split_normal_abnormal_fuzzy.py
1.02 KB
import pandas as pd
import csv
original_csv = pd.read_csv('./Fuzzy_dataset.csv')
normal_csv = open('./fuzzy_normal_dataset.csv', 'w', newline='', encoding='utf-8')
normal_csv_file = csv.writer(normal_csv)
abnormal_csv = open('./fuzzy_abnormal_dataset.csv', 'w', newline='', encoding='utf-8')
abnormal_csv_file = csv.writer(abnormal_csv)
idx = 0
normal_first = False
abnormal_first = False
while idx < len(original_csv) // 30:
original_row = original_csv.iloc[idx]
number_of_data = original_row[2]
is_regular = (original_row[number_of_data + 3] == 'R')
original_row.dropna(inplace=True)
if is_regular:
if not normal_first and number_of_data != 8:
idx += 1
continue
normal_first = True
normal_csv_file.writerow(original_row[1:])
else:
if not abnormal_first and number_of_data != 8:
idx += 1
continue
abnormal_first = True
abnormal_csv_file.writerow(original_row[1:])
idx += 1
if idx % 500000 == 0:
print(idx)