AffineToStandard.cpp 26.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
//===- AffineToStandard.cpp - Lower affine constructs to primitives -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file lowers affine constructs (If and For statements, AffineApply
// operations) within a function into their standard If and For equivalent ops.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"

#include "../PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"

using namespace mlir;
using namespace mlir::vector;

namespace {
/// Visit affine expressions recursively and build the sequence of operations
/// that correspond to it.  Visitation functions return an Value of the
/// expression subtree they visited or `nullptr` on error.
class AffineApplyExpander
    : public AffineExprVisitor<AffineApplyExpander, Value> {
public:
  /// This internal class expects arguments to be non-null, checks must be
  /// performed at the call site.
  AffineApplyExpander(OpBuilder &builder, ValueRange dimValues,
                      ValueRange symbolValues, Location loc)
      : builder(builder), dimValues(dimValues), symbolValues(symbolValues),
        loc(loc) {}

  template <typename OpTy> Value buildBinaryExpr(AffineBinaryOpExpr expr) {
    auto lhs = visit(expr.getLHS());
    auto rhs = visit(expr.getRHS());
    if (!lhs || !rhs)
      return nullptr;
    auto op = builder.create<OpTy>(loc, lhs, rhs);
    return op.getResult();
  }

  Value visitAddExpr(AffineBinaryOpExpr expr) {
    return buildBinaryExpr<AddIOp>(expr);
  }

  Value visitMulExpr(AffineBinaryOpExpr expr) {
    return buildBinaryExpr<MulIOp>(expr);
  }

  /// Euclidean modulo operation: negative RHS is not allowed.
  /// Remainder of the euclidean integer division is always non-negative.
  ///
  /// Implemented as
  ///
  ///     a mod b =
  ///         let remainder = srem a, b;
  ///             negative = a < 0 in
  ///         select negative, remainder + b, remainder.
  Value visitModExpr(AffineBinaryOpExpr expr) {
    auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
    if (!rhsConst) {
      emitError(
          loc,
          "semi-affine expressions (modulo by non-const) are not supported");
      return nullptr;
    }
    if (rhsConst.getValue() <= 0) {
      emitError(loc, "modulo by non-positive value is not supported");
      return nullptr;
    }

    auto lhs = visit(expr.getLHS());
    auto rhs = visit(expr.getRHS());
    assert(lhs && rhs && "unexpected affine expr lowering failure");

    Value remainder = builder.create<SignedRemIOp>(loc, lhs, rhs);
    Value zeroCst = builder.create<ConstantIndexOp>(loc, 0);
    Value isRemainderNegative =
        builder.create<CmpIOp>(loc, CmpIPredicate::slt, remainder, zeroCst);
    Value correctedRemainder = builder.create<AddIOp>(loc, remainder, rhs);
    Value result = builder.create<SelectOp>(loc, isRemainderNegative,
                                            correctedRemainder, remainder);
    return result;
  }

  /// Floor division operation (rounds towards negative infinity).
  ///
  /// For positive divisors, it can be implemented without branching and with a
  /// single division operation as
  ///
  ///        a floordiv b =
  ///            let negative = a < 0 in
  ///            let absolute = negative ? -a - 1 : a in
  ///            let quotient = absolute / b in
  ///                negative ? -quotient - 1 : quotient
  Value visitFloorDivExpr(AffineBinaryOpExpr expr) {
    auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
    if (!rhsConst) {
      emitError(
          loc,
          "semi-affine expressions (division by non-const) are not supported");
      return nullptr;
    }
    if (rhsConst.getValue() <= 0) {
      emitError(loc, "division by non-positive value is not supported");
      return nullptr;
    }

    auto lhs = visit(expr.getLHS());
    auto rhs = visit(expr.getRHS());
    assert(lhs && rhs && "unexpected affine expr lowering failure");

    Value zeroCst = builder.create<ConstantIndexOp>(loc, 0);
    Value noneCst = builder.create<ConstantIndexOp>(loc, -1);
    Value negative =
        builder.create<CmpIOp>(loc, CmpIPredicate::slt, lhs, zeroCst);
    Value negatedDecremented = builder.create<SubIOp>(loc, noneCst, lhs);
    Value dividend =
        builder.create<SelectOp>(loc, negative, negatedDecremented, lhs);
    Value quotient = builder.create<SignedDivIOp>(loc, dividend, rhs);
    Value correctedQuotient = builder.create<SubIOp>(loc, noneCst, quotient);
    Value result =
        builder.create<SelectOp>(loc, negative, correctedQuotient, quotient);
    return result;
  }

