs.push_back("type");
SmallVector<uint32_t, 4> operands;
operands.push_back(resultTypeID);
auto resultID = getNextID();
// Encode the name.
auto varName = varOp.sym_name();
elidedAttrs.push_back(SymbolTable::getSymbolAttrName());
if (failed(processName(resultID, varName))) {
return failure();
}
globalVarIDMap[varName] = resultID;
operands.push_back(resultID);
// Encode StorageClass.
operands.push_back(static_cast<uint32_t>(varOp.storageClass()));
// Encode initialization.
if (auto initializer = varOp.initializer()) {
auto initializerID = getVariableID(initializer.getValue());
if (!initializerID) {
return emitError(varOp.getLoc(),
"invalid usage of undefined variable as initializer");
}
operands.push_back(initializerID);
elidedAttrs.push_back("initializer");
}
emitDebugLine(typesGlobalValues, varOp.getLoc());
if (failed(encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpVariable,
operands))) {
elidedAttrs.push_back("initializer");
return failure();
}
// Encode decorations.
for (auto attr : varOp.getAttrs()) {
if (llvm::any_of(elidedAttrs,
[&](StringRef elided) { return attr.first == elided; })) {
continue;
}
if (failed(processDecoration(varOp.getLoc(), resultID, attr))) {
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Type
//===----------------------------------------------------------------------===//
// According to the SPIR-V spec "Validation Rules for Shader Capabilities":
// "Composite objects in the StorageBuffer, PhysicalStorageBuffer, Uniform, and
// PushConstant Storage Classes must be explicitly laid out."
bool Serializer::isInterfaceStructPtrType(Type type) const {
if (auto ptrType = type.dyn_cast<spirv::PointerType>()) {
switch (ptrType.getStorageClass()) {
case spirv::StorageClass::PhysicalStorageBuffer:
case spirv::StorageClass::PushConstant:
case spirv::StorageClass::StorageBuffer:
case spirv::StorageClass::Uniform:
return ptrType.getPointeeType().isa<spirv::StructType>();
default:
break;
}
}
return false;
}
LogicalResult Serializer::processType(Location loc, Type type,
uint32_t &typeID) {
typeID = getTypeID(type);
if (typeID) {
return success();
}
typeID = getNextID();
SmallVector<uint32_t, 4> operands;
operands.push_back(typeID);
auto typeEnum = spirv::Opcode::OpTypeVoid;
if ((type.isa<FunctionType>() &&
succeeded(prepareFunctionType(loc, type.cast<FunctionType>(), typeEnum,
operands))) ||
succeeded(prepareBasicType(loc, type, typeID, typeEnum, operands))) {
typeIDMap[type] = typeID;
return encodeInstructionInto(typesGlobalValues, typeEnum, operands);
}
return failure();
}
LogicalResult
Serializer::prepareBasicType(Location loc, Type type, uint32_t resultID,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands) {
if (isVoidType(type)) {
typeEnum = spirv::Opcode::OpTypeVoid;
return success();
}
if (auto intType = type.dyn_cast<IntegerType>()) {
if (intType.getWidth() == 1) {
typeEnum = spirv::Opcode::OpTypeBool;
return success();
}
typeEnum = spirv::Opcode::OpTypeInt;
operands.push_back(intType.getWidth());
// SPIR-V OpTypeInt "Signedness specifies whether there are signed semantics
// to preserve or validate.
// 0 indicates unsigned, or no signedness semantics
// 1 indicates signed semantics."
