Image-classification-fulltraining.ipynb
35.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# End-to-End Multiclass Image Classification Example\n",
"\n",
"1. [Introduction](#Introduction)\n",
"2. [Prerequisites and Preprocessing](#Prequisites-and-Preprocessing)\n",
" 1. [Permissions and environment variables](#Permissions-and-environment-variables)\n",
"3. [Training the ResNet model](#Training-the-ResNet-model)\n",
"4. [Deploy The Model](#Deploy-the-model)\n",
" 1. [Create model](#Create-model)\n",
" 2. [Batch transform](#Batch-transform)\n",
" 3. [Realtime inference](#Realtime-inference)\n",
" 1. [Create endpoint configuration](#Create-endpoint-configuration) \n",
" 2. [Create endpoint](#Create-endpoint) \n",
" 3. [Perform inference](#Perform-inference) \n",
" 4. [Clean up](#Clean-up)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"Welcome to our end-to-end example of distributed image classification algorithm. In this demo, we will use the Amazon sagemaker image classification algorithm to train on the [caltech-256 dataset](http://www.vision.caltech.edu/Image_Datasets/Caltech256/). \n",
"\n",
"To get started, we need to set up the environment with a few prerequisite steps, for permissions, configurations, and so on."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prequisites and Preprocessing\n",
"\n",
"### Permissions and environment variables\n",
"\n",
"Here we set up the linkage and authentication to AWS services. There are three parts to this:\n",
"\n",
"* The roles used to give learning and hosting access to your data. This will automatically be obtained from the role used to start the notebook\n",
"* The S3 bucket that you want to use for training and model data\n",
"* The Amazon sagemaker image classification docker image which need not be changed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"tags": [
"parameters"
]
},
"outputs": [],
"source": [
"%%time\n",
"import boto3\n",
"import re\n",
"import sagemaker\n",
"from sagemaker import get_execution_role\n",
"from sagemaker.amazon.amazon_estimator import get_image_uri\n",
"\n",
"role = get_execution_role()\n",
"\n",
"bucket = sagemaker.Session().default_bucket()\n",
"\n",
"training_image = get_image_uri(boto3.Session().region_name, 'image-classification')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data preparation\n",
"Download the data and transfer to S3 for use in training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import os \n",
"import urllib.request\n",
"import boto3\n",
"\n",
"def download(url):\n",
" filename = url.split(\"/\")[-1]\n",
" if not os.path.exists(filename):\n",
" urllib.request.urlretrieve(url, filename)\n",
"\n",
" \n",
"def upload_to_s3(channel, file):\n",
" s3 = boto3.resource('s3')\n",
" data = open(file, \"rb\")\n",
" key = channel + '/' + file\n",
" s3.Bucket(bucket).put_object(Key=key, Body=data)\n",
"\n",
"\n",
"# caltech-256\n",
"s3_train_key = \"image-classification-full-training/train\"\n",
"s3_validation_key = \"image-classification-full-training/validation\"\n",
"s3_train = 's3://{}/{}/'.format(bucket, s3_train_key)\n",
"s3_validation = 's3://{}/{}/'.format(bucket, s3_validation_key)\n",
"\n",
"download('http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec')\n",
"upload_to_s3(s3_train_key, 'caltech-256-60-train.rec')\n",
"download('http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec')\n",
"upload_to_s3(s3_validation_key, 'caltech-256-60-val.rec')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training the ResNet model\n",
"\n",
