_export.py 36.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
"""
This module defines export functions for decision trees.
"""

# Authors: Gilles Louppe <g.louppe@gmail.com>
#          Peter Prettenhofer <peter.prettenhofer@gmail.com>
#          Brian Holt <bdholt1@gmail.com>
#          Noel Dawe <noel@dawe.me>
#          Satrajit Gosh <satrajit.ghosh@gmail.com>
#          Trevor Stephens <trev.stephens@gmail.com>
#          Li Li <aiki.nogard@gmail.com>
#          Giuseppe Vettigli <vettigli@gmail.com>
# License: BSD 3 clause
from io import StringIO
from numbers import Integral

import numpy as np

from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args
from ..base import is_classifier

from . import _criterion
from . import _tree
from ._reingold_tilford import buchheim, Tree
from . import DecisionTreeClassifier

import warnings


def _color_brew(n):
    """Generate n colors with equally spaced hues.

    Parameters
    ----------
    n : int
        The number of colors required.

    Returns
    -------
    color_list : list, length n
        List of n tuples of form (R, G, B) being the components of each color.
    """
    color_list = []

    # Initialize saturation & value; calculate chroma & value shift
    s, v = 0.75, 0.9
    c = s * v
    m = v - c

    for h in np.arange(25, 385, 360. / n).astype(int):
        # Calculate some intermediate values
        h_bar = h / 60.
        x = c * (1 - abs((h_bar % 2) - 1))
        # Initialize RGB with same hue & chroma as our color
        rgb = [(c, x, 0),
               (x, c, 0),
               (0, c, x),
               (0, x, c),
               (x, 0, c),
               (c, 0, x),
               (c, x, 0)]
        r, g, b = rgb[int(h_bar)]
        # Shift the initial RGB values to match value and store
        rgb = [(int(255 * (r + m))),
               (int(255 * (g + m))),
               (int(255 * (b + m)))]
        color_list.append(rgb)

    return color_list


class Sentinel:
    def __repr__(self):
        return '"tree.dot"'


SENTINEL = Sentinel()


@_deprecate_positional_args
def plot_tree(decision_tree, *, max_depth=None, feature_names=None,
              class_names=None, label='all', filled=False,
              impurity=True, node_ids=False,
              proportion=False, rotate='deprecated', rounded=False,
              precision=3, ax=None, fontsize=None):
    """Plot a decision tree.

    The sample counts that are shown are weighted with any sample_weights that
    might be present.

    The visualization is fit automatically to the size of the axis.
    Use the ``figsize`` or ``dpi`` arguments of ``plt.figure``  to control
    the size of the rendering.

    Read more in the :ref:`User Guide <tree>`.

    .. versionadded:: 0.21

    Parameters
    ----------
    decision_tree : decision tree regressor or classifier
        The decision tree to be plotted.

    max_depth : int, optional (default=None)
        The maximum depth of the representation. If None, the tree is fully
        generated.

    feature_names : list of strings, optional (default=None)
        Names of each of the features.

    class_names : list of strings, bool or None, optional (default=None)
        Names of each of the target classes in ascending numerical order.
        Only relevant for classification and not supported for multi-output.
        If ``True``, shows a symbolic representation of the class name.

    label : {'all', 'root', 'none'}, optional (default='all')
        Whether to show informative labels for impurity, etc.
        Options include 'all' to show at every node, 'root' to show only at
        the top root node, or 'none' to not show at any node.

    filled : bool, optional (default=False)
        When set to ``True``, paint nodes to indicate majority class for
        classification, extremity of values for regression, or purity of node
        for multi-output.

    impurity : bool, optional (default=True)
        When set to ``True``, show the impurity at each node.

    node_ids : bool, optional (default=False)
        When set to ``True``, show the ID number on each node.

    proportion : bool, optional (default=False)
        When set to ``True``, change the display of 'values' and/or 'samples'
        to be proportions and percentages respectively.

    rotate : bool, optional (default=False)
        This parameter has no effect on the matplotlib tree visualisation and
        it is kept here for backward compatibility.

