Name Last Update
..
cfg Loading commit data...
data Loading commit data...
images Loading commit data...
model Loading commit data...
videos Loading commit data...
.gitignore Loading commit data...
LICENSE Loading commit data...
README.md Loading commit data...
demo.py Loading commit data...
yad2k.py Loading commit data...
yolov3.weights Loading commit data...

YOLOv3

Keras(TF backend) implementation of yolo v3 objects detection.

According to the paper YOLOv3: An Incremental Improvement.

Requirement

  • OpenCV 3.4
  • Python 3.6
  • Tensorflow-gpu 1.5.0
  • Keras 2.1.3

Quick start

  • Download official yolov3.weights and put it on top floder of project.

  • Run the follow command to convert darknet weight file to keras h5 file. The yad2k.py was modified from allanzelener/YAD2K.

    python yad2k.py cfg\yolo.cfg yolov3.weights data\yolo.h5
    
  • run follow command to show the demo. The result can be found in images\res\ floder.

    python demo.py
    

Demo result

It can be seen that yolo v3 has a better classification ability than yolo v2.

TODO

  • Train the model.

Reference

@article{YOLOv3,  
  title={YOLOv3: An Incremental Improvement},  
  author={J Redmon, A Farhadi },
  year={2018}

Copyright

See LICENSE for details.