Showing
5 changed files
with
462 additions
and
0 deletions
Speaker_Recognition/enroll2.py
0 → 100644
1 | +import torch | ||
2 | +import torch.nn.functional as F | ||
3 | +from torch.autograd import Variable | ||
4 | + | ||
5 | +import pandas as pd | ||
6 | +import math | ||
7 | +import os | ||
8 | +import configure as c | ||
9 | + | ||
10 | +from DB_wav_reader import read_feats_structure | ||
11 | +from SR_Dataset import read_MFB, ToTensorTestInput | ||
12 | +from model.model2 import background_resnet | ||
13 | + | ||
14 | +def load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes): | ||
15 | + model = background_resnet(embedding_size=embedding_size, num_classes=n_classes) | ||
16 | + if use_cuda: | ||
17 | + model.cuda() | ||
18 | + print('=> loading checkpoint') | ||
19 | + # original saved file with DataParallel | ||
20 | + checkpoint = torch.load(log_dir + '/checkpoint_' + str(cp_num) + '.pth') | ||
21 | + # create new OrderedDict that does not contain `module.` | ||
22 | + model.load_state_dict(checkpoint['state_dict']) | ||
23 | + model.eval() | ||
24 | + return model | ||
25 | + | ||
26 | +def split_enroll_and_test(dataroot_dir): | ||
27 | + DB_all = read_feats_structure(dataroot_dir) | ||
28 | + enroll_DB = pd.DataFrame() | ||
29 | + test_DB = pd.DataFrame() | ||
30 | + | ||
31 | + enroll_DB = DB_all[DB_all['filename'].str.contains('enroll.p')] | ||
32 | + test_DB = DB_all[DB_all['filename'].str.contains('test.p')] | ||
33 | + | ||
34 | + # Reset the index | ||
35 | + enroll_DB = enroll_DB.reset_index(drop=True) | ||
36 | + test_DB = test_DB.reset_index(drop=True) | ||
37 | + return enroll_DB, test_DB | ||
38 | + | ||
39 | +def get_embeddings(use_cuda, filename, model, test_frames): | ||
40 | + input, label = read_MFB(filename) # input size:(n_frames, n_dims) | ||
41 | + | ||
42 | + tot_segments = math.ceil(len(input)/test_frames) # total number of segments with 'test_frames' | ||
43 | + activation = 0 | ||
44 | + with torch.no_grad(): | ||
45 | + for i in range(tot_segments): | ||
46 | + temp_input = input[i*test_frames:i*test_frames+test_frames] | ||
47 | + | ||
48 | + TT = ToTensorTestInput() | ||
49 | + temp_input = TT(temp_input) # size:(1, 1, n_dims, n_frames) | ||
50 | + | ||
51 | + if use_cuda: | ||
52 | + temp_input = temp_input.cuda() | ||
53 | + temp_activation,_ = model(temp_input) | ||
54 | + activation += torch.sum(temp_activation, dim=0, keepdim=True) | ||
55 | + | ||
56 | + activation = l2_norm(activation, 1) | ||
57 | + | ||
58 | + return activation | ||
59 | + | ||
60 | +def l2_norm(input, alpha): | ||
61 | + input_size = input.size() # size:(n_frames, dim) | ||
62 | + buffer = torch.pow(input, 2) # 2 denotes a squared operation. size:(n_frames, dim) | ||
63 | + normp = torch.sum(buffer, 1).add_(1e-10) # size:(n_frames) | ||
64 | + norm = torch.sqrt(normp) # size:(n_frames) | ||
65 | + _output = torch.div(input, norm.view(-1, 1).expand_as(input)) | ||
66 | + output = _output.view(input_size) | ||
67 | + # Multiply by alpha = 10 as suggested in https://arxiv.org/pdf/1703.09507.pdf | ||
68 | + output = output * alpha | ||
69 | + return output | ||
70 | + | ||
71 | +def enroll_per_spk(use_cuda, test_frames, model, DB, embedding_dir): | ||
72 | + """ | ||
73 | + Output the averaged d-vector for each speaker (enrollment) | ||
74 | + Return the dictionary (length of n_spk) | ||
75 | + """ | ||
76 | + n_files = len(DB) # 10 | ||
77 | + enroll_speaker_list = sorted(set(DB['speaker_id'])) | ||
78 | + | ||
79 | + embeddings = {} | ||
80 | + | ||