        .. deprecated:: 0.23
           ``rotate`` is deprecated in 0.23 and will be removed in 0.25.


    rounded : bool, optional (default=False)
        When set to ``True``, draw node boxes with rounded corners and use
        Helvetica fonts instead of Times-Roman.

    precision : int, optional (default=3)
        Number of digits of precision for floating point in the values of
        impurity, threshold and value attributes of each node.

    ax : matplotlib axis, optional (default=None)
        Axes to plot to. If None, use current axis. Any previous content
        is cleared.

    fontsize : int, optional (default=None)
        Size of text font. If None, determined automatically to fit figure.

    Returns
    -------
    annotations : list of artists
        List containing the artists for the annotation boxes making up the
        tree.

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn import tree

    >>> clf = tree.DecisionTreeClassifier(random_state=0)
    >>> iris = load_iris()

    >>> clf = clf.fit(iris.data, iris.target)
    >>> tree.plot_tree(clf)  # doctest: +SKIP
    [Text(251.5,345.217,'X[3] <= 0.8...

    """

    check_is_fitted(decision_tree)

    if rotate != 'deprecated':
        warnings.warn(("'rotate' has no effect and is deprecated in 0.23. "
                       "It will be removed in 0.25."),
                      FutureWarning)

    exporter = _MPLTreeExporter(
        max_depth=max_depth, feature_names=feature_names,
        class_names=class_names, label=label, filled=filled,
        impurity=impurity, node_ids=node_ids,
        proportion=proportion, rotate=rotate, rounded=rounded,
        precision=precision, fontsize=fontsize)
    return exporter.export(decision_tree, ax=ax)


class _BaseTreeExporter:
    def __init__(self, max_depth=None, feature_names=None,
                 class_names=None, label='all', filled=False,
                 impurity=True, node_ids=False,
                 proportion=False, rotate=False, rounded=False,
                 precision=3, fontsize=None):
        self.max_depth = max_depth
        self.feature_names = feature_names
        self.class_names = class_names
        self.label = label
        self.filled = filled
        self.impurity = impurity
        self.node_ids = node_ids
        self.proportion = proportion
        self.rotate = rotate
        self.rounded = rounded
        self.precision = precision
        self.fontsize = fontsize

    def get_color(self, value):
        # Find the appropriate color & intensity for a node
        if self.colors['bounds'] is None:
            # Classification tree
            color = list(self.colors['rgb'][np.argmax(value)])
            sorted_values = sorted(value, reverse=True)
            if len(sorted_values) == 1:
                alpha = 0
            else:
                alpha = ((sorted_values[0] - sorted_values[1])
                         / (1 - sorted_values[1]))
        else:
            # Regression tree or multi-output
            color = list(self.colors['rgb'][0])
            alpha = ((value - self.colors['bounds'][0]) /
                     (self.colors['bounds'][1] - self.colors['bounds'][0]))
        # unpack numpy scalars
        alpha = float(alpha)
        # compute the color as alpha against white
        color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color]
        # Return html color code in #RRGGBB format
        return '#%2x%2x%2x' % tuple(color)

    def get_fill_color(self, tree, node_id):
        # Fetch appropriate color for node
        if 'rgb' not in self.colors:
            # Initialize colors and bounds if required
            self.colors['rgb'] = _color_brew(tree.n_classes[0])
            if tree.n_outputs != 1:
                # Find max and min impurities for multi-output
                self.colors['bounds'] = (np.min(-tree.impurity),
                                         np.max(-tree.impurity))
            elif (tree.n_classes[0] == 1 and
                  len(np.unique(tree.value)) != 1):
                # Find max and min values in leaf nodes for regression
                self.colors['bounds'] = (np.min(tree.value),
                                         np.max(tree.value))
        if tree.n_outputs == 1:
            node_val = (tree.value[node_id][0, :] /
                        tree.weighted_n_node_samples[node_id])
            if tree.n_classes[0] == 1:
                # Regression
                node_val = tree.value[node_id][0, :]
        else:
            # If multi-output color node by impurity
            node_val = -tree.impurity[node_id]
        return self.get_color(node_val)

    def node_to_str(self, tree, node_id, criterion):
        # Generate the node content string
        if tree.n_outputs == 1:
            value = tree.value[node_id][0, :]
        else:
            value = tree.value[node_id]

