GvrArmModel.cs
23.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
//-----------------------------------------------------------------------
// <copyright file="GvrArmModel.cs" company="Google Inc.">
// Copyright 2016 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// </copyright>
//-----------------------------------------------------------------------
using System.Collections;
using UnityEngine;
/// <summary>
/// Standard implementation for a mathematical model to make the virtual controller approximate the
/// physical location of the Daydream controller.
/// </summary>
[HelpURL("https://developers.google.com/vr/reference/unity/class/GvrArmModel")]
public class GvrArmModel : GvrBaseArmModel, IGvrControllerInputDeviceReceiver
{
/// @cond
/// <summary>The default elbow bend ratio.</summary>
public const float DEFAULT_ELBOW_BEND_RATIO = 0.6f;
// Default values for tuning variables:
/// @endcond
/// @cond
/// <summary>The default elbow rest position.</summary>
public static readonly Vector3 DEFAULT_ELBOW_REST_POSITION = new Vector3(0.195f, -0.5f, 0.005f);
/// @endcond
/// @cond
/// <summary>The default wrist rest position.</summary>
public static readonly Vector3 DEFAULT_WRIST_REST_POSITION = new Vector3(0.0f, 0.0f, 0.25f);
/// @endcond
/// @cond
/// <summary>The default controller rest position.</summary>
public static readonly Vector3 DEFAULT_CONTROLLER_REST_POSITION =
new Vector3(0.0f, 0.0f, 0.05f);
/// @endcond
/// @cond
/// <summary>The default arm extension offset.</summary>
public static readonly Vector3 DEFAULT_ARM_EXTENSION_OFFSET = new Vector3(-0.13f, 0.14f, 0.08f);
/// @endcond
/// <summary>
/// Position of the elbow joint relative to the head before the arm model is applied.
/// </summary>
public Vector3 elbowRestPosition = DEFAULT_ELBOW_REST_POSITION;
/// <summary>
/// Position of the wrist joint relative to the elbow before the arm model is applied.
/// </summary>
public Vector3 wristRestPosition = DEFAULT_WRIST_REST_POSITION;
/// <summary>
/// Position of the controller joint relative to the wrist before the arm model is applied.
/// </summary>
public Vector3 controllerRestPosition = DEFAULT_CONTROLLER_REST_POSITION;
/// <summary>
/// Offset applied to the elbow position as the controller is rotated upwards.
/// </summary>
public Vector3 armExtensionOffset = DEFAULT_ARM_EXTENSION_OFFSET;
/// <summary>Ratio of the controller's rotation to apply to the rotation of the elbow.</summary>
/// <remarks>The remaining rotation is applied to the wrist's rotation.</remarks>
[Range(0.0f, 1.0f)]
public float elbowBendRatio = DEFAULT_ELBOW_BEND_RATIO;
/// <summary>
/// Offset in front of the controller to determine what position to use when determing if the
/// controller should fade.
/// </summary>
/// <remarks>This is useful when objects are attached to the controller.</remarks>
[Range(0.0f, 0.4f)]
public float fadeControllerOffset = 0.0f;
/// <summary>
/// Controller distance from the front/back of the head after which the controller disappears
/// (meters).
/// </summary>
[Range(0.0f, 0.4f)]
public float fadeDistanceFromHeadForward = 0.25f;
/// <summary>
/// Controller distance from the left/right of the head after which the controller disappears
/// (meters).
/// </summary>
[Range(0.0f, 0.4f)]
public float fadeDistanceFromHeadSide = 0.15f;
/// <summary>Controller distance from face after which the tooltips appear (meters).</summary>
[Range(0.4f, 0.6f)]
public float tooltipMinDistanceFromFace = 0.45f;
/// <summary>
/// The maximum angle in degrees between the controller and head at which to show tooltips.
/// </summary>
/// <remarks>
/// When the angle between the controller and the head is larger than this value, the tooltips
/// disappear. If the value is 180, then the tooltips are always shown. If the value is 90,
/// the tooltips are only shown when they are facing the camera.
/// </remarks>
[Range(0, 180)]
public int tooltipMaxAngleFromCamera = 80;
/// <summary>
/// If `true`, the root of the pose is locked to the local position of the player's neck.
