main.cc
27.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/*
-- (c) Copyright 2018 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
*/
#include <algorithm>
#include <vector>
#include <atomic>
#include <queue>
#include <string>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <chrono>
#include <mutex>
#include <zconf.h>
#include <thread>
#include <sys/stat.h>
#include <dirent.h>
#include <dnndk/dnndk.h>
#include "utils.h"
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#define Port_host 12300
#define Port_dcam 12400
#define host_addr "192.168.2.1"
#define BUF_SIZE 1024
using namespace std;
using namespace cv;
using namespace std::chrono;
#define INPUT_NODE "layer0_conv"
chrono::system_clock::time_point start_time;
int Mutexnum = 0, Mutexdget = 0, Yolonum = 0;
int index_yolo = 0, index_co = 1; // file index
VideoCapture cam(cv::CAP_V4L);
int Sockfd_host, Sockfd_dcam, newSock_host, newSock_dcam; // socket
typedef pair<int, Mat> imagePair;
class paircomp {
public:
bool operator()(const imagePair& n1, const imagePair& n2) const {
if (n1.first == n2.first) {
return (n1.first > n2.first);
}
return n1.first > n2.first;
}
};
// 3d yolo result struct
typedef struct {
char number[10];
float x;
float y;
float w;
float l;
float yaw;
float conf;
float cls_conf;
float cls_pred;
} dinfo;
// socket function
void send_result() {
static int ind = 0;
int now_size = 0, read_size;
char file_name[256], msg_buf[BUF_SIZE], sync = '\0';
FILE* image;
unsigned int fsize;
sprintf(file_name, "img_%03d_result.jpg", ind); // save file name
image = fopen(file_name, "w");
// recv file size
if ((fsize = read(Sockfd_host, (char*)&msg_buf, sizeof(msg_buf) - 1)) < 0) {
perror("read");
exit(1);
}
msg_buf[fsize] = '\0';
fsize = atoi(msg_buf);
printf("%d\n", fsize);
// recv image file
while (1) {
memset(msg_buf, 0, BUF_SIZE);
read_size = read(Sockfd_host, (char*)&msg_buf, BUF_SIZE); // get image from socket
fwrite(msg_buf, 1, read_size, image); // write image
now_size += read_size;
if (now_size == fsize)
break;
else if (now_size > fsize) {
printf("file error\n");
exit(1);
}
write(Sockfd_host, (char*)&sync, sizeof(sync)); // for sync
}
printf("Receive done : %s\n", file_name);
if (write(Sockfd_host, (char*)&file_name, sizeof(file_name)) < 0) { // 종료 전송
perror("write");
exit(1);
}
fclose(image);
ind++;
if (ind == 999) ind = 0; // max 1000 file
}
// input frames queue
queue<pair<int, Mat>> queueInput;
/**
* @brief Feed input frame into DPU for process
*
* @param task - pointer to DPU Task for YOLO-v3 network
* @param frame - pointer to input frame
* @param mean - mean value for YOLO-v3 network
*
* @return none
*/
void setInputImageForYOLO(DPUTask* task, const Mat& frame, float* mean) {
Mat img_copy;
int height = dpuGetInputTensorHeight(task, INPUT_NODE);
int width = dpuGetInputTensorWidth(task, INPUT_NODE);
int size = dpuGetInputTensorSize(task, INPUT_NODE);
int8_t* data = dpuGetInputTensorAddress(task, INPUT_NODE);
image img_new = load_image_cv(frame);
image img_yolo = letterbox_image(img_new, width, height);
vector<float> bb(size);
