SPIRVLowering.cpp
30.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
//===- SPIRVLowering.cpp - SPIR-V lowering utilities ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities used to lower to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/SPIRVLowering.h"
#include "mlir/Dialect/SPIRV/LayoutUtils.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include <functional>
#define DEBUG_TYPE "mlir-spirv-lowering"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
/// Checks that `candidates` extension requirements are possible to be satisfied
/// with the given `targetEnv`.
///
/// `candidates` is a vector of vector for extension requirements following
/// ((Extension::A OR Extension::B) AND (Extension::C OR Extension::D))
/// convention.
template <typename LabelT>
static LogicalResult checkExtensionRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::ExtensionArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
SmallVector<StringRef, 4> extStrings;
for (spirv::Extension ext : ors)
extStrings.push_back(spirv::stringifyExtension(ext));
LLVM_DEBUG(llvm::dbgs()
<< label << " illegal: requires at least one extension in ["
<< llvm::join(extStrings, ", ")
<< "] but none allowed in target environment\n");
return failure();
}
return success();
}
/// Checks that `candidates`capability requirements are possible to be satisfied
/// with the given `isAllowedFn`.
///
/// `candidates` is a vector of vector for capability requirements following
/// ((Capability::A OR Capability::B) AND (Capability::C OR Capability::D))
/// convention.
template <typename LabelT>
static LogicalResult checkCapabilityRequirements(
LabelT label, const spirv::TargetEnv &targetEnv,
const spirv::SPIRVType::CapabilityArrayRefVector &candidates) {
for (const auto &ors : candidates) {
if (targetEnv.allows(ors))
continue;
SmallVector<StringRef, 4> capStrings;
for (spirv::Capability cap : ors)
capStrings.push_back(spirv::stringifyCapability(cap));
LLVM_DEBUG(llvm::dbgs()
<< label << " illegal: requires at least one capability in ["
<< llvm::join(capStrings, ", ")
<< "] but none allowed in target environment\n");
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
Type SPIRVTypeConverter::getIndexType(MLIRContext *context) {
// Convert to 32-bit integers for now. Might need a way to control this in
// future.
// TODO: It is probably better to make it 64-bit integers. To
// this some support is needed in SPIR-V dialect for Conversion
// instructions. The Vulkan spec requires the builtins like
// GlobalInvocationID, etc. to be 32-bit (unsigned) integers which should be
// SExtended to 64-bit for index computations.
return IntegerType::get(32, context);
}
/// Mapping between SPIR-V storage classes to memref memory spaces.
///
/// Note: memref does not have a defined semantics for each memory space; it
/// depends on the context where it is used. There are no particular reasons
/// behind the number assignments; we try to follow NVVM conventions and largely
/// give common storage classes a smaller number. The hope is use symbolic
/// memory space representation eventually after memref supports it.
// TODO: swap Generic and StorageBuffer assignment to be more akin
// to NVVM.
#define STORAGE_SPACE_MAP_LIST(MAP_FN) \
MAP_FN(spirv::StorageClass::Generic, 1) \
MAP_FN(spirv::StorageClass::StorageBuffer, 0) \
MAP_FN(spirv::StorageClass::Workgroup, 3) \
MAP_FN(spirv::StorageClass::Uniform, 4) \
MAP_FN(spirv::StorageClass::Private, 5) \
MAP_FN(spirv::StorageClass::Function, 6) \
MAP_FN(spirv::StorageClass::PushConstant, 7) \
MAP_FN(spirv::StorageClass::UniformConstant, 8) \
MAP_FN(spirv::StorageClass::Input, 9) \
MAP_FN(spirv::StorageClass::Output, 10) \
MAP_FN(spirv::StorageClass::CrossWorkgroup, 11) \
MAP_FN(spirv::StorageClass::AtomicCounter, 12) \
MAP_FN(spirv::StorageClass::Image, 13) \
MAP_FN(spirv::StorageClass::CallableDataNV, 14) \
MAP_FN(spirv::StorageClass::IncomingCallableDataNV, 15) \
MAP_FN(spirv::StorageClass::RayPayloadNV, 16) \
MAP_FN(spirv::StorageClass::HitAttributeNV, 17) \
MAP_FN(spirv::StorageClass::IncomingRayPayloadNV, 18) \
MAP_FN(spirv::StorageClass::ShaderRecordBufferNV, 19) \
MAP_FN(spirv::StorageClass::PhysicalStorageBuffer, 20)
unsigned
SPIRVTypeConverter::getMemorySpaceForStorageClass(spirv::StorageClass storage) {
#define STORAGE_SPACE_MAP_FN(storage, space) \
case storage: \
return space;
switch (storage) { STORAGE_SPACE_MAP_LIST(STORAGE_SPACE_MAP_FN) }
#undef STORAGE_SPACE_MAP_FN
llvm_unreachable("unhandled storage class!");
}
Optional<spirv::StorageClass>
SPIRVTypeConverter::getStorageClassForMemorySpace(unsigned space) {
#define STORAGE_SPACE_MAP_FN(storage, space) \
case space: \
return storage;
switch (space) {
STORAGE_SPACE_MAP_LIST(STORAGE_SPACE_MAP_FN)
default:
return llvm::None;
}
#undef STORAGE_SPACE_MAP_FN
}
#undef STORAGE_SPACE_MAP_LIST
// TODO: This is a utility function that should probably be
// exposed by the SPIR-V dialect. Keeping it local till the use case arises.