/// </summary>
public bool isLockedToNeck = false;
/// <summary>Increases elbow bending as the controller moves up (unitless).</summary>
protected const float EXTENSION_WEIGHT = 0.4f;
/// <summary>Amount of normalized alpha transparency to change per second.</summary>
protected const float DELTA_ALPHA = 4.0f;
/// <summary>
/// Minimum angle in degrees of the controller the for arm extension offset to start.
/// </summary>
/// <remarks>
/// This is the range of controller X-axis values in which the modeled arm rotates with the
/// controller, outside of which the modeled arm doesn't rotate with the controller, only the
/// controller rotates. Below this value, the wrist is primarily responsible for controller
/// rotation, not the arm.
/// </remarks>
protected const float MIN_EXTENSION_ANGLE = 7.0f;
/// <summary>
/// Maximum angle in degrees of the controller the for arm extension offset to end.
/// </summary>
/// <remarks>
/// This is the range of controller X-axis values in which the modeled arm rotates with the
/// controller, outside of which the modeled arm doesn't rotate with the controller, only the
/// controller rotates. Above this value, the wrist is primarily responsible for controller
/// rotation, not the arm.
/// </remarks>
protected const float MAX_EXTENSION_ANGLE = 60.0f;
/// <summary>Rest position for shoulder joint.</summary>
protected static readonly Vector3 SHOULDER_POSITION = new Vector3(0.17f, -0.2f, -0.03f);
/// <summary>Neck offset used to apply the inverse neck model when locked to the head.</summary>
protected static readonly Vector3 NECK_OFFSET = new Vector3(0.0f, 0.075f, 0.08f);
/// <summary>The neck position based on this arm model.</summary>
protected Vector3 neckPosition;
/// <summary>The elbow position based on this arm model.</summary>
protected Vector3 elbowPosition;
/// <summary>The elbow rotation based on this arm model.</summary>
protected Quaternion elbowRotation;
/// <summary>The wrist position based on this arm model.</summary>
protected Vector3 wristPosition;
/// <summary>The wrist rotation based on this arm model.</summary>
protected Quaternion wristRotation;
/// <summary>The controller position based on this arm model.</summary>
protected Vector3 controllerPosition;
/// <summary>The controller rotation based on this arm model.</summary>
protected Quaternion controllerRotation;
/// <summary>The preferred alpha.</summary>
protected float preferredAlpha;
/// <summary>The tooltip alpha value.</summary>
protected float tooltipAlphaValue;
/// <summary>Multiplier for handedness such that 1 = Right, 0 = Center, -1 = left.</summary>
protected Vector3 handedMultiplier;
/// <summary>Forward direction of user's torso.</summary>
protected Vector3 torsoDirection;
/// <summary>Orientation of the user's torso.</summary>
protected Quaternion torsoRotation;
/// <inheritdoc/>
public override Vector3 ControllerPositionFromHead
{
get { return controllerPosition; }
}
/// <inheritdoc/>
public override Quaternion ControllerRotationFromHead
{
get { return controllerRotation; }
}
/// <inheritdoc/>
public override float PreferredAlpha
{
get { return preferredAlpha; }
}
/// <inheritdoc/>
public override float TooltipAlphaValue
{
get { return tooltipAlphaValue; }
}
/// <summary>Gets the neck's position relative to the user's head.</summary>
/// <remarks>
/// If `isLockedToNeck` is `true`, this will be the input tracking position of the head node
/// modified by an inverse neck model to approximate the neck position. Otherwise, it is always
/// zero.
/// </remarks>
/// <value>The neck position.</value>
public Vector3 NeckPosition
{
get { return neckPosition; }
}
/// <summary>Gets the shoulder's position relative to the user's head.</summary>
/// <remarks>
/// This is not actually used as part of the arm model calculations, and exists for debugging.
/// </remarks>
/// <value>The shoulder position.</value>
public Vector3 ShoulderPosition
{
get
{
Vector3 shoulderPosition =
neckPosition + (torsoRotation * Vector3.Scale(SHOULDER_POSITION, handedMultiplier));
return shoulderPosition;
}
}
/// <summary>Gets the shoulder's rotation relative to the user's head.</summary>
/// <remarks>
/// This is not actually used as part of the arm model calculations, and exists for debugging.
