scudo_allocator.cpp 30.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
//===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// Scudo Hardened Allocator implementation.
/// It uses the sanitizer_common allocator as a base and aims at mitigating
/// heap corruption vulnerabilities. It provides a checksum-guarded chunk
/// header, a delayed free list, and additional sanity checks.
///
//===----------------------------------------------------------------------===//

#include "scudo_allocator.h"
#include "scudo_crc32.h"
#include "scudo_errors.h"
#include "scudo_flags.h"
#include "scudo_interface_internal.h"
#include "scudo_tsd.h"
#include "scudo_utils.h"

#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_quarantine.h"

#ifdef GWP_ASAN_HOOKS
# include "gwp_asan/guarded_pool_allocator.h"
# include "gwp_asan/optional/backtrace.h"
# include "gwp_asan/optional/options_parser.h"
#include "gwp_asan/optional/segv_handler.h"
#endif // GWP_ASAN_HOOKS

#include <errno.h>
#include <string.h>

namespace __scudo {

// Global static cookie, initialized at start-up.
static u32 Cookie;

// We default to software CRC32 if the alternatives are not supported, either
// at compilation or at runtime.
static atomic_uint8_t HashAlgorithm = { CRC32Software };

inline u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
  // If the hardware CRC32 feature is defined here, it was enabled everywhere,
  // as opposed to only for scudo_crc32.cpp. This means that other hardware
  // specific instructions were likely emitted at other places, and as a
  // result there is no reason to not use it here.
#if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
  Crc = CRC32_INTRINSIC(Crc, Value);
  for (uptr i = 0; i < ArraySize; i++)
    Crc = CRC32_INTRINSIC(Crc, Array[i]);
  return Crc;
#else
  if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
    Crc = computeHardwareCRC32(Crc, Value);
    for (uptr i = 0; i < ArraySize; i++)
      Crc = computeHardwareCRC32(Crc, Array[i]);
    return Crc;
  }
  Crc = computeSoftwareCRC32(Crc, Value);
  for (uptr i = 0; i < ArraySize; i++)
    Crc = computeSoftwareCRC32(Crc, Array[i]);
  return Crc;
#endif  // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
}

static BackendT &getBackend();

namespace Chunk {
  static inline AtomicPackedHeader *getAtomicHeader(void *Ptr) {
    return reinterpret_cast<AtomicPackedHeader *>(reinterpret_cast<uptr>(Ptr) -
        getHeaderSize());
  }
  static inline
  const AtomicPackedHeader *getConstAtomicHeader(const void *Ptr) {
    return reinterpret_cast<const AtomicPackedHeader *>(
        reinterpret_cast<uptr>(Ptr) - getHeaderSize());
  }

  static inline bool isAligned(const void *Ptr) {
    return IsAligned(reinterpret_cast<uptr>(Ptr), MinAlignment);
  }

  // We can't use the offset member of the chunk itself, as we would double
  // fetch it without any warranty that it wouldn't have been tampered. To
  // prevent this, we work with a local copy of the header.
  static inline void *getBackendPtr(const void *Ptr, UnpackedHeader *Header) {
    return reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
        getHeaderSize() - (Header->Offset << MinAlignmentLog));
  }

  // Returns the usable size for a chunk, meaning the amount of bytes from the
  // beginning of the user data to the end of the backend allocated chunk.
  static inline uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) {
    const uptr ClassId = Header->ClassId;
    if (ClassId)
      return PrimaryT::ClassIdToSize(ClassId) - getHeaderSize() -
          (Header->Offset << MinAlignmentLog);
    return SecondaryT::GetActuallyAllocatedSize(
        getBackendPtr(Ptr, Header)) - getHeaderSize();
  }

  // Returns the size the user requested when allocating the chunk.
  static inline uptr getSize(const void *Ptr, UnpackedHeader *Header) {
    const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
    if (Header->ClassId)
      return SizeOrUnusedBytes;
    return SecondaryT::GetActuallyAllocatedSize(
        getBackendPtr(Ptr, Header)) - getHeaderSize() - SizeOrUnusedBytes;
  }

  // Compute the checksum of the chunk pointer and its header.
  static inline u16 computeChecksum(const void *Ptr, UnpackedHeader *Header) {
    UnpackedHeader ZeroChecksumHeader = *Header;
    ZeroChecksumHeader.Checksum = 0;
    uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
    memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
    const u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(Ptr),
                                 HeaderHolder, ARRAY_SIZE(HeaderHolder));
    return static_cast<u16>(Crc);
  }