operands.push_back(intType.isSigned() ? 1 : 0);
return success();
}
if (auto floatType = type.dyn_cast<FloatType>()) {
typeEnum = spirv::Opcode::OpTypeFloat;
operands.push_back(floatType.getWidth());
return success();
}
if (auto vectorType = type.dyn_cast<VectorType>()) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, vectorType.getElementType(), elementTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypeVector;
operands.push_back(elementTypeID);
operands.push_back(vectorType.getNumElements());
return success();
}
if (auto arrayType = type.dyn_cast<spirv::ArrayType>()) {
typeEnum = spirv::Opcode::OpTypeArray;
uint32_t elementTypeID = 0;
if (failed(processType(loc, arrayType.getElementType(), elementTypeID))) {
return failure();
}
operands.push_back(elementTypeID);
if (auto elementCountID = prepareConstantInt(
loc, mlirBuilder.getI32IntegerAttr(arrayType.getNumElements()))) {
operands.push_back(elementCountID);
}
return processTypeDecoration(loc, arrayType, resultID);
}
if (auto ptrType = type.dyn_cast<spirv::PointerType>()) {
uint32_t pointeeTypeID = 0;
if (failed(processType(loc, ptrType.getPointeeType(), pointeeTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypePointer;
operands.push_back(static_cast<uint32_t>(ptrType.getStorageClass()));
operands.push_back(pointeeTypeID);
return success();
}
if (auto runtimeArrayType = type.dyn_cast<spirv::RuntimeArrayType>()) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, runtimeArrayType.getElementType(),
elementTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypeRuntimeArray;
operands.push_back(elementTypeID);
return processTypeDecoration(loc, runtimeArrayType, resultID);
}
if (auto structType = type.dyn_cast<spirv::StructType>()) {
bool hasOffset = structType.hasOffset();
for (auto elementIndex :
llvm::seq<uint32_t>(0, structType.getNumElements())) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, structType.getElementType(elementIndex),
elementTypeID))) {
return failure();
}
operands.push_back(elementTypeID);
if (hasOffset) {
// Decorate each struct member with an offset
spirv::StructType::MemberDecorationInfo offsetDecoration{
elementIndex, /*hasValue=*/1, spirv::Decoration::Offset,
static_cast<uint32_t>(structType.getMemberOffset(elementIndex))};
if (failed(processMemberDecoration(resultID, offsetDecoration))) {
return emitError(loc, "cannot decorate ")
<< elementIndex << "-th member of " << structType
<< " with its offset";
}
}
}
SmallVector<spirv::StructType::MemberDecorationInfo, 4> memberDecorations;
structType.getMemberDecorations(memberDecorations);
for (auto &memberDecoration : memberDecorations) {
if (failed(processMemberDecoration(resultID, memberDecoration))) {
return emitError(loc, "cannot decorate ")
<< static_cast<uint32_t>(memberDecoration.memberIndex)
<< "-th member of " << structType << " with "
<< stringifyDecoration(memberDecoration.decoration);
}
}
typeEnum = spirv::Opcode::OpTypeStruct;
return success();
}
if (auto cooperativeMatrixType =
type.dyn_cast<spirv::CooperativeMatrixNVType>()) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, cooperativeMatrixType.getElementType(),
elementTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypeCooperativeMatrixNV;
auto getConstantOp = [&](uint32_t id) {
auto attr = IntegerAttr::get(IntegerType::get(32, type.getContext()), id);
return prepareConstantInt(loc, attr);
};
operands.push_back(elementTypeID);
operands.push_back(
getConstantOp(static_cast<uint32_t>(cooperativeMatrixType.getScope())));
operands.push_back(getConstantOp(cooperativeMatrixType.getRows()));
operands.push_back(getConstantOp(cooperativeMatrixType.getColumns()));
return success();
}
if (auto matrixType = type.dyn_cast<spirv::MatrixType>()) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, matrixType.getColumnType(), elementTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypeMatrix;
operands.push_back(elementTypeID);
operands.push_back(matrixType.getNumColumns());
return success();
}
// TODO: Handle other types.
return emitError(loc, "unhandled type in serialization: ") << type;
}
LogicalResult
Serializer::prepareFunctionType(Location loc, FunctionType type,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands) {
typeEnum = spirv::Opcode::OpTypeFunction;
assert(type.getNumResults() <= 1 &&
"serialization supports only a single return value");
uint32_t resultID = 0;
if (failed(processType(
loc, type.getNumResults() == 1 ? type.getResult(0) : getVoidType(),
resultID))) {
return failure();
}
operands.push_back(resultID);
for (auto &res : type.getInputs()) {
uint32_t argTypeID = 0;
if (failed(processType(loc, res, argTypeID))) {
return failure();
}
operands.push_back(argTypeID);
}
return success();
}
//===----------------------------------------------------------------------===//
// Constant
//===----------------------------------------------------------------------===//
uint32_t Serializer::prepareConstant(Location loc, Type constType,
Attribute valueAttr) {
if (auto id = prepareConstantScalar(loc, valueAttr)) {
return id;
}
// This is a composite literal. We need to handle each component separately
// and then emit an OpConstantComposite for the whole.