81 | + # Aggregates all the activations | ||
82 | + print("Start to aggregate all the d-vectors per enroll speaker") | ||
83 | + | ||
84 | + for i in range(n_files): | ||
85 | + filename = DB['filename'][i] | ||
86 | + spk = DB['speaker_id'][i] | ||
87 | + | ||
88 | + activation = get_embeddings(use_cuda, filename, model, test_frames) | ||
89 | + if spk in embeddings: | ||
90 | + embeddings[spk] += activation | ||
91 | + else: | ||
92 | + embeddings[spk] = activation | ||
93 | + | ||
94 | + print("Aggregates the activation (spk : %s)" % (spk)) | ||
95 | + | ||
96 | + if not os.path.exists(embedding_dir): | ||
97 | + os.makedirs(embedding_dir) | ||
98 | + | ||
99 | + # Save the embeddings | ||
100 | + for spk_index in enroll_speaker_list: | ||
101 | + embedding_path = os.path.join(embedding_dir, spk_index+'.pth') | ||
102 | + torch.save(embeddings[spk_index], embedding_path) | ||
103 | + print("Save the embeddings for %s" % (spk_index)) | ||
104 | + return embeddings | ||
105 | + | ||
106 | +def main(): | ||
107 | + | ||
108 | + # Settings | ||
109 | + use_cuda = True | ||
110 | + log_dir = 'new_model2' | ||
111 | + embedding_size = 128 | ||
112 | + cp_num = 24 # Which checkpoint to use? | ||
113 | + n_classes = 241 | ||
114 | + test_frames = 200 | ||
115 | + | ||
116 | + # Load model from checkpoint | ||
117 | + model = load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes) | ||
118 | + | ||
119 | + # Get the dataframe for enroll DB | ||
120 | + enroll_DB, test_DB = split_enroll_and_test(c.TEST_FEAT_DIR) | ||
121 | + | ||
122 | + # Where to save embeddings | ||
123 | + embedding_dir = 'enroll_embeddings2' | ||
124 | + | ||
125 | + # Perform the enrollment and save the results | ||
126 | + enroll_per_spk(use_cuda, test_frames, model, enroll_DB, embedding_dir) | ||
127 | + | ||
128 | + """ Test speaker list | ||
129 | + '103F3021', '207F2088', '213F5100', '217F3038', '225M4062', | ||
130 | + '229M2031', '230M4087', '233F4013', '236M3043', '240M3063' | ||
131 | + """ | ||
132 | + | ||
133 | +if __name__ == '__main__': | ||
134 | + main() | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
Speaker_Recognition/identification2.py
0 → 100644
1 | +import torch | ||
2 | +import torch.nn.functional as F | ||
3 | +from torch.autograd import Variable | ||
4 | + | ||
5 | +import pandas as pd | ||
6 | +import math | ||
7 | +import os | ||
8 | +import configure as c | ||
9 | + | ||
10 | +from DB_wav_reader import read_feats_structure | ||
11 | +from SR_Dataset import read_MFB, ToTensorTestInput | ||
12 | +from model.model2 import background_resnet | ||
13 | + | ||
14 | +def load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes): | ||
15 | + model = background_resnet(embedding_size=embedding_size, num_classes=n_classes) | ||
16 | + if use_cuda: | ||
17 | + model.cuda() | ||
18 | + print('=> loading checkpoint') | ||
19 | + # original saved file with DataParallel | ||
20 | + checkpoint = torch.load(log_dir + '/checkpoint_' + str(cp_num) + '.pth') | ||
21 | + # create new OrderedDict that does not contain `module.` | ||
22 | + model.load_state_dict(checkpoint['state_dict']) | ||
23 | + model.eval() | ||
24 | + return model | ||
25 | + | ||
26 | +def split_enroll_and_test(dataroot_dir): | ||
27 | + DB_all = read_feats_structure(dataroot_dir) | ||
28 | + enroll_DB = pd.DataFrame() | ||
29 | + test_DB = pd.DataFrame() | ||
30 | + | ||
31 | + enroll_DB = DB_all[DB_all['filename'].str.contains('enroll.p')] | ||
32 | + test_DB = DB_all[DB_all['filename'].str.contains('test.p')] | ||
33 | + | ||
34 | + # Reset the index | ||