static Optional<int64_t> getTypeNumBytes(Type t) {
if (t.isa<spirv::ScalarType>()) {
auto bitWidth = t.getIntOrFloatBitWidth();
// According to the SPIR-V spec:
// "There is no physical size or bit pattern defined for values with boolean
// type. If they are stored (in conjunction with OpVariable), they can only
// be used with logical addressing operations, not physical, and only with
// non-externally visible shader Storage Classes: Workgroup, CrossWorkgroup,
// Private, Function, Input, and Output."
if (bitWidth == 1) {
return llvm::None;
}
return bitWidth / 8;
}
if (auto vecType = t.dyn_cast<VectorType>()) {
auto elementSize = getTypeNumBytes(vecType.getElementType());
if (!elementSize)
return llvm::None;
return vecType.getNumElements() * *elementSize;
}
if (auto memRefType = t.dyn_cast<MemRefType>()) {
// TODO: Layout should also be controlled by the ABI attributes. For now
// using the layout from MemRef.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (!memRefType.hasStaticShape() ||
failed(getStridesAndOffset(memRefType, strides, offset))) {
return llvm::None;
}
// To get the size of the memref object in memory, the total size is the
// max(stride * dimension-size) computed for all dimensions times the size
// of the element.
auto elementSize = getTypeNumBytes(memRefType.getElementType());
if (!elementSize) {
return llvm::None;
}
if (memRefType.getRank() == 0) {
return elementSize;
}
auto dims = memRefType.getShape();
if (llvm::is_contained(dims, ShapedType::kDynamicSize) ||
offset == MemRefType::getDynamicStrideOrOffset() ||
llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset())) {
return llvm::None;
}
int64_t memrefSize = -1;
for (auto shape : enumerate(dims)) {
memrefSize = std::max(memrefSize, shape.value() * strides[shape.index()]);
}
return (offset + memrefSize) * elementSize.getValue();
} else if (auto tensorType = t.dyn_cast<TensorType>()) {
if (!tensorType.hasStaticShape()) {
return llvm::None;
}
auto elementSize = getTypeNumBytes(tensorType.getElementType());
if (!elementSize) {
return llvm::None;
}
int64_t size = elementSize.getValue();
for (auto shape : tensorType.getShape()) {
size *= shape;
}
return size;
}
// TODO: Add size computation for other types.
return llvm::None;
}
Optional<int64_t> SPIRVTypeConverter::getConvertedTypeNumBytes(Type t) {
return getTypeNumBytes(t);
}
/// Converts a scalar `type` to a suitable type under the given `targetEnv`.
static Optional<Type>
convertScalarType(const spirv::TargetEnv &targetEnv, spirv::ScalarType type,
Optional<spirv::StorageClass> storageClass = {}) {
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
type.getExtensions(extensions, storageClass);
type.getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
// Otherwise we need to adjust the type, which really means adjusting the
// bitwidth given this is a scalar type.
