ConvertVectorToLLVM.cpp 65.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"

#include "../PassDetail.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Target/LLVMIR/TypeTranslation.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"

using namespace mlir;
using namespace mlir::vector;

// Helper to reduce vector type by one rank at front.
static VectorType reducedVectorTypeFront(VectorType tp) {
  assert((tp.getRank() > 1) && "unlowerable vector type");
  return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
}

// Helper to reduce vector type by *all* but one rank at back.
static VectorType reducedVectorTypeBack(VectorType tp) {
  assert((tp.getRank() > 1) && "unlowerable vector type");
  return VectorType::get(tp.getShape().take_back(), tp.getElementType());
}

// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
                       LLVMTypeConverter &typeConverter, Location loc,
                       Value val1, Value val2, Type llvmType, int64_t rank,
                       int64_t pos) {
  if (rank == 1) {
    auto idxType = rewriter.getIndexType();
    auto constant = rewriter.create<LLVM::ConstantOp>(
        loc, typeConverter.convertType(idxType),
        rewriter.getIntegerAttr(idxType, pos));
    return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
                                                  constant);
  }
  return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
                                              rewriter.getI64ArrayAttr(pos));
}

// Helper that picks the proper sequence for inserting.
static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
                       Value into, int64_t offset) {
  auto vectorType = into.getType().cast<VectorType>();
  if (vectorType.getRank() > 1)
    return rewriter.create<InsertOp>(loc, from, into, offset);
  return rewriter.create<vector::InsertElementOp>(
      loc, vectorType, from, into,
      rewriter.create<ConstantIndexOp>(loc, offset));
}

// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
                        LLVMTypeConverter &typeConverter, Location loc,
                        Value val, Type llvmType, int64_t rank, int64_t pos) {
  if (rank == 1) {
    auto idxType = rewriter.getIndexType();
    auto constant = rewriter.create<LLVM::ConstantOp>(
        loc, typeConverter.convertType(idxType),
        rewriter.getIntegerAttr(idxType, pos));
    return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
                                                   constant);
  }
  return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
                                               rewriter.getI64ArrayAttr(pos));
}

// Helper that picks the proper sequence for extracting.
static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
                        int64_t offset) {
  auto vectorType = vector.getType().cast<VectorType>();
  if (vectorType.getRank() > 1)
    return rewriter.create<ExtractOp>(loc, vector, offset);
  return rewriter.create<vector::ExtractElementOp>(
      loc, vectorType.getElementType(), vector,
      rewriter.create<ConstantIndexOp>(loc, offset));
}

// Helper that returns a subset of `arrayAttr` as a vector of int64_t.
// TODO: Better support for attribute subtype forwarding + slicing.
static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
                                              unsigned dropFront = 0,
                                              unsigned dropBack = 0) {
  assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
  auto range = arrayAttr.getAsRange<IntegerAttr>();
  SmallVector<int64_t, 4> res;
  res.reserve(arrayAttr.size() - dropFront - dropBack);
  for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
       it != eit; ++it)
    res.push_back((*it).getValue().getSExtValue());
  return res;
}

// Helper that returns a vector comparison that constructs a mask:
//     mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
//
// NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
//       much more compact, IR for this operation, but LLVM eventually
//       generates more elaborate instructions for this intrinsic since it
//       is very conservative on the boundary conditions.
static Value buildVectorComparison(ConversionPatternRewriter &rewriter,
                                   Operation *op, bool enableIndexOptimizations,
                                   int64_t dim, Value b, Value *off = nullptr) {
  auto loc = op->getLoc();
  // If we can assume all indices fit in 32-bit, we perform the vector
  // comparison in 32-bit to get a higher degree of SIMD parallelism.
  // Otherwise we perform the vector comparison using 64-bit indices.
  Value indices;
  Type idxType;
  if (enableIndexOptimizations) {
    indices = rewriter.create<ConstantOp>(
        loc, rewriter.getI32VectorAttr(
                 llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))));
    idxType = rewriter.getI32Type();
  } else {
    indices = rewriter.create<ConstantOp>(
        loc, rewriter.getI64VectorAttr(
                 llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))));
    idxType = rewriter.getI64Type();
  }
  // Add in an offset if requested.
  if (off) {
    Value o = rewriter.create<IndexCastOp>(loc, idxType, *off);
    Value ov = rewriter.create<SplatOp>(loc, indices.getType(), o);
    indices = rewriter.create<AddIOp>(loc, ov, indices);
  }
  // Construct the vector comparison.
  Value bound = rewriter.create<IndexCastOp>(loc, idxType, b);
  Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound);
  return rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, indices, bounds);
}

// Helper that returns data layout alignment of an operation with memref.
template <typename T>
LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter, T op,
                                 unsigned &align) {
  Type elementTy =
      typeConverter.convertType(op.getMemRefType().getElementType());
  if (!elementTy)
    return failure();

  // TODO: this should use the MLIR data layout when it becomes available and
  // stop depending on translation.
  llvm::LLVMContext llvmContext;
  align = LLVM::TypeToLLVMIRTranslator(llvmContext)
              .getPreferredAlignment(elementTy.cast<LLVM::LLVMType>(),
                                     typeConverter.getDataLayout());
  return success();
}

// Helper that returns the base address of a memref.
static LogicalResult getBase(ConversionPatternRewriter &rewriter, Location loc,
                             Value memref, MemRefType memRefType, Value &base) {
  // Inspect stride and offset structure.
  //
  // TODO: flat memory only for now, generalize
  //
  int64_t offset;
  SmallVector<int64_t, 4> strides;
  auto successStrides = getStridesAndOffset(memRefType, strides, offset);
  if (failed(successStrides) || strides.size() != 1 || strides[0] != 1 ||
      offset != 0 || memRefType.getMemorySpace() != 0)
    return failure();
  base = MemRefDescriptor(memref).alignedPtr(rewriter, loc);
  return success();
}

// Helper that returns a pointer given a memref base.
static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter,
                                Location loc, Value memref,
                                MemRefType memRefType, Value &ptr) {
  Value base;
  if (failed(getBase(rewriter, loc, memref, memRefType, base)))
    return failure();
  auto pType = MemRefDescriptor(memref).getElementPtrType();
  ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base);
  return success();
}