/// </remarks>
/// <value>The shoulder rotation.</value>
public Quaternion ShoulderRotation
{
get { return torsoRotation; }
}
/// <summary>Gets the elbow's position relative to the user's head.</summary>
/// <value>The elbow position.</value>
public Vector3 ElbowPosition
{
get { return elbowPosition; }
}
/// <summary>Gets the elbow's rotation relative to the user's head.</summary>
/// <value>The elbow rotation.</value>
public Quaternion ElbowRotation
{
get { return elbowRotation; }
}
/// <summary>Gets the wrist's position relative to the user's head.</summary>
/// <value>The wrist position.</value>
public Vector3 WristPosition
{
get { return wristPosition; }
}
/// <summary>Gets the wrist's rotation relative to the user's head.</summary>
/// <value>The wrist rotation.</value>
public Quaternion WristRotation
{
get { return wristRotation; }
}
/// <summary>Gets or sets the controller input device.</summary>
/// <value>The controller input device.</value>
public GvrControllerInputDevice ControllerInputDevice { get; set; }
/// @cond
/// <summary>The `MonoBehavior`'s `OnEnable` method.</summary>
protected virtual void OnEnable()
{
// Register the controller update listener.
GvrControllerInput.OnControllerInputUpdated += OnControllerInputUpdated;
// Force the torso direction to match the gaze direction immediately.
// Otherwise, the controller will not be positioned correctly if the ArmModel was enabled
// when the user wasn't facing forward.
UpdateTorsoDirection(true);
// Update immediately to avoid a frame delay before the arm model is applied.
OnControllerInputUpdated();
}
/// @endcond
/// @cond
/// <summary>The `MonoBehavior`'s `OnDisable` method.</summary>
protected virtual void OnDisable()
{
GvrControllerInput.OnControllerInputUpdated -= OnControllerInputUpdated;
}
/// @endcond
/// @cond
/// <summary>The `GvrControllerInput`'s `OnControllerInputUpdated` action.</summary>
protected virtual void OnControllerInputUpdated()
{
UpdateHandedness();
UpdateTorsoDirection(false);
UpdateNeckPosition();
ApplyArmModel();
UpdateTransparency();
}
/// @endcond
/// <summary>Updates the arm model handedness.</summary>
protected virtual void UpdateHandedness()
{
// Update user handedness if the setting has changed.
if (ControllerInputDevice == null)
{
return;
}
// Determine handedness multiplier.
handedMultiplier.Set(0, 1, 1);
if (ControllerInputDevice.IsRightHand)
{
handedMultiplier.x = 1.0f;
}
else
{
handedMultiplier.x = -1.0f;
}
}
/// <summary>Updates the arm model torso direction.</summary>
/// <param name="forceImmediate">
/// If `true`, uses the gaze direction, otherwise uses slerp to update the direction smoothly.
/// </param>
protected virtual void UpdateTorsoDirection(bool forceImmediate)
{
// Determine the gaze direction horizontally.
Vector3 gazeDirection = GvrVRHelpers.GetHeadForward();
gazeDirection.y = 0.0f;
gazeDirection.Normalize();
// Use the gaze direction to update the forward direction.
if (forceImmediate ||
(ControllerInputDevice != null && ControllerInputDevice.Recentered))
{
torsoDirection = gazeDirection;
}
else
{
float angularVelocity =
ControllerInputDevice != null ? ControllerInputDevice.Gyro.magnitude : 0;
float gazeFilterStrength = Mathf.Clamp((angularVelocity - 0.2f) / 45.0f, 0.0f, 0.1f);
torsoDirection = Vector3.Slerp(torsoDirection, gazeDirection, gazeFilterStrength);
}
// Calculate the torso rotation.
torsoRotation = Quaternion.FromToRotation(Vector3.forward, torsoDirection);
}
/// <summary>Updates the neck position in the arm model.</summary>
protected virtual void UpdateNeckPosition()
{
if (isLockedToNeck)
{
// Returns the center of the eyes.
// However, we actually want to lock to the center of the head.
neckPosition = GvrVRHelpers.GetHeadPosition();
// Find the approximate neck position by Applying an inverse neck model.
// This transforms the head position to the center of the head and also accounts
// for the head's rotation so that the motion feels more natural.
neckPosition = ApplyInverseNeckModel(neckPosition);
}
else
{
neckPosition = Vector3.zero;
}
}
/// <summary>Applies the arm model parameters to update the orientation and position.</summary>
protected virtual void ApplyArmModel()
{
// Set the starting positions of the joints before they are transformed by the arm model.
SetUntransformedJointPositions();
// Get the controller's orientation.