for (int b = 0; b < height; ++b) {
for (int c = 0; c < width; ++c) {
for (int a = 0; a < 3; ++a) {
bb[b * width * 3 + c * 3 + a] = img_yolo.data[a * height * width + b * width + c];
}
}
}
float scale = dpuGetInputTensorScale(task, INPUT_NODE);
for (int i = 0; i < size; ++i) {
data[i] = int(bb.data()[i] * scale);
if (data[i] < 0) data[i] = 127;
}
free_image(img_new);
free_image(img_yolo);
}
void co_detect(DPUTask* task, Mat& frame1, int sWidth, int sHeight, VideoCapture& cam) { // in postProcess function
/*output nodes of YOLO-v3 */
const vector<string> outputs_node = { "layer81_conv", "layer93_conv", "layer105_conv" };
vector<vector<float>> boxes;
for (size_t i = 0; i < outputs_node.size(); i++) {
string output_node = outputs_node[i];
int channel = dpuGetOutputTensorChannel(task, output_node.c_str());
int width = dpuGetOutputTensorWidth(task, output_node.c_str());
int height = dpuGetOutputTensorHeight(task, output_node.c_str());
int sizeOut = dpuGetOutputTensorSize(task, output_node.c_str());
int8_t* dpuOut = dpuGetOutputTensorAddress(task, output_node.c_str());
float scale = dpuGetOutputTensorScale(task, output_node.c_str());
vector<float> result(sizeOut);
boxes.reserve(sizeOut);
/* Store every output node results */
get_output(dpuOut, sizeOut, scale, channel, height, width, result);
/* Store the object detection frames as coordinate information */
detect(boxes, result, channel, height, width, i, sHeight, sWidth);
}
/* Restore the correct coordinate frame of the original image */
correct_region_boxes(boxes, boxes.size(), frame1.cols, frame1.rows, sWidth, sHeight);
/* Apply the computation for NMS */
cout << "boxes size: " << boxes.size() << endl;
vector<vector<float>> res = applyNMS(boxes, classificationCnt, NMS_THRESHOLD);
float h = frame1.rows;
float w = frame1.cols;
Mat frame2;
for (int i = 0; i < 3; i++)
cam.grab();
cam.read(frame2);
// for socket variable
char matchinfo[1024] = "", match_inframe_info[1024], match_n[10];
int hostAddrlen, countnum;
struct sockaddr_in hostAddr;
hostAddrlen = sizeof(hostAddr);
char tmpinfo[1024], count[5];
char* receive_info = new char[1024];
dinfo depthinfo;
// read 3dyolo result from udp socket
while (Mutexdget == 1)
usleep(10);
Mutexdget = 1; // lock
// get result count in image
if (recvfrom(Sockfd_dcam, &count, sizeof(count), 0, (struct sockaddr*)&hostAddr, (socklen_t*)&hostAddrlen) < 0) {
perror("recvfrom");
exit(1);
} // receive depth camera info
countnum = atoi(count);
for (int i = 0; i < countnum; i++) {
if (recvfrom(Sockfd_dcam, &depthinfo, sizeof(depthinfo), 0, (struct sockaddr*)&hostAddr, (socklen_t*)&hostAddrlen) < 0) {
perror("recvfrom");
exit(1);
} // receive depth camera info
sprintf(receive_info, "%s %f %f %f %f %f %f %f %f \n", depthinfo.number, depthinfo.x, depthinfo.y, depthinfo.w, depthinfo.l, depthinfo.yaw, depthinfo.conf, depthinfo.cls_conf, depthinfo.cls_pred);
strcat(tmpinfo, receive_info);
}
Mutexdget = 0; // unlock
for (size_t i = 0; i < res.size(); ++i) {
float xmin = (res[i][0] - res[i][2] / 2.0) * w + 1.0;
float ymin = (res[i][1] - res[i][3] / 2.0) * h + 1.0;