  /// Ceiling division operation (rounds towards positive infinity).
  ///
  /// For positive divisors, it can be implemented without branching and with a
  /// single division operation as
  ///
  ///     a ceildiv b =
  ///         let negative = a <= 0 in
  ///         let absolute = negative ? -a : a - 1 in
  ///         let quotient = absolute / b in
  ///             negative ? -quotient : quotient + 1
  Value visitCeilDivExpr(AffineBinaryOpExpr expr) {
    auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
    if (!rhsConst) {
      emitError(loc) << "semi-affine expressions (division by non-const) are "
                        "not supported";
      return nullptr;
    }
    if (rhsConst.getValue() <= 0) {
      emitError(loc, "division by non-positive value is not supported");
      return nullptr;
    }
    auto lhs = visit(expr.getLHS());
    auto rhs = visit(expr.getRHS());
    assert(lhs && rhs && "unexpected affine expr lowering failure");

    Value zeroCst = builder.create<ConstantIndexOp>(loc, 0);
    Value oneCst = builder.create<ConstantIndexOp>(loc, 1);
    Value nonPositive =
        builder.create<CmpIOp>(loc, CmpIPredicate::sle, lhs, zeroCst);
    Value negated = builder.create<SubIOp>(loc, zeroCst, lhs);
    Value decremented = builder.create<SubIOp>(loc, lhs, oneCst);
    Value dividend =
        builder.create<SelectOp>(loc, nonPositive, negated, decremented);
    Value quotient = builder.create<SignedDivIOp>(loc, dividend, rhs);
    Value negatedQuotient = builder.create<SubIOp>(loc, zeroCst, quotient);
    Value incrementedQuotient = builder.create<AddIOp>(loc, quotient, oneCst);
    Value result = builder.create<SelectOp>(loc, nonPositive, negatedQuotient,
                                            incrementedQuotient);
    return result;
  }

  Value visitConstantExpr(AffineConstantExpr expr) {
    auto valueAttr =
        builder.getIntegerAttr(builder.getIndexType(), expr.getValue());
    auto op =
        builder.create<ConstantOp>(loc, builder.getIndexType(), valueAttr);
    return op.getResult();
  }

  Value visitDimExpr(AffineDimExpr expr) {
    assert(expr.getPosition() < dimValues.size() &&
           "affine dim position out of range");
    return dimValues[expr.getPosition()];
  }

  Value visitSymbolExpr(AffineSymbolExpr expr) {
    assert(expr.getPosition() < symbolValues.size() &&
           "symbol dim position out of range");
    return symbolValues[expr.getPosition()];
  }

private:
  OpBuilder &builder;
  ValueRange dimValues;
  ValueRange symbolValues;

  Location loc;
};
} // namespace

/// Create a sequence of operations that implement the `expr` applied to the
/// given dimension and symbol values.
mlir::Value mlir::expandAffineExpr(OpBuilder &builder, Location loc,
                                   AffineExpr expr, ValueRange dimValues,
                                   ValueRange symbolValues) {
  return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr);
}

/// Create a sequence of operations that implement the `affineMap` applied to
/// the given `operands` (as it it were an AffineApplyOp).
Optional<SmallVector<Value, 8>> mlir::expandAffineMap(OpBuilder &builder,
                                                      Location loc,
                                                      AffineMap affineMap,
                                                      ValueRange operands) {
  auto numDims = affineMap.getNumDims();
  auto expanded = llvm::to_vector<8>(
      llvm::map_range(affineMap.getResults(),
                      [numDims, &builder, loc, operands](AffineExpr expr) {
                        return expandAffineExpr(builder, loc, expr,
                                                operands.take_front(numDims),
                                                operands.drop_front(numDims));
                      }));
  if (llvm::all_of(expanded, [](Value v) { return v; }))
    return expanded;
  return None;
}