35 | + enroll_DB = enroll_DB.reset_index(drop=True) | ||
36 | + test_DB = test_DB.reset_index(drop=True) | ||
37 | + return enroll_DB, test_DB | ||
38 | + | ||
39 | +def load_enroll_embeddings(embedding_dir): | ||
40 | + embeddings = {} | ||
41 | + for f in os.listdir(embedding_dir): | ||
42 | + spk = f.replace('.pth','') | ||
43 | + # Select the speakers who are in the 'enroll_spk_list' | ||
44 | + embedding_path = os.path.join(embedding_dir, f) | ||
45 | + tmp_embeddings = torch.load(embedding_path) | ||
46 | + embeddings[spk] = tmp_embeddings | ||
47 | + | ||
48 | + return embeddings | ||
49 | + | ||
50 | +def get_embeddings(use_cuda, filename, model, test_frames): | ||
51 | + input, label = read_MFB(filename) # input size:(n_frames, n_dims) | ||
52 | + | ||
53 | + tot_segments = math.ceil(len(input)/test_frames) # total number of segments with 'test_frames' | ||
54 | + activation = 0 | ||
55 | + with torch.no_grad(): | ||
56 | + for i in range(tot_segments): | ||
57 | + temp_input = input[i*test_frames:i*test_frames+test_frames] | ||
58 | + | ||
59 | + TT = ToTensorTestInput() | ||
60 | + temp_input = TT(temp_input) # size:(1, 1, n_dims, n_frames) | ||
61 | + | ||
62 | + if use_cuda: | ||
63 | + temp_input = temp_input.cuda() | ||
64 | + temp_activation,_ = model(temp_input) | ||
65 | + activation += torch.sum(temp_activation, dim=0, keepdim=True) | ||
66 | + | ||
67 | + activation = l2_norm(activation, 1) | ||
68 | + | ||
69 | + return activation | ||
70 | + | ||
71 | +def l2_norm(input, alpha): | ||
72 | + input_size = input.size() # size:(n_frames, dim) | ||
73 | + buffer = torch.pow(input, 2) # 2 denotes a squared operation. size:(n_frames, dim) | ||
74 | + normp = torch.sum(buffer, 1).add_(1e-10) # size:(n_frames) | ||
75 | + norm = torch.sqrt(normp) # size:(n_frames) | ||
76 | + _output = torch.div(input, norm.view(-1, 1).expand_as(input)) | ||
77 | + output = _output.view(input_size) | ||
78 | + # Multiply by alpha = 10 as suggested in https://arxiv.org/pdf/1703.09507.pdf | ||
79 | + output = output * alpha | ||
80 | + return output | ||
81 | + | ||
82 | +def perform_identification(use_cuda, model, embeddings, test_filename, test_frames, spk_list): | ||
83 | + test_embedding = get_embeddings(use_cuda, test_filename, model, test_frames) | ||
84 | + max_score = -10**8 | ||
85 | + best_spk = None | ||
86 | + for spk in spk_list: | ||
87 | + score = F.cosine_similarity(test_embedding, embeddings[spk]) | ||
88 | + score = score.data.cpu().numpy() | ||
89 | + if score > max_score: | ||
90 | + max_score = score | ||
91 | + best_spk = spk | ||
92 | + #print("Speaker identification result : %s" %best_spk) | ||
93 | + true_spk = test_filename.split('/')[-2].split('_')[0] | ||
94 | + print("\n=== Speaker identification ===") | ||
95 | + print("True speaker : %s\nPredicted speaker : %s\nResult : %s\n" %(true_spk, best_spk, true_spk==best_spk)) | ||
96 | + return best_spk | ||
97 | + | ||
98 | +def main(): | ||
99 | + | ||
100 | + log_dir = 'new_model2' # Where the checkpoints are saved | ||
101 | + embedding_dir = 'enroll_embeddings2' # Where embeddings are saved | ||
102 | + test_dir = 'feat_logfbank_nfilt40/test/' # Where test features are saved | ||
103 | + | ||
104 | + # Settings | ||
105 | + use_cuda = True # Use cuda or not | ||
106 | + embedding_size = 128 # Dimension of speaker embeddings | ||
107 | + cp_num = 30 # Which checkpoint to use? | ||
108 | + n_classes = 241 # How many speakers in training data? | ||
109 | + test_frames = 100 # Split the test utterance | ||