float xmax = (res[i][0] + res[i][2] / 2.0) * w + 1.0;
float ymax = (res[i][1] + res[i][3] / 2.0) * h + 1.0;
//cout<<xmin<<" "<<ymin<<" "<<xmax<<" "<<ymax<<endl;
Mat compare_part = frame1(Range((2 * ymin + 1 * ymax) / 3, (1 * ymin + 2 * ymax) / 3), Range((2 * xmin + 1 * xmax) / 3, (1 * xmin + 2 * xmax) / 3));
unsigned nextx, nexty;
double min = 100000000, error;
for (int x = (2 * xmin + 1 * xmax) / 3; x < (1 * xmin + 2 * xmax) / 3; x += 2) {
if (((xmax - xmin) > h / 2) || ((ymax - ymin) > w / 2))
break; // too large object reject
for (int y = (2 * ymin + 1 * ymax) / 3; y < (1 * ymin + 2 * ymax) / 3; y += 2) {
error = 0;
for (int k = -(int)(xmax - xmin) / 6; k < (int)(xmax - xmin) / 6; k++) {
for (int u = -(int)(ymax - ymin) / 6; u < (int)(ymax - ymin) / 6; u++) {
uchar b1 = compare_part.ptr<uchar>(u + (int)(ymax - ymin) / 6)[(k + (int)(xmax - xmin) / 6) * 3 + 0];
uchar g1 = compare_part.ptr<uchar>(u + (int)(ymax - ymin) / 6)[(k + (int)(xmax - xmin) / 6) * 3 + 1];
uchar r1 = compare_part.ptr<uchar>(u + (int)(ymax - ymin) / 6)[(k + (int)(xmax - xmin) / 6) * 3 + 2];
int yu = y + u;
int xk = x + k;
if (y + u < 0 || x + k < 0 || y + u > w || x + k > h) { // for padding
if (y + u < 0) yu = 0;
if (x + k < 0) xk = 0;
if (y + u > w) yu = w;
if (x + k > h) xk = h;
}
uchar b2 = frame2.ptr<uchar>(yu)[(xk) * 3 + 0];
uchar g2 = frame2.ptr<uchar>(yu)[(xk) * 3 + 1];
uchar r2 = frame2.ptr<uchar>(yu)[(xk) * 3 + 2];
error += (pow(b1 - b2, 2) + pow(g1 - g2, 2) + pow(r1 - r2, 2));
}
}
if (min > error) {
min = error;
nextx = x;
nexty = y;
}
}
}
// create result string
sprintf(match_n, "MC%d-%d", index_co, i);
sprintf(match_inframe_info, "%s %f %f %f %f\n", match_n, nextx - (xmax - xmin) / 2, nexty - (ymax - ymin) / 2, nextx + (xmax - xmin) / 2, nexty + (ymax - ymin) / 2);
strcat(matchinfo, match_inframe_info);
rectangle(frame2, Rect(Point((2 * xmin + 1 * xmax) / 3, (2 * ymin + 1 * ymax) / 3), Point((1 * xmin + 2 * xmax) / 3, (1 * ymin + 2 * ymax) / 3)), (0, 255, 0), 1);
rectangle(frame2, Rect(Point(nextx - (xmax - xmin) / 2, nexty - (ymax - ymin) / 2), Point(nextx + (xmax - xmin) / 2, nexty + (ymax - ymin) / 2)), (0, 0, 255), 1);
}
// write tcp socket. to host
strcat(matchinfo, tmpinfo);
printf("%s\n", matchinfo);
if (write(newSock_host, (char*)&matchinfo, sizeof(matchinfo)) < 0) {
perror("write");
exit(1);
}
string file_ind = "result_" + to_string(index_co) + ".jpg";
imwrite(file_ind, frame2);
cout << "co_detect1 : " << file_ind << endl;
index_co += 2;
imshow("Xilinx DPU", frame2);
//if(waitKey(30) == 27) break;
Yolonum++; // mutex update*/
}
void co_detect2(DPUTask* task, Mat& frame1, int sWidth, int sHeight, VideoCapture& cam) { // in postProcess function
/*output nodes of YOLO-v3 */
const vector<string> outputs_node = { "layer81_conv", "layer93_conv", "layer105_conv" };
vector<vector<float>> boxes;
for (size_t i = 0; i < outputs_node.size(); i++) {
string output_node = outputs_node[i];
int channel = dpuGetOutputTensorChannel(task, output_node.c_str());
int width = dpuGetOutputTensorWidth(task, output_node.c_str());