  // Checks the validity of a chunk by verifying its checksum. It doesn't
  // incur termination in the event of an invalid chunk.
  static inline bool isValid(const void *Ptr) {
    PackedHeader NewPackedHeader =
        atomic_load_relaxed(getConstAtomicHeader(Ptr));
    UnpackedHeader NewUnpackedHeader =
        bit_cast<UnpackedHeader>(NewPackedHeader);
    return (NewUnpackedHeader.Checksum ==
            computeChecksum(Ptr, &NewUnpackedHeader));
  }

  // Ensure that ChunkAvailable is 0, so that if a 0 checksum is ever valid
  // for a fully nulled out header, its state will be available anyway.
  COMPILER_CHECK(ChunkAvailable == 0);

  // Loads and unpacks the header, verifying the checksum in the process.
  static inline
  void loadHeader(const void *Ptr, UnpackedHeader *NewUnpackedHeader) {
    PackedHeader NewPackedHeader =
        atomic_load_relaxed(getConstAtomicHeader(Ptr));
    *NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
    if (UNLIKELY(NewUnpackedHeader->Checksum !=
        computeChecksum(Ptr, NewUnpackedHeader)))
      dieWithMessage("corrupted chunk header at address %p\n", Ptr);
  }

  // Packs and stores the header, computing the checksum in the process.
  static inline void storeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader) {
    NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
    PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
    atomic_store_relaxed(getAtomicHeader(Ptr), NewPackedHeader);
  }

  // Packs and stores the header, computing the checksum in the process. We
  // compare the current header with the expected provided one to ensure that
  // we are not being raced by a corruption occurring in another thread.
  static inline void compareExchangeHeader(void *Ptr,
                                           UnpackedHeader *NewUnpackedHeader,
                                           UnpackedHeader *OldUnpackedHeader) {
    NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
    PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
    PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
    if (UNLIKELY(!atomic_compare_exchange_strong(
            getAtomicHeader(Ptr), &OldPackedHeader, NewPackedHeader,
            memory_order_relaxed)))
      dieWithMessage("race on chunk header at address %p\n", Ptr);
  }
}  // namespace Chunk

struct QuarantineCallback {
  explicit QuarantineCallback(AllocatorCacheT *Cache)
    : Cache_(Cache) {}

  // Chunk recycling function, returns a quarantined chunk to the backend,
  // first making sure it hasn't been tampered with.
  void Recycle(void *Ptr) {
    UnpackedHeader Header;
    Chunk::loadHeader(Ptr, &Header);
    if (UNLIKELY(Header.State != ChunkQuarantine))
      dieWithMessage("invalid chunk state when recycling address %p\n", Ptr);
    UnpackedHeader NewHeader = Header;
    NewHeader.State = ChunkAvailable;
    Chunk::compareExchangeHeader(Ptr, &NewHeader, &Header);
    void *BackendPtr = Chunk::getBackendPtr(Ptr, &Header);
    if (Header.ClassId)
      getBackend().deallocatePrimary(Cache_, BackendPtr, Header.ClassId);
    else
      getBackend().deallocateSecondary(BackendPtr);
  }

  // Internal quarantine allocation and deallocation functions. We first check
  // that the batches are indeed serviced by the Primary.
  // TODO(kostyak): figure out the best way to protect the batches.
  void *Allocate(uptr Size) {
    const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
    return getBackend().allocatePrimary(Cache_, BatchClassId);
  }

  void Deallocate(void *Ptr) {
    const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
    getBackend().deallocatePrimary(Cache_, Ptr, BatchClassId);
  }

  AllocatorCacheT *Cache_;
  COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
};

typedef Quarantine<QuarantineCallback, void> QuarantineT;
typedef QuarantineT::Cache QuarantineCacheT;
COMPILER_CHECK(sizeof(QuarantineCacheT) <=
               sizeof(ScudoTSD::QuarantineCachePlaceHolder));

QuarantineCacheT *getQuarantineCache(ScudoTSD *TSD) {
  return reinterpret_cast<QuarantineCacheT *>(TSD->QuarantineCachePlaceHolder);
}

#ifdef GWP_ASAN_HOOKS
static gwp_asan::GuardedPoolAllocator GuardedAlloc;
#endif // GWP_ASAN_HOOKS

struct Allocator {
  static const uptr MaxAllowedMallocSize =
      FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);