"In this demo, we are using [Caltech-256](http://www.vision.caltech.edu/Image_Datasets/Caltech256/) dataset, which contains 30608 images of 256 objects. For the training and validation data, we follow the splitting scheme in this MXNet [example](https://github.com/apache/incubator-mxnet/blob/master/example/image-classification/data/caltech256.sh). In particular, it randomly selects 60 images per class for training, and uses the remaining data for validation. The algorithm takes `RecordIO` file as input. The user can also provide the image files as input, which will be converted into `RecordIO` format using MXNet's [im2rec](https://mxnet.incubator.apache.org/how_to/recordio.html?highlight=im2rec) tool. It takes around 50 seconds to converted the entire Caltech-256 dataset (~1.2GB) on a p2.xlarge instance. However, for this demo, we will use record io format. \n",
"\n",
"Once we have the data available in the correct format for training, the next step is to actually train the model using the data. After setting training parameters, we kick off training, and poll for status until training is completed.\n",
"\n",
"## Training parameters\n",
"There are two kinds of parameters that need to be set for training. The first one are the parameters for the training job. These include:\n",
"\n",
"* **Input specification**: These are the training and validation channels that specify the path where training data is present. These are specified in the \"InputDataConfig\" section. The main parameters that need to be set is the \"ContentType\" which can be set to \"rec\" or \"lst\" based on the input data format and the S3Uri which specifies the bucket and the folder where the data is present. \n",
"* **Output specification**: This is specified in the \"OutputDataConfig\" section. We just need to specify the path where the output can be stored after training\n",
"* **Resource config**: This section specifies the type of instance on which to run the training and the number of hosts used for training. If \"InstanceCount\" is more than 1, then training can be run in a distributed manner. \n",
"\n",
"Apart from the above set of parameters, there are hyperparameters that are specific to the algorithm. These are:\n",
"\n",
"* **num_layers**: The number of layers (depth) for the network. We use 101 in this samples but other values such as 50, 152 can be used. \n",
"* **num_training_samples**: This is the total number of training samples. It is set to 15420 for caltech dataset with the current split\n",
"* **num_classes**: This is the number of output classes for the new dataset. Imagenet was trained with 1000 output classes but the number of output classes can be changed for fine-tuning. For caltech, we use 257 because it has 256 object categories + 1 clutter class\n",
"* **epochs**: Number of training epochs\n",
"* **learning_rate**: Learning rate for training\n",
"* **mini_batch_size**: The number of training samples used for each mini batch. In distributed training, the number of training samples used per batch will be N * mini_batch_size where N is the number of hosts on which training is run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After setting training parameters, we kick off training, and poll for status until training is completed, which in this example, takes between 10 to 12 minutes per epoch on a p2.xlarge machine. The network typically converges after 10 epochs. However, to save the training time, we set the epochs to 2 but please keep in mind that it may not be sufficient to generate a good model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# The algorithm supports multiple network depth (number of layers). They are 18, 34, 50, 101, 152 and 200\n",
"# For this training, we will use 18 layers\n",
"num_layers = \"18\" \n",
"# we need to specify the input image shape for the training data\n",
"image_shape = \"3,224,224\"\n",
"# we also need to specify the number of training samples in the training set\n",
"# for caltech it is 15420\n",
"num_training_samples = \"15420\"\n",
"# specify the number of output classes\n",
"num_classes = \"257\"\n",
"# batch size for training\n",
"mini_batch_size = \"64\"\n",
"# number of epochs\n",
"epochs = \"2\"\n",
"# learning rate\n",