Quaternion controllerOrientation;
Quaternion xyRotation;
float xAngle;
GetControllerRotation(out controllerOrientation, out xyRotation, out xAngle);
// Offset the elbow by the extension offset.
float extensionRatio = CalculateExtensionRatio(xAngle);
ApplyExtensionOffset(extensionRatio);
// Calculate the lerp rotation, which is used to control how much the rotation of the
// controller impacts each joint.
Quaternion lerpRotation = CalculateLerpRotation(xyRotation, extensionRatio);
CalculateFinalJointRotations(controllerOrientation, xyRotation, lerpRotation);
ApplyRotationToJoints();
}
/// <summary>
/// Set the starting positions of the joints before they are transformed by the arm model.
/// </summary>
protected virtual void SetUntransformedJointPositions()
{
elbowPosition = Vector3.Scale(elbowRestPosition, handedMultiplier);
wristPosition = Vector3.Scale(wristRestPosition, handedMultiplier);
controllerPosition = Vector3.Scale(controllerRestPosition, handedMultiplier);
}
/// <summary>
/// Calculate the extension ratio based on the angle of the controller along the x axis.
/// </summary>
/// <returns>The extension ratio of the elbow.</returns>
/// <param name="xAngle">The X angle of the controller along the x axis.</param>
protected virtual float CalculateExtensionRatio(float xAngle)
{
float normalizedAngle =
(xAngle - MIN_EXTENSION_ANGLE) / (MAX_EXTENSION_ANGLE - MIN_EXTENSION_ANGLE);
float extensionRatio = Mathf.Clamp(normalizedAngle, 0.0f, 1.0f);
return extensionRatio;
}
/// <summary>Offset the elbow by the extension offset.</summary>
/// <param name="extensionRatio">The extension ratio of the elbow to apply.</param>
protected virtual void ApplyExtensionOffset(float extensionRatio)
{
Vector3 extensionOffset = Vector3.Scale(armExtensionOffset, handedMultiplier);
elbowPosition += extensionOffset * extensionRatio;
}
/// <summary>
/// Calculate the lerp rotation, which is used to control how much the rotation of the
/// controller impacts each joint.
/// </summary>
/// <returns>The lerp rotation.</returns>
/// <param name="xyRotation">The xy rotation of the controller.</param>
/// <param name="extensionRatio">The extension ratio of the elbow.</param>
protected virtual Quaternion CalculateLerpRotation(Quaternion xyRotation, float extensionRatio)
{
float totalAngle = Quaternion.Angle(xyRotation, Quaternion.identity);
float lerpSuppresion = 1.0f - Mathf.Pow(totalAngle / 180.0f, 6.0f);
float inverseElbowBendRatio = 1.0f - elbowBendRatio;
float lerpValue =
inverseElbowBendRatio + (elbowBendRatio * extensionRatio * EXTENSION_WEIGHT);
lerpValue *= lerpSuppresion;
return Quaternion.Lerp(Quaternion.identity, xyRotation, lerpValue);
}
/// <summary>Determine the final joint rotations relative to the head.</summary>
/// <param name="controllerOrientation">Controller orientation.</param>
/// <param name="xyRotation">The xy rotation of the controller.</param>
/// <param name="lerpRotation">Lerp rotation.</param>
protected virtual void CalculateFinalJointRotations(Quaternion controllerOrientation,
Quaternion xyRotation,
Quaternion lerpRotation)
{
elbowRotation = torsoRotation * Quaternion.Inverse(lerpRotation) * xyRotation;
wristRotation = elbowRotation * lerpRotation;
controllerRotation = torsoRotation * controllerOrientation;
}
/// <summary>
/// Apply the joint rotations to the positions of the joints to determine the final pose.
/// </summary>
protected virtual void ApplyRotationToJoints()
{
elbowPosition = neckPosition + (torsoRotation * elbowPosition);
wristPosition = elbowPosition + (elbowRotation * wristPosition);
controllerPosition = wristPosition + (wristRotation * controllerPosition);
}
/// <summary>Transform the head position into an approximate neck position.</summary>
/// <returns>The inverse neck model.</returns>
/// <param name="headPosition">Head position.</param>
protected virtual Vector3 ApplyInverseNeckModel(Vector3 headPosition)
{
Quaternion headRotation = GvrVRHelpers.GetHeadRotation();
Vector3 rotatedNeckOffset =
(headRotation * NECK_OFFSET) - (NECK_OFFSET.y * Vector3.up);
headPosition -= rotatedNeckOffset;
return headPosition;
}
/// <summary>
/// Controls the transparency of the controller to prevent the controller from clipping through
/// the user's head.