int height = dpuGetOutputTensorHeight(task, output_node.c_str());
int sizeOut = dpuGetOutputTensorSize(task, output_node.c_str());
int8_t* dpuOut = dpuGetOutputTensorAddress(task, output_node.c_str());
float scale = dpuGetOutputTensorScale(task, output_node.c_str());
vector<float> result(sizeOut);
boxes.reserve(sizeOut);
/* Store every output node results */
get_output(dpuOut, sizeOut, scale, channel, height, width, result);
/* Store the object detection frames as coordinate information */
detect(boxes, result, channel, height, width, i, sHeight, sWidth);
}
/* Restore the correct coordinate frame of the original image */
correct_region_boxes(boxes, boxes.size(), frame1.cols, frame1.rows, sWidth, sHeight);
/* Apply the computation for NMS */
cout << "boxes size: " << boxes.size() << endl;
vector<vector<float>> res = applyNMS(boxes, classificationCnt, NMS_THRESHOLD);
float h = frame1.rows;
float w = frame1.cols;
Mat frame2;
for (int i = 0; i < 3; i++)
cam.grab();
cam.read(frame2);
char matchinfo[1024] = "", match_inframe_info[1024], match_n[10];
int hostAddrlen, countnum;
struct sockaddr_in hostAddr;
hostAddrlen = sizeof(hostAddr);
char tmpinfo[1024], count[5];
char* receive_info = new char[1024];
dinfo depthinfo;
while (Mutexdget == 1)
usleep(10);
Mutexdget = 1; // lock
if (recvfrom(Sockfd_dcam, &count, sizeof(count), 0, (struct sockaddr*)&hostAddr, (socklen_t*)&hostAddrlen) < 0) {
perror("recvfrom");
exit(1);
} // receive depth camera info
countnum = atoi(count);
for (int i = 0; i < countnum; i++) {
if (recvfrom(Sockfd_dcam, &depthinfo, sizeof(depthinfo), 0, (struct sockaddr*)&hostAddr, (socklen_t*)&hostAddrlen) < 0) {
perror("recvfrom");
exit(1);
} // receive depth camera info
sprintf(receive_info, "%s %f %f %f %f %f %f %f %f \n", depthinfo.number, depthinfo.x, depthinfo.y, depthinfo.w, depthinfo.l, depthinfo.yaw, depthinfo.conf, depthinfo.cls_conf, depthinfo.cls_pred);
strcat(tmpinfo, receive_info);
}
Mutexdget = 0; // unlock
for (size_t i = 0; i < res.size(); ++i) {
float xmin = (res[i][0] - res[i][2] / 2.0) * w + 1.0;
float ymin = (res[i][1] - res[i][3] / 2.0) * h + 1.0;
float xmax = (res[i][0] + res[i][2] / 2.0) * w + 1.0;
float ymax = (res[i][1] + res[i][3] / 2.0) * h + 1.0;
//cout<<xmin<<" "<<ymin<<" "<<xmax<<" "<<ymax<<endl;
Mat compare_part = frame1(Range((2 * ymin + 1 * ymax) / 3, (1 * ymin + 2 * ymax) / 3), Range((2 * xmin + 1 * xmax) / 3, (1 * xmin + 2 * xmax) / 3));
unsigned nextx, nexty;
double min = 100000000, error;
for (int x = (2 * xmin + 1 * xmax) / 3; x < (1 * xmin + 2 * xmax) / 3; x += 2) { // for padding
if (((xmax - xmin) > h / 2) || ((ymax - ymin) > w / 2))
break; // too large object reject
for (int y = (2 * ymin + 1 * ymax) / 3; y < (1 * ymin + 2 * ymax) / 3; y += 2) {
error = 0;
for (int k = -(int)(xmax - xmin) / 6; k < (int)(xmax - xmin) / 6; k++) {
for (int u = -(int)(ymax - ymin) / 6; u < (int)(ymax - ymin) / 6; u++) {
uchar b1 = compare_part.ptr<uchar>(u + (int)(ymax - ymin) / 6)[(k + (int)(xmax - xmin) / 6) * 3 + 0];