"learning_rate = \"0.01\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training\n",
"Run the training using Amazon sagemaker CreateTrainingJob API"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"scrolled": true
},
"outputs": [],
"source": [
"%%time\n",
"import time\n",
"import boto3\n",
"from time import gmtime, strftime\n",
"\n",
"\n",
"s3 = boto3.client('s3')\n",
"# create unique job name\n",
"job_name_prefix = 'DEMO-imageclassification'\n",
"job_name = job_name_prefix + '-' + time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime())\n",
"training_params = \\\n",
"{\n",
" # specify the training docker image\n",
" \"AlgorithmSpecification\": {\n",
" \"TrainingImage\": training_image,\n",
" \"TrainingInputMode\": \"File\"\n",
" },\n",
" \"RoleArn\": role,\n",
" \"OutputDataConfig\": {\n",
" \"S3OutputPath\": 's3://{}/{}/output'.format(bucket, job_name_prefix)\n",
" },\n",
" \"ResourceConfig\": {\n",
" \"InstanceCount\": 1,\n",
" \"InstanceType\": \"ml.p2.xlarge\",\n",
" \"VolumeSizeInGB\": 50\n",
" },\n",
" \"TrainingJobName\": job_name,\n",
" \"HyperParameters\": {\n",
" \"image_shape\": image_shape,\n",
" \"num_layers\": str(num_layers),\n",
" \"num_training_samples\": str(num_training_samples),\n",
" \"num_classes\": str(num_classes),\n",
" \"mini_batch_size\": str(mini_batch_size),\n",
" \"epochs\": str(epochs),\n",
" \"learning_rate\": str(learning_rate)\n",
" },\n",
" \"StoppingCondition\": {\n",
" \"MaxRuntimeInSeconds\": 360000\n",
" },\n",
"#Training data should be inside a subdirectory called \"train\"\n",
"#Validation data should be inside a subdirectory called \"validation\"\n",
"#The algorithm currently only supports fullyreplicated model (where data is copied onto each machine)\n",
" \"InputDataConfig\": [\n",
" {\n",
" \"ChannelName\": \"train\",\n",
" \"DataSource\": {\n",
" \"S3DataSource\": {\n",
" \"S3DataType\": \"S3Prefix\",\n",
" \"S3Uri\": s3_train,\n",
" \"S3DataDistributionType\": \"FullyReplicated\"\n",
" }\n",
" },\n",
" \"ContentType\": \"application/x-recordio\",\n",
" \"CompressionType\": \"None\"\n",
" },\n",
" {\n",
" \"ChannelName\": \"validation\",\n",
" \"DataSource\": {\n",
" \"S3DataSource\": {\n",
" \"S3DataType\": \"S3Prefix\",\n",
" \"S3Uri\": s3_validation,\n",
" \"S3DataDistributionType\": \"FullyReplicated\"\n",
" }\n",
" },\n",
" \"ContentType\": \"application/x-recordio\",\n",
" \"CompressionType\": \"None\"\n",
" }\n",
" ]\n",
"}\n",
"print('Training job name: {}'.format(job_name))\n",
"print('\\nInput Data Location: {}'.format(training_params['InputDataConfig'][0]['DataSource']['S3DataSource']))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# create the Amazon SageMaker training job\n",
"sagemaker = boto3.client(service_name='sagemaker')\n",
"sagemaker.create_training_job(**training_params)\n",
"\n",
"# confirm that the training job has started\n",
"status = sagemaker.describe_training_job(TrainingJobName=job_name)['TrainingJobStatus']\n",
"print('Training job current status: {}'.format(status))\n",
"\n",
"try:\n",
" # wait for the job to finish and report the ending status\n",
" sagemaker.get_waiter('training_job_completed_or_stopped').wait(TrainingJobName=job_name)\n",
" training_info = sagemaker.describe_training_job(TrainingJobName=job_name)\n",
" status = training_info['TrainingJobStatus']\n",
" print(\"Training job ended with status: \" + status)\n",
"except:\n",
" print('Training failed to start')\n",
" # if exception is raised, that means it has failed\n",
" message = sagemaker.describe_training_job(TrainingJobName=job_name)['FailureReason']\n",
" print('Training failed with the following error: {}'.format(message))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"training_info = sagemaker.describe_training_job(TrainingJobName=job_name)\n",
"status = training_info['TrainingJobStatus']\n",
"print(\"Training job ended with status: \" + status)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you see the message,\n",