if (auto id = getConstantID(valueAttr)) {
return id;
}
uint32_t typeID = 0;
if (failed(processType(loc, constType, typeID))) {
return 0;
}
uint32_t resultID = 0;
if (auto attr = valueAttr.dyn_cast<DenseElementsAttr>()) {
int rank = attr.getType().dyn_cast<ShapedType>().getRank();
SmallVector<uint64_t, 4> index(rank);
resultID = prepareDenseElementsConstant(loc, constType, attr,
/*dim=*/0, index);
} else if (auto arrayAttr = valueAttr.dyn_cast<ArrayAttr>()) {
resultID = prepareArrayConstant(loc, constType, arrayAttr);
}
if (resultID == 0) {
emitError(loc, "cannot serialize attribute: ") << valueAttr;
return 0;
}
constIDMap[valueAttr] = resultID;
return resultID;
}
uint32_t Serializer::prepareArrayConstant(Location loc, Type constType,
ArrayAttr attr) {
uint32_t typeID = 0;
if (failed(processType(loc, constType, typeID))) {
return 0;
}
uint32_t resultID = getNextID();
SmallVector<uint32_t, 4> operands = {typeID, resultID};
operands.reserve(attr.size() + 2);
auto elementType = constType.cast<spirv::ArrayType>().getElementType();
for (Attribute elementAttr : attr) {
if (auto elementID = prepareConstant(loc, elementType, elementAttr)) {
operands.push_back(elementID);
} else {
return 0;
}
}
spirv::Opcode opcode = spirv::Opcode::OpConstantComposite;
encodeInstructionInto(typesGlobalValues, opcode, operands);
return resultID;
}
// TODO: Turn the below function into iterative function, instead of
// recursive function.
uint32_t
Serializer::prepareDenseElementsConstant(Location loc, Type constType,
DenseElementsAttr valueAttr, int dim,
MutableArrayRef<uint64_t> index) {
auto shapedType = valueAttr.getType().dyn_cast<ShapedType>();
assert(dim <= shapedType.getRank());
if (shapedType.getRank() == dim) {
if (auto attr = valueAttr.dyn_cast<DenseIntElementsAttr>()) {
return attr.getType().getElementType().isInteger(1)
? prepareConstantBool(loc, attr.getValue<BoolAttr>(index))
: prepareConstantInt(loc, attr.getValue<IntegerAttr>(index));
}
if (auto attr = valueAttr.dyn_cast<DenseFPElementsAttr>()) {
return prepareConstantFp(loc, attr.getValue<FloatAttr>(index));
}
return 0;
}
uint32_t typeID = 0;
if (failed(processType(loc, constType, typeID))) {
return 0;
}
uint32_t resultID = getNextID();
SmallVector<uint32_t, 4> operands = {typeID, resultID};
operands.reserve(shapedType.getDimSize(dim) + 2);
auto elementType = constType.cast<spirv::CompositeType>().getElementType(0);
for (int i = 0; i < shapedType.getDimSize(dim); ++i) {
index[dim] = i;
if (auto elementID = prepareDenseElementsConstant(
loc, elementType, valueAttr, dim + 1, index)) {
operands.push_back(elementID);
} else {
return 0;
}
}
spirv::Opcode opcode = spirv::Opcode::OpConstantComposite;
encodeInstructionInto(typesGlobalValues, opcode, operands);
return resultID;
}
uint32_t Serializer::prepareConstantScalar(Location loc, Attribute valueAttr,
bool isSpec) {
if (auto floatAttr = valueAttr.dyn_cast<FloatAttr>()) {
return prepareConstantFp(loc, floatAttr, isSpec);
}
if (auto boolAttr = valueAttr.dyn_cast<BoolAttr>()) {
return prepareConstantBool(loc, boolAttr, isSpec);
}
if (auto intAttr = valueAttr.dyn_cast<IntegerAttr>()) {
return prepareConstantInt(loc, intAttr, isSpec);
}
return 0;
}
uint32_t Serializer::prepareConstantBool(Location loc, BoolAttr boolAttr,
bool isSpec) {
if (!isSpec) {
// We can de-duplicate normal constants, but not specialization constants.
if (auto id = getConstantID(boolAttr)) {
return id;
}
}
// Process the type for this bool literal
uint32_t typeID = 0;
if (failed(processType(loc, boolAttr.getType(), typeID))) {
return 0;
}
auto resultID = getNextID();
auto opcode = boolAttr.getValue()
? (isSpec ? spirv::Opcode::OpSpecConstantTrue
: spirv::Opcode::OpConstantTrue)
: (isSpec ? spirv::Opcode::OpSpecConstantFalse
: spirv::Opcode::OpConstantFalse);
encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID});
if (!isSpec) {
constIDMap[boolAttr] = resultID;
}
return resultID;
}
uint32_t Serializer::prepareConstantInt(Location loc, IntegerAttr intAttr,
bool isSpec) {
if (!isSpec) {
// We can de-duplicate normal constants, but not specialization constants.
if (auto id = getConstantID(intAttr)) {
return id;
}
}
// Process the type for this integer literal
uint32_t typeID = 0;
if (failed(processType(loc, intAttr.getType(), typeID))) {
return 0;
}
auto resultID = getNextID();
APInt value = intAttr.getValue();
unsigned bitwidth = value.getBitWidth();
bool isSigned = value.isSignedIntN(bitwidth);
auto opcode =
isSpec ? spirv::Opcode::OpSpecConstant : spirv::Opcode::OpConstant;
// According to SPIR-V spec, "When the type's bit width is less than 32-bits,
// the literal's value appears in the low-order bits of the word, and the
// high-order bits must be 0 for a floating-point type, or 0 for an integer
// type with Signedness of 0, or sign extended when Signedness is 1."