uchar g1 = compare_part.ptr<uchar>(u + (int)(ymax - ymin) / 6)[(k + (int)(xmax - xmin) / 6) * 3 + 1];
uchar r1 = compare_part.ptr<uchar>(u + (int)(ymax - ymin) / 6)[(k + (int)(xmax - xmin) / 6) * 3 + 2];
int yu = y + u;
int xk = x + k;
if (y + u < 0 || x + k < 0 || y + u > w || x + k > h) {
if (y + u < 0) yu = 0;
if (x + k < 0) xk = 0;
if (y + u > w) yu = w;
if (x + k > h) xk = h;
}
uchar b2 = frame2.ptr<uchar>(yu)[(xk) * 3 + 0];
uchar g2 = frame2.ptr<uchar>(yu)[(xk) * 3 + 1];
uchar r2 = frame2.ptr<uchar>(yu)[(xk) * 3 + 2];
error += (pow(b1 - b2, 2) + pow(g1 - g2, 2) + pow(r1 - r2, 2));
}
}
if (min > error) {
min = error;
nextx = x;
nexty = y;
}
}
}
sprintf(match_n, "MC%d-%d", index_co, i);
sprintf(match_inframe_info, "%s %f %f %f %f\n", match_n, nextx - (xmax - xmin) / 2, nexty - (ymax - ymin) / 2, nextx + (xmax - xmin) / 2, nexty + (ymax - ymin) / 2);
strcat(matchinfo, match_inframe_info);
rectangle(frame2, Rect(Point((2 * xmin + 1 * xmax) / 3, (2 * ymin + 1 * ymax) / 3), Point((1 * xmin + 2 * xmax) / 3, (1 * ymin + 2 * ymax) / 3)), (0, 0, 255), 1);
rectangle(frame2, Rect(Point(nextx - (xmax - xmin) / 2, nexty - (ymax - ymin) / 2), Point(nextx + (xmax - xmin) / 2, nexty + (ymax - ymin) / 2)), (0, 0, 255), 1);
}
strcat(matchinfo, tmpinfo);
printf("%s\n", matchinfo);
if (write(newSock_host, (char*)&matchinfo, sizeof(matchinfo)) < 0) {
perror("write");
exit(1);
}
string file_ind = "result_" + to_string(index_co) + ".jpg";
imwrite(file_ind, frame2);
cout << "co_detect2 : " << file_ind << endl;
index_co += 2;
imshow("Xilinx DPU", frame2);
//if(waitKey(30) == 27) break;
delete receive_info;
Yolonum++; // mutex update*/
}
/**
* @brief Post process after the runing of DPU for YOLO-v3 network
*
* @param task - pointer to DPU task for running YOLO-v3
* @param frame
* @param sWidth
* @param sHeight
*
* @return none
*/
void postProcess(DPUTask* task, Mat& frame, int sWidth, int sHeight) {
/*output nodes of YOLO-v3 */
const vector<string> outputs_node = { "layer81_conv", "layer93_conv", "layer105_conv" };
vector<vector<float>> boxes;
for (size_t i = 0; i < outputs_node.size(); i++) {
string output_node = outputs_node[i];
int channel = dpuGetOutputTensorChannel(task, output_node.c_str());
int width = dpuGetOutputTensorWidth(task, output_node.c_str());
int height = dpuGetOutputTensorHeight(task, output_node.c_str());
int sizeOut = dpuGetOutputTensorSize(task, output_node.c_str());
int8_t* dpuOut = dpuGetOutputTensorAddress(task, output_node.c_str());
float scale = dpuGetOutputTensorScale(task, output_node.c_str());
vector<float> result(sizeOut);
boxes.reserve(sizeOut);
/* Store every output node results */
get_output(dpuOut, sizeOut, scale, channel, height, width, result);
/* Store the object detection frames as coordinate information */
detect(boxes, result, channel, height, width, i, sHeight, sWidth);
}
/* Restore the correct coordinate frame of the original image */
correct_region_boxes(boxes, boxes.size(), frame.cols, frame.rows, sWidth, sHeight);
/* Apply the computation for NMS */
cout << "boxes size: " << boxes.size() << endl;