// Helper that returns a bit-casted pointer given a memref base.
static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter,
                                Location loc, Value memref,
                                MemRefType memRefType, Type type, Value &ptr) {
  Value base;
  if (failed(getBase(rewriter, loc, memref, memRefType, base)))
    return failure();
  auto pType = type.template cast<LLVM::LLVMType>().getPointerTo();
  base = rewriter.create<LLVM::BitcastOp>(loc, pType, base);
  ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base);
  return success();
}

// Helper that returns vector of pointers given a memref base and an index
// vector.
static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
                                    Location loc, Value memref, Value indices,
                                    MemRefType memRefType, VectorType vType,
                                    Type iType, Value &ptrs) {
  Value base;
  if (failed(getBase(rewriter, loc, memref, memRefType, base)))
    return failure();
  auto pType = MemRefDescriptor(memref).getElementPtrType();
  auto ptrsType = LLVM::LLVMType::getVectorTy(pType, vType.getDimSize(0));
  ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, indices);
  return success();
}

static LogicalResult
replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
                                 LLVMTypeConverter &typeConverter, Location loc,
                                 TransferReadOp xferOp,
                                 ArrayRef<Value> operands, Value dataPtr) {
  unsigned align;
  if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
    return failure();
  rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align);
  return success();
}

static LogicalResult
replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
                            LLVMTypeConverter &typeConverter, Location loc,
                            TransferReadOp xferOp, ArrayRef<Value> operands,
                            Value dataPtr, Value mask) {
  auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
  VectorType fillType = xferOp.getVectorType();
  Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding());
  fill = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(fillType), fill);

  Type vecTy = typeConverter.convertType(xferOp.getVectorType());
  if (!vecTy)
    return failure();

  unsigned align;
  if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
    return failure();

  rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
      xferOp, vecTy, dataPtr, mask, ValueRange{fill},
      rewriter.getI32IntegerAttr(align));
  return success();
}

static LogicalResult
replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
                                 LLVMTypeConverter &typeConverter, Location loc,
                                 TransferWriteOp xferOp,
                                 ArrayRef<Value> operands, Value dataPtr) {
  unsigned align;
  if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
    return failure();
  auto adaptor = TransferWriteOpAdaptor(operands);
  rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr,
                                             align);
  return success();
}

static LogicalResult
replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
                            LLVMTypeConverter &typeConverter, Location loc,
                            TransferWriteOp xferOp, ArrayRef<Value> operands,
                            Value dataPtr, Value mask) {
  unsigned align;
  if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
    return failure();

  auto adaptor = TransferWriteOpAdaptor(operands);
  rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
      xferOp, adaptor.vector(), dataPtr, mask,
      rewriter.getI32IntegerAttr(align));
  return success();
}

static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp,
                                                  ArrayRef<Value> operands) {
  return TransferReadOpAdaptor(operands);
}

static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp,
                                                   ArrayRef<Value> operands) {
  return TransferWriteOpAdaptor(operands);
}

namespace {

/// Conversion pattern for a vector.matrix_multiply.
/// This is lowered directly to the proper llvm.intr.matrix.multiply.
class VectorMatmulOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorMatmulOpConversion(MLIRContext *context,
                                    LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::MatmulOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto matmulOp = cast<vector::MatmulOp>(op);
    auto adaptor = vector::MatmulOpAdaptor(operands);
    rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
        op, typeConverter.convertType(matmulOp.res().getType()), adaptor.lhs(),
        adaptor.rhs(), matmulOp.lhs_rows(), matmulOp.lhs_columns(),
        matmulOp.rhs_columns());
    return success();
  }
};

/// Conversion pattern for a vector.flat_transpose.
/// This is lowered directly to the proper llvm.intr.matrix.transpose.
class VectorFlatTransposeOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorFlatTransposeOpConversion(MLIRContext *context,
                                           LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::FlatTransposeOp::getOperationName(),
                             context, typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto transOp = cast<vector::FlatTransposeOp>(op);
    auto adaptor = vector::FlatTransposeOpAdaptor(operands);
    rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
        transOp, typeConverter.convertType(transOp.res().getType()),
        adaptor.matrix(), transOp.rows(), transOp.columns());
    return success();
  }
};

/// Conversion pattern for a vector.maskedload.
class VectorMaskedLoadOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorMaskedLoadOpConversion(MLIRContext *context,
                                        LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::MaskedLoadOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto load = cast<vector::MaskedLoadOp>(op);
    auto adaptor = vector::MaskedLoadOpAdaptor(operands);

    // Resolve alignment.
    unsigned align;
    if (failed(getMemRefAlignment(typeConverter, load, align)))
      return failure();

    auto vtype = typeConverter.convertType(load.getResultVectorType());
    Value ptr;
    if (failed(getBasePtr(rewriter, loc, adaptor.base(), load.getMemRefType(),
                          vtype, ptr)))
      return failure();

    rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
        load, vtype, ptr, adaptor.mask(), adaptor.pass_thru(),
        rewriter.getI32IntegerAttr(align));
    return success();
  }
};

/// Conversion pattern for a vector.maskedstore.
class VectorMaskedStoreOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorMaskedStoreOpConversion(MLIRContext *context,
                                         LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::MaskedStoreOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto store = cast<vector::MaskedStoreOp>(op);
    auto adaptor = vector::MaskedStoreOpAdaptor(operands);

    // Resolve alignment.
    unsigned align;
    if (failed(getMemRefAlignment(typeConverter, store, align)))
      return failure();

    auto vtype = typeConverter.convertType(store.getValueVectorType());
    Value ptr;
    if (failed(getBasePtr(rewriter, loc, adaptor.base(), store.getMemRefType(),
                          vtype, ptr)))
      return failure();

    rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
        store, adaptor.value(), ptr, adaptor.mask(),
        rewriter.getI32IntegerAttr(align));
    return success();
  }
};

/// Conversion pattern for a vector.gather.
class VectorGatherOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorGatherOpConversion(MLIRContext *context,
                                    LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::GatherOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto gather = cast<vector::GatherOp>(op);
    auto adaptor = vector::GatherOpAdaptor(operands);

    // Resolve alignment.
    unsigned align;
    if (failed(getMemRefAlignment(typeConverter, gather, align)))
      return failure();