        # Should labels be shown?
        labels = (self.label == 'root' and node_id == 0) or self.label == 'all'

        characters = self.characters
        node_string = characters[-1]

        # Write node ID
        if self.node_ids:
            if labels:
                node_string += 'node '
            node_string += characters[0] + str(node_id) + characters[4]

        # Write decision criteria
        if tree.children_left[node_id] != _tree.TREE_LEAF:
            # Always write node decision criteria, except for leaves
            if self.feature_names is not None:
                feature = self.feature_names[tree.feature[node_id]]
            else:
                feature = "X%s%s%s" % (characters[1],
                                       tree.feature[node_id],
                                       characters[2])
            node_string += '%s %s %s%s' % (feature,
                                           characters[3],
                                           round(tree.threshold[node_id],
                                                 self.precision),
                                           characters[4])

        # Write impurity
        if self.impurity:
            if isinstance(criterion, _criterion.FriedmanMSE):
                criterion = "friedman_mse"
            elif not isinstance(criterion, str):
                criterion = "impurity"
            if labels:
                node_string += '%s = ' % criterion
            node_string += (str(round(tree.impurity[node_id], self.precision))
                            + characters[4])

        # Write node sample count
        if labels:
            node_string += 'samples = '
        if self.proportion:
            percent = (100. * tree.n_node_samples[node_id] /
                       float(tree.n_node_samples[0]))
            node_string += (str(round(percent, 1)) + '%' +
                            characters[4])
        else:
            node_string += (str(tree.n_node_samples[node_id]) +
                            characters[4])

        # Write node class distribution / regression value
        if self.proportion and tree.n_classes[0] != 1:
            # For classification this will show the proportion of samples
            value = value / tree.weighted_n_node_samples[node_id]
        if labels:
            node_string += 'value = '
        if tree.n_classes[0] == 1:
            # Regression
            value_text = np.around(value, self.precision)
        elif self.proportion:
            # Classification
            value_text = np.around(value, self.precision)
        elif np.all(np.equal(np.mod(value, 1), 0)):
            # Classification without floating-point weights
            value_text = value.astype(int)
        else:
            # Classification with floating-point weights
            value_text = np.around(value, self.precision)
        # Strip whitespace
        value_text = str(value_text.astype('S32')).replace("b'", "'")
        value_text = value_text.replace("' '", ", ").replace("'", "")
        if tree.n_classes[0] == 1 and tree.n_outputs == 1:
            value_text = value_text.replace("[", "").replace("]", "")
        value_text = value_text.replace("\n ", characters[4])
        node_string += value_text + characters[4]

        # Write node majority class
        if (self.class_names is not None and
                tree.n_classes[0] != 1 and
                tree.n_outputs == 1):
            # Only done for single-output classification trees
            if labels:
                node_string += 'class = '
            if self.class_names is not True:
                class_name = self.class_names[np.argmax(value)]
            else:
                class_name = "y%s%s%s" % (characters[1],
                                          np.argmax(value),
                                          characters[2])
            node_string += class_name

        # Clean up any trailing newlines
        if node_string.endswith(characters[4]):
            node_string = node_string[:-len(characters[4])]

        return node_string + characters[5]


class _DOTTreeExporter(_BaseTreeExporter):
    def __init__(self, out_file=SENTINEL, max_depth=None,
                 feature_names=None, class_names=None, label='all',
                 filled=False, leaves_parallel=False, impurity=True,
                 node_ids=False, proportion=False, rotate=False, rounded=False,
                 special_characters=False, precision=3):

        super().__init__(
            max_depth=max_depth, feature_names=feature_names,
            class_names=class_names, label=label, filled=filled,
            impurity=impurity,
            node_ids=node_ids, proportion=proportion, rotate=rotate,
            rounded=rounded,
            precision=precision)
        self.leaves_parallel = leaves_parallel
        self.out_file = out_file
        self.special_characters = special_characters

