app.py
8.12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from flask import Flask, render_template, Response, request, jsonify
import os
import io
import json
import cv2
import numpy as np
import time
from datetime import datetime
import sys
import tensorflow as tf
import base64
import pymysql
import configparser
from PIL import Image
config = configparser.ConfigParser()
config.read('./config.cnf')
api = configparser.ConfigParser()
api.read('./API_form.cnf')
model_dir = config['verification_server']['model']
image_size = int(config['verification_server']['image_size'])
threshold = float(config['verification_server']['threshold'])
app = Flask(__name__)
sess = tf.compat.v1.Session()
def resize(image):
resized = cv2.resize(image, (image_size, image_size), interpolation=cv2.INTER_CUBIC)
return resized
def prewhiten(x):
mean = np.mean(x)
std = np.std(x)
std_adj = np.maximum(std, 1.0/np.sqrt(x.size))
y = np.multiply(np.subtract(x, mean), 1/std_adj)
return y
def get_distance(arr1, arr2):
# Euclidian distance
distance = np.linalg.norm(arr1 - arr2)
return distance
@app.route('/')
def index():
"""Video streaming page"""
return render_template('index.html')
@app.route('/register', methods=['GET', 'POST'])
def register():
if request.method == 'GET':
return render_template('register.html')
attendance_db = pymysql.connect(read_default_file="./DB.cnf")
cursor = attendance_db.cursor(pymysql.cursors.DictCursor)
send = {'form':'json'}
student_id = request.form['student_id']
student_name = request.form['student_name']
msg='[{id}] register face'.format(id=student_id)
print(msg)
sql = "SELECT student_id FROM student WHERE student_id = %s;"
cursor.execute(sql, (student_id))
if cursor.rowcount == 0:
sql = "INSERT INTO student(student_id, student_name) VALUES (%s, %s)"
cursor.execute(sql, (student_id, student_name))
sql = "INSERT INTO lecture_students(lecture_id, student_id) VALUES (%s, %s)"
# temp: student in lecture 0
cursor.execute(sql, ('0', student_id))
msg='[{id}] is registered'.format(id=student_id)
print(msg)
# image to input tensor
file = request.files['file']
image_bytes = file.read()
image_np = np.fromstring(image_bytes, dtype=np.uint8)
image_np = cv2.imdecode(image_np, cv2.IMREAD_UNCHANGED)
cv2.imwrite('./test.jpg', image_np)
image_np = resize(image_np)
image_np = prewhiten(image_np)
cv2.imwrite('./test2.jpg', image_np)
image_np = image_np.reshape(-1, image_size, image_size, 3)
# get embedding
feed_dict = {input_placeholder:image_np, phase_train_placeholder:False }
embedding = sess.run(embeddings_placeholder, feed_dict=feed_dict)
# embedding to blob
embedding = embedding.tobytes()
embedding_date = datetime.now().strftime('%Y-%m-%d')
sql = "insert into student_embedding(student_id, embedding_date, embedding) values (%s, %s, _binary %s)"
cursor.execute(sql, (student_id, embedding_date, embedding))
attendance_db.commit()
send = jsonify({'status': 'success', 'student_id': student_id})
cursor.close()
attendance_db.close()
return send
@app.route('/verify', methods=['POST'])
def verify():
attendance_db = pymysql.connect(read_default_file="./DB.cnf")
cursor = attendance_db.cursor(pymysql.cursors.DictCursor)
send = {'form':'json'}
image = base64.b64decode(request.form['image'])
image_np = np.frombuffer(image, dtype=np.uint8)
image_np = cv2.imdecode(image_np, cv2.IMREAD_UNCHANGED)
image_np = resize(image_np)
image_np = prewhiten(image_np)
image_np = image_np.reshape(-1, image_size, image_size, 3)
# get embedding
feed_dict = {input_placeholder:image_np, phase_train_placeholder:False }
embedding = sess.run(embeddings_placeholder, feed_dict=feed_dict)
# compare received embedding to database embedding
verified_id = None