    // Get index ptrs.
    VectorType vType = gather.getResultVectorType();
    Type iType = gather.getIndicesVectorType().getElementType();
    Value ptrs;
    if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
                              gather.getMemRefType(), vType, iType, ptrs)))
      return failure();

    // Replace with the gather intrinsic.
    rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
        gather, typeConverter.convertType(vType), ptrs, adaptor.mask(),
        adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
    return success();
  }
};

/// Conversion pattern for a vector.scatter.
class VectorScatterOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorScatterOpConversion(MLIRContext *context,
                                     LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::ScatterOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto scatter = cast<vector::ScatterOp>(op);
    auto adaptor = vector::ScatterOpAdaptor(operands);

    // Resolve alignment.
    unsigned align;
    if (failed(getMemRefAlignment(typeConverter, scatter, align)))
      return failure();

    // Get index ptrs.
    VectorType vType = scatter.getValueVectorType();
    Type iType = scatter.getIndicesVectorType().getElementType();
    Value ptrs;
    if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
                              scatter.getMemRefType(), vType, iType, ptrs)))
      return failure();

    // Replace with the scatter intrinsic.
    rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
        scatter, adaptor.value(), ptrs, adaptor.mask(),
        rewriter.getI32IntegerAttr(align));
    return success();
  }
};

/// Conversion pattern for a vector.expandload.
class VectorExpandLoadOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorExpandLoadOpConversion(MLIRContext *context,
                                        LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::ExpandLoadOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto expand = cast<vector::ExpandLoadOp>(op);
    auto adaptor = vector::ExpandLoadOpAdaptor(operands);

    Value ptr;
    if (failed(getBasePtr(rewriter, loc, adaptor.base(), expand.getMemRefType(),
                          ptr)))
      return failure();

    auto vType = expand.getResultVectorType();
    rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
        op, typeConverter.convertType(vType), ptr, adaptor.mask(),
        adaptor.pass_thru());
    return success();
  }
};

/// Conversion pattern for a vector.compressstore.
class VectorCompressStoreOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorCompressStoreOpConversion(MLIRContext *context,
                                           LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::CompressStoreOp::getOperationName(),
                             context, typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto compress = cast<vector::CompressStoreOp>(op);
    auto adaptor = vector::CompressStoreOpAdaptor(operands);

    Value ptr;
    if (failed(getBasePtr(rewriter, loc, adaptor.base(),
                          compress.getMemRefType(), ptr)))
      return failure();

    rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
        op, adaptor.value(), ptr, adaptor.mask());
    return success();
  }
};

/// Conversion pattern for all vector reductions.
class VectorReductionOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorReductionOpConversion(MLIRContext *context,
                                       LLVMTypeConverter &typeConverter,
                                       bool reassociateFPRed)
      : ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context,
                             typeConverter),
        reassociateFPReductions(reassociateFPRed) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto reductionOp = cast<vector::ReductionOp>(op);
    auto kind = reductionOp.kind();
    Type eltType = reductionOp.dest().getType();
    Type llvmType = typeConverter.convertType(eltType);
    if (eltType.isIntOrIndex()) {
      // Integer reductions: add/mul/min/max/and/or/xor.
      if (kind == "add")
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>(
            op, llvmType, operands[0]);
      else if (kind == "mul")
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>(
            op, llvmType, operands[0]);
      else if (kind == "min" &&
               (eltType.isIndex() || eltType.isUnsignedInteger()))
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_umin>(
            op, llvmType, operands[0]);
      else if (kind == "min")
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>(
            op, llvmType, operands[0]);
      else if (kind == "max" &&
               (eltType.isIndex() || eltType.isUnsignedInteger()))
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_umax>(
            op, llvmType, operands[0]);
      else if (kind == "max")
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>(
            op, llvmType, operands[0]);
      else if (kind == "and")
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>(
            op, llvmType, operands[0]);
      else if (kind == "or")
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>(
            op, llvmType, operands[0]);
      else if (kind == "xor")
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>(
            op, llvmType, operands[0]);
      else
        return failure();
      return success();

    } else if (eltType.isa<FloatType>()) {
      // Floating-point reductions: add/mul/min/max
      if (kind == "add") {
        // Optional accumulator (or zero).
        Value acc = operands.size() > 1 ? operands[1]
                                        : rewriter.create<LLVM::ConstantOp>(
                                              op->getLoc(), llvmType,
                                              rewriter.getZeroAttr(eltType));
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>(
            op, llvmType, acc, operands[0],
            rewriter.getBoolAttr(reassociateFPReductions));
      } else if (kind == "mul") {
        // Optional accumulator (or one).
        Value acc = operands.size() > 1
                        ? operands[1]
                        : rewriter.create<LLVM::ConstantOp>(
                              op->getLoc(), llvmType,
                              rewriter.getFloatAttr(eltType, 1.0));
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>(
            op, llvmType, acc, operands[0],
            rewriter.getBoolAttr(reassociateFPReductions));
      } else if (kind == "min")
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>(
            op, llvmType, operands[0]);
      else if (kind == "max")
        rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>(
            op, llvmType, operands[0]);
      else
        return failure();
      return success();
    }
    return failure();
  }

private:
  const bool reassociateFPReductions;
};

/// Conversion pattern for a vector.create_mask (1-D only).
class VectorCreateMaskOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorCreateMaskOpConversion(MLIRContext *context,
                                        LLVMTypeConverter &typeConverter,
                                        bool enableIndexOpt)
      : ConvertToLLVMPattern(vector::CreateMaskOp::getOperationName(), context,
                             typeConverter),
        enableIndexOptimizations(enableIndexOpt) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto dstType = op->getResult(0).getType().cast<VectorType>();
    int64_t rank = dstType.getRank();
    if (rank == 1) {
      rewriter.replaceOp(
          op, buildVectorComparison(rewriter, op, enableIndexOptimizations,
                                    dstType.getDimSize(0), operands[0]));
      return success();
    }
    return failure();
  }

private:
  const bool enableIndexOptimizations;
};

class VectorShuffleOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorShuffleOpConversion(MLIRContext *context,
                                     LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto adaptor = vector::ShuffleOpAdaptor(operands);
    auto shuffleOp = cast<vector::ShuffleOp>(op);
    auto v1Type = shuffleOp.getV1VectorType();
    auto v2Type = shuffleOp.getV2VectorType();
    auto vectorType = shuffleOp.getVectorType();
    Type llvmType = typeConverter.convertType(vectorType);
    auto maskArrayAttr = shuffleOp.mask();