"\n",
"> `Training job ended with status: Completed`\n",
"\n",
"then that means training successfully completed and the output model was stored in the output path specified by `training_params['OutputDataConfig']`.\n",
"\n",
"You can also view information about and the status of a training job using the AWS SageMaker console. Just click on the \"Jobs\" tab."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy The Model\n",
"\n",
"***\n",
"\n",
"A trained model does nothing on its own. We now want to use the model to perform inference. For this example, that means predicting the topic mixture representing a given document.\n",
"\n",
"This section involves several steps,\n",
"\n",
"1. [Create Model](#CreateModel) - Create model for the training output\n",
"1. [Batch Transform](#BatchTransform) - Create a transform job to perform batch inference.\n",
"1. [Host the model for realtime inference](#HostTheModel) - Create an inference endpoint and perform realtime inference."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create Model\n",
"\n",
"We now create a SageMaker Model from the training output. Using the model we can create a Batch Transform Job or an Endpoint Configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%%time\n",
"import boto3\n",
"from time import gmtime, strftime\n",
"\n",
"sage = boto3.Session().client(service_name='sagemaker') \n",
"\n",
"model_name=\"DEMO-full-image-classification-model\" + time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime())\n",
"print(model_name)\n",
"info = sage.describe_training_job(TrainingJobName=job_name)\n",
"model_data = info['ModelArtifacts']['S3ModelArtifacts']\n",
"print(model_data)\n",
"\n",
"hosting_image = get_image_uri(boto3.Session().region_name, 'image-classification')\n",
"\n",
"primary_container = {\n",
" 'Image': hosting_image,\n",
" 'ModelDataUrl': model_data,\n",
"}\n",
"\n",
"create_model_response = sage.create_model(\n",
" ModelName = model_name,\n",
" ExecutionRoleArn = role,\n",
" PrimaryContainer = primary_container)\n",
"\n",
"print(create_model_response['ModelArn'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Batch transform\n",
"\n",
"We now create a SageMaker Batch Transform job using the model created above to perform batch prediction."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Download test data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Download images under /008.bathtub\n",
"!wget -r -np -nH --cut-dirs=2 -P /tmp/ -R \"index.html*\" http://www.vision.caltech.edu/Image_Datasets/Caltech256/images/008.bathtub/\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"batch_input = 's3://{}/image-classification-full-training/test/'.format(bucket)\n",
"test_images = '/tmp/images/008.bathtub'\n",
"\n",
"!aws s3 cp $test_images $batch_input --recursive --quiet "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"timestamp = time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime())\n",
"batch_job_name = \"image-classification-model\" + timestamp\n",
"request = \\\n",
"{\n",
" \"TransformJobName\": batch_job_name,\n",
" \"ModelName\": model_name,\n",
" \"MaxConcurrentTransforms\": 16,\n",
" \"MaxPayloadInMB\": 6,\n",
" \"BatchStrategy\": \"SingleRecord\",\n",
" \"TransformOutput\": {\n",
" \"S3OutputPath\": 's3://{}/{}/output'.format(bucket, batch_job_name)\n",
" },\n",
" \"TransformInput\": {\n",
" \"DataSource\": {\n",
" \"S3DataSource\": {\n",
" \"S3DataType\": \"S3Prefix\",\n",
" \"S3Uri\": batch_input\n",
" }\n",
" },\n",
" \"ContentType\": \"application/x-image\",\n",
" \"SplitType\": \"None\",\n",
" \"CompressionType\": \"None\"\n",
" },\n",
" \"TransformResources\": {\n",
" \"InstanceType\": \"ml.p2.xlarge\",\n",
" \"InstanceCount\": 1\n",
" }\n",
"}\n",
"\n",
"print('Transform job name: {}'.format(batch_job_name))\n",