// TODO: We are unconditionally converting the bitwidth here,
// this might be okay for non-interface types (i.e., types used in
// Private/Function storage classes), but not for interface types (i.e.,
// types used in StorageBuffer/Uniform/PushConstant/etc. storage classes).
// This is because the later actually affects the ABI contract with the
// runtime. So we may want to expose a control on SPIRVTypeConverter to fail
// conversion if we cannot change there.
if (auto floatType = type.dyn_cast<FloatType>()) {
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return Builder(targetEnv.getContext()).getF32Type();
}
auto intType = type.cast<IntegerType>();
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
return IntegerType::get(/*width=*/32, intType.getSignedness(),
targetEnv.getContext());
}
/// Converts a vector `type` to a suitable type under the given `targetEnv`.
static Optional<Type>
convertVectorType(const spirv::TargetEnv &targetEnv, VectorType type,
Optional<spirv::StorageClass> storageClass = {}) {
if (!spirv::CompositeType::isValid(type)) {
// TODO: One-element vector types can be translated into scalar
// types. Vector types with more than four elements can be translated into
// array types.
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: 1- and > 4-element unimplemented\n");
return llvm::None;
}
// Get extension and capability requirements for the given type.
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
type.cast<spirv::CompositeType>().getExtensions(extensions, storageClass);
type.cast<spirv::CompositeType>().getCapabilities(capabilities, storageClass);
// If all requirements are met, then we can accept this type as-is.
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
return type;
auto elementType = convertScalarType(
targetEnv, type.getElementType().cast<spirv::ScalarType>(), storageClass);
if (elementType)
return VectorType::get(type.getShape(), *elementType);
return llvm::None;
}
/// Converts a tensor `type` to a suitable type under the given `targetEnv`.
///
/// Note that this is mainly for lowering constant tensors.In SPIR-V one can
/// create composite constants with OpConstantComposite to embed relative large
/// constant values and use OpCompositeExtract and OpCompositeInsert to
/// manipulate, like what we do for vectors.
static Optional<Type> convertTensorType(const spirv::TargetEnv &targetEnv,
TensorType type) {
// TODO: Handle dynamic shapes.
if (!type.hasStaticShape()) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: dynamic shape unimplemented\n");
return llvm::None;
}
auto scalarType = type.getElementType().dyn_cast<spirv::ScalarType>();
if (!scalarType) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert non-scalar element type\n");
return llvm::None;
}
Optional<int64_t> scalarSize = getTypeNumBytes(scalarType);
Optional<int64_t> tensorSize = getTypeNumBytes(type);
if (!scalarSize || !tensorSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return llvm::None;
}
auto arrayElemCount = *tensorSize / *scalarSize;
auto arrayElemType = convertScalarType(targetEnv, scalarType);
if (!arrayElemType)
return llvm::None;
Optional<int64_t> arrayElemSize = getTypeNumBytes(*arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return llvm::None;
}
return spirv::ArrayType::get(*arrayElemType, arrayElemCount, *arrayElemSize);
}
static Optional<Type> convertMemrefType(const spirv::TargetEnv &targetEnv,
MemRefType type) {
Optional<spirv::StorageClass> storageClass =
SPIRVTypeConverter::getStorageClassForMemorySpace(type.getMemorySpace());
if (!storageClass) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot convert memory space\n");
return llvm::None;
}
Optional<Type> arrayElemType;
Type elementType = type.getElementType();
if (auto vecType = elementType.dyn_cast<VectorType>()) {
arrayElemType = convertVectorType(targetEnv, vecType, storageClass);
} else if (auto scalarType = elementType.dyn_cast<spirv::ScalarType>()) {
arrayElemType = convertScalarType(targetEnv, scalarType, storageClass);
} else {
LLVM_DEBUG(
llvm::dbgs()
<< type
<< " unhandled: can only convert scalar or vector element type\n");
return llvm::None;
}
if (!arrayElemType)
return llvm::None;
Optional<int64_t> elementSize = getTypeNumBytes(elementType);
if (!elementSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element size\n");
return llvm::None;
}
if (!type.hasStaticShape()) {
auto arrayType = spirv::RuntimeArrayType::get(*arrayElemType, *elementSize);
// Wrap in a struct to satisfy Vulkan interface requirements.