    // Bail if result type cannot be lowered.
    if (!llvmType)
      return failure();

    // Get rank and dimension sizes.
    int64_t rank = vectorType.getRank();
    assert(v1Type.getRank() == rank);
    assert(v2Type.getRank() == rank);
    int64_t v1Dim = v1Type.getDimSize(0);

    // For rank 1, where both operands have *exactly* the same vector type,
    // there is direct shuffle support in LLVM. Use it!
    if (rank == 1 && v1Type == v2Type) {
      Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>(
          loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
      rewriter.replaceOp(op, shuffle);
      return success();
    }

    // For all other cases, insert the individual values individually.
    Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
    int64_t insPos = 0;
    for (auto en : llvm::enumerate(maskArrayAttr)) {
      int64_t extPos = en.value().cast<IntegerAttr>().getInt();
      Value value = adaptor.v1();
      if (extPos >= v1Dim) {
        extPos -= v1Dim;
        value = adaptor.v2();
      }
      Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType,
                                 rank, extPos);
      insert = insertOne(rewriter, typeConverter, loc, insert, extract,
                         llvmType, rank, insPos++);
    }
    rewriter.replaceOp(op, insert);
    return success();
  }
};

class VectorExtractElementOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorExtractElementOpConversion(MLIRContext *context,
                                            LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(),
                             context, typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto adaptor = vector::ExtractElementOpAdaptor(operands);
    auto extractEltOp = cast<vector::ExtractElementOp>(op);
    auto vectorType = extractEltOp.getVectorType();
    auto llvmType = typeConverter.convertType(vectorType.getElementType());

    // Bail if result type cannot be lowered.
    if (!llvmType)
      return failure();

    rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
        op, llvmType, adaptor.vector(), adaptor.position());
    return success();
  }
};

class VectorExtractOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorExtractOpConversion(MLIRContext *context,
                                     LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto adaptor = vector::ExtractOpAdaptor(operands);
    auto extractOp = cast<vector::ExtractOp>(op);
    auto vectorType = extractOp.getVectorType();
    auto resultType = extractOp.getResult().getType();
    auto llvmResultType = typeConverter.convertType(resultType);
    auto positionArrayAttr = extractOp.position();

    // Bail if result type cannot be lowered.
    if (!llvmResultType)
      return failure();

    // One-shot extraction of vector from array (only requires extractvalue).
    if (resultType.isa<VectorType>()) {
      Value extracted = rewriter.create<LLVM::ExtractValueOp>(
          loc, llvmResultType, adaptor.vector(), positionArrayAttr);
      rewriter.replaceOp(op, extracted);
      return success();
    }

    // Potential extraction of 1-D vector from array.
    auto *context = op->getContext();
    Value extracted = adaptor.vector();
    auto positionAttrs = positionArrayAttr.getValue();
    if (positionAttrs.size() > 1) {
      auto oneDVectorType = reducedVectorTypeBack(vectorType);
      auto nMinusOnePositionAttrs =
          ArrayAttr::get(positionAttrs.drop_back(), context);
      extracted = rewriter.create<LLVM::ExtractValueOp>(
          loc, typeConverter.convertType(oneDVectorType), extracted,
          nMinusOnePositionAttrs);
    }

    // Remaining extraction of element from 1-D LLVM vector
    auto position = positionAttrs.back().cast<IntegerAttr>();
    auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext());
    auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
    extracted =
        rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
    rewriter.replaceOp(op, extracted);

    return success();
  }
};

/// Conversion pattern that turns a vector.fma on a 1-D vector
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
/// This does not match vectors of n >= 2 rank.
///
/// Example:
/// ```
///  vector.fma %a, %a, %a : vector<8xf32>
/// ```
/// is converted to:
/// ```
///  llvm.intr.fmuladd %va, %va, %va:
///    (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">)
///    -> !llvm<"<8 x float>">
/// ```
class VectorFMAOp1DConversion : public ConvertToLLVMPattern {
public:
  explicit VectorFMAOp1DConversion(MLIRContext *context,
                                   LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto adaptor = vector::FMAOpAdaptor(operands);
    vector::FMAOp fmaOp = cast<vector::FMAOp>(op);
    VectorType vType = fmaOp.getVectorType();
    if (vType.getRank() != 1)
      return failure();
    rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(op, adaptor.lhs(),
                                                 adaptor.rhs(), adaptor.acc());
    return success();
  }
};

class VectorInsertElementOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorInsertElementOpConversion(MLIRContext *context,
                                           LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(),
                             context, typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto adaptor = vector::InsertElementOpAdaptor(operands);
    auto insertEltOp = cast<vector::InsertElementOp>(op);
    auto vectorType = insertEltOp.getDestVectorType();
    auto llvmType = typeConverter.convertType(vectorType);

    // Bail if result type cannot be lowered.
    if (!llvmType)
      return failure();

    rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
        op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position());
    return success();
  }
};

class VectorInsertOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorInsertOpConversion(MLIRContext *context,
                                    LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto adaptor = vector::InsertOpAdaptor(operands);
    auto insertOp = cast<vector::InsertOp>(op);
    auto sourceType = insertOp.getSourceType();
    auto destVectorType = insertOp.getDestVectorType();
    auto llvmResultType = typeConverter.convertType(destVectorType);
    auto positionArrayAttr = insertOp.position();

    // Bail if result type cannot be lowered.
    if (!llvmResultType)
      return failure();

    // One-shot insertion of a vector into an array (only requires insertvalue).
    if (sourceType.isa<VectorType>()) {
      Value inserted = rewriter.create<LLVM::InsertValueOp>(
          loc, llvmResultType, adaptor.dest(), adaptor.source(),
          positionArrayAttr);
      rewriter.replaceOp(op, inserted);
      return success();
    }