110 | + | ||
111 | + # Load model from checkpoint | ||
112 | + model = load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes) | ||
113 | + | ||
114 | + # Get the dataframe for test DB | ||
115 | + enroll_DB, test_DB = split_enroll_and_test(c.TEST_FEAT_DIR) | ||
116 | + | ||
117 | + # Load enroll embeddings | ||
118 | + embeddings = load_enroll_embeddings(embedding_dir) | ||
119 | + | ||
120 | + """ Test speaker list | ||
121 | + '103F3021', '207F2088', '213F5100', '217F3038', '225M4062', | ||
122 | + '229M2031', '230M4087', '233F4013', '236M3043', '240M3063' | ||
123 | + """ | ||
124 | + | ||
125 | + spk_list = ['103F3021', '207F2088', '213F5100', '217F3038', '225M4062',\ | ||
126 | + '229M2031', '230M4087', '233F4013', '236M3043', '240M3063','777M7777','778M8777'] | ||
127 | + | ||
128 | + # Set the test speaker | ||
129 | + test_speaker = '236M3043' | ||
130 | + | ||
131 | + test_path = os.path.join(test_dir, test_speaker, 'test.p') | ||
132 | + | ||
133 | + # Perform the test | ||
134 | + best_spk = perform_identification(use_cuda, model, embeddings, test_path, test_frames, spk_list) | ||
135 | + | ||
136 | +if __name__ == '__main__': | ||
137 | + main() |
Speaker_Recognition/model/model2.py
0 → 100644
1 | +import torch | ||
2 | +import torch.nn as nn | ||
3 | +import torch.nn.functional as F | ||
4 | +from torch.autograd import Function | ||
5 | +import model.resnet as resnet | ||
6 | + | ||
7 | + | ||
8 | +class background_resnet(nn.Module): | ||
9 | + def __init__(self, embedding_size, num_classes, backbone='resnet34'): | ||
10 | + super(background_resnet, self).__init__() | ||
11 | + self.backbone = backbone | ||
12 | + # copying modules from pretrained models | ||
13 | + if backbone == 'resnet50': | ||
14 | + self.pretrained = resnet.resnet50(pretrained=False) | ||
15 | + elif backbone == 'resnet101': | ||
16 | + self.pretrained = resnet.resnet101(pretrained=False) | ||
17 | + elif backbone == 'resnet152': | ||
18 | + self.pretrained = resnet.resnet152(pretrained=False) | ||
19 | + elif backbone == 'resnet18': | ||
20 | + self.pretrained = resnet.resnet18(pretrained=False) | ||
21 | + elif backbone == 'resnet34': | ||
22 | + self.pretrained = resnet.resnet34(pretrained=False) | ||
23 | + else: | ||
24 | + raise RuntimeError('unknown backbone: {}'.format(backbone)) | ||
25 | + | ||
26 | + self.fc0 = nn.Linear(128, embedding_size) | ||
27 | + self.bn0 = nn.BatchNorm1d(embedding_size) | ||
28 | + self.relu = nn.ReLU() | ||
29 | + self.last = nn.Linear(embedding_size, num_classes) | ||
30 | + | ||
31 | + def forward(self, x): | ||
32 | + # input x: minibatch x 1 x 40 x 40 | ||
33 | + x = self.pretrained.conv1(x) | ||
34 | + x = self.pretrained.bn1(x) | ||
35 | + x = self.pretrained.relu(x) | ||
36 | + | ||
37 | + x = self.pretrained.layer1(x) | ||
38 | + x = self.pretrained.layer2(x) | ||
39 | + x = self.pretrained.layer3(x) | ||
40 | + x = self.pretrained.layer4(x) | ||
41 | + | ||
42 | + out = F.adaptive_avg_pool2d(x,1) # [batch, 128, 1, 1] | ||
43 | + out = torch.squeeze(out) # [batch, n_embed] | ||
44 | + # flatten the out so that the fully connected layer can be connected from here | ||
45 | + out = out.view(x.size(0), -1) # (n_batch, n_embed) | ||
46 | + spk_embedding = self.fc0(out) | ||
47 | + out = F.relu(self.bn0(spk_embedding)) # [batch, n_embed] | ||
48 | + out = self.last(out) | ||
49 | + | ||
50 | + return spk_embedding, out | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
Speaker_Recognition/train2.py
0 → 100644
This diff is collapsed. Click to expand it.