auto structType = spirv::StructType::get(arrayType, 0);
return spirv::PointerType::get(structType, *storageClass);
}
Optional<int64_t> memrefSize = getTypeNumBytes(type);
if (!memrefSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce element count\n");
return llvm::None;
}
auto arrayElemCount = *memrefSize / *elementSize;
Optional<int64_t> arrayElemSize = getTypeNumBytes(*arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return llvm::None;
}
auto arrayType =
spirv::ArrayType::get(*arrayElemType, arrayElemCount, *arrayElemSize);
// Wrap in a struct to satisfy Vulkan interface requirements. Memrefs with
// workgroup storage class do not need the struct to be laid out explicitly.
auto structType = *storageClass == spirv::StorageClass::Workgroup
? spirv::StructType::get(arrayType)
: spirv::StructType::get(arrayType, 0);
return spirv::PointerType::get(structType, *storageClass);
}
SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr)
: targetEnv(targetAttr) {
// Add conversions. The order matters here: later ones will be tried earlier.
// All other cases failed. Then we cannot convert this type.
addConversion([](Type type) { return llvm::None; });
// Allow all SPIR-V dialect specific types. This assumes all standard types
// adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType)
// were tried before.
//
// TODO: this assumes that the SPIR-V types are valid to use in
// the given target environment, which should be the case if the whole
// pipeline is driven by the same target environment. Still, we probably still
// want to validate and convert to be safe.
addConversion([](spirv::SPIRVType type) { return type; });
addConversion([](IndexType indexType) {
return SPIRVTypeConverter::getIndexType(indexType.getContext());
});
addConversion([this](IntegerType intType) -> Optional<Type> {
if (auto scalarType = intType.dyn_cast<spirv::ScalarType>())
return convertScalarType(targetEnv, scalarType);
return llvm::None;
});
addConversion([this](FloatType floatType) -> Optional<Type> {
if (auto scalarType = floatType.dyn_cast<spirv::ScalarType>())
return convertScalarType(targetEnv, scalarType);
return llvm::None;
});
addConversion([this](VectorType vectorType) {
return convertVectorType(targetEnv, vectorType);
});
addConversion([this](TensorType tensorType) {
return convertTensorType(targetEnv, tensorType);
});
addConversion([this](MemRefType memRefType) {
return convertMemrefType(targetEnv, memRefType);
});
}
//===----------------------------------------------------------------------===//
// FuncOp Conversion Patterns
//===----------------------------------------------------------------------===//
namespace {
/// A pattern for rewriting function signature to convert arguments of functions
/// to be of valid SPIR-V types.
class FuncOpConversion final : public SPIRVOpLowering<FuncOp> {
public:
using SPIRVOpLowering<FuncOp>::SPIRVOpLowering;
LogicalResult
matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult
FuncOpConversion::matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
auto fnType = funcOp.getType();
// TODO: support converting functions with one result.
if (fnType.getNumResults())
return failure();
TypeConverter::SignatureConversion signatureConverter(fnType.getNumInputs());
for (auto argType : enumerate(funcOp.getType().getInputs())) {
auto convertedType = typeConverter.convertType(argType.value());
if (!convertedType)
return failure();
signatureConverter.addInputs(argType.index(), convertedType);
}
// Create the converted spv.func op.
auto newFuncOp = rewriter.create<spirv::FuncOp>(
funcOp.getLoc(), funcOp.getName(),
rewriter.getFunctionType(signatureConverter.getConvertedTypes(),
llvm::None));
// Copy over all attributes other than the function name and type.
for (const auto &namedAttr : funcOp.getAttrs()) {
if (namedAttr.first != impl::getTypeAttrName() &&
namedAttr.first != SymbolTable::getSymbolAttrName())
newFuncOp.setAttr(namedAttr.first, namedAttr.second);
}
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), typeConverter,
&signatureConverter)))
return failure();
rewriter.eraseOp(funcOp);
return success();
}
void mlir::populateBuiltinFuncToSPIRVPatterns(
MLIRContext *context, SPIRVTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<FuncOpConversion>(context, typeConverter);
}
//===----------------------------------------------------------------------===//
// Builtin Variables
//===----------------------------------------------------------------------===//
static spirv::GlobalVariableOp getBuiltinVariable(Block &body,
spirv::BuiltIn builtin) {
// Look through all global variables in the given `body` block and check if
// there is a spv.globalVariable that has the same `builtin` attribute.
