Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2020-2-capstone-design2
/
2015102747
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
이재빈
2020-10-08 08:06:25 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
ad221f9b1d8a2b7e9732289a0f757c91a738ae70
ad221f9b
1 parent
9b677087
Core Cloud 전처리 프레임 수신 및 예측모듈 작성
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
118 additions
and
0 deletions
Modules/core_cloud.py
Modules/labeling_module.py
Modules/core_cloud.py
0 → 100644
View file @
ad221f9
import
socket
import
cv2
import
numpy
as
np
from
multiprocessing
import
Queue
from
labeling_module
import
LabelingModule
#socket에서 수신한 버퍼를 반환함.
def
recvall
(
sock
,
count
):
# 바이트 문자열
buf
=
b
''
while
count
:
newbuf
=
sock
.
recv
(
count
)
if
not
newbuf
:
return
None
buf
+=
newbuf
count
-=
len
(
newbuf
)
return
buf
if
__name__
==
"__main__"
:
lm
.
predict_process
.
start
()
HOST
=
'127.0.0.1'
PORT
=
9999
#TCP 사용
s
=
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
)
print
(
'Socket created'
)
#서버의 아이피와 포트번호 지정
s
.
bind
((
HOST
,
PORT
))
print
(
'Socket bind complete'
)
# 클라이언트의 접속을 기다린다. (클라이언트 연결을 10개까지 받는다)
s
.
listen
(
10
)
print
(
'Socket now listening'
)
#연결, conn에는 소켓 객체, addr은 소켓에 바인드 된 주소
conn
,
addr
=
s
.
accept
()
while
True
:
# client에서 받은 stringData의 크기 (==(str(len(stringData))).encode().ljust(16))
length
=
recvall
(
conn
,
16
)
stringData
=
recvall
(
conn
,
int
(
length
))
data
=
np
.
fromstring
(
stringData
,
dtype
=
'uint8'
)
#data를 디코딩한다.
cropped
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
cropped
=
cv2
.
resize
(
cropped
,
(
48
,
48
))
#Crop Image Resize
lm
.
new_tensor
(
cropped
)
# Predict result
lm
.
predict_process
.
join
()
# thread join
\ No newline at end of file
Modules/labeling_module.py
0 → 100644
View file @
ad221f9
# plaidml
# import plaidml.keras
# plaidml.keras.install_backend()
# packages
from
keras.models
import
load_model
from
keras.preprocessing
import
image
# import queue
import
numpy
as
np
from
queue
import
Full
,
Empty
from
multiprocessing
import
Process
,
Queue
class
LabelingModule
:
def
__init__
(
self
):
# self.model1 = load_model('svhn_model.h5')
self
.
model2
=
load_model
(
'svhn_model.h5'
)
self
.
image_queue
=
Queue
(
maxsize
=
3000
)
self
.
label_queue
=
Queue
(
maxsize
=
10
)
self
.
signal_queue
=
Queue
()
self
.
predict_process
=
Process
(
target
=
_predict
,
\
args
=
(
self
.
model2
,
self
.
image_queue
,
self
.
label_queue
,
self
.
signal_queue
))
def
run
(
self
):
self
.
predict_process
.
start
()
def
close
(
self
):
self
.
image_queue
.
close
()
self
.
label_queue
.
close
()
def
new_tensor
(
self
,
tensor
):
try
:
self
.
image_queue
.
put
(
tensor
)
except
Full
:
print
(
'[LabelingModule] image_queue is full'
)
def
new_image
(
self
,
filename
):
tensor
=
self
.
_img_to_tensor
(
filename
)
try
:
self
.
image_queue
.
put
(
tensor
)
except
Full
:
print
(
'[LabelingModule] image_queue is full'
)
def
_img_to_tensor
(
self
,
filename
):
img
=
image
.
load_img
(
filename
,
target_size
=
(
48
,
48
))
img_tensor
=
image
.
img_to_array
(
img
)
img_tensor
=
np
.
squeeze
(
img_tensor
)
img_tensor
/=
255.
img_tensor
=
img_tensor
-
img_tensor
.
mean
()
return
img_tensor
def
_predict
(
model
,
input_queue
,
output_queue
,
signal_queue
):
print
(
'predict process started.'
)
while
True
:
try
:
signal
=
signal_queue
.
get_nowait
()
if
signal
==
'stop'
:
break
except
Empty
:
pass
tensor
=
input_queue
.
get
(
timeout
=-
1
)
dat
=
model
.
predict
(
np
.
array
([
tensor
]))
o1
=
np
.
argmax
(
dat
[
0
])
o2
=
np
.
argmax
(
dat
[
1
])
o3
=
np
.
argmax
(
dat
[
2
])
o4
=
np
.
argmax
(
dat
[
3
])
o5
=
np
.
argmax
(
dat
[
4
])
o6
=
np
.
argmax
(
dat
[
5
])
output
=
[
o1
,
o2
,
o3
,
o4
,
o5
,
o6
]
print
(
'[LabelingModule] predict result :'
,
output
)
Please
register
or
login
to post a comment