/// Given a range of values, emit the code that reduces them with "min" or "max"
/// depending on the provided comparison predicate.  The predicate defines which
/// comparison to perform, "lt" for "min", "gt" for "max" and is used for the
/// `cmpi` operation followed by the `select` operation:
///
///   %cond   = cmpi "predicate" %v0, %v1
///   %result = select %cond, %v0, %v1
///
/// Multiple values are scanned in a linear sequence.  This creates a data
/// dependences that wouldn't exist in a tree reduction, but is easier to
/// recognize as a reduction by the subsequent passes.
static Value buildMinMaxReductionSeq(Location loc, CmpIPredicate predicate,
                                     ValueRange values, OpBuilder &builder) {
  assert(!llvm::empty(values) && "empty min/max chain");

  auto valueIt = values.begin();
  Value value = *valueIt++;
  for (; valueIt != values.end(); ++valueIt) {
    auto cmpOp = builder.create<CmpIOp>(loc, predicate, value, *valueIt);
    value = builder.create<SelectOp>(loc, cmpOp.getResult(), value, *valueIt);
  }

  return value;
}

/// Emit instructions that correspond to computing the maximum value among the
/// values of a (potentially) multi-output affine map applied to `operands`.
static Value lowerAffineMapMax(OpBuilder &builder, Location loc, AffineMap map,
                               ValueRange operands) {
  if (auto values = expandAffineMap(builder, loc, map, operands))
    return buildMinMaxReductionSeq(loc, CmpIPredicate::sgt, *values, builder);
  return nullptr;
}

/// Emit instructions that correspond to computing the minimum value among the
/// values of a (potentially) multi-output affine map applied to `operands`.
static Value lowerAffineMapMin(OpBuilder &builder, Location loc, AffineMap map,
                               ValueRange operands) {
  if (auto values = expandAffineMap(builder, loc, map, operands))
    return buildMinMaxReductionSeq(loc, CmpIPredicate::slt, *values, builder);
  return nullptr;
}

/// Emit instructions that correspond to the affine map in the upper bound
/// applied to the respective operands, and compute the minimum value across
/// the results.
Value mlir::lowerAffineUpperBound(AffineForOp op, OpBuilder &builder) {
  return lowerAffineMapMin(builder, op.getLoc(), op.getUpperBoundMap(),
                           op.getUpperBoundOperands());
}

/// Emit instructions that correspond to the affine map in the lower bound
/// applied to the respective operands, and compute the maximum value across
/// the results.
Value mlir::lowerAffineLowerBound(AffineForOp op, OpBuilder &builder) {
  return lowerAffineMapMax(builder, op.getLoc(), op.getLowerBoundMap(),
                           op.getLowerBoundOperands());
}

namespace {
class AffineMinLowering : public OpRewritePattern<AffineMinOp> {
public:
  using OpRewritePattern<AffineMinOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineMinOp op,
                                PatternRewriter &rewriter) const override {
    Value reduced =
        lowerAffineMapMin(rewriter, op.getLoc(), op.map(), op.operands());
    if (!reduced)
      return failure();

    rewriter.replaceOp(op, reduced);
    return success();
  }
};

class AffineMaxLowering : public OpRewritePattern<AffineMaxOp> {
public:
  using OpRewritePattern<AffineMaxOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineMaxOp op,
                                PatternRewriter &rewriter) const override {
    Value reduced =
        lowerAffineMapMax(rewriter, op.getLoc(), op.map(), op.operands());
    if (!reduced)
      return failure();

    rewriter.replaceOp(op, reduced);
    return success();
  }
};

/// Affine yields ops are removed.
class AffineYieldOpLowering : public OpRewritePattern<AffineYieldOp> {
public:
  using OpRewritePattern<AffineYieldOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineYieldOp op,
                                PatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<scf::YieldOp>(op);
    return success();
  }
};

class AffineForLowering : public OpRewritePattern<AffineForOp> {
public:
  using OpRewritePattern<AffineForOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineForOp op,
                                PatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    Value lowerBound = lowerAffineLowerBound(op, rewriter);
    Value upperBound = lowerAffineUpperBound(op, rewriter);
    Value step = rewriter.create<ConstantIndexOp>(loc, op.getStep());
    auto f = rewriter.create<scf::ForOp>(loc, lowerBound, upperBound, step);
    rewriter.eraseBlock(f.getBody());
    rewriter.inlineRegionBefore(op.region(), f.region(), f.region().end());
    rewriter.eraseOp(op);
    return success();
  }
};