if (bitwidth == 32 || bitwidth == 16) {
uint32_t word = 0;
if (isSigned) {
word = static_cast<int32_t>(value.getSExtValue());
} else {
word = static_cast<uint32_t>(value.getZExtValue());
}
encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
}
// According to SPIR-V spec: "When the type's bit width is larger than one
// word, the literal’s low-order words appear first."
else if (bitwidth == 64) {
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words;
if (isSigned) {
words = llvm::bit_cast<DoubleWord>(value.getSExtValue());
} else {
words = llvm::bit_cast<DoubleWord>(value.getZExtValue());
}
encodeInstructionInto(typesGlobalValues, opcode,
{typeID, resultID, words.word1, words.word2});
} else {
std::string valueStr;
llvm::raw_string_ostream rss(valueStr);
value.print(rss, /*isSigned=*/false);
emitError(loc, "cannot serialize ")
<< bitwidth << "-bit integer literal: " << rss.str();
return 0;
}
if (!isSpec) {
constIDMap[intAttr] = resultID;
}
return resultID;
}
uint32_t Serializer::prepareConstantFp(Location loc, FloatAttr floatAttr,
bool isSpec) {
if (!isSpec) {
// We can de-duplicate normal constants, but not specialization constants.
if (auto id = getConstantID(floatAttr)) {
return id;
}
}
// Process the type for this float literal
uint32_t typeID = 0;
if (failed(processType(loc, floatAttr.getType(), typeID))) {
return 0;
}
auto resultID = getNextID();
APFloat value = floatAttr.getValue();
APInt intValue = value.bitcastToAPInt();
auto opcode =
isSpec ? spirv::Opcode::OpSpecConstant : spirv::Opcode::OpConstant;
if (&value.getSemantics() == &APFloat::IEEEsingle()) {
uint32_t word = llvm::bit_cast<uint32_t>(value.convertToFloat());
encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
} else if (&value.getSemantics() == &APFloat::IEEEdouble()) {
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words = llvm::bit_cast<DoubleWord>(value.convertToDouble());
encodeInstructionInto(typesGlobalValues, opcode,
{typeID, resultID, words.word1, words.word2});
} else if (&value.getSemantics() == &APFloat::IEEEhalf()) {
uint32_t word =
static_cast<uint32_t>(value.bitcastToAPInt().getZExtValue());
encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
} else {
std::string valueStr;
llvm::raw_string_ostream rss(valueStr);
value.print(rss);
emitError(loc, "cannot serialize ")
<< floatAttr.getType() << "-typed float literal: " << rss.str();
return 0;
}
if (!isSpec) {
constIDMap[floatAttr] = resultID;
}
return resultID;
}
//===----------------------------------------------------------------------===//
// Control flow
//===----------------------------------------------------------------------===//
uint32_t Serializer::getOrCreateBlockID(Block *block) {
if (uint32_t id = getBlockID(block))
return id;
return blockIDMap[block] = getNextID();
}
LogicalResult
Serializer::processBlock(Block *block, bool omitLabel,
function_ref<void()> actionBeforeTerminator) {
LLVM_DEBUG(llvm::dbgs() << "processing block " << block << ":\n");
LLVM_DEBUG(block->print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << '\n');
if (!omitLabel) {
uint32_t blockID = getOrCreateBlockID(block);
LLVM_DEBUG(llvm::dbgs()
<< "[block] " << block << " (id = " << blockID << ")\n");
// Emit OpLabel for this block.
encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {blockID});
}
// Emit OpPhi instructions for block arguments, if any.
if (failed(emitPhiForBlockArguments(block)))
return failure();
// Process each op in this block except the terminator.
for (auto &op : llvm::make_range(block->begin(), std::prev(block->end()))) {
if (failed(processOperation(&op)))
return failure();
}
// Process the terminator.
if (actionBeforeTerminator)
actionBeforeTerminator();
if (failed(processOperation(&block->back())))
return failure();
return success();
}
LogicalResult Serializer::emitPhiForBlockArguments(Block *block) {
// Nothing to do if this block has no arguments or it's the entry block, which
// always has the same arguments as the function signature.
if (block->args_empty() || block->isEntryBlock())
return success();
// If the block has arguments, we need to create SPIR-V OpPhi instructions.
// A SPIR-V OpPhi instruction is of the syntax:
// OpPhi | result type | result <id> | (value <id>, parent block <id>) pair
// So we need to collect all predecessor blocks and the arguments they send
// to this block.