/// </summary>
/// <remarks>
/// Also controls the transparency of the tooltips so they are only visible when the controller
/// is held up.
/// </remarks>
protected virtual void UpdateTransparency()
{
Vector3 controllerForward = controllerRotation * Vector3.forward;
Vector3 offsetControllerPosition =
controllerPosition + (controllerForward * fadeControllerOffset);
Vector3 controllerRelativeToHead = offsetControllerPosition - neckPosition;
Vector3 headForward = GvrVRHelpers.GetHeadForward();
float distanceToHeadForward =
Vector3.Scale(controllerRelativeToHead, headForward).magnitude;
Vector3 headRight = Vector3.Cross(headForward, Vector3.up);
float distanceToHeadSide = Vector3.Scale(controllerRelativeToHead, headRight).magnitude;
float distanceToHeadUp = Mathf.Abs(controllerRelativeToHead.y);
bool shouldFadeController = distanceToHeadForward < fadeDistanceFromHeadForward
&& distanceToHeadUp < fadeDistanceFromHeadForward
&& distanceToHeadSide < fadeDistanceFromHeadSide;
// Determine how vertical the controller is pointing.
float animationDelta = DELTA_ALPHA * Time.unscaledDeltaTime;
if (shouldFadeController)
{
preferredAlpha = Mathf.Max(0.0f, preferredAlpha - animationDelta);
}
else
{
preferredAlpha = Mathf.Min(1.0f, preferredAlpha + animationDelta);
}
float dot = Vector3.Dot(controllerRotation * Vector3.up,
-controllerRelativeToHead.normalized);
float minDot = (tooltipMaxAngleFromCamera - 90.0f) / -90.0f;
float distToFace = Vector3.Distance(controllerRelativeToHead, Vector3.zero);
if (shouldFadeController
|| distToFace > tooltipMinDistanceFromFace
|| dot < minDot)
{
tooltipAlphaValue = Mathf.Max(0.0f, tooltipAlphaValue - animationDelta);
}
else
{
tooltipAlphaValue = Mathf.Min(1.0f, tooltipAlphaValue + animationDelta);
}
}
/// <summary>Get the controller's orientation.</summary>
/// <param name="rotation">The output rotation which will be written to.</param>
/// <param name="xyRotation">The output xy-only rotation.</param>
/// <param name="xAngle">The output angle from the X axis.</param>
protected void GetControllerRotation(out Quaternion rotation,
out Quaternion xyRotation,
out float xAngle)
{
// Find the controller's orientation relative to the player.
rotation = ControllerInputDevice != null ?
ControllerInputDevice.Orientation : Quaternion.identity;
rotation = Quaternion.Inverse(torsoRotation) * rotation;
// Extract just the x rotation angle.
Vector3 controllerForward = rotation * Vector3.forward;
xAngle = 90.0f - Vector3.Angle(controllerForward, Vector3.up);
// Remove the z rotation from the controller.
xyRotation = Quaternion.FromToRotation(Vector3.forward, controllerForward);
}
#if UNITY_EDITOR
/// <summary>Raises the draw gizmos selected event.</summary>
protected virtual void OnDrawGizmosSelected()
{
if (!enabled)
{
return;
}
if (transform.parent == null)
{
return;
}
Vector3 worldShoulder = transform.parent.TransformPoint(ShoulderPosition);
Vector3 worldElbow = transform.parent.TransformPoint(elbowPosition);
Vector3 worldwrist = transform.parent.TransformPoint(wristPosition);
Vector3 worldcontroller = transform.parent.TransformPoint(controllerPosition);
Gizmos.color = Color.red;
Gizmos.DrawSphere(worldShoulder, 0.02f);
Gizmos.DrawLine(worldShoulder, worldElbow);
Gizmos.color = Color.green;
Gizmos.DrawSphere(worldElbow, 0.02f);
Gizmos.DrawLine(worldElbow, worldwrist);
Gizmos.color = Color.cyan;
Gizmos.DrawSphere(worldwrist, 0.02f);
Gizmos.color = Color.blue;
Gizmos.DrawSphere(worldcontroller, 0.02f);
}
#endif // UNITY_EDITOR
}