  BackendT Backend;
  QuarantineT Quarantine;

  u32 QuarantineChunksUpToSize;

  bool DeallocationTypeMismatch;
  bool ZeroContents;
  bool DeleteSizeMismatch;

  bool CheckRssLimit;
  uptr HardRssLimitMb;
  uptr SoftRssLimitMb;
  atomic_uint8_t RssLimitExceeded;
  atomic_uint64_t RssLastCheckedAtNS;

  explicit Allocator(LinkerInitialized)
    : Quarantine(LINKER_INITIALIZED) {}

  NOINLINE void performSanityChecks();

  void init() {
    SanitizerToolName = "Scudo";
    PrimaryAllocatorName = "ScudoPrimary";
    SecondaryAllocatorName = "ScudoSecondary";

    initFlags();

    performSanityChecks();

    // Check if hardware CRC32 is supported in the binary and by the platform,
    // if so, opt for the CRC32 hardware version of the checksum.
    if (&computeHardwareCRC32 && hasHardwareCRC32())
      atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);

    SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
    Backend.init(common_flags()->allocator_release_to_os_interval_ms);
    HardRssLimitMb = common_flags()->hard_rss_limit_mb;
    SoftRssLimitMb = common_flags()->soft_rss_limit_mb;
    Quarantine.Init(
        static_cast<uptr>(getFlags()->QuarantineSizeKb) << 10,
        static_cast<uptr>(getFlags()->ThreadLocalQuarantineSizeKb) << 10);
    QuarantineChunksUpToSize = (Quarantine.GetCacheSize() == 0) ? 0 :
        getFlags()->QuarantineChunksUpToSize;
    DeallocationTypeMismatch = getFlags()->DeallocationTypeMismatch;
    DeleteSizeMismatch = getFlags()->DeleteSizeMismatch;
    ZeroContents = getFlags()->ZeroContents;

    if (UNLIKELY(!GetRandom(reinterpret_cast<void *>(&Cookie), sizeof(Cookie),
                            /*blocking=*/false))) {
      Cookie = static_cast<u32>((NanoTime() >> 12) ^
                                (reinterpret_cast<uptr>(this) >> 4));
    }

    CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
    if (CheckRssLimit)
      atomic_store_relaxed(&RssLastCheckedAtNS, MonotonicNanoTime());
  }

  // Helper function that checks for a valid Scudo chunk. nullptr isn't.
  bool isValidPointer(const void *Ptr) {
    initThreadMaybe();
    if (UNLIKELY(!Ptr))
      return false;
    if (!Chunk::isAligned(Ptr))
      return false;
    return Chunk::isValid(Ptr);
  }

  NOINLINE bool isRssLimitExceeded();

  // Allocates a chunk.
  void *allocate(uptr Size, uptr Alignment, AllocType Type,
                 bool ForceZeroContents = false) {
    initThreadMaybe();

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.shouldSample())) {
      if (void *Ptr = GuardedAlloc.allocate(Size))
        return Ptr;
    }
#endif // GWP_ASAN_HOOKS

    if (UNLIKELY(Alignment > MaxAlignment)) {
      if (AllocatorMayReturnNull())
        return nullptr;
      reportAllocationAlignmentTooBig(Alignment, MaxAlignment);
    }
    if (UNLIKELY(Alignment < MinAlignment))
      Alignment = MinAlignment;

    const uptr NeededSize = RoundUpTo(Size ? Size : 1, MinAlignment) +
        Chunk::getHeaderSize();
    const uptr AlignedSize = (Alignment > MinAlignment) ?
        NeededSize + (Alignment - Chunk::getHeaderSize()) : NeededSize;
    if (UNLIKELY(Size >= MaxAllowedMallocSize) ||
        UNLIKELY(AlignedSize >= MaxAllowedMallocSize)) {
      if (AllocatorMayReturnNull())
        return nullptr;
      reportAllocationSizeTooBig(Size, AlignedSize, MaxAllowedMallocSize);
    }

    if (CheckRssLimit && UNLIKELY(isRssLimitExceeded())) {
      if (AllocatorMayReturnNull())
        return nullptr;
      reportRssLimitExceeded();
    }