Speaker_Recognition/verification2.py
0 → 100644
1 | +import torch | ||
2 | +import torch.nn.functional as F | ||
3 | +from torch.autograd import Variable | ||
4 | + | ||
5 | +import pandas as pd | ||
6 | +import math | ||
7 | +import os | ||
8 | +import configure as c | ||
9 | + | ||
10 | +from DB_wav_reader import read_feats_structure | ||
11 | +from SR_Dataset import read_MFB, ToTensorTestInput | ||
12 | +from model.model2 import background_resnet | ||
13 | + | ||
14 | +def load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes): | ||
15 | + model = background_resnet(embedding_size=embedding_size, num_classes=n_classes) | ||
16 | + if use_cuda: | ||
17 | + model.cuda() | ||
18 | + print('=> loading checkpoint') | ||
19 | + # original saved file with DataParallel | ||
20 | + checkpoint = torch.load(log_dir + '/checkpoint_' + str(cp_num) + '.pth') | ||
21 | + # create new OrderedDict that does not contain `module.` | ||
22 | + model.load_state_dict(checkpoint['state_dict']) | ||
23 | + model.eval() | ||
24 | + return model | ||
25 | + | ||
26 | +def split_enroll_and_test(dataroot_dir): | ||
27 | + DB_all = read_feats_structure(dataroot_dir) | ||
28 | + enroll_DB = pd.DataFrame() | ||
29 | + test_DB = pd.DataFrame() | ||
30 | + | ||
31 | + enroll_DB = DB_all[DB_all['filename'].str.contains('enroll.p')] | ||
32 | + test_DB = DB_all[DB_all['filename'].str.contains('test.p')] | ||
33 | + | ||
34 | + # Reset the index | ||
35 | + enroll_DB = enroll_DB.reset_index(drop=True) | ||
36 | + test_DB = test_DB.reset_index(drop=True) | ||
37 | + return enroll_DB, test_DB | ||
38 | + | ||
39 | +def load_enroll_embeddings(embedding_dir): | ||
40 | + embeddings = {} | ||
41 | + for f in os.listdir(embedding_dir): | ||
42 | + spk = f.replace('.pth','') | ||
43 | + # Select the speakers who are in the 'enroll_spk_list' | ||
44 | + embedding_path = os.path.join(embedding_dir, f) | ||
45 | + tmp_embeddings = torch.load(embedding_path) | ||
46 | + embeddings[spk] = tmp_embeddings | ||
47 | + | ||
48 | + return embeddings | ||
49 | + | ||
50 | +def get_embeddings(use_cuda, filename, model, test_frames): | ||
51 | + input, label = read_MFB(filename) # input size:(n_frames, n_dims) | ||
52 | + | ||
53 | + tot_segments = math.ceil(len(input)/test_frames) # total number of segments with 'test_frames' | ||
54 | + activation = 0 | ||
55 | + with torch.no_grad(): | ||
56 | + for i in range(tot_segments): | ||
57 | + temp_input = input[i*test_frames:i*test_frames+test_frames] | ||
58 | + | ||
59 | + TT = ToTensorTestInput() | ||
60 | + temp_input = TT(temp_input) # size:(1, 1, n_dims, n_frames) | ||
61 | + | ||
62 | + if use_cuda: | ||
63 | + temp_input = temp_input.cuda() | ||
64 | + temp_activation,_ = model(temp_input) | ||
65 | + activation += torch.sum(temp_activation, dim=0, keepdim=True) | ||
66 | + | ||
67 | + activation = l2_norm(activation, 1) | ||
68 | + | ||
69 | + return activation | ||
70 | + | ||
71 | +def l2_norm(input, alpha): | ||
72 | + input_size = input.size() # size:(n_frames, dim) | ||
73 | + buffer = torch.pow(input, 2) # 2 denotes a squared operation. size:(n_frames, dim) | ||