/// Convert an `affine.parallel` (loop nest) operation into a `scf.parallel`
/// operation.
class AffineParallelLowering : public OpRewritePattern<AffineParallelOp> {
public:
  using OpRewritePattern<AffineParallelOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineParallelOp op,
                                PatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    SmallVector<Value, 8> steps;
    SmallVector<Value, 8> upperBoundTuple;
    SmallVector<Value, 8> lowerBoundTuple;
    // Finding lower and upper bound by expanding the map expression.
    // Checking if expandAffineMap is not giving NULL.
    Optional<SmallVector<Value, 8>> upperBound = expandAffineMap(
        rewriter, loc, op.upperBoundsMap(), op.getUpperBoundsOperands());
    Optional<SmallVector<Value, 8>> lowerBound = expandAffineMap(
        rewriter, loc, op.lowerBoundsMap(), op.getLowerBoundsOperands());
    if (!lowerBound || !upperBound)
      return failure();
    upperBoundTuple = *upperBound;
    lowerBoundTuple = *lowerBound;
    steps.reserve(op.steps().size());
    for (Attribute step : op.steps())
      steps.push_back(rewriter.create<ConstantIndexOp>(
          loc, step.cast<IntegerAttr>().getInt()));
    // Creating empty scf.parallel op body with appropriate bounds.
    auto parallelOp = rewriter.create<scf::ParallelOp>(loc, lowerBoundTuple,
                                                       upperBoundTuple, steps);
    rewriter.eraseBlock(parallelOp.getBody());
    rewriter.inlineRegionBefore(op.region(), parallelOp.region(),
                                parallelOp.region().end());
    rewriter.eraseOp(op);
    return success();
  }
};

class AffineIfLowering : public OpRewritePattern<AffineIfOp> {
public:
  using OpRewritePattern<AffineIfOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineIfOp op,
                                PatternRewriter &rewriter) const override {
    auto loc = op.getLoc();

    // Now we just have to handle the condition logic.
    auto integerSet = op.getIntegerSet();
    Value zeroConstant = rewriter.create<ConstantIndexOp>(loc, 0);
    SmallVector<Value, 8> operands(op.getOperands());
    auto operandsRef = llvm::makeArrayRef(operands);

    // Calculate cond as a conjunction without short-circuiting.
    Value cond = nullptr;
    for (unsigned i = 0, e = integerSet.getNumConstraints(); i < e; ++i) {
      AffineExpr constraintExpr = integerSet.getConstraint(i);
      bool isEquality = integerSet.isEq(i);

      // Build and apply an affine expression
      auto numDims = integerSet.getNumDims();
      Value affResult = expandAffineExpr(rewriter, loc, constraintExpr,
                                         operandsRef.take_front(numDims),
                                         operandsRef.drop_front(numDims));
      if (!affResult)
        return failure();
      auto pred = isEquality ? CmpIPredicate::eq : CmpIPredicate::sge;
      Value cmpVal =
          rewriter.create<CmpIOp>(loc, pred, affResult, zeroConstant);
      cond =
          cond ? rewriter.create<AndOp>(loc, cond, cmpVal).getResult() : cmpVal;
    }
    cond = cond ? cond
                : rewriter.create<ConstantIntOp>(loc, /*value=*/1, /*width=*/1);

    bool hasElseRegion = !op.elseRegion().empty();
    auto ifOp = rewriter.create<scf::IfOp>(loc, cond, hasElseRegion);
    rewriter.inlineRegionBefore(op.thenRegion(), &ifOp.thenRegion().back());
    rewriter.eraseBlock(&ifOp.thenRegion().back());
    if (hasElseRegion) {
      rewriter.inlineRegionBefore(op.elseRegion(), &ifOp.elseRegion().back());
      rewriter.eraseBlock(&ifOp.elseRegion().back());
    }

    // Ok, we're done!
    rewriter.eraseOp(op);
    return success();
  }
};

/// Convert an "affine.apply" operation into a sequence of arithmetic
/// operations using the StandardOps dialect.
class AffineApplyLowering : public OpRewritePattern<AffineApplyOp> {
public:
  using OpRewritePattern<AffineApplyOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineApplyOp op,
                                PatternRewriter &rewriter) const override {
    auto maybeExpandedMap =
        expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(),
                        llvm::to_vector<8>(op.getOperands()));
    if (!maybeExpandedMap)
      return failure();
    rewriter.replaceOp(op, *maybeExpandedMap);
    return success();
  }
};