        # PostScript compatibility for special characters
        if special_characters:
            self.characters = ['&#35;', '<SUB>', '</SUB>', '&le;', '<br/>',
                               '>', '<']
        else:
            self.characters = ['#', '[', ']', '<=', '\\n', '"', '"']

        # validate
        if isinstance(precision, Integral):
            if precision < 0:
                raise ValueError("'precision' should be greater or equal to 0."
                                 " Got {} instead.".format(precision))
        else:
            raise ValueError("'precision' should be an integer. Got {}"
                             " instead.".format(type(precision)))

        # The depth of each node for plotting with 'leaf' option
        self.ranks = {'leaves': []}
        # The colors to render each node with
        self.colors = {'bounds': None}

    def export(self, decision_tree):
        # Check length of feature_names before getting into the tree node
        # Raise error if length of feature_names does not match
        # n_features_ in the decision_tree
        if self.feature_names is not None:
            if len(self.feature_names) != decision_tree.n_features_:
                raise ValueError("Length of feature_names, %d "
                                 "does not match number of features, %d"
                                 % (len(self.feature_names),
                                    decision_tree.n_features_))
        # each part writes to out_file
        self.head()
        # Now recurse the tree and add node & edge attributes
        if isinstance(decision_tree, _tree.Tree):
            self.recurse(decision_tree, 0, criterion="impurity")
        else:
            self.recurse(decision_tree.tree_, 0,
                         criterion=decision_tree.criterion)

        self.tail()

    def tail(self):
        # If required, draw leaf nodes at same depth as each other
        if self.leaves_parallel:
            for rank in sorted(self.ranks):
                self.out_file.write(
                    "{rank=same ; " +
                    "; ".join(r for r in self.ranks[rank]) + "} ;\n")
        self.out_file.write("}")

    def head(self):
        self.out_file.write('digraph Tree {\n')

        # Specify node aesthetics
        self.out_file.write('node [shape=box')
        rounded_filled = []
        if self.filled:
            rounded_filled.append('filled')
        if self.rounded:
            rounded_filled.append('rounded')
        if len(rounded_filled) > 0:
            self.out_file.write(
                ', style="%s", color="black"'
                % ", ".join(rounded_filled))
        if self.rounded:
            self.out_file.write(', fontname=helvetica')
        self.out_file.write('] ;\n')

        # Specify graph & edge aesthetics
        if self.leaves_parallel:
            self.out_file.write(
                'graph [ranksep=equally, splines=polyline] ;\n')
        if self.rounded:
            self.out_file.write('edge [fontname=helvetica] ;\n')
        if self.rotate:
            self.out_file.write('rankdir=LR ;\n')

    def recurse(self, tree, node_id, criterion, parent=None, depth=0):
        if node_id == _tree.TREE_LEAF:
            raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF)

        left_child = tree.children_left[node_id]
        right_child = tree.children_right[node_id]

        # Add node with description
        if self.max_depth is None or depth <= self.max_depth:

            # Collect ranks for 'leaf' option in plot_options
            if left_child == _tree.TREE_LEAF:
                self.ranks['leaves'].append(str(node_id))
            elif str(depth) not in self.ranks:
                self.ranks[str(depth)] = [str(node_id)]
            else:
                self.ranks[str(depth)].append(str(node_id))

            self.out_file.write(
                '%d [label=%s' % (node_id, self.node_to_str(tree, node_id,
                                                            criterion)))

            if self.filled:
                self.out_file.write(', fillcolor="%s"'
                                    % self.get_fill_color(tree, node_id))
            self.out_file.write('] ;\n')