SmallVector<std::pair<Block *, Operation::operand_iterator>, 4> predecessors;
for (Block *predecessor : block->getPredecessors()) {
auto *terminator = predecessor->getTerminator();
// The predecessor here is the immediate one according to MLIR's IR
// structure. It does not directly map to the incoming parent block for the
// OpPhi instructions at SPIR-V binary level. This is because structured
// control flow ops are serialized to multiple SPIR-V blocks. If there is a
// spv.selection/spv.loop op in the MLIR predecessor block, the branch op
// jumping to the OpPhi's block then resides in the previous structured
// control flow op's merge block.
predecessor = getPhiIncomingBlock(predecessor);
if (auto branchOp = dyn_cast<spirv::BranchOp>(terminator)) {
predecessors.emplace_back(predecessor, branchOp.operand_begin());
} else {
return terminator->emitError("unimplemented terminator for Phi creation");
}
}
// Then create OpPhi instruction for each of the block argument.
for (auto argIndex : llvm::seq<unsigned>(0, block->getNumArguments())) {
BlockArgument arg = block->getArgument(argIndex);
// Get the type <id> and result <id> for this OpPhi instruction.
uint32_t phiTypeID = 0;
if (failed(processType(arg.getLoc(), arg.getType(), phiTypeID)))
return failure();
uint32_t phiID = getNextID();
LLVM_DEBUG(llvm::dbgs() << "[phi] for block argument #" << argIndex << ' '
<< arg << " (id = " << phiID << ")\n");
// Prepare the (value <id>, parent block <id>) pairs.
SmallVector<uint32_t, 8> phiArgs;
phiArgs.push_back(phiTypeID);
phiArgs.push_back(phiID);
for (auto predIndex : llvm::seq<unsigned>(0, predecessors.size())) {
Value value = *(predecessors[predIndex].second + argIndex);
uint32_t predBlockId = getOrCreateBlockID(predecessors[predIndex].first);
LLVM_DEBUG(llvm::dbgs() << "[phi] use predecessor (id = " << predBlockId
<< ") value " << value << ' ');
// Each pair is a value <id> ...
uint32_t valueId = getValueID(value);
if (valueId == 0) {
// The op generating this value hasn't been visited yet so we don't have
// an <id> assigned yet. Record this to fix up later.
LLVM_DEBUG(llvm::dbgs() << "(need to fix)\n");
deferredPhiValues[value].push_back(functionBody.size() + 1 +
phiArgs.size());
} else {
LLVM_DEBUG(llvm::dbgs() << "(id = " << valueId << ")\n");
}
phiArgs.push_back(valueId);
// ... and a parent block <id>.
phiArgs.push_back(predBlockId);
}
encodeInstructionInto(functionBody, spirv::Opcode::OpPhi, phiArgs);
valueIDMap[arg] = phiID;
}
return success();
}
LogicalResult Serializer::processSelectionOp(spirv::SelectionOp selectionOp) {
// Assign <id>s to all blocks so that branches inside the SelectionOp can
// resolve properly.
auto &body = selectionOp.body();
for (Block &block : body)
getOrCreateBlockID(&block);
auto *headerBlock = selectionOp.getHeaderBlock();
auto *mergeBlock = selectionOp.getMergeBlock();
auto mergeID = getBlockID(mergeBlock);
auto loc = selectionOp.getLoc();
// Emit the selection header block, which dominates all other blocks, first.
// We need to emit an OpSelectionMerge instruction before the selection header
// block's terminator.
auto emitSelectionMerge = [&]() {
emitDebugLine(functionBody, loc);
lastProcessedWasMergeInst = true;
encodeInstructionInto(
functionBody, spirv::Opcode::OpSelectionMerge,
{mergeID, static_cast<uint32_t>(selectionOp.selection_control())});
};
// For structured selection, we cannot have blocks in the selection construct
// branching to the selection header block. Entering the selection (and
// reaching the selection header) must be from the block containing the
// spv.selection op. If there are ops ahead of the spv.selection op in the
// block, we can "merge" them into the selection header. So here we don't need
// to emit a separate block; just continue with the existing block.
if (failed(processBlock(headerBlock, /*omitLabel=*/true, emitSelectionMerge)))
return failure();
// Process all blocks with a depth-first visitor starting from the header
// block. The selection header block and merge block are skipped by this
// visitor.
if (failed(visitInPrettyBlockOrder(
headerBlock, [&](Block *block) { return processBlock(block); },
/*skipHeader=*/true, /*skipBlocks=*/{mergeBlock})))
return failure();
// There is nothing to do for the merge block in the selection, which just
// contains a spv._merge op, itself. But we need to have an OpLabel
// instruction to start a new SPIR-V block for ops following this SelectionOp.