    // Potential extraction of 1-D vector from array.
    auto *context = op->getContext();
    Value extracted = adaptor.dest();
    auto positionAttrs = positionArrayAttr.getValue();
    auto position = positionAttrs.back().cast<IntegerAttr>();
    auto oneDVectorType = destVectorType;
    if (positionAttrs.size() > 1) {
      oneDVectorType = reducedVectorTypeBack(destVectorType);
      auto nMinusOnePositionAttrs =
          ArrayAttr::get(positionAttrs.drop_back(), context);
      extracted = rewriter.create<LLVM::ExtractValueOp>(
          loc, typeConverter.convertType(oneDVectorType), extracted,
          nMinusOnePositionAttrs);
    }

    // Insertion of an element into a 1-D LLVM vector.
    auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext());
    auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
    Value inserted = rewriter.create<LLVM::InsertElementOp>(
        loc, typeConverter.convertType(oneDVectorType), extracted,
        adaptor.source(), constant);

    // Potential insertion of resulting 1-D vector into array.
    if (positionAttrs.size() > 1) {
      auto nMinusOnePositionAttrs =
          ArrayAttr::get(positionAttrs.drop_back(), context);
      inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
                                                      adaptor.dest(), inserted,
                                                      nMinusOnePositionAttrs);
    }

    rewriter.replaceOp(op, inserted);
    return success();
  }
};

/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
///
/// Example:
/// ```
///   %d = vector.fma %a, %b, %c : vector<2x4xf32>
/// ```
/// is rewritten into:
/// ```
///  %r = splat %f0: vector<2x4xf32>
///  %va = vector.extractvalue %a[0] : vector<2x4xf32>
///  %vb = vector.extractvalue %b[0] : vector<2x4xf32>
///  %vc = vector.extractvalue %c[0] : vector<2x4xf32>
///  %vd = vector.fma %va, %vb, %vc : vector<4xf32>
///  %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
///  %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
///  %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
///  %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
///  %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
///  %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
///  // %r3 holds the final value.
/// ```
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
public:
  using OpRewritePattern<FMAOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(FMAOp op,
                                PatternRewriter &rewriter) const override {
    auto vType = op.getVectorType();
    if (vType.getRank() < 2)
      return failure();

    auto loc = op.getLoc();
    auto elemType = vType.getElementType();
    Value zero = rewriter.create<ConstantOp>(loc, elemType,
                                             rewriter.getZeroAttr(elemType));
    Value desc = rewriter.create<SplatOp>(loc, vType, zero);
    for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
      Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
      Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
      Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
      Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
      desc = rewriter.create<InsertOp>(loc, fma, desc, i);
    }
    rewriter.replaceOp(op, desc);
    return success();
  }
};

// When ranks are different, InsertStridedSlice needs to extract a properly
// ranked vector from the destination vector into which to insert. This pattern
// only takes care of this part and forwards the rest of the conversion to
// another pattern that converts InsertStridedSlice for operands of the same
// rank.
//
// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have different ranks. In this case:
//   1. the proper subvector is extracted from the destination vector
//   2. a new InsertStridedSlice op is created to insert the source in the
//   destination subvector
//   3. the destination subvector is inserted back in the proper place
//   4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpDifferentRankRewritePattern
    : public OpRewritePattern<InsertStridedSliceOp> {
public:
  using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(InsertStridedSliceOp op,
                                PatternRewriter &rewriter) const override {
    auto srcType = op.getSourceVectorType();
    auto dstType = op.getDestVectorType();

    if (op.offsets().getValue().empty())
      return failure();

    auto loc = op.getLoc();
    int64_t rankDiff = dstType.getRank() - srcType.getRank();
    assert(rankDiff >= 0);
    if (rankDiff == 0)
      return failure();

    int64_t rankRest = dstType.getRank() - rankDiff;
    // Extract / insert the subvector of matching rank and InsertStridedSlice
    // on it.
    Value extracted =
        rewriter.create<ExtractOp>(loc, op.dest(),
                                   getI64SubArray(op.offsets(), /*dropFront=*/0,
                                                  /*dropFront=*/rankRest));
    // A different pattern will kick in for InsertStridedSlice with matching
    // ranks.
    auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
        loc, op.source(), extracted,
        getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
        getI64SubArray(op.strides(), /*dropFront=*/0));
    rewriter.replaceOpWithNewOp<InsertOp>(
        op, stridedSliceInnerOp.getResult(), op.dest(),
        getI64SubArray(op.offsets(), /*dropFront=*/0,
                       /*dropFront=*/rankRest));
    return success();
  }
};

// RewritePattern for InsertStridedSliceOp where source and destination vectors
// have the same rank. In this case, we reduce
//   1. the proper subvector is extracted from the destination vector
//   2. a new InsertStridedSlice op is created to insert the source in the
//   destination subvector
//   3. the destination subvector is inserted back in the proper place
//   4. the op is replaced by the result of step 3.
// The new InsertStridedSlice from step 2. will be picked up by a
// `VectorInsertStridedSliceOpSameRankRewritePattern`.
class VectorInsertStridedSliceOpSameRankRewritePattern
    : public OpRewritePattern<InsertStridedSliceOp> {
public:
  using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(InsertStridedSliceOp op,
                                PatternRewriter &rewriter) const override {
    auto srcType = op.getSourceVectorType();
    auto dstType = op.getDestVectorType();

    if (op.offsets().getValue().empty())
      return failure();

    int64_t rankDiff = dstType.getRank() - srcType.getRank();
    assert(rankDiff >= 0);
    if (rankDiff != 0)
      return failure();

    if (srcType == dstType) {
      rewriter.replaceOp(op, op.source());
      return success();
    }

    int64_t offset =
        op.offsets().getValue().front().cast<IntegerAttr>().getInt();
    int64_t size = srcType.getShape().front();
    int64_t stride =
        op.strides().getValue().front().cast<IntegerAttr>().getInt();

    auto loc = op.getLoc();
    Value res = op.dest();
    // For each slice of the source vector along the most major dimension.
    for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
         off += stride, ++idx) {
      // 1. extract the proper subvector (or element) from source
      Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
      if (extractedSource.getType().isa<VectorType>()) {
        // 2. If we have a vector, extract the proper subvector from destination
        // Otherwise we are at the element level and no need to recurse.
        Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
        // 3. Reduce the problem to lowering a new InsertStridedSlice op with
        // smaller rank.
        extractedSource = rewriter.create<InsertStridedSliceOp>(
            loc, extractedSource, extractedDest,
            getI64SubArray(op.offsets(), /* dropFront=*/1),
            getI64SubArray(op.strides(), /* dropFront=*/1));
      }
      // 4. Insert the extractedSource into the res vector.
      res = insertOne(rewriter, loc, extractedSource, res, off);
    }

    rewriter.replaceOp(op, res);
    return success();
  }
  /// This pattern creates recursive InsertStridedSliceOp, but the recursion is
  /// bounded as the rank is strictly decreasing.
  bool hasBoundedRewriteRecursion() const final { return true; }
};