            if parent is not None:
                # Add edge to parent
                self.out_file.write('%d -> %d' % (parent, node_id))
                if parent == 0:
                    # Draw True/False labels if parent is root node
                    angles = np.array([45, -45]) * ((self.rotate - .5) * -2)
                    self.out_file.write(' [labeldistance=2.5, labelangle=')
                    if node_id == 1:
                        self.out_file.write('%d, headlabel="True"]' %
                                            angles[0])
                    else:
                        self.out_file.write('%d, headlabel="False"]' %
                                            angles[1])
                self.out_file.write(' ;\n')

            if left_child != _tree.TREE_LEAF:
                self.recurse(tree, left_child, criterion=criterion,
                             parent=node_id, depth=depth + 1)
                self.recurse(tree, right_child, criterion=criterion,
                             parent=node_id, depth=depth + 1)

        else:
            self.ranks['leaves'].append(str(node_id))

            self.out_file.write('%d [label="(...)"' % node_id)
            if self.filled:
                # color cropped nodes grey
                self.out_file.write(', fillcolor="#C0C0C0"')
            self.out_file.write('] ;\n' % node_id)

            if parent is not None:
                # Add edge to parent
                self.out_file.write('%d -> %d ;\n' % (parent, node_id))


class _MPLTreeExporter(_BaseTreeExporter):
    def __init__(self, max_depth=None, feature_names=None,
                 class_names=None, label='all', filled=False,
                 impurity=True, node_ids=False,
                 proportion=False, rotate=False, rounded=False,
                 precision=3, fontsize=None):

        super().__init__(
            max_depth=max_depth, feature_names=feature_names,
            class_names=class_names, label=label, filled=filled,
            impurity=impurity, node_ids=node_ids, proportion=proportion,
            rotate=rotate, rounded=rounded, precision=precision)
        self.fontsize = fontsize

        # validate
        if isinstance(precision, Integral):
            if precision < 0:
                raise ValueError("'precision' should be greater or equal to 0."
                                 " Got {} instead.".format(precision))
        else:
            raise ValueError("'precision' should be an integer. Got {}"
                             " instead.".format(type(precision)))

        # The depth of each node for plotting with 'leaf' option
        self.ranks = {'leaves': []}
        # The colors to render each node with
        self.colors = {'bounds': None}

        self.characters = ['#', '[', ']', '<=', '\n', '', '']

        self.bbox_args = dict(fc='w')
        if self.rounded:
            self.bbox_args['boxstyle'] = "round"

        self.arrow_args = dict(arrowstyle="<-")

    def _make_tree(self, node_id, et, criterion, depth=0):
        # traverses _tree.Tree recursively, builds intermediate
        # "_reingold_tilford.Tree" object
        name = self.node_to_str(et, node_id, criterion=criterion)
        if (et.children_left[node_id] != _tree.TREE_LEAF
                and (self.max_depth is None or depth <= self.max_depth)):
            children = [self._make_tree(et.children_left[node_id], et,
                                        criterion, depth=depth + 1),
                        self._make_tree(et.children_right[node_id], et,
                                        criterion, depth=depth + 1)]
        else:
            return Tree(name, node_id)
        return Tree(name, node_id, *children)

    def export(self, decision_tree, ax=None):
        import matplotlib.pyplot as plt
        from matplotlib.text import Annotation

        if ax is None:
            ax = plt.gca()
        ax.clear()
        ax.set_axis_off()
        my_tree = self._make_tree(0, decision_tree.tree_,
                                  decision_tree.criterion)
        draw_tree = buchheim(my_tree)

        # important to make sure we're still
        # inside the axis after drawing the box
        # this makes sense because the width of a box
        # is about the same as the distance between boxes
        max_x, max_y = draw_tree.max_extents() + 1
        ax_width = ax.get_window_extent().width
        ax_height = ax.get_window_extent().height

        scale_x = ax_width / max_x
        scale_y = ax_height / max_y

        self.recurse(draw_tree, decision_tree.tree_, ax,
                     scale_x, scale_y, ax_height)

        anns = [ann for ann in ax.get_children()
                if isinstance(ann, Annotation)]