    // Primary and Secondary backed allocations have a different treatment. We
    // deal with alignment requirements of Primary serviced allocations here,
    // but the Secondary will take care of its own alignment needs.
    void *BackendPtr;
    uptr BackendSize;
    u8 ClassId;
    if (PrimaryT::CanAllocate(AlignedSize, MinAlignment)) {
      BackendSize = AlignedSize;
      ClassId = SizeClassMap::ClassID(BackendSize);
      bool UnlockRequired;
      ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
      BackendPtr = Backend.allocatePrimary(&TSD->Cache, ClassId);
      if (UnlockRequired)
        TSD->unlock();
    } else {
      BackendSize = NeededSize;
      ClassId = 0;
      BackendPtr = Backend.allocateSecondary(BackendSize, Alignment);
    }
    if (UNLIKELY(!BackendPtr)) {
      SetAllocatorOutOfMemory();
      if (AllocatorMayReturnNull())
        return nullptr;
      reportOutOfMemory(Size);
    }

    // If requested, we will zero out the entire contents of the returned chunk.
    if ((ForceZeroContents || ZeroContents) && ClassId)
      memset(BackendPtr, 0, PrimaryT::ClassIdToSize(ClassId));

    UnpackedHeader Header = {};
    uptr UserPtr = reinterpret_cast<uptr>(BackendPtr) + Chunk::getHeaderSize();
    if (UNLIKELY(!IsAligned(UserPtr, Alignment))) {
      // Since the Secondary takes care of alignment, a non-aligned pointer
      // means it is from the Primary. It is also the only case where the offset
      // field of the header would be non-zero.
      DCHECK(ClassId);
      const uptr AlignedUserPtr = RoundUpTo(UserPtr, Alignment);
      Header.Offset = (AlignedUserPtr - UserPtr) >> MinAlignmentLog;
      UserPtr = AlignedUserPtr;
    }
    DCHECK_LE(UserPtr + Size, reinterpret_cast<uptr>(BackendPtr) + BackendSize);
    Header.State = ChunkAllocated;
    Header.AllocType = Type;
    if (ClassId) {
      Header.ClassId = ClassId;
      Header.SizeOrUnusedBytes = Size;
    } else {
      // The secondary fits the allocations to a page, so the amount of unused
      // bytes is the difference between the end of the user allocation and the
      // next page boundary.
      const uptr PageSize = GetPageSizeCached();
      const uptr TrailingBytes = (UserPtr + Size) & (PageSize - 1);
      if (TrailingBytes)
        Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
    }
    void *Ptr = reinterpret_cast<void *>(UserPtr);
    Chunk::storeHeader(Ptr, &Header);
    if (SCUDO_CAN_USE_HOOKS && &__sanitizer_malloc_hook)
      __sanitizer_malloc_hook(Ptr, Size);
    return Ptr;
  }

  // Place a chunk in the quarantine or directly deallocate it in the event of
  // a zero-sized quarantine, or if the size of the chunk is greater than the
  // quarantine chunk size threshold.
  void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header,
                                   uptr Size) {
    const bool BypassQuarantine = !Size || (Size > QuarantineChunksUpToSize);
    if (BypassQuarantine) {
      UnpackedHeader NewHeader = *Header;
      NewHeader.State = ChunkAvailable;
      Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
      void *BackendPtr = Chunk::getBackendPtr(Ptr, Header);
      if (Header->ClassId) {
        bool UnlockRequired;
        ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
        getBackend().deallocatePrimary(&TSD->Cache, BackendPtr,
                                       Header->ClassId);
        if (UnlockRequired)
          TSD->unlock();
      } else {
        getBackend().deallocateSecondary(BackendPtr);
      }
    } else {
      // If a small memory amount was allocated with a larger alignment, we want
      // to take that into account. Otherwise the Quarantine would be filled
      // with tiny chunks, taking a lot of VA memory. This is an approximation
      // of the usable size, that allows us to not call
      // GetActuallyAllocatedSize.
      const uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
      UnpackedHeader NewHeader = *Header;
      NewHeader.State = ChunkQuarantine;
      Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
      bool UnlockRequired;
      ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
      Quarantine.Put(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache),
                     Ptr, EstimatedSize);
      if (UnlockRequired)
        TSD->unlock();
    }
  }