sql = "SELECT student_id, embedding FROM student_embedding;"
cursor.execute(sql)
result = cursor.fetchall()
for row_data in result:
db_embedding = np.frombuffer(row_data['embedding'], dtype=np.float32)
db_embedding = db_embedding.reshape((1,512))
distance = get_distance(embedding, db_embedding)
print(distance)
if (distance < threshold):
verified_id = row_data['student_id']
new_embedding = db_embedding * 0.8 + embedding * 0.2
new_embedding = new_embedding.tobytes()
sql = "UPDATE student_embedding SET embedding=_binary %s WHERE student_id = %s"
cursor.execute(sql, (new_embedding, verified_id))
attendance_db.commit()
break
if verified_id != None:
sql = "SELECT DATE(attendance_time) FROM student_attendance WHERE (lecture_id=%s) AND (student_id=%s) AND (DATE(attendance_time) = CURDATE());"
cursor.execute(sql, ('0', verified_id))
if cursor.rowcount == 0:
sql = "INSERT INTO student_attendance(lecture_id, student_id, status) VALUES (%s, %s, %s)"
# TODO: attend / late 처리
cursor.execute(sql, ('0', verified_id, 'attend'))
attendance_db.commit()
sql = "SELECT student_name FROM student WHERE student_id = %s"
cursor.execute(sql, (verified_id))
row_data = cursor.fetchone()
verified_name = row_data['student_name']
# log 작성
msg='[{id}] verification success'.format(id=verified_id)
print(msg)
send = jsonify({'status': 'attend', 'student_id': verified_id, 'student_name': verified_name})
else:
msg='[{id}] verification failed: already verified'.format(id=verified_id)
print(msg)
send = jsonify({'status': 'already', 'student_id': verified_id})
else:
# 인증 실패
msg='[0000000000] verification failed'
print(msg)
send = jsonify({'status': 'fail'})
cursor.close()
attendance_db.close()
return send
def load_model(model, input_map=None):
# Check if the model is a model directory (containing a metagraph and a checkpoint file)
# or if it is a protobuf file with a frozen graph
model_exp = os.path.expanduser(model)
if (os.path.isfile(model_exp)):
print('Model filename: %s' % model_exp)
with gfile.FastGFile(model_exp,'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, input_map=input_map, name='')
else:
print('Model directory: %s' % model_exp)
meta_file, ckpt_file = get_model_filenames(model_exp)
print('Metagraph file: %s' % meta_file)
print('Checkpoint file: %s' % ckpt_file)
saver = tf.compat.v1.train.import_meta_graph(os.path.join(model_exp, meta_file), input_map=input_map)
saver.restore(sess, os.path.join(model_exp, ckpt_file))
def get_model_filenames(model_dir):
files = os.listdir(model_dir)
meta_files = [s for s in files if s.endswith('.meta')]
if len(meta_files)==0:
raise ValueError('No meta file found in the model directory (%s)' % model_dir)
elif len(meta_files)>1:
raise ValueError('There should not be more than one meta file in the model directory (%s)' % model_dir)
meta_file = meta_files[0]
ckpt = tf.train.get_checkpoint_state(model_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_file = os.path.basename(ckpt.model_checkpoint_path)
return meta_file, ckpt_file
meta_files = [s for s in files if '.ckpt' in s]
max_step = -1
for f in files:
step_str = re.match(r'(^model-[\w\- ]+.ckpt-(\d+))', f)
if step_str is not None and len(step_str.groups())>=2:
step = int(step_str.groups()[1])
if step > max_step:
max_step = step
ckpt_file = step_str.groups()[0]
return meta_file, ckpt_file
print('load tensorflow model')
load_model(model_dir)
input_placeholder = tf.compat.v1.get_default_graph().get_tensor_by_name("input:0")
embeddings_placeholder = tf.compat.v1.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.compat.v1.get_default_graph().get_tensor_by_name("phase_train:0")