/// Apply the affine map from an 'affine.load' operation to its operands, and
/// feed the results to a newly created 'std.load' operation (which replaces the
/// original 'affine.load').
class AffineLoadLowering : public OpRewritePattern<AffineLoadOp> {
public:
  using OpRewritePattern<AffineLoadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineLoadOp op,
                                PatternRewriter &rewriter) const override {
    // Expand affine map from 'affineLoadOp'.
    SmallVector<Value, 8> indices(op.getMapOperands());
    auto resultOperands =
        expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
    if (!resultOperands)
      return failure();

    // Build std.load memref[expandedMap.results].
    rewriter.replaceOpWithNewOp<LoadOp>(op, op.getMemRef(), *resultOperands);
    return success();
  }
};

/// Apply the affine map from an 'affine.prefetch' operation to its operands,
/// and feed the results to a newly created 'std.prefetch' operation (which
/// replaces the original 'affine.prefetch').
class AffinePrefetchLowering : public OpRewritePattern<AffinePrefetchOp> {
public:
  using OpRewritePattern<AffinePrefetchOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffinePrefetchOp op,
                                PatternRewriter &rewriter) const override {
    // Expand affine map from 'affinePrefetchOp'.
    SmallVector<Value, 8> indices(op.getMapOperands());
    auto resultOperands =
        expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
    if (!resultOperands)
      return failure();

    // Build std.prefetch memref[expandedMap.results].
    rewriter.replaceOpWithNewOp<PrefetchOp>(op, op.memref(), *resultOperands,
                                            op.isWrite(), op.localityHint(),
                                            op.isDataCache());
    return success();
  }
};

/// Apply the affine map from an 'affine.store' operation to its operands, and
/// feed the results to a newly created 'std.store' operation (which replaces
/// the original 'affine.store').
class AffineStoreLowering : public OpRewritePattern<AffineStoreOp> {
public:
  using OpRewritePattern<AffineStoreOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineStoreOp op,
                                PatternRewriter &rewriter) const override {
    // Expand affine map from 'affineStoreOp'.
    SmallVector<Value, 8> indices(op.getMapOperands());
    auto maybeExpandedMap =
        expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
    if (!maybeExpandedMap)
      return failure();

    // Build std.store valueToStore, memref[expandedMap.results].
    rewriter.replaceOpWithNewOp<StoreOp>(op, op.getValueToStore(),
                                         op.getMemRef(), *maybeExpandedMap);
    return success();
  }
};

/// Apply the affine maps from an 'affine.dma_start' operation to each of their
/// respective map operands, and feed the results to a newly created
/// 'std.dma_start' operation (which replaces the original 'affine.dma_start').
class AffineDmaStartLowering : public OpRewritePattern<AffineDmaStartOp> {
public:
  using OpRewritePattern<AffineDmaStartOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineDmaStartOp op,
                                PatternRewriter &rewriter) const override {
    SmallVector<Value, 8> operands(op.getOperands());
    auto operandsRef = llvm::makeArrayRef(operands);

    // Expand affine map for DMA source memref.
    auto maybeExpandedSrcMap = expandAffineMap(
        rewriter, op.getLoc(), op.getSrcMap(),
        operandsRef.drop_front(op.getSrcMemRefOperandIndex() + 1));
    if (!maybeExpandedSrcMap)
      return failure();
    // Expand affine map for DMA destination memref.
    auto maybeExpandedDstMap = expandAffineMap(
        rewriter, op.getLoc(), op.getDstMap(),
        operandsRef.drop_front(op.getDstMemRefOperandIndex() + 1));
    if (!maybeExpandedDstMap)
      return failure();
    // Expand affine map for DMA tag memref.
    auto maybeExpandedTagMap = expandAffineMap(
        rewriter, op.getLoc(), op.getTagMap(),
        operandsRef.drop_front(op.getTagMemRefOperandIndex() + 1));
    if (!maybeExpandedTagMap)
      return failure();

    // Build std.dma_start operation with affine map results.
    rewriter.replaceOpWithNewOp<DmaStartOp>(
        op, op.getSrcMemRef(), *maybeExpandedSrcMap, op.getDstMemRef(),
        *maybeExpandedDstMap, op.getNumElements(), op.getTagMemRef(),
        *maybeExpandedTagMap, op.getStride(), op.getNumElementsPerStride());
    return success();
  }
};