// The block should use the <id> for the merge block.
return encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
}
LogicalResult Serializer::processLoopOp(spirv::LoopOp loopOp) {
// Assign <id>s to all blocks so that branches inside the LoopOp can resolve
// properly. We don't need to assign for the entry block, which is just for
// satisfying MLIR region's structural requirement.
auto &body = loopOp.body();
for (Block &block :
llvm::make_range(std::next(body.begin(), 1), body.end())) {
getOrCreateBlockID(&block);
}
auto *headerBlock = loopOp.getHeaderBlock();
auto *continueBlock = loopOp.getContinueBlock();
auto *mergeBlock = loopOp.getMergeBlock();
auto headerID = getBlockID(headerBlock);
auto continueID = getBlockID(continueBlock);
auto mergeID = getBlockID(mergeBlock);
auto loc = loopOp.getLoc();
// This LoopOp is in some MLIR block with preceding and following ops. In the
// binary format, it should reside in separate SPIR-V blocks from its
// preceding and following ops. So we need to emit unconditional branches to
// jump to this LoopOp's SPIR-V blocks and jumping back to the normal flow
// afterwards.
encodeInstructionInto(functionBody, spirv::Opcode::OpBranch, {headerID});
// LoopOp's entry block is just there for satisfying MLIR's structural
// requirements so we omit it and start serialization from the loop header
// block.
// Emit the loop header block, which dominates all other blocks, first. We
// need to emit an OpLoopMerge instruction before the loop header block's
// terminator.
auto emitLoopMerge = [&]() {
emitDebugLine(functionBody, loc);
lastProcessedWasMergeInst = true;
encodeInstructionInto(
functionBody, spirv::Opcode::OpLoopMerge,
{mergeID, continueID, static_cast<uint32_t>(loopOp.loop_control())});
};
if (failed(processBlock(headerBlock, /*omitLabel=*/false, emitLoopMerge)))
return failure();
// Process all blocks with a depth-first visitor starting from the header
// block. The loop header block, loop continue block, and loop merge block are
// skipped by this visitor and handled later in this function.
if (failed(visitInPrettyBlockOrder(
headerBlock, [&](Block *block) { return processBlock(block); },
/*skipHeader=*/true, /*skipBlocks=*/{continueBlock, mergeBlock})))
return failure();
// We have handled all other blocks. Now get to the loop continue block.
if (failed(processBlock(continueBlock)))
return failure();
// There is nothing to do for the merge block in the loop, which just contains
// a spv._merge op, itself. But we need to have an OpLabel instruction to
// start a new SPIR-V block for ops following this LoopOp. The block should
// use the <id> for the merge block.
return encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
}
LogicalResult Serializer::processBranchConditionalOp(
spirv::BranchConditionalOp condBranchOp) {
auto conditionID = getValueID(condBranchOp.condition());
auto trueLabelID = getOrCreateBlockID(condBranchOp.getTrueBlock());
auto falseLabelID = getOrCreateBlockID(condBranchOp.getFalseBlock());
SmallVector<uint32_t, 5> arguments{conditionID, trueLabelID, falseLabelID};
if (auto weights = condBranchOp.branch_weights()) {
for (auto val : weights->getValue())
arguments.push_back(val.cast<IntegerAttr>().getInt());
}
emitDebugLine(functionBody, condBranchOp.getLoc());
return encodeInstructionInto(functionBody, spirv::Opcode::OpBranchConditional,
arguments);
}
LogicalResult Serializer::processBranchOp(spirv::BranchOp branchOp) {
emitDebugLine(functionBody, branchOp.getLoc());
return encodeInstructionInto(functionBody, spirv::Opcode::OpBranch,
{getOrCreateBlockID(branchOp.getTarget())});
}
//===----------------------------------------------------------------------===//
// Operation
//===----------------------------------------------------------------------===//
LogicalResult Serializer::encodeExtensionInstruction(
Operation *op, StringRef extensionSetName, uint32_t extensionOpcode,
ArrayRef<uint32_t> operands) {
// Check if the extension has been imported.
auto &setID = extendedInstSetIDMap[extensionSetName];
if (!setID) {
setID = getNextID();
SmallVector<uint32_t, 16> importOperands;
importOperands.push_back(setID);
if (failed(
spirv::encodeStringLiteralInto(importOperands, extensionSetName)) ||
failed(encodeInstructionInto(
extendedSets, spirv::Opcode::OpExtInstImport, importOperands))) {
return failure();
}
}
// The first two operands are the result type <id> and result <id>. The set
// <id> and the opcode need to be insert after this.