  // Deallocates a Chunk, which means either adding it to the quarantine or
  // directly returning it to the backend if criteria are met.
  void deallocate(void *Ptr, uptr DeleteSize, uptr DeleteAlignment,
                  AllocType Type) {
    // For a deallocation, we only ensure minimal initialization, meaning thread
    // local data will be left uninitialized for now (when using ELF TLS). The
    // fallback cache will be used instead. This is a workaround for a situation
    // where the only heap operation performed in a thread would be a free past
    // the TLS destructors, ending up in initialized thread specific data never
    // being destroyed properly. Any other heap operation will do a full init.
    initThreadMaybe(/*MinimalInit=*/true);
    if (SCUDO_CAN_USE_HOOKS && &__sanitizer_free_hook)
      __sanitizer_free_hook(Ptr);
    if (UNLIKELY(!Ptr))
      return;

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
      GuardedAlloc.deallocate(Ptr);
      return;
    }
#endif // GWP_ASAN_HOOKS

    if (UNLIKELY(!Chunk::isAligned(Ptr)))
      dieWithMessage("misaligned pointer when deallocating address %p\n", Ptr);
    UnpackedHeader Header;
    Chunk::loadHeader(Ptr, &Header);
    if (UNLIKELY(Header.State != ChunkAllocated))
      dieWithMessage("invalid chunk state when deallocating address %p\n", Ptr);
    if (DeallocationTypeMismatch) {
      // The deallocation type has to match the allocation one.
      if (Header.AllocType != Type) {
        // With the exception of memalign'd Chunks, that can be still be free'd.
        if (Header.AllocType != FromMemalign || Type != FromMalloc)
          dieWithMessage("allocation type mismatch when deallocating address "
                         "%p\n", Ptr);
      }
    }
    const uptr Size = Chunk::getSize(Ptr, &Header);
    if (DeleteSizeMismatch) {
      if (DeleteSize && DeleteSize != Size)
        dieWithMessage("invalid sized delete when deallocating address %p\n",
                       Ptr);
    }
    (void)DeleteAlignment;  // TODO(kostyak): verify that the alignment matches.
    quarantineOrDeallocateChunk(Ptr, &Header, Size);
  }

  // Reallocates a chunk. We can save on a new allocation if the new requested
  // size still fits in the chunk.
  void *reallocate(void *OldPtr, uptr NewSize) {
    initThreadMaybe();

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
      size_t OldSize = GuardedAlloc.getSize(OldPtr);
      void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
      if (NewPtr)
        memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
      GuardedAlloc.deallocate(OldPtr);
      return NewPtr;
    }
#endif // GWP_ASAN_HOOKS

    if (UNLIKELY(!Chunk::isAligned(OldPtr)))
      dieWithMessage("misaligned address when reallocating address %p\n",
                     OldPtr);
    UnpackedHeader OldHeader;
    Chunk::loadHeader(OldPtr, &OldHeader);
    if (UNLIKELY(OldHeader.State != ChunkAllocated))
      dieWithMessage("invalid chunk state when reallocating address %p\n",
                     OldPtr);
    if (DeallocationTypeMismatch) {
      if (UNLIKELY(OldHeader.AllocType != FromMalloc))
        dieWithMessage("allocation type mismatch when reallocating address "
                       "%p\n", OldPtr);
    }
    const uptr UsableSize = Chunk::getUsableSize(OldPtr, &OldHeader);
    // The new size still fits in the current chunk, and the size difference
    // is reasonable.
    if (NewSize <= UsableSize &&
        (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
      UnpackedHeader NewHeader = OldHeader;
      NewHeader.SizeOrUnusedBytes =
          OldHeader.ClassId ? NewSize : UsableSize - NewSize;
      Chunk::compareExchangeHeader(OldPtr, &NewHeader, &OldHeader);
      return OldPtr;
    }
    // Otherwise, we have to allocate a new chunk and copy the contents of the
    // old one.
    void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
    if (NewPtr) {
      const uptr OldSize = OldHeader.ClassId ? OldHeader.SizeOrUnusedBytes :
          UsableSize - OldHeader.SizeOrUnusedBytes;
      memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
      quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
    }
    return NewPtr;
  }

  // Helper function that returns the actual usable size of a chunk.
  uptr getUsableSize(const void *Ptr) {
    initThreadMaybe();
    if (UNLIKELY(!Ptr))
      return 0;

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
      return GuardedAlloc.getSize(Ptr);
#endif // GWP_ASAN_HOOKS