/// Returns true if the memory underlying `memRefType` has a contiguous layout.
/// Strides are written to `strides`.
static bool isContiguous(MemRefType memRefType,
                         SmallVectorImpl<int64_t> &strides) {
  int64_t offset;
  auto successStrides = getStridesAndOffset(memRefType, strides, offset);
  bool isContiguous = strides.empty() || strides.back() == 1;
  if (isContiguous) {
    auto sizes = memRefType.getShape();
    for (int index = 0, e = strides.size() - 2; index < e; ++index) {
      if (strides[index] != strides[index + 1] * sizes[index + 1]) {
        isContiguous = false;
        break;
      }
    }
  }
  return succeeded(successStrides) && isContiguous;
}

class VectorTypeCastOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorTypeCastOpConversion(MLIRContext *context,
                                      LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context,
                             typeConverter) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
    MemRefType sourceMemRefType =
        castOp.getOperand().getType().cast<MemRefType>();
    MemRefType targetMemRefType =
        castOp.getResult().getType().cast<MemRefType>();

    // Only static shape casts supported atm.
    if (!sourceMemRefType.hasStaticShape() ||
        !targetMemRefType.hasStaticShape())
      return failure();

    auto llvmSourceDescriptorTy =
        operands[0].getType().dyn_cast<LLVM::LLVMType>();
    if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
      return failure();
    MemRefDescriptor sourceMemRef(operands[0]);

    auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType)
                                      .dyn_cast_or_null<LLVM::LLVMType>();
    if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
      return failure();

    // Only contiguous source tensors supported atm.
    SmallVector<int64_t, 4> strides;
    if (!isContiguous(sourceMemRefType, strides))
      return failure();

    auto int64Ty = LLVM::LLVMType::getInt64Ty(rewriter.getContext());

    // Create descriptor.
    auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
    Type llvmTargetElementTy = desc.getElementPtrType();
    // Set allocated ptr.
    Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
    allocated =
        rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
    desc.setAllocatedPtr(rewriter, loc, allocated);
    // Set aligned ptr.
    Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
    ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
    desc.setAlignedPtr(rewriter, loc, ptr);
    // Fill offset 0.
    auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
    auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
    desc.setOffset(rewriter, loc, zero);

    // Fill size and stride descriptors in memref.
    for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
      int64_t index = indexedSize.index();
      auto sizeAttr =
          rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
      auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
      desc.setSize(rewriter, loc, index, size);
      auto strideAttr =
          rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
      auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
      desc.setStride(rewriter, loc, index, stride);
    }

    rewriter.replaceOp(op, {desc});
    return success();
  }
};

/// Conversion pattern that converts a 1-D vector transfer read/write op in a
/// sequence of:
/// 1. Get the source/dst address as an LLVM vector pointer.
/// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
/// 3. Create an offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
/// 4. Create a mask where offsetVector is compared against memref upper bound.
/// 5. Rewrite op as a masked read or write.
template <typename ConcreteOp>
class VectorTransferConversion : public ConvertToLLVMPattern {
public:
  explicit VectorTransferConversion(MLIRContext *context,
                                    LLVMTypeConverter &typeConv,
                                    bool enableIndexOpt)
      : ConvertToLLVMPattern(ConcreteOp::getOperationName(), context, typeConv),
        enableIndexOptimizations(enableIndexOpt) {}

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto xferOp = cast<ConcreteOp>(op);
    auto adaptor = getTransferOpAdapter(xferOp, operands);

    if (xferOp.getVectorType().getRank() > 1 ||
        llvm::size(xferOp.indices()) == 0)
      return failure();
    if (xferOp.permutation_map() !=
        AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(),
                                       xferOp.getVectorType().getRank(),
                                       op->getContext()))
      return failure();
    // Only contiguous source tensors supported atm.
    SmallVector<int64_t, 4> strides;
    if (!isContiguous(xferOp.getMemRefType(), strides))
      return failure();

    auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };

    Location loc = op->getLoc();
    MemRefType memRefType = xferOp.getMemRefType();

    if (auto memrefVectorElementType =
            memRefType.getElementType().dyn_cast<VectorType>()) {
      // Memref has vector element type.
      if (memrefVectorElementType.getElementType() !=
          xferOp.getVectorType().getElementType())
        return failure();
#ifndef NDEBUG
      // Check that memref vector type is a suffix of 'vectorType.
      unsigned memrefVecEltRank = memrefVectorElementType.getRank();
      unsigned resultVecRank = xferOp.getVectorType().getRank();
      assert(memrefVecEltRank <= resultVecRank);
      // TODO: Move this to isSuffix in Vector/Utils.h.
      unsigned rankOffset = resultVecRank - memrefVecEltRank;
      auto memrefVecEltShape = memrefVectorElementType.getShape();
      auto resultVecShape = xferOp.getVectorType().getShape();
      for (unsigned i = 0; i < memrefVecEltRank; ++i)
        assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] &&
               "memref vector element shape should match suffix of vector "
               "result shape.");
#endif // ifndef NDEBUG
    }

    // 1. Get the source/dst address as an LLVM vector pointer.
    //    The vector pointer would always be on address space 0, therefore
    //    addrspacecast shall be used when source/dst memrefs are not on
    //    address space 0.
    // TODO: support alignment when possible.
    Value dataPtr = getDataPtr(loc, memRefType, adaptor.memref(),
                               adaptor.indices(), rewriter);
    auto vecTy =
        toLLVMTy(xferOp.getVectorType()).template cast<LLVM::LLVMType>();
    Value vectorDataPtr;
    if (memRefType.getMemorySpace() == 0)
      vectorDataPtr =
          rewriter.create<LLVM::BitcastOp>(loc, vecTy.getPointerTo(), dataPtr);
    else
      vectorDataPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
          loc, vecTy.getPointerTo(), dataPtr);

    if (!xferOp.isMaskedDim(0))
      return replaceTransferOpWithLoadOrStore(rewriter, typeConverter, loc,
                                              xferOp, operands, vectorDataPtr);