if (operands.size() < 2) {
return op->emitError("extended instructions must have a result encoding");
}
SmallVector<uint32_t, 8> extInstOperands;
extInstOperands.reserve(operands.size() + 2);
extInstOperands.append(operands.begin(), std::next(operands.begin(), 2));
extInstOperands.push_back(setID);
extInstOperands.push_back(extensionOpcode);
extInstOperands.append(std::next(operands.begin(), 2), operands.end());
return encodeInstructionInto(functionBody, spirv::Opcode::OpExtInst,
extInstOperands);
}
LogicalResult Serializer::processAddressOfOp(spirv::AddressOfOp addressOfOp) {
auto varName = addressOfOp.variable();
auto variableID = getVariableID(varName);
if (!variableID) {
return addressOfOp.emitError("unknown result <id> for variable ")
<< varName;
}
valueIDMap[addressOfOp.pointer()] = variableID;
return success();
}
LogicalResult
Serializer::processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp) {
auto constName = referenceOfOp.spec_const();
auto constID = getSpecConstID(constName);
if (!constID) {
return referenceOfOp.emitError(
"unknown result <id> for specialization constant ")
<< constName;
}
valueIDMap[referenceOfOp.reference()] = constID;
return success();
}
LogicalResult Serializer::processOperation(Operation *opInst) {
LLVM_DEBUG(llvm::dbgs() << "[op] '" << opInst->getName() << "'\n");
// First dispatch the ops that do not directly mirror an instruction from
// the SPIR-V spec.
return TypeSwitch<Operation *, LogicalResult>(opInst)
.Case([&](spirv::AddressOfOp op) { return processAddressOfOp(op); })
.Case([&](spirv::BranchOp op) { return processBranchOp(op); })
.Case([&](spirv::BranchConditionalOp op) {
return processBranchConditionalOp(op);
})
.Case([&](spirv::ConstantOp op) { return processConstantOp(op); })
.Case([&](spirv::FuncOp op) { return processFuncOp(op); })
.Case([&](spirv::GlobalVariableOp op) {
return processGlobalVariableOp(op);
})
.Case([&](spirv::LoopOp op) { return processLoopOp(op); })
.Case([&](spirv::ModuleEndOp) { return success(); })
.Case([&](spirv::ReferenceOfOp op) { return processReferenceOfOp(op); })
.Case([&](spirv::SelectionOp op) { return processSelectionOp(op); })
.Case([&](spirv::SpecConstantOp op) { return processSpecConstantOp(op); })
.Case([&](spirv::SpecConstantCompositeOp op) {
return processSpecConstantCompositeOp(op);
})
.Case([&](spirv::UndefOp op) { return processUndefOp(op); })
.Case([&](spirv::VariableOp op) { return processVariableOp(op); })
// Then handle all the ops that directly mirror SPIR-V instructions with
// auto-generated methods.
.Default(
[&](Operation *op) { return dispatchToAutogenSerialization(op); });
}
namespace {
template <>
LogicalResult
Serializer::processOp<spirv::EntryPointOp>(spirv::EntryPointOp op) {
SmallVector<uint32_t, 4> operands;
// Add the ExecutionModel.
operands.push_back(static_cast<uint32_t>(op.execution_model()));
// Add the function <id>.
auto funcID = getFunctionID(op.fn());
if (!funcID) {
return op.emitError("missing <id> for function ")
<< op.fn()
<< "; function needs to be defined before spv.EntryPoint is "
"serialized";
}
operands.push_back(funcID);
// Add the name of the function.
spirv::encodeStringLiteralInto(operands, op.fn());
// Add the interface values.
if (auto interface = op.interface()) {
for (auto var : interface.getValue()) {
auto id = getVariableID(var.cast<FlatSymbolRefAttr>().getValue());
if (!id) {
return op.emitError("referencing undefined global variable."
"spv.EntryPoint is at the end of spv.module. All "
"referenced variables should already be defined");
}
operands.push_back(id);
}
}
return encodeInstructionInto(entryPoints, spirv::Opcode::OpEntryPoint,
operands);
}
template <>
LogicalResult
Serializer::processOp<spirv::ControlBarrierOp>(spirv::ControlBarrierOp op) {
StringRef argNames[] = {"execution_scope", "memory_scope",
"memory_semantics"};
SmallVector<uint32_t, 3> operands;
for (auto argName : argNames) {
auto argIntAttr = op.getAttrOfType<IntegerAttr>(argName);
auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
if (!operand) {
return failure();
}
operands.push_back(operand);
}
return encodeInstructionInto(functionBody, spirv::Opcode::OpControlBarrier,
operands);
}
template <>
LogicalResult
Serializer::processOp<spirv::ExecutionModeOp>(spirv::ExecutionModeOp op) {
SmallVector<uint32_t, 4> operands;
// Add the function <id>.