74 | + normp = torch.sum(buffer, 1).add_(1e-10) # size:(n_frames) | ||
75 | + norm = torch.sqrt(normp) # size:(n_frames) | ||
76 | + _output = torch.div(input, norm.view(-1, 1).expand_as(input)) | ||
77 | + output = _output.view(input_size) | ||
78 | + # Multiply by alpha = 10 as suggested in https://arxiv.org/pdf/1703.09507.pdf | ||
79 | + output = output * alpha | ||
80 | + return output | ||
81 | + | ||
82 | +def perform_verification(use_cuda, model, embeddings, enroll_speaker, test_filename, test_frames, thres): | ||
83 | + enroll_embedding = embeddings[enroll_speaker] | ||
84 | + test_embedding = get_embeddings(use_cuda, test_filename, model, test_frames) | ||
85 | + | ||
86 | + score = F.cosine_similarity(test_embedding, enroll_embedding) | ||
87 | + score = score.data.cpu().numpy() | ||
88 | + | ||
89 | + if score > thres: | ||
90 | + result = 'Accept' | ||
91 | + else: | ||
92 | + result = 'Reject' | ||
93 | + | ||
94 | + test_spk = test_filename.split('/')[-2].split('_')[0] | ||
95 | + print("\n=== Speaker verification ===") | ||
96 | + print("True speaker: %s\nClaimed speaker : %s\n\nResult : %s\n" %(enroll_speaker, test_spk, result)) | ||
97 | + print("Score : %0.4f\nThreshold : %0.2f\n" %(score, thres)) | ||
98 | + | ||
99 | +def main(): | ||
100 | + | ||
101 | + log_dir = 'new_model2' # Where the checkpoints are saved | ||
102 | + embedding_dir = 'enroll_embeddings2' # Where embeddings are saved | ||
103 | + test_dir = 'feat_logfbank_nfilt40/test/' # Where test features are saved | ||
104 | + | ||
105 | + # Settings | ||
106 | + use_cuda = True # Use cuda or not | ||
107 | + embedding_size = 128 # Dimension of speaker embeddings | ||
108 | + cp_num = 30 # Which checkpoint to use? | ||
109 | + n_classes = 241 # How many speakers in training data? | ||
110 | + test_frames = 100 # Split the test utterance | ||
111 | + | ||
112 | + # Load model from checkpoint | ||
113 | + model = load_model(use_cuda, log_dir, cp_num, embedding_size, n_classes) | ||
114 | + | ||
115 | + # Get the dataframe for test DB | ||
116 | + enroll_DB, test_DB = split_enroll_and_test(c.TEST_FEAT_DIR) | ||
117 | + | ||
118 | + # Load enroll embeddings | ||
119 | + embeddings = load_enroll_embeddings(embedding_dir) | ||
120 | + | ||
121 | + """ Test speaker list | ||
122 | + '103F3021', '207F2088', '213F5100', '217F3038', '225M4062', | ||
123 | + '229M2031', '230M4087', '233F4013', '236M3043', '240M3063' | ||
124 | + """ | ||
125 | + | ||
126 | + # Set the true speaker | ||
127 | + enroll_speaker = '103F3021' | ||
128 | + | ||
129 | + # Set the claimed speaker | ||
130 | + test_speaker = '207F2088' | ||
131 | + | ||
132 | + # Threshold | ||
133 | + thres = 0.95 | ||
134 | + | ||
135 | + test_path = os.path.join(test_dir, test_speaker, 'test.p') | ||
136 | + | ||
137 | + # Perform the test | ||
138 | + perform_verification(use_cuda, model, embeddings, enroll_speaker, test_path, test_frames, thres) | ||
139 | + | ||
140 | +if __name__ == '__main__': | ||
141 | + main() |
-
Please register or login to post a comment