    // 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
    // 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
    // 4. Let dim the memref dimension, compute the vector comparison mask:
    //   [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ]
    //
    // TODO: when the leaf transfer rank is k > 1, we need the last `k`
    //       dimensions here.
    unsigned vecWidth = vecTy.getVectorNumElements();
    unsigned lastIndex = llvm::size(xferOp.indices()) - 1;
    Value off = xferOp.indices()[lastIndex];
    Value dim = rewriter.create<DimOp>(loc, xferOp.memref(), lastIndex);
    Value mask = buildVectorComparison(rewriter, op, enableIndexOptimizations,
                                       vecWidth, dim, &off);

    // 5. Rewrite as a masked read / write.
    return replaceTransferOpWithMasked(rewriter, typeConverter, loc, xferOp,
                                       operands, vectorDataPtr, mask);
  }

private:
  const bool enableIndexOptimizations;
};

class VectorPrintOpConversion : public ConvertToLLVMPattern {
public:
  explicit VectorPrintOpConversion(MLIRContext *context,
                                   LLVMTypeConverter &typeConverter)
      : ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context,
                             typeConverter) {}

  // Proof-of-concept lowering implementation that relies on a small
  // runtime support library, which only needs to provide a few
  // printing methods (single value for all data types, opening/closing
  // bracket, comma, newline). The lowering fully unrolls a vector
  // in terms of these elementary printing operations. The advantage
  // of this approach is that the library can remain unaware of all
  // low-level implementation details of vectors while still supporting
  // output of any shaped and dimensioned vector. Due to full unrolling,
  // this approach is less suited for very large vectors though.
  //
  // TODO: rely solely on libc in future? something else?
  //
  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto printOp = cast<vector::PrintOp>(op);
    auto adaptor = vector::PrintOpAdaptor(operands);
    Type printType = printOp.getPrintType();

    if (typeConverter.convertType(printType) == nullptr)
      return failure();

    // Make sure element type has runtime support.
    PrintConversion conversion = PrintConversion::None;
    VectorType vectorType = printType.dyn_cast<VectorType>();
    Type eltType = vectorType ? vectorType.getElementType() : printType;
    Operation *printer;
    if (eltType.isF32()) {
      printer = getPrintFloat(op);
    } else if (eltType.isF64()) {
      printer = getPrintDouble(op);
    } else if (eltType.isIndex()) {
      printer = getPrintU64(op);
    } else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
      // Integers need a zero or sign extension on the operand
      // (depending on the source type) as well as a signed or
      // unsigned print method. Up to 64-bit is supported.
      unsigned width = intTy.getWidth();
      if (intTy.isUnsigned()) {
        if (width <= 64) {
          if (width < 64)
            conversion = PrintConversion::ZeroExt64;
          printer = getPrintU64(op);
        } else {
          return failure();
        }
      } else {
        assert(intTy.isSignless() || intTy.isSigned());
        if (width <= 64) {
          // Note that we *always* zero extend booleans (1-bit integers),
          // so that true/false is printed as 1/0 rather than -1/0.
          if (width == 1)
            conversion = PrintConversion::ZeroExt64;
          else if (width < 64)
            conversion = PrintConversion::SignExt64;
          printer = getPrintI64(op);
        } else {
          return failure();
        }
      }
    } else {
      return failure();
    }

    // Unroll vector into elementary print calls.
    int64_t rank = vectorType ? vectorType.getRank() : 0;
    emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank,
              conversion);
    emitCall(rewriter, op->getLoc(), getPrintNewline(op));
    rewriter.eraseOp(op);
    return success();
  }

private:
  enum class PrintConversion {
    None,
    ZeroExt64,
    SignExt64
  };

  void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
                 Value value, VectorType vectorType, Operation *printer,
                 int64_t rank, PrintConversion conversion) const {
    Location loc = op->getLoc();
    if (rank == 0) {
      switch (conversion) {
      case PrintConversion::ZeroExt64:
        value = rewriter.create<ZeroExtendIOp>(
            loc, value, LLVM::LLVMType::getInt64Ty(rewriter.getContext()));
        break;
      case PrintConversion::SignExt64:
        value = rewriter.create<SignExtendIOp>(
            loc, value, LLVM::LLVMType::getInt64Ty(rewriter.getContext()));
        break;
      case PrintConversion::None:
        break;
      }
      emitCall(rewriter, loc, printer, value);
      return;
    }

    emitCall(rewriter, loc, getPrintOpen(op));
    Operation *printComma = getPrintComma(op);
    int64_t dim = vectorType.getDimSize(0);
    for (int64_t d = 0; d < dim; ++d) {
      auto reducedType =
          rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
      auto llvmType = typeConverter.convertType(
          rank > 1 ? reducedType : vectorType.getElementType());
      Value nestedVal =
          extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d);
      emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
                conversion);
      if (d != dim - 1)
        emitCall(rewriter, loc, printComma);
    }
    emitCall(rewriter, loc, getPrintClose(op));
  }

  // Helper to emit a call.
  static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
                       Operation *ref, ValueRange params = ValueRange()) {
    rewriter.create<LLVM::CallOp>(loc, TypeRange(),
                                  rewriter.getSymbolRefAttr(ref), params);
  }

  // Helper for printer method declaration (first hit) and lookup.
  static Operation *getPrint(Operation *op, StringRef name,
                             ArrayRef<LLVM::LLVMType> params) {
    auto module = op->getParentOfType<ModuleOp>();
    auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
    if (func)
      return func;
    OpBuilder moduleBuilder(module.getBodyRegion());
    return moduleBuilder.create<LLVM::LLVMFuncOp>(
        op->getLoc(), name,
        LLVM::LLVMType::getFunctionTy(
            LLVM::LLVMType::getVoidTy(op->getContext()), params,
            /*isVarArg=*/false));
  }