/// Apply the affine map from an 'affine.dma_wait' operation tag memref,
/// and feed the results to a newly created 'std.dma_wait' operation (which
/// replaces the original 'affine.dma_wait').
class AffineDmaWaitLowering : public OpRewritePattern<AffineDmaWaitOp> {
public:
  using OpRewritePattern<AffineDmaWaitOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineDmaWaitOp op,
                                PatternRewriter &rewriter) const override {
    // Expand affine map for DMA tag memref.
    SmallVector<Value, 8> indices(op.getTagIndices());
    auto maybeExpandedTagMap =
        expandAffineMap(rewriter, op.getLoc(), op.getTagMap(), indices);
    if (!maybeExpandedTagMap)
      return failure();

    // Build std.dma_wait operation with affine map results.
    rewriter.replaceOpWithNewOp<DmaWaitOp>(
        op, op.getTagMemRef(), *maybeExpandedTagMap, op.getNumElements());
    return success();
  }
};

/// Apply the affine map from an 'affine.vector_load' operation to its operands,
/// and feed the results to a newly created 'vector.transfer_read' operation
/// (which replaces the original 'affine.vector_load').
class AffineVectorLoadLowering : public OpRewritePattern<AffineVectorLoadOp> {
public:
  using OpRewritePattern<AffineVectorLoadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineVectorLoadOp op,
                                PatternRewriter &rewriter) const override {
    // Expand affine map from 'affineVectorLoadOp'.
    SmallVector<Value, 8> indices(op.getMapOperands());
    auto resultOperands =
        expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
    if (!resultOperands)
      return failure();

    // Build vector.transfer_read memref[expandedMap.results].
    rewriter.replaceOpWithNewOp<TransferReadOp>(
        op, op.getVectorType(), op.getMemRef(), *resultOperands);
    return success();
  }
};

/// Apply the affine map from an 'affine.vector_store' operation to its
/// operands, and feed the results to a newly created 'vector.transfer_write'
/// operation (which replaces the original 'affine.vector_store').
class AffineVectorStoreLowering : public OpRewritePattern<AffineVectorStoreOp> {
public:
  using OpRewritePattern<AffineVectorStoreOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(AffineVectorStoreOp op,
                                PatternRewriter &rewriter) const override {
    // Expand affine map from 'affineVectorStoreOp'.
    SmallVector<Value, 8> indices(op.getMapOperands());
    auto maybeExpandedMap =
        expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
    if (!maybeExpandedMap)
      return failure();

    rewriter.replaceOpWithNewOp<TransferWriteOp>(
        op, op.getValueToStore(), op.getMemRef(), *maybeExpandedMap);
    return success();
  }
};

} // end namespace

void mlir::populateAffineToStdConversionPatterns(
    OwningRewritePatternList &patterns, MLIRContext *ctx) {
  // clang-format off
  patterns.insert<
      AffineApplyLowering,
      AffineDmaStartLowering,
      AffineDmaWaitLowering,
      AffineLoadLowering,
      AffineMinLowering,
      AffineMaxLowering,
      AffineParallelLowering,
      AffinePrefetchLowering,
      AffineStoreLowering,
      AffineForLowering,
      AffineIfLowering,
      AffineYieldOpLowering>(ctx);
  // clang-format on
}

void mlir::populateAffineToVectorConversionPatterns(
    OwningRewritePatternList &patterns, MLIRContext *ctx) {
  // clang-format off
  patterns.insert<
      AffineVectorLoadLowering,
      AffineVectorStoreLowering>(ctx);
  // clang-format on
}

namespace {
class LowerAffinePass : public ConvertAffineToStandardBase<LowerAffinePass> {
  void runOnOperation() override {
    OwningRewritePatternList patterns;
    populateAffineToStdConversionPatterns(patterns, &getContext());
    populateAffineToVectorConversionPatterns(patterns, &getContext());
    ConversionTarget target(getContext());
    target
        .addLegalDialect<scf::SCFDialect, StandardOpsDialect, VectorDialect>();
    if (failed(applyPartialConversion(getOperation(), target, patterns)))
      signalPassFailure();
  }
};
} // namespace

/// Lowers If and For operations within a function into their lower level CFG
/// equivalent blocks.
std::unique_ptr<Pass> mlir::createLowerAffinePass() {
  return std::make_unique<LowerAffinePass>();
}