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
if (auto builtinAttr = varOp.getAttrOfType<StringAttr>(
spirv::SPIRVDialect::getAttributeName(
spirv::Decoration::BuiltIn))) {
auto varBuiltIn = spirv::symbolizeBuiltIn(builtinAttr.getValue());
if (varBuiltIn && varBuiltIn.getValue() == builtin) {
return varOp;
}
}
}
return nullptr;
}
/// Gets name of global variable for a builtin.
static std::string getBuiltinVarName(spirv::BuiltIn builtin) {
return std::string("__builtin_var_") + stringifyBuiltIn(builtin).str() + "__";
}
/// Gets or inserts a global variable for a builtin within `body` block.
static spirv::GlobalVariableOp
getOrInsertBuiltinVariable(Block &body, Location loc, spirv::BuiltIn builtin,
OpBuilder &builder) {
if (auto varOp = getBuiltinVariable(body, builtin))
return varOp;
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&body);
spirv::GlobalVariableOp newVarOp;
switch (builtin) {
case spirv::BuiltIn::NumWorkgroups:
case spirv::BuiltIn::WorkgroupSize:
case spirv::BuiltIn::WorkgroupId:
case spirv::BuiltIn::LocalInvocationId:
case spirv::BuiltIn::GlobalInvocationId: {
auto ptrType = spirv::PointerType::get(
VectorType::get({3}, builder.getIntegerType(32)),
spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
case spirv::BuiltIn::SubgroupId:
case spirv::BuiltIn::NumSubgroups:
case spirv::BuiltIn::SubgroupSize: {
auto ptrType = spirv::PointerType::get(builder.getIntegerType(32),
spirv::StorageClass::Input);
std::string name = getBuiltinVarName(builtin);
newVarOp =
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
break;
}
default:
emitError(loc, "unimplemented builtin variable generation for ")
<< stringifyBuiltIn(builtin);
}
return newVarOp;
}
Value mlir::spirv::getBuiltinVariableValue(Operation *op,
spirv::BuiltIn builtin,
OpBuilder &builder) {
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
if (!parent) {
op->emitError("expected operation to be within a module-like op");
return nullptr;
}
spirv::GlobalVariableOp varOp = getOrInsertBuiltinVariable(
*parent->getRegion(0).begin(), op->getLoc(), builtin, builder);
Value ptr = builder.create<spirv::AddressOfOp>(op->getLoc(), varOp);
return builder.create<spirv::LoadOp>(op->getLoc(), ptr);
}
//===----------------------------------------------------------------------===//
// Index calculation
//===----------------------------------------------------------------------===//
spirv::AccessChainOp mlir::spirv::getElementPtr(
SPIRVTypeConverter &typeConverter, MemRefType baseType, Value basePtr,
ValueRange indices, Location loc, OpBuilder &builder) {
// Get base and offset of the MemRefType and verify they are static.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(baseType, strides, offset)) ||
llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()) ||
offset == MemRefType::getDynamicStrideOrOffset()) {
return nullptr;
}
auto indexType = typeConverter.getIndexType(builder.getContext());
SmallVector<Value, 2> linearizedIndices;
// Add a '0' at the start to index into the struct.
auto zero = spirv::ConstantOp::getZero(indexType, loc, builder);
linearizedIndices.push_back(zero);
if (baseType.getRank() == 0) {
linearizedIndices.push_back(zero);
} else {
// TODO: Instead of this logic, use affine.apply and add patterns for
// lowering affine.apply to standard ops. These will get lowered to SPIR-V
// ops by the DialectConversion framework.
Value ptrLoc = builder.create<spirv::ConstantOp>(
loc, indexType, IntegerAttr::get(indexType, offset));
assert(indices.size() == strides.size() &&
"must provide indices for all dimensions");
for (auto index : llvm::enumerate(indices)) {
Value strideVal = builder.create<spirv::ConstantOp>(
loc, indexType, IntegerAttr::get(indexType, strides[index.index()]));
Value update =
builder.create<spirv::IMulOp>(loc, strideVal, index.value());
ptrLoc = builder.create<spirv::IAddOp>(loc, ptrLoc, update);
}
linearizedIndices.push_back(ptrLoc);
}
return builder.create<spirv::AccessChainOp>(loc, basePtr, linearizedIndices);
}
//===----------------------------------------------------------------------===//
// Set ABI attributes for lowering entry functions.