vector<vector<float>> res = applyNMS(boxes, classificationCnt, NMS_THRESHOLD);
float h = frame.rows;
float w = frame.cols;
char yoloinfo[1024] = "YOLO-\n", yolo_inframe_info[1024], yolo_num[10];
for (size_t i = 0; i < res.size(); ++i) {
float xmin = (res[i][0] - res[i][2] / 2.0) * w + 1.0;
float ymin = (res[i][1] - res[i][3] / 2.0) * h + 1.0;
float xmax = (res[i][0] + res[i][2] / 2.0) * w + 1.0;
float ymax = (res[i][1] + res[i][3] / 2.0) * h + 1.0;
//cout<<res[i][res[i][4] + 6]<<" ";
//cout<<xmin<<" "<<ymin<<" "<<xmax<<" "<<ymax<<endl;
// write yolo result
sprintf(yolo_num, "YC%d-%d", index_yolo, i);
sprintf(yolo_inframe_info, "%s %f %f %f %f\n", yolo_num, xmin, ymin, xmax, ymax); // yolo info
strcat(yoloinfo, yolo_inframe_info);
if (res[i][res[i][4] + 6] > CONF) {
int type = res[i][4];
if (type == 0) {
rectangle(frame, cvPoint(xmin, ymin), cvPoint(xmax, ymax), Scalar(0, 0, 255), 1, 1, 0);
}
else if (type == 1) {
rectangle(frame, cvPoint(xmin, ymin), cvPoint(xmax, ymax), Scalar(255, 0, 0), 1, 1, 0);
}
else {
rectangle(frame, cvPoint(xmin, ymin), cvPoint(xmax, ymax), Scalar(0, 255, 255), 1, 1, 0);
}
}
}
int hostAddrlen, countnum;
struct sockaddr_in hostAddr;
hostAddrlen = sizeof(hostAddr);
char receive_info[1024], count[5];
dinfo depthinfo;
while (Mutexdget == 1)
usleep(10);
Mutexdget = 1; // lock
if (recvfrom(Sockfd_dcam, &count, sizeof(count), 0, (struct sockaddr*)&hostAddr, (socklen_t*)&hostAddrlen) < 0) {
perror("recvfrom");
exit(1);
} // receive depth camera info
countnum = atoi(count);
for (int i = 0; i < countnum; i++) {
if (recvfrom(Sockfd_dcam, &depthinfo, sizeof(depthinfo), 0, (struct sockaddr*)&hostAddr, (socklen_t*)&hostAddrlen) < 0) {
perror("recvfrom");
exit(1);
} // receive depth camera info
sprintf(receive_info, "%s %f %f %f %f %f %f %f %f \n", depthinfo.number, depthinfo.x, depthinfo.y, depthinfo.w, depthinfo.l, depthinfo.yaw, depthinfo.conf, depthinfo.cls_conf, depthinfo.cls_pred);
strcat(yoloinfo, receive_info);
}
Mutexdget = 0; // unlock
printf("%s\n", yoloinfo);
if (write(newSock_host, (char*)&yoloinfo, sizeof(yoloinfo)) < 0) {
perror("write");
exit(1);
}
}
/**
* @brief Thread entry for running YOLO-v3 network on DPU for acceleration
*
* @param task - pointer to DPU task for running YOLO-v3
* @param img
*
* @return none
*/
thread runYOLO(DPUTask* task, Mat& img, VideoCapture& cam) {
/* mean values for YOLO-v3 */
float mean[3] = { 0.0f, 0.0f, 0.0f };
int height = dpuGetInputTensorHeight(task, INPUT_NODE);
int width = dpuGetInputTensorWidth(task, INPUT_NODE);
/* feed input frame into DPU Task with mean value */
setInputImageForYOLO(task, img, mean);
/* invoke the running of DPU for YOLO-v3 */
dpuRunTask(task);
thread t(co_detect, task, ref(img), width, height, ref(cam));
postProcess(task, img, width, height);
Yolonum++;
return t;
}
thread runYOLO2(DPUTask* task, Mat& img, VideoCapture& cam) {
/* mean values for YOLO-v3 */
float mean[3] = { 0.0f, 0.0f, 0.0f };
int height = dpuGetInputTensorHeight(task, INPUT_NODE);
int width = dpuGetInputTensorWidth(task, INPUT_NODE);
/* feed input frame into DPU Task with mean value */