"print('\\nInput Data Location: {}'.format(s3_validation))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sagemaker = boto3.client('sagemaker')\n",
"sagemaker.create_transform_job(**request)\n",
"\n",
"print(\"Created Transform job with name: \", batch_job_name)\n",
"\n",
"while(True):\n",
" response = sagemaker.describe_transform_job(TransformJobName=batch_job_name)\n",
" status = response['TransformJobStatus']\n",
" if status == 'Completed':\n",
" print(\"Transform job ended with status: \" + status)\n",
" break\n",
" if status == 'Failed':\n",
" message = response['FailureReason']\n",
" print('Transform failed with the following error: {}'.format(message))\n",
" raise Exception('Transform job failed') \n",
" time.sleep(30) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After the job completes, let's inspect the prediction results. The accuracy may not be quite good because we set the epochs to 2 during training which may not be sufficient to train a good model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from urllib.parse import urlparse\n",
"import json\n",
"import numpy as np\n",
"\n",
"s3_client = boto3.client('s3')\n",
"object_categories = ['ak47', 'american-flag', 'backpack', 'baseball-bat', 'baseball-glove', 'basketball-hoop', 'bat', 'bathtub', 'bear', 'beer-mug', 'billiards', 'binoculars', 'birdbath', 'blimp', 'bonsai-101', 'boom-box', 'bowling-ball', 'bowling-pin', 'boxing-glove', 'brain-101', 'breadmaker', 'buddha-101', 'bulldozer', 'butterfly', 'cactus', 'cake', 'calculator', 'camel', 'cannon', 'canoe', 'car-tire', 'cartman', 'cd', 'centipede', 'cereal-box', 'chandelier-101', 'chess-board', 'chimp', 'chopsticks', 'cockroach', 'coffee-mug', 'coffin', 'coin', 'comet', 'computer-keyboard', 'computer-monitor', 'computer-mouse', 'conch', 'cormorant', 'covered-wagon', 'cowboy-hat', 'crab-101', 'desk-globe', 'diamond-ring', 'dice', 'dog', 'dolphin-101', 'doorknob', 'drinking-straw', 'duck', 'dumb-bell', 'eiffel-tower', 'electric-guitar-101', 'elephant-101', 'elk', 'ewer-101', 'eyeglasses', 'fern', 'fighter-jet', 'fire-extinguisher', 'fire-hydrant', 'fire-truck', 'fireworks', 'flashlight', 'floppy-disk', 'football-helmet', 'french-horn', 'fried-egg', 'frisbee', 'frog', 'frying-pan', 'galaxy', 'gas-pump', 'giraffe', 'goat', 'golden-gate-bridge', 'goldfish', 'golf-ball', 'goose', 'gorilla', 'grand-piano-101', 'grapes', 'grasshopper', 'guitar-pick', 'hamburger', 'hammock', 'harmonica', 'harp', 'harpsichord', 'hawksbill-101', 'head-phones', 'helicopter-101', 'hibiscus', 'homer-simpson', 'horse', 'horseshoe-crab', 'hot-air-balloon', 'hot-dog', 'hot-tub', 'hourglass', 'house-fly', 'human-skeleton', 'hummingbird', 'ibis-101', 'ice-cream-cone', 'iguana', 'ipod', 'iris', 'jesus-christ', 'joy-stick', 'kangaroo-101', 'kayak', 'ketch-101', 'killer-whale', 'knife', 'ladder', 'laptop-101', 'lathe', 'leopards-101', 'license-plate', 'lightbulb', 'light-house', 'lightning', 'llama-101', 'mailbox', 'mandolin', 'mars', 'mattress', 'megaphone', 'menorah-101', 'microscope', 'microwave', 'minaret', 'minotaur', 'motorbikes-101', 'mountain-bike', 'mushroom', 'mussels', 'necktie', 'octopus', 'ostrich', 'owl', 'palm-pilot', 'palm-tree', 'paperclip', 'paper-shredder', 'pci-card', 'penguin', 'people', 'pez-dispenser', 'photocopier', 'picnic-table', 'playing-card', 'porcupine', 'pram', 'praying-mantis', 'pyramid', 'raccoon', 'radio-telescope', 'rainbow', 'refrigerator', 'revolver-101', 'rifle', 'rotary-phone', 'roulette-wheel', 'saddle', 'saturn', 'school-bus', 'scorpion-101', 'screwdriver', 'segway', 'self-propelled-lawn-mower', 'sextant', 'sheet-music', 'skateboard', 'skunk', 'skyscraper', 'smokestack', 'snail', 'snake', 'sneaker', 'snowmobile', 'soccer-ball', 'socks', 'soda-can', 'spaghetti', 'speed-boat', 'spider', 'spoon', 'stained-glass', 'starfish-101', 'steering-wheel', 'stirrups', 'sunflower-101', 'superman', 'sushi', 'swan', 'swiss-army-knife', 'sword', 'syringe', 'tambourine', 