        # update sizes of all bboxes
        renderer = ax.figure.canvas.get_renderer()

        for ann in anns:
            ann.update_bbox_position_size(renderer)

        if self.fontsize is None:
            # get figure to data transform
            # adjust fontsize to avoid overlap
            # get max box width and height
            extents = [ann.get_bbox_patch().get_window_extent()
                       for ann in anns]
            max_width = max([extent.width for extent in extents])
            max_height = max([extent.height for extent in extents])
            # width should be around scale_x in axis coordinates
            size = anns[0].get_fontsize() * min(scale_x / max_width,
                                                scale_y / max_height)
            for ann in anns:
                ann.set_fontsize(size)

        return anns

    def recurse(self, node, tree, ax, scale_x, scale_y, height, depth=0):
        kwargs = dict(bbox=self.bbox_args, ha='center', va='center',
                      zorder=100 - 10 * depth, xycoords='axes pixels')

        if self.fontsize is not None:
            kwargs['fontsize'] = self.fontsize

        # offset things by .5 to center them in plot
        xy = ((node.x + .5) * scale_x, height - (node.y + .5) * scale_y)

        if self.max_depth is None or depth <= self.max_depth:
            if self.filled:
                kwargs['bbox']['fc'] = self.get_fill_color(tree,
                                                           node.tree.node_id)
            if node.parent is None:
                # root
                ax.annotate(node.tree.label, xy, **kwargs)
            else:
                xy_parent = ((node.parent.x + .5) * scale_x,
                             height - (node.parent.y + .5) * scale_y)
                kwargs["arrowprops"] = self.arrow_args
                ax.annotate(node.tree.label, xy_parent, xy, **kwargs)
            for child in node.children:
                self.recurse(child, tree, ax, scale_x, scale_y, height,
                             depth=depth + 1)

        else:
            xy_parent = ((node.parent.x + .5) * scale_x,
                         height - (node.parent.y + .5) * scale_y)
            kwargs["arrowprops"] = self.arrow_args
            kwargs['bbox']['fc'] = 'grey'
            ax.annotate("\n  (...)  \n", xy_parent, xy, **kwargs)


@_deprecate_positional_args
def export_graphviz(decision_tree, out_file=None, *, max_depth=None,
                    feature_names=None, class_names=None, label='all',
                    filled=False, leaves_parallel=False, impurity=True,
                    node_ids=False, proportion=False, rotate=False,
                    rounded=False, special_characters=False, precision=3):
    """Export a decision tree in DOT format.

    This function generates a GraphViz representation of the decision tree,
    which is then written into `out_file`. Once exported, graphical renderings
    can be generated using, for example::

        $ dot -Tps tree.dot -o tree.ps      (PostScript format)
        $ dot -Tpng tree.dot -o tree.png    (PNG format)

    The sample counts that are shown are weighted with any sample_weights that
    might be present.

    Read more in the :ref:`User Guide <tree>`.

    Parameters
    ----------
    decision_tree : decision tree classifier
        The decision tree to be exported to GraphViz.

    out_file : file object or string, optional (default=None)
        Handle or name of the output file. If ``None``, the result is
        returned as a string.

        .. versionchanged:: 0.20
            Default of out_file changed from "tree.dot" to None.

    max_depth : int, optional (default=None)
        The maximum depth of the representation. If None, the tree is fully
        generated.

    feature_names : list of strings, optional (default=None)
        Names of each of the features.

    class_names : list of strings, bool or None, optional (default=None)
        Names of each of the target classes in ascending numerical order.
        Only relevant for classification and not supported for multi-output.
        If ``True``, shows a symbolic representation of the class name.

    label : {'all', 'root', 'none'}, optional (default='all')
        Whether to show informative labels for impurity, etc.
        Options include 'all' to show at every node, 'root' to show only at
        the top root node, or 'none' to not show at any node.

    filled : bool, optional (default=False)
        When set to ``True``, paint nodes to indicate majority class for
        classification, extremity of values for regression, or purity of node
        for multi-output.