  // Helpers for method names.
  Operation *getPrintI64(Operation *op) const {
    return getPrint(op, "printI64",
                    LLVM::LLVMType::getInt64Ty(op->getContext()));
  }
  Operation *getPrintU64(Operation *op) const {
    return getPrint(op, "printU64",
                    LLVM::LLVMType::getInt64Ty(op->getContext()));
  }
  Operation *getPrintFloat(Operation *op) const {
    return getPrint(op, "printF32",
                    LLVM::LLVMType::getFloatTy(op->getContext()));
  }
  Operation *getPrintDouble(Operation *op) const {
    return getPrint(op, "printF64",
                    LLVM::LLVMType::getDoubleTy(op->getContext()));
  }
  Operation *getPrintOpen(Operation *op) const {
    return getPrint(op, "printOpen", {});
  }
  Operation *getPrintClose(Operation *op) const {
    return getPrint(op, "printClose", {});
  }
  Operation *getPrintComma(Operation *op) const {
    return getPrint(op, "printComma", {});
  }
  Operation *getPrintNewline(Operation *op) const {
    return getPrint(op, "printNewline", {});
  }
};

/// Progressive lowering of ExtractStridedSliceOp to either:
///   1. express single offset extract as a direct shuffle.
///   2. extract + lower rank strided_slice + insert for the n-D case.
class VectorExtractStridedSliceOpConversion
    : public OpRewritePattern<ExtractStridedSliceOp> {
public:
  using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
                                PatternRewriter &rewriter) const override {
    auto dstType = op.getResult().getType().cast<VectorType>();

    assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");

    int64_t offset =
        op.offsets().getValue().front().cast<IntegerAttr>().getInt();
    int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
    int64_t stride =
        op.strides().getValue().front().cast<IntegerAttr>().getInt();

    auto loc = op.getLoc();
    auto elemType = dstType.getElementType();
    assert(elemType.isSignlessIntOrIndexOrFloat());

    // Single offset can be more efficiently shuffled.
    if (op.offsets().getValue().size() == 1) {
      SmallVector<int64_t, 4> offsets;
      offsets.reserve(size);
      for (int64_t off = offset, e = offset + size * stride; off < e;
           off += stride)
        offsets.push_back(off);
      rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(),
                                             op.vector(),
                                             rewriter.getI64ArrayAttr(offsets));
      return success();
    }

    // Extract/insert on a lower ranked extract strided slice op.
    Value zero = rewriter.create<ConstantOp>(loc, elemType,
                                             rewriter.getZeroAttr(elemType));
    Value res = rewriter.create<SplatOp>(loc, dstType, zero);
    for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
         off += stride, ++idx) {
      Value one = extractOne(rewriter, loc, op.vector(), off);
      Value extracted = rewriter.create<ExtractStridedSliceOp>(
          loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1),
          getI64SubArray(op.sizes(), /* dropFront=*/1),
          getI64SubArray(op.strides(), /* dropFront=*/1));
      res = insertOne(rewriter, loc, extracted, res, idx);
    }
    rewriter.replaceOp(op, res);
    return success();
  }
  /// This pattern creates recursive ExtractStridedSliceOp, but the recursion is
  /// bounded as the rank is strictly decreasing.
  bool hasBoundedRewriteRecursion() const final { return true; }
};

} // namespace

/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
    LLVMTypeConverter &converter, OwningRewritePatternList &patterns,
    bool reassociateFPReductions, bool enableIndexOptimizations) {
  MLIRContext *ctx = converter.getDialect()->getContext();
  // clang-format off
  patterns.insert<VectorFMAOpNDRewritePattern,
                  VectorInsertStridedSliceOpDifferentRankRewritePattern,
                  VectorInsertStridedSliceOpSameRankRewritePattern,
                  VectorExtractStridedSliceOpConversion>(ctx);
  patterns.insert<VectorReductionOpConversion>(
      ctx, converter, reassociateFPReductions);
  patterns.insert<VectorCreateMaskOpConversion,
                  VectorTransferConversion<TransferReadOp>,
                  VectorTransferConversion<TransferWriteOp>>(
      ctx, converter, enableIndexOptimizations);
  patterns
      .insert<VectorShuffleOpConversion,
              VectorExtractElementOpConversion,
              VectorExtractOpConversion,
              VectorFMAOp1DConversion,
              VectorInsertElementOpConversion,
              VectorInsertOpConversion,
              VectorPrintOpConversion,
              VectorTypeCastOpConversion,
              VectorMaskedLoadOpConversion,
              VectorMaskedStoreOpConversion,
              VectorGatherOpConversion,
              VectorScatterOpConversion,
              VectorExpandLoadOpConversion,
              VectorCompressStoreOpConversion>(ctx, converter);
  // clang-format on
}

void mlir::populateVectorToLLVMMatrixConversionPatterns(
    LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
  MLIRContext *ctx = converter.getDialect()->getContext();
  patterns.insert<VectorMatmulOpConversion>(ctx, converter);
  patterns.insert<VectorFlatTransposeOpConversion>(ctx, converter);
}

namespace {
struct LowerVectorToLLVMPass
    : public ConvertVectorToLLVMBase<LowerVectorToLLVMPass> {
  LowerVectorToLLVMPass(const LowerVectorToLLVMOptions &options) {
    this->reassociateFPReductions = options.reassociateFPReductions;
    this->enableIndexOptimizations = options.enableIndexOptimizations;
  }
  void runOnOperation() override;
};
} // namespace

void LowerVectorToLLVMPass::runOnOperation() {
  // Perform progressive lowering of operations on slices and
  // all contraction operations. Also applies folding and DCE.
  {
    OwningRewritePatternList patterns;
    populateVectorToVectorCanonicalizationPatterns(patterns, &getContext());
    populateVectorSlicesLoweringPatterns(patterns, &getContext());
    populateVectorContractLoweringPatterns(patterns, &getContext());
    applyPatternsAndFoldGreedily(getOperation(), patterns);
  }

  // Convert to the LLVM IR dialect.
  LLVMTypeConverter converter(&getContext());
  OwningRewritePatternList patterns;
  populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
  populateVectorToLLVMConversionPatterns(
      converter, patterns, reassociateFPReductions, enableIndexOptimizations);
  populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
  populateStdToLLVMConversionPatterns(converter, patterns);

  LLVMConversionTarget target(getContext());
  if (failed(applyPartialConversion(getOperation(), target, patterns)))
    signalPassFailure();
}

std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertVectorToLLVMPass(const LowerVectorToLLVMOptions &options) {
  return std::make_unique<LowerVectorToLLVMPass>(options);
}