    UnpackedHeader Header;
    Chunk::loadHeader(Ptr, &Header);
    // Getting the usable size of a chunk only makes sense if it's allocated.
    if (UNLIKELY(Header.State != ChunkAllocated))
      dieWithMessage("invalid chunk state when sizing address %p\n", Ptr);
    return Chunk::getUsableSize(Ptr, &Header);
  }

  void *calloc(uptr NMemB, uptr Size) {
    initThreadMaybe();
    if (UNLIKELY(CheckForCallocOverflow(NMemB, Size))) {
      if (AllocatorMayReturnNull())
        return nullptr;
      reportCallocOverflow(NMemB, Size);
    }
    return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
  }

  void commitBack(ScudoTSD *TSD) {
    Quarantine.Drain(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache));
    Backend.destroyCache(&TSD->Cache);
  }

  uptr getStats(AllocatorStat StatType) {
    initThreadMaybe();
    uptr stats[AllocatorStatCount];
    Backend.getStats(stats);
    return stats[StatType];
  }

  bool canReturnNull() {
    initThreadMaybe();
    return AllocatorMayReturnNull();
  }

  void setRssLimit(uptr LimitMb, bool HardLimit) {
    if (HardLimit)
      HardRssLimitMb = LimitMb;
    else
      SoftRssLimitMb = LimitMb;
    CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
  }

  void printStats() {
    initThreadMaybe();
    Backend.printStats();
  }
};

NOINLINE void Allocator::performSanityChecks() {
  // Verify that the header offset field can hold the maximum offset. In the
  // case of the Secondary allocator, it takes care of alignment and the
  // offset will always be 0. In the case of the Primary, the worst case
  // scenario happens in the last size class, when the backend allocation
  // would already be aligned on the requested alignment, which would happen
  // to be the maximum alignment that would fit in that size class. As a
  // result, the maximum offset will be at most the maximum alignment for the
  // last size class minus the header size, in multiples of MinAlignment.
  UnpackedHeader Header = {};
  const uptr MaxPrimaryAlignment =
      1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
  const uptr MaxOffset =
      (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
  Header.Offset = MaxOffset;
  if (Header.Offset != MaxOffset)
    dieWithMessage("maximum possible offset doesn't fit in header\n");
  // Verify that we can fit the maximum size or amount of unused bytes in the
  // header. Given that the Secondary fits the allocation to a page, the worst
  // case scenario happens in the Primary. It will depend on the second to
  // last and last class sizes, as well as the dynamic base for the Primary.
  // The following is an over-approximation that works for our needs.
  const uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
  Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
  if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)
    dieWithMessage("maximum possible unused bytes doesn't fit in header\n");

  const uptr LargestClassId = SizeClassMap::kLargestClassID;
  Header.ClassId = LargestClassId;
  if (Header.ClassId != LargestClassId)
    dieWithMessage("largest class ID doesn't fit in header\n");
}

// Opportunistic RSS limit check. This will update the RSS limit status, if
// it can, every 250ms, otherwise it will just return the current one.
NOINLINE bool Allocator::isRssLimitExceeded() {
  u64 LastCheck = atomic_load_relaxed(&RssLastCheckedAtNS);
  const u64 CurrentCheck = MonotonicNanoTime();
  if (LIKELY(CurrentCheck < LastCheck + (250ULL * 1000000ULL)))
    return atomic_load_relaxed(&RssLimitExceeded);
  if (!atomic_compare_exchange_weak(&RssLastCheckedAtNS, &LastCheck,
                                    CurrentCheck, memory_order_relaxed))
    return atomic_load_relaxed(&RssLimitExceeded);
  // TODO(kostyak): We currently use sanitizer_common's GetRSS which reads the
  //                RSS from /proc/self/statm by default. We might want to
  //                call getrusage directly, even if it's less accurate.
  const uptr CurrentRssMb = GetRSS() >> 20;
  if (HardRssLimitMb && UNLIKELY(HardRssLimitMb < CurrentRssMb))
    dieWithMessage("hard RSS limit exhausted (%zdMb vs %zdMb)\n",
                   HardRssLimitMb, CurrentRssMb);
  if (SoftRssLimitMb) {
    if (atomic_load_relaxed(&RssLimitExceeded)) {
      if (CurrentRssMb <= SoftRssLimitMb)
        atomic_store_relaxed(&RssLimitExceeded, false);
    } else {
      if (CurrentRssMb > SoftRssLimitMb) {
        atomic_store_relaxed(&RssLimitExceeded, true);
        Printf("Scudo INFO: soft RSS limit exhausted (%zdMb vs %zdMb)\n",
               SoftRssLimitMb, CurrentRssMb);
      }
    }
  }
  return atomic_load_relaxed(&RssLimitExceeded);
}