setInputImageForYOLO(task, img, mean);
/* invoke the running of DPU for YOLO-v3 */
dpuRunTask(task);
thread t(co_detect2, task, ref(img), width, height, ref(cam));
postProcess(task, img, width, height);
Yolonum++;
return t;
}
/**
* @brief Entry for running YOLO-v3 neural network for ADAS object detection
*
*/
void Close(int signo)
{
close(Sockfd_host);
close(Sockfd_dcam);
printf("\ndone\n");
exit(0);
}
int main(const int argc, const char** argv) {
int len;
struct sockaddr_in Addr, dcamAddr, hostAddr;
signal(SIGINT, Close);
if (argc != 1) {
cout << "Usage : ./yolo " << endl;
return -1;
}
// get current path
/*char cwd[256];
if(getcwd(cwd, 256) == NULL) {
perror("getcwd");
exit(1);
}*/
/* socket for host - tcp */
if ((Sockfd_host = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
perror("socket");
exit(1);
}
cout << "~~";
bzero((char*)&Addr, sizeof(Addr));
Addr.sin_family = PF_INET;
Addr.sin_addr.s_addr = htonl(INADDR_ANY);
Addr.sin_port = htons(Port_host);
if (bind(Sockfd_host, (struct sockaddr*)&Addr, sizeof(Addr)) < 0) {
perror("bind");
exit(1);
}
listen(Sockfd_host, 5);
len = sizeof(hostAddr);
newSock_host = accept(Sockfd_host, (struct sockaddr*)&hostAddr, (socklen_t*)&len);
if (newSock_host < 0) {
perror("accept");
exit(1);
}
/*socket for depth camera - udp*/
if ((Sockfd_dcam = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror("socket");
exit(1);
}
bzero((char*)&dcamAddr, sizeof(dcamAddr));
dcamAddr.sin_family = PF_INET;
dcamAddr.sin_addr.s_addr = htonl(INADDR_ANY);
dcamAddr.sin_port = htons(Port_dcam);
if (bind(Sockfd_dcam, (struct sockaddr*)&dcamAddr, sizeof(dcamAddr)) < 0) {
perror("bind");
exit(1);
}
/*
if(write(Sockfd, (char*)&cwd, sizeof(cwd)) < 0) { // cwd 전송
perror("write");
exit(1);
}*/
if (!cam.isOpened()) {
cout << "Fail to open webcam" << endl;
exit(-1);
}
string file_ind;
// init Yolo2 before while
dpuOpen();
DPUKernel* kernel = dpuLoadKernel("yolo");
DPUTask* task = dpuCreateTask(kernel, 0);
Mat img;
thread t1, t2;
cam.read(img);
t2 = runYOLO2(task, img, cam);
file_ind = "result_" + to_string(index_yolo) + ".jpg";
imwrite(file_ind, img);
cout << "Yolo2 : " << file_ind << endl;
index_yolo += 2;
while (1) {
file_ind = "result_" + to_string(index_yolo) + ".jpg";
// run yolo1
for (int i = 0; i < 5; i++) // buffer claer
cam.grab();
cam.read(img);
t1 = runYOLO(task, img, cam);
if (Mutexnum + 1 < Yolonum) // create mutex
t2.join();
imwrite(file_ind, img);
cout << "Yolo1 : " << file_ind << endl;
index_yolo += 2;
imshow("Xilinx DPU", img);
if (waitKey(30) == 27) break;
// run yolo2
for (int i = 0; i < 5; i++) // buffer claer
cam.grab();
cam.read(img);
t2 = runYOLO2(task, img, cam);
if (Mutexnum + 1 < Yolonum) // create mutex
t1.join();
file_ind = "result_" + to_string(index_yolo) + ".jpg";
imwrite(file_ind, img);
cout << "Yolo2 : " << file_ind << endl;
index_yolo += 2;
imshow("Xilinx DPU", img);
if (waitKey(30) == 27) break;
}
dpuDestroyTask(task);
/* Destroy DPU Kernels & free resources */
dpuDestroyKernel(kernel);
/* Dettach from DPU driver & free resources */
dpuClose();
return 0;
}