//===----------------------------------------------------------------------===//
LogicalResult
mlir::spirv::setABIAttrs(spirv::FuncOp funcOp,
spirv::EntryPointABIAttr entryPointInfo,
ArrayRef<spirv::InterfaceVarABIAttr> argABIInfo) {
// Set the attributes for argument and the function.
StringRef argABIAttrName = spirv::getInterfaceVarABIAttrName();
for (auto argIndex : llvm::seq<unsigned>(0, argABIInfo.size())) {
funcOp.setArgAttr(argIndex, argABIAttrName, argABIInfo[argIndex]);
}
funcOp.setAttr(spirv::getEntryPointABIAttrName(), entryPointInfo);
return success();
}
//===----------------------------------------------------------------------===//
// SPIR-V ConversionTarget
//===----------------------------------------------------------------------===//
std::unique_ptr<spirv::SPIRVConversionTarget>
spirv::SPIRVConversionTarget::get(spirv::TargetEnvAttr targetAttr) {
std::unique_ptr<SPIRVConversionTarget> target(
// std::make_unique does not work here because the constructor is private.
new SPIRVConversionTarget(targetAttr));
SPIRVConversionTarget *targetPtr = target.get();
target->addDynamicallyLegalDialect<SPIRVDialect>(
// We need to capture the raw pointer here because it is stable:
// target will be destroyed once this function is returned.
[targetPtr](Operation *op) { return targetPtr->isLegalOp(op); });
return target;
}
spirv::SPIRVConversionTarget::SPIRVConversionTarget(
spirv::TargetEnvAttr targetAttr)
: ConversionTarget(*targetAttr.getContext()), targetEnv(targetAttr) {}
bool spirv::SPIRVConversionTarget::isLegalOp(Operation *op) {
// Make sure this op is available at the given version. Ops not implementing
// QueryMinVersionInterface/QueryMaxVersionInterface are available to all
// SPIR-V versions.
if (auto minVersion = dyn_cast<spirv::QueryMinVersionInterface>(op))
if (minVersion.getMinVersion() > this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring min version "
<< spirv::stringifyVersion(minVersion.getMinVersion())
<< "\n");
return false;
}
if (auto maxVersion = dyn_cast<spirv::QueryMaxVersionInterface>(op))
if (maxVersion.getMaxVersion() < this->targetEnv.getVersion()) {
LLVM_DEBUG(llvm::dbgs()
<< op->getName() << " illegal: requiring max version "
<< spirv::stringifyVersion(maxVersion.getMaxVersion())
<< "\n");
return false;
}
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryExtensionInterface do not require extensions to be
// available.
if (auto extensions = dyn_cast<spirv::QueryExtensionInterface>(op))
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
extensions.getExtensions())))
return false;
// Make sure this op's required extensions are allowed to use. Ops not
// implementing QueryCapabilityInterface do not require capabilities to be
// available.
if (auto capabilities = dyn_cast<spirv::QueryCapabilityInterface>(op))
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
capabilities.getCapabilities())))
return false;
SmallVector<Type, 4> valueTypes;
valueTypes.append(op->operand_type_begin(), op->operand_type_end());
valueTypes.append(op->result_type_begin(), op->result_type_end());
// Special treatment for global variables, whose type requirements are
// conveyed by type attributes.
if (auto globalVar = dyn_cast<spirv::GlobalVariableOp>(op))
valueTypes.push_back(globalVar.type());
// Make sure the op's operands/results use types that are allowed by the
// target environment.
SmallVector<ArrayRef<spirv::Extension>, 4> typeExtensions;
SmallVector<ArrayRef<spirv::Capability>, 8> typeCapabilities;
for (Type valueType : valueTypes) {
typeExtensions.clear();
valueType.cast<spirv::SPIRVType>().getExtensions(typeExtensions);
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
typeExtensions)))
return false;
typeCapabilities.clear();
valueType.cast<spirv::SPIRVType>().getCapabilities(typeCapabilities);
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
typeCapabilities)))
return false;
}
return true;
}