static Allocator Instance(LINKER_INITIALIZED);

static BackendT &getBackend() {
  return Instance.Backend;
}

void initScudo() {
  Instance.init();
#ifdef GWP_ASAN_HOOKS
  gwp_asan::options::initOptions();
  gwp_asan::options::Options &Opts = gwp_asan::options::getOptions();
  Opts.Backtrace = gwp_asan::options::getBacktraceFunction();
  GuardedAlloc.init(Opts);

  if (Opts.InstallSignalHandlers)
    gwp_asan::crash_handler::installSignalHandlers(
        &GuardedAlloc, __sanitizer::Printf,
        gwp_asan::options::getPrintBacktraceFunction(),
        gwp_asan::crash_handler::getSegvBacktraceFunction());
#endif // GWP_ASAN_HOOKS
}

void ScudoTSD::init() {
  getBackend().initCache(&Cache);
  memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
}

void ScudoTSD::commitBack() {
  Instance.commitBack(this);
}

void *scudoAllocate(uptr Size, uptr Alignment, AllocType Type) {
  if (Alignment && UNLIKELY(!IsPowerOfTwo(Alignment))) {
    errno = EINVAL;
    if (Instance.canReturnNull())
      return nullptr;
    reportAllocationAlignmentNotPowerOfTwo(Alignment);
  }
  return SetErrnoOnNull(Instance.allocate(Size, Alignment, Type));
}

void scudoDeallocate(void *Ptr, uptr Size, uptr Alignment, AllocType Type) {
  Instance.deallocate(Ptr, Size, Alignment, Type);
}

void *scudoRealloc(void *Ptr, uptr Size) {
  if (!Ptr)
    return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
  if (Size == 0) {
    Instance.deallocate(Ptr, 0, 0, FromMalloc);
    return nullptr;
  }
  return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
}

void *scudoCalloc(uptr NMemB, uptr Size) {
  return SetErrnoOnNull(Instance.calloc(NMemB, Size));
}

void *scudoValloc(uptr Size) {
  return SetErrnoOnNull(
      Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
}

void *scudoPvalloc(uptr Size) {
  const uptr PageSize = GetPageSizeCached();
  if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
    errno = ENOMEM;
    if (Instance.canReturnNull())
      return nullptr;
    reportPvallocOverflow(Size);
  }
  // pvalloc(0) should allocate one page.
  Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
  return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
}

int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
  if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
    if (!Instance.canReturnNull())
      reportInvalidPosixMemalignAlignment(Alignment);
    return EINVAL;
  }
  void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
  if (UNLIKELY(!Ptr))
    return ENOMEM;
  *MemPtr = Ptr;
  return 0;
}

void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
  if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
    errno = EINVAL;
    if (Instance.canReturnNull())
      return nullptr;
    reportInvalidAlignedAllocAlignment(Size, Alignment);
  }
  return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
}

uptr scudoMallocUsableSize(void *Ptr) {
  return Instance.getUsableSize(Ptr);
}

}  // namespace __scudo

using namespace __scudo;

// MallocExtension helper functions

uptr __sanitizer_get_current_allocated_bytes() {
  return Instance.getStats(AllocatorStatAllocated);
}

uptr __sanitizer_get_heap_size() {
  return Instance.getStats(AllocatorStatMapped);
}

uptr __sanitizer_get_free_bytes() {
  return 1;
}

uptr __sanitizer_get_unmapped_bytes() {
  return 1;
}

uptr __sanitizer_get_estimated_allocated_size(uptr Size) {
  return Size;
}

int __sanitizer_get_ownership(const void *Ptr) {
  return Instance.isValidPointer(Ptr);
}

uptr __sanitizer_get_allocated_size(const void *Ptr) {
  return Instance.getUsableSize(Ptr);
}

#if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
                             void *Ptr, uptr Size) {
  (void)Ptr;
  (void)Size;
}

SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *Ptr) {
  (void)Ptr;
}
#endif

// Interface functions

void __scudo_set_rss_limit(uptr LimitMb, s32 HardLimit) {
  if (!SCUDO_CAN_USE_PUBLIC_INTERFACE)
    return;
  Instance.setRssLimit(LimitMb, !!HardLimit);
}

void __scudo_print_stats() {
  Instance.printStats();
}