'teapot', 'teddy-bear', 'teepee', 'telephone-box', 'tennis-ball', 'tennis-court', 'tennis-racket', 'theodolite', 'toaster', 'tomato', 'tombstone', 'top-hat', 'touring-bike', 'tower-pisa', 'traffic-light', 'treadmill', 'triceratops', 'tricycle', 'trilobite-101', 'tripod', 't-shirt', 'tuning-fork', 'tweezer', 'umbrella-101', 'unicorn', 'vcr', 'video-projector', 'washing-machine', 'watch-101', 'waterfall', 'watermelon', 'welding-mask', 'wheelbarrow', 'windmill', 'wine-bottle', 'xylophone', 'yarmulke', 'yo-yo', 'zebra', 'airplanes-101', 'car-side-101', 'faces-easy-101', 'greyhound', 'tennis-shoes', 'toad', 'clutter']\n",
"\n",
"def list_objects(s3_client, bucket, prefix):\n",
" response = s3_client.list_objects(Bucket=bucket, Prefix=prefix)\n",
" objects = [content['Key'] for content in response['Contents']]\n",
" return objects\n",
"\n",
"def get_label(s3_client, bucket, prefix):\n",
" filename = prefix.split('/')[-1]\n",
" s3_client.download_file(bucket, prefix, filename)\n",
" with open(filename) as f:\n",
" data = json.load(f)\n",
" index = np.argmax(data['prediction'])\n",
" probability = data['prediction'][index]\n",
" print(\"Result: label - \" + object_categories[index] + \", probability - \" + str(probability))\n",
" return object_categories[index], probability\n",
"\n",
"inputs = list_objects(s3_client, bucket, urlparse(batch_input).path.lstrip('/'))\n",
"print(\"Sample inputs: \" + str(inputs[:2]))\n",
"\n",
"outputs = list_objects(s3_client, bucket, batch_job_name + \"/output\")\n",
"print(\"Sample output: \" + str(outputs[:2]))\n",
"\n",
"# Check prediction result of the first 2 images\n",
"[get_label(s3_client, bucket, prefix) for prefix in outputs[0:10]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Realtime inference\n",
"\n",
"We now host the model with an endpoint and perform realtime inference.\n",
"\n",
"This section involves several steps,\n",
"1. [Create endpoint configuration](#CreateEndpointConfiguration) - Create a configuration defining an endpoint.\n",
"1. [Create endpoint](#CreateEndpoint) - Use the configuration to create an inference endpoint.\n",
"1. [Perform inference](#PerformInference) - Perform inference on some input data using the endpoint.\n",
"1. [Clean up](#CleanUp) - Delete the endpoint and model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create Endpoint Configuration\n",
"At launch, we will support configuring REST endpoints in hosting with multiple models, e.g. for A/B testing purposes. In order to support this, customers create an endpoint configuration, that describes the distribution of traffic across the models, whether split, shadowed, or sampled in some way.\n",
"\n",
"In addition, the endpoint configuration describes the instance type required for model deployment, and at launch will describe the autoscaling configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from time import gmtime, strftime\n",
"\n",
"timestamp = time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime())\n",
"endpoint_config_name = job_name_prefix + '-epc-' + timestamp\n",
"endpoint_config_response = sage.create_endpoint_config(\n",
" EndpointConfigName = endpoint_config_name,\n",
" ProductionVariants=[{\n",
" 'InstanceType':'ml.m4.xlarge',\n",
" 'InitialInstanceCount':1,\n",
" 'ModelName':model_name,\n",
" 'VariantName':'AllTraffic'}])\n",
"\n",
"print('Endpoint configuration name: {}'.format(endpoint_config_name))\n",
"print('Endpoint configuration arn: {}'.format(endpoint_config_response['EndpointConfigArn']))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Create Endpoint\n",
"Next, the customer creates the endpoint that serves up the model, through specifying the name and configuration defined above. The end result is an endpoint that can be validated and incorporated into production applications. This takes 9-11 minutes to complete."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%%time\n",