    leaves_parallel : bool, optional (default=False)
        When set to ``True``, draw all leaf nodes at the bottom of the tree.

    impurity : bool, optional (default=True)
        When set to ``True``, show the impurity at each node.

    node_ids : bool, optional (default=False)
        When set to ``True``, show the ID number on each node.

    proportion : bool, optional (default=False)
        When set to ``True``, change the display of 'values' and/or 'samples'
        to be proportions and percentages respectively.

    rotate : bool, optional (default=False)
        When set to ``True``, orient tree left to right rather than top-down.

    rounded : bool, optional (default=False)
        When set to ``True``, draw node boxes with rounded corners and use
        Helvetica fonts instead of Times-Roman.

    special_characters : bool, optional (default=False)
        When set to ``False``, ignore special characters for PostScript
        compatibility.

    precision : int, optional (default=3)
        Number of digits of precision for floating point in the values of
        impurity, threshold and value attributes of each node.

    Returns
    -------
    dot_data : string
        String representation of the input tree in GraphViz dot format.
        Only returned if ``out_file`` is None.

        .. versionadded:: 0.18

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn import tree

    >>> clf = tree.DecisionTreeClassifier()
    >>> iris = load_iris()

    >>> clf = clf.fit(iris.data, iris.target)
    >>> tree.export_graphviz(clf)
    'digraph Tree {...
    """

    check_is_fitted(decision_tree)
    own_file = False
    return_string = False
    try:
        if isinstance(out_file, str):
            out_file = open(out_file, "w", encoding="utf-8")
            own_file = True

        if out_file is None:
            return_string = True
            out_file = StringIO()

        exporter = _DOTTreeExporter(
            out_file=out_file, max_depth=max_depth,
            feature_names=feature_names, class_names=class_names, label=label,
            filled=filled, leaves_parallel=leaves_parallel, impurity=impurity,
            node_ids=node_ids, proportion=proportion, rotate=rotate,
            rounded=rounded, special_characters=special_characters,
            precision=precision)
        exporter.export(decision_tree)

        if return_string:
            return exporter.out_file.getvalue()

    finally:
        if own_file:
            out_file.close()


def _compute_depth(tree, node):
    """
    Returns the depth of the subtree rooted in node.
    """
    def compute_depth_(current_node, current_depth,
                       children_left, children_right, depths):
        depths += [current_depth]
        left = children_left[current_node]
        right = children_right[current_node]
        if left != -1 and right != -1:
            compute_depth_(left, current_depth+1,
                           children_left, children_right, depths)
            compute_depth_(right, current_depth+1,
                           children_left, children_right, depths)

    depths = []
    compute_depth_(node, 1, tree.children_left, tree.children_right, depths)
    return max(depths)


@_deprecate_positional_args
def export_text(decision_tree, *, feature_names=None, max_depth=10,
                spacing=3, decimals=2, show_weights=False):
    """Build a text report showing the rules of a decision tree.

    Note that backwards compatibility may not be supported.

    Parameters
    ----------
    decision_tree : object
        The decision tree estimator to be exported.
        It can be an instance of
        DecisionTreeClassifier or DecisionTreeRegressor.

    feature_names : list, optional (default=None)
        A list of length n_features containing the feature names.
        If None generic names will be used ("feature_0", "feature_1", ...).

    max_depth : int, optional (default=10)
        Only the first max_depth levels of the tree are exported.
        Truncated branches will be marked with "...".

    spacing : int, optional (default=3)
        Number of spaces between edges. The higher it is, the wider the result.

    decimals : int, optional (default=2)
        Number of decimal digits to display.

    show_weights : bool, optional (default=False)
        If true the classification weights will be exported on each leaf.
        The classification weights are the number of samples each class.

    Returns
    -------
    report : string
        Text summary of all the rules in the decision tree.