auto funcID = getFunctionID(op.fn());
if (!funcID) {
return op.emitError("missing <id> for function ")
<< op.fn()
<< "; function needs to be serialized before ExecutionModeOp is "
"serialized";
}
operands.push_back(funcID);
// Add the ExecutionMode.
operands.push_back(static_cast<uint32_t>(op.execution_mode()));
// Serialize values if any.
auto values = op.values();
if (values) {
for (auto &intVal : values.getValue()) {
operands.push_back(static_cast<uint32_t>(
intVal.cast<IntegerAttr>().getValue().getZExtValue()));
}
}
return encodeInstructionInto(executionModes, spirv::Opcode::OpExecutionMode,
operands);
}
template <>
LogicalResult
Serializer::processOp<spirv::MemoryBarrierOp>(spirv::MemoryBarrierOp op) {
StringRef argNames[] = {"memory_scope", "memory_semantics"};
SmallVector<uint32_t, 2> operands;
for (auto argName : argNames) {
auto argIntAttr = op.getAttrOfType<IntegerAttr>(argName);
auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
if (!operand) {
return failure();
}
operands.push_back(operand);
}
return encodeInstructionInto(functionBody, spirv::Opcode::OpMemoryBarrier,
operands);
}
template <>
LogicalResult
Serializer::processOp<spirv::FunctionCallOp>(spirv::FunctionCallOp op) {
auto funcName = op.callee();
uint32_t resTypeID = 0;
Type resultTy = op.getNumResults() ? *op.result_type_begin() : getVoidType();
if (failed(processType(op.getLoc(), resultTy, resTypeID)))
return failure();
auto funcID = getOrCreateFunctionID(funcName);
auto funcCallID = getNextID();
SmallVector<uint32_t, 8> operands{resTypeID, funcCallID, funcID};
for (auto value : op.arguments()) {
auto valueID = getValueID(value);
assert(valueID && "cannot find a value for spv.FunctionCall");
operands.push_back(valueID);
}
if (!resultTy.isa<NoneType>())
valueIDMap[op.getResult(0)] = funcCallID;
return encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionCall,
operands);
}
template <>
LogicalResult
Serializer::processOp<spirv::CopyMemoryOp>(spirv::CopyMemoryOp op) {
SmallVector<uint32_t, 4> operands;
SmallVector<StringRef, 2> elidedAttrs;
for (Value operand : op.getOperation()->getOperands()) {
auto id = getValueID(operand);
assert(id && "use before def!");
operands.push_back(id);
}
if (auto attr = op.getAttr("memory_access")) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back("memory_access");
if (auto attr = op.getAttr("alignment")) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back("alignment");
if (auto attr = op.getAttr("source_memory_access")) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back("source_memory_access");
if (auto attr = op.getAttr("source_alignment")) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back("source_alignment");
emitDebugLine(functionBody, op.getLoc());
encodeInstructionInto(functionBody, spirv::Opcode::OpCopyMemory, operands);
return success();
}
// Pull in auto-generated Serializer::dispatchToAutogenSerialization() and
// various Serializer::processOp<...>() specializations.
#define GET_SERIALIZATION_FNS
#include "mlir/Dialect/SPIRV/SPIRVSerialization.inc"
} // namespace
LogicalResult Serializer::emitDecoration(uint32_t target,
spirv::Decoration decoration,
ArrayRef<uint32_t> params) {
uint32_t wordCount = 3 + params.size();
decorations.push_back(
spirv::getPrefixedOpcode(wordCount, spirv::Opcode::OpDecorate));
decorations.push_back(target);
decorations.push_back(static_cast<uint32_t>(decoration));
decorations.append(params.begin(), params.end());
return success();
}
LogicalResult Serializer::emitDebugLine(SmallVectorImpl<uint32_t> &binary,
Location loc) {
if (!emitDebugInfo)
return success();
if (lastProcessedWasMergeInst) {
lastProcessedWasMergeInst = false;
return success();
}
auto fileLoc = loc.dyn_cast<FileLineColLoc>();
if (fileLoc)
encodeInstructionInto(binary, spirv::Opcode::OpLine,
{fileID, fileLoc.getLine(), fileLoc.getColumn()});
return success();
}
LogicalResult spirv::serialize(spirv::ModuleOp module,
SmallVectorImpl<uint32_t> &binary,
bool emitDebugInfo) {
if (!module.vce_triple().hasValue())
return module.emitError(
"module must have 'vce_triple' attribute to be serializeable");
Serializer serializer(module, emitDebugInfo);
if (failed(serializer.serialize()))
return failure();
LLVM_DEBUG(serializer.printValueIDMap(llvm::dbgs()));
serializer.collect(binary);
return success();
}