"import time\n",
"\n",
"timestamp = time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime())\n",
"endpoint_name = job_name_prefix + '-ep-' + timestamp\n",
"print('Endpoint name: {}'.format(endpoint_name))\n",
"\n",
"endpoint_params = {\n",
" 'EndpointName': endpoint_name,\n",
" 'EndpointConfigName': endpoint_config_name,\n",
"}\n",
"endpoint_response = sagemaker.create_endpoint(**endpoint_params)\n",
"print('EndpointArn = {}'.format(endpoint_response['EndpointArn']))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the endpoint can be created. It may take sometime to create the endpoint..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# get the status of the endpoint\n",
"response = sagemaker.describe_endpoint(EndpointName=endpoint_name)\n",
"status = response['EndpointStatus']\n",
"print('EndpointStatus = {}'.format(status))\n",
"\n",
"\n",
"# wait until the status has changed\n",
"sagemaker.get_waiter('endpoint_in_service').wait(EndpointName=endpoint_name)\n",
"\n",
"\n",
"# print the status of the endpoint\n",
"endpoint_response = sagemaker.describe_endpoint(EndpointName=endpoint_name)\n",
"status = endpoint_response['EndpointStatus']\n",
"print('Endpoint creation ended with EndpointStatus = {}'.format(status))\n",
"\n",
"if status != 'InService':\n",
" raise Exception('Endpoint creation failed.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you see the message,\n",
"\n",
"> `Endpoint creation ended with EndpointStatus = InService`\n",
"\n",
"then congratulations! You now have a functioning inference endpoint. You can confirm the endpoint configuration and status by navigating to the \"Endpoints\" tab in the AWS SageMaker console.\n",
"\n",
"We will finally create a runtime object from which we can invoke the endpoint."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Perform Inference\n",
"Finally, the customer can now validate the model for use. They can obtain the endpoint from the client library using the result from previous operations, and generate classifications from the trained model using that endpoint.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import boto3\n",
"runtime = boto3.Session().client(service_name='runtime.sagemaker') "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Download test image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"!wget -O /tmp/test.jpg http://www.vision.caltech.edu/Image_Datasets/Caltech256/images/008.bathtub/008_0007.jpg\n",
"file_name = '/tmp/test.jpg'\n",
"# test image\n",
"from IPython.display import Image\n",
"Image(file_name) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Evaluation\n",
"\n",
"Evaluate the image through the network for inteference. The network outputs class probabilities and typically, one selects the class with the maximum probability as the final class output.\n",
"\n",
"**Note:** The output class detected by the network may not be accurate in this example. To limit the time taken and cost of training, we have trained the model only for a couple of epochs. If the network is trained for more epochs (say 20), then the output class will be more accurate."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import json\n",
"import numpy as np\n",
"\n",
"with open(file_name, 'rb') as f:\n",
" payload = f.read()\n",
" payload = bytearray(payload)\n",
"response = runtime.invoke_endpoint(EndpointName=endpoint_name, \n",
" ContentType='application/x-image', \n",
" Body=payload)\n",
"result = response['Body'].read()\n",
"# result will be in json format and convert it to ndarray\n",
"result = json.loads(result)\n",
"# the result will output the probabilities for all classes\n",
"# find the class with maximum probability and print the class index\n",
"index = np.argmax(result)\n",