    Examples
    --------

    >>> from sklearn.datasets import load_iris
    >>> from sklearn.tree import DecisionTreeClassifier
    >>> from sklearn.tree import export_text
    >>> iris = load_iris()
    >>> X = iris['data']
    >>> y = iris['target']
    >>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
    >>> decision_tree = decision_tree.fit(X, y)
    >>> r = export_text(decision_tree, feature_names=iris['feature_names'])
    >>> print(r)
    |--- petal width (cm) <= 0.80
    |   |--- class: 0
    |--- petal width (cm) >  0.80
    |   |--- petal width (cm) <= 1.75
    |   |   |--- class: 1
    |   |--- petal width (cm) >  1.75
    |   |   |--- class: 2
    """
    check_is_fitted(decision_tree)
    tree_ = decision_tree.tree_
    if is_classifier(decision_tree):
        class_names = decision_tree.classes_
    right_child_fmt = "{} {} <= {}\n"
    left_child_fmt = "{} {} >  {}\n"
    truncation_fmt = "{} {}\n"

    if max_depth < 0:
        raise ValueError("max_depth bust be >= 0, given %d" % max_depth)

    if (feature_names is not None and
            len(feature_names) != tree_.n_features):
        raise ValueError("feature_names must contain "
                         "%d elements, got %d" % (tree_.n_features,
                                                  len(feature_names)))

    if spacing <= 0:
        raise ValueError("spacing must be > 0, given %d" % spacing)

    if decimals < 0:
        raise ValueError("decimals must be >= 0, given %d" % decimals)

    if isinstance(decision_tree, DecisionTreeClassifier):
        value_fmt = "{}{} weights: {}\n"
        if not show_weights:
            value_fmt = "{}{}{}\n"
    else:
        value_fmt = "{}{} value: {}\n"

    if feature_names:
        feature_names_ = [feature_names[i] if i != _tree.TREE_UNDEFINED
                          else None for i in tree_.feature]
    else:
        feature_names_ = ["feature_{}".format(i) for i in tree_.feature]

    export_text.report = ""

    def _add_leaf(value, class_name, indent):
        val = ''
        is_classification = isinstance(decision_tree,
                                       DecisionTreeClassifier)
        if show_weights or not is_classification:
            val = ["{1:.{0}f}, ".format(decimals, v) for v in value]
            val = '['+''.join(val)[:-2]+']'
        if is_classification:
            val += ' class: ' + str(class_name)
        export_text.report += value_fmt.format(indent, '', val)

    def print_tree_recurse(node, depth):
        indent = ("|" + (" " * spacing)) * depth
        indent = indent[:-spacing] + "-" * spacing

        value = None
        if tree_.n_outputs == 1:
            value = tree_.value[node][0]
        else:
            value = tree_.value[node].T[0]
        class_name = np.argmax(value)

        if (tree_.n_classes[0] != 1 and
                tree_.n_outputs == 1):
            class_name = class_names[class_name]

        if depth <= max_depth+1:
            info_fmt = ""
            info_fmt_left = info_fmt
            info_fmt_right = info_fmt

            if tree_.feature[node] != _tree.TREE_UNDEFINED:
                name = feature_names_[node]
                threshold = tree_.threshold[node]
                threshold = "{1:.{0}f}".format(decimals, threshold)
                export_text.report += right_child_fmt.format(indent,
                                                             name,
                                                             threshold)
                export_text.report += info_fmt_left
                print_tree_recurse(tree_.children_left[node], depth+1)

                export_text.report += left_child_fmt.format(indent,
                                                            name,
                                                            threshold)
                export_text.report += info_fmt_right
                print_tree_recurse(tree_.children_right[node], depth+1)
            else:  # leaf
                _add_leaf(value, class_name, indent)
        else:
            subtree_depth = _compute_depth(tree_, node)
            if subtree_depth == 1:
                _add_leaf(value, class_name, indent)
            else:
                trunc_report = 'truncated branch of depth %d' % subtree_depth
                export_text.report += truncation_fmt.format(indent,
                                                            trunc_report)

    print_tree_recurse(0, 1)
    return export_text.report