"object_categories = ['ak47', 'american-flag', 'backpack', 'baseball-bat', 'baseball-glove', 'basketball-hoop', 'bat', 'bathtub', 'bear', 'beer-mug', 'billiards', 'binoculars', 'birdbath', 'blimp', 'bonsai-101', 'boom-box', 'bowling-ball', 'bowling-pin', 'boxing-glove', 'brain-101', 'breadmaker', 'buddha-101', 'bulldozer', 'butterfly', 'cactus', 'cake', 'calculator', 'camel', 'cannon', 'canoe', 'car-tire', 'cartman', 'cd', 'centipede', 'cereal-box', 'chandelier-101', 'chess-board', 'chimp', 'chopsticks', 'cockroach', 'coffee-mug', 'coffin', 'coin', 'comet', 'computer-keyboard', 'computer-monitor', 'computer-mouse', 'conch', 'cormorant', 'covered-wagon', 'cowboy-hat', 'crab-101', 'desk-globe', 'diamond-ring', 'dice', 'dog', 'dolphin-101', 'doorknob', 'drinking-straw', 'duck', 'dumb-bell', 'eiffel-tower', 'electric-guitar-101', 'elephant-101', 'elk', 'ewer-101', 'eyeglasses', 'fern', 'fighter-jet', 'fire-extinguisher', 'fire-hydrant', 'fire-truck', 'fireworks', 'flashlight', 'floppy-disk', 'football-helmet', 'french-horn', 'fried-egg', 'frisbee', 'frog', 'frying-pan', 'galaxy', 'gas-pump', 'giraffe', 'goat', 'golden-gate-bridge', 'goldfish', 'golf-ball', 'goose', 'gorilla', 'grand-piano-101', 'grapes', 'grasshopper', 'guitar-pick', 'hamburger', 'hammock', 'harmonica', 'harp', 'harpsichord', 'hawksbill-101', 'head-phones', 'helicopter-101', 'hibiscus', 'homer-simpson', 'horse', 'horseshoe-crab', 'hot-air-balloon', 'hot-dog', 'hot-tub', 'hourglass', 'house-fly', 'human-skeleton', 'hummingbird', 'ibis-101', 'ice-cream-cone', 'iguana', 'ipod', 'iris', 'jesus-christ', 'joy-stick', 'kangaroo-101', 'kayak', 'ketch-101', 'killer-whale', 'knife', 'ladder', 'laptop-101', 'lathe', 'leopards-101', 'license-plate', 'lightbulb', 'light-house', 'lightning', 'llama-101', 'mailbox', 'mandolin', 'mars', 'mattress', 'megaphone', 'menorah-101', 'microscope', 'microwave', 'minaret', 'minotaur', 'motorbikes-101', 'mountain-bike', 'mushroom', 'mussels', 'necktie', 'octopus', 'ostrich', 'owl', 'palm-pilot', 'palm-tree', 'paperclip', 'paper-shredder', 'pci-card', 'penguin', 'people', 'pez-dispenser', 'photocopier', 'picnic-table', 'playing-card', 'porcupine', 'pram', 'praying-mantis', 'pyramid', 'raccoon', 'radio-telescope', 'rainbow', 'refrigerator', 'revolver-101', 'rifle', 'rotary-phone', 'roulette-wheel', 'saddle', 'saturn', 'school-bus', 'scorpion-101', 'screwdriver', 'segway', 'self-propelled-lawn-mower', 'sextant', 'sheet-music', 'skateboard', 'skunk', 'skyscraper', 'smokestack', 'snail', 'snake', 'sneaker', 'snowmobile', 'soccer-ball', 'socks', 'soda-can', 'spaghetti', 'speed-boat', 'spider', 'spoon', 'stained-glass', 'starfish-101', 'steering-wheel', 'stirrups', 'sunflower-101', 'superman', 'sushi', 'swan', 'swiss-army-knife', 'sword', 'syringe', 'tambourine', 'teapot', 'teddy-bear', 'teepee', 'telephone-box', 'tennis-ball', 'tennis-court', 'tennis-racket', 'theodolite', 'toaster', 'tomato', 'tombstone', 'top-hat', 'touring-bike', 'tower-pisa', 'traffic-light', 'treadmill', 'triceratops', 'tricycle', 'trilobite-101', 'tripod', 't-shirt', 'tuning-fork', 'tweezer', 'umbrella-101', 'unicorn', 'vcr', 'video-projector', 'washing-machine', 'watch-101', 'waterfall', 'watermelon', 'welding-mask', 'wheelbarrow', 'windmill', 'wine-bottle', 'xylophone', 'yarmulke', 'yo-yo', 'zebra', 'airplanes-101', 'car-side-101', 'faces-easy-101', 'greyhound', 'tennis-shoes', 'toad', 'clutter']\n",
"print(\"Result: label - \" + object_categories[index] + \", probability - \" + str(result[index]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Clean up\n",
"\n",
"When we're done with the endpoint, we can just delete it and the backing instances will be released. Run the following cell to delete the endpoint."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"sage.delete_endpoint(EndpointName=endpoint_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Tags",
"kernelspec": {
"display_name": "conda_mxnet_p36",
"language": "python",
"name": "conda_mxnet_p36"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}