_classes.py 70.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
"""
This module gathers tree-based methods, including decision, regression and
randomized trees. Single and multi-output problems are both handled.
"""

# Authors: Gilles Louppe <g.louppe@gmail.com>
#          Peter Prettenhofer <peter.prettenhofer@gmail.com>
#          Brian Holt <bdholt1@gmail.com>
#          Noel Dawe <noel@dawe.me>
#          Satrajit Gosh <satrajit.ghosh@gmail.com>
#          Joly Arnaud <arnaud.v.joly@gmail.com>
#          Fares Hedayati <fares.hedayati@gmail.com>
#          Nelson Liu <nelson@nelsonliu.me>
#
# License: BSD 3 clause

import numbers
import warnings
from abc import ABCMeta
from abc import abstractmethod
from math import ceil

import numpy as np
from scipy.sparse import issparse

from ..base import BaseEstimator
from ..base import ClassifierMixin
from ..base import clone
from ..base import RegressorMixin
from ..base import is_classifier
from ..base import MultiOutputMixin
from ..utils import Bunch
from ..utils import check_array
from ..utils import check_random_state
from ..utils.validation import _check_sample_weight
from ..utils import compute_sample_weight
from ..utils.multiclass import check_classification_targets
from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args

from ._criterion import Criterion
from ._splitter import Splitter
from ._tree import DepthFirstTreeBuilder
from ._tree import BestFirstTreeBuilder
from ._tree import Tree
from ._tree import _build_pruned_tree_ccp
from ._tree import ccp_pruning_path
from . import _tree, _splitter, _criterion

__all__ = ["DecisionTreeClassifier",
           "DecisionTreeRegressor",
           "ExtraTreeClassifier",
           "ExtraTreeRegressor"]


# =============================================================================
# Types and constants
# =============================================================================

DTYPE = _tree.DTYPE
DOUBLE = _tree.DOUBLE

CRITERIA_CLF = {"gini": _criterion.Gini, "entropy": _criterion.Entropy}
CRITERIA_REG = {"mse": _criterion.MSE, "friedman_mse": _criterion.FriedmanMSE,
                "mae": _criterion.MAE}

DENSE_SPLITTERS = {"best": _splitter.BestSplitter,
                   "random": _splitter.RandomSplitter}

SPARSE_SPLITTERS = {"best": _splitter.BestSparseSplitter,
                    "random": _splitter.RandomSparseSplitter}

# =============================================================================
# Base decision tree
# =============================================================================


class BaseDecisionTree(MultiOutputMixin, BaseEstimator, metaclass=ABCMeta):
    """Base class for decision trees.

    Warning: This class should not be used directly.
    Use derived classes instead.
    """

    @abstractmethod
    @_deprecate_positional_args
    def __init__(self, *,
                 criterion,
                 splitter,
                 max_depth,
                 min_samples_split,
                 min_samples_leaf,
                 min_weight_fraction_leaf,
                 max_features,
                 max_leaf_nodes,
                 random_state,
                 min_impurity_decrease,
                 min_impurity_split,
                 class_weight=None,
                 presort='deprecated',
                 ccp_alpha=0.0):
        self.criterion = criterion
        self.splitter = splitter
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.random_state = random_state
        self.min_impurity_decrease = min_impurity_decrease
        self.min_impurity_split = min_impurity_split
        self.class_weight = class_weight
        self.presort = presort
        self.ccp_alpha = ccp_alpha

    def get_depth(self):
        """Return the depth of the decision tree.

        The depth of a tree is the maximum distance between the root
        and any leaf.

        Returns
        -------
        self.tree_.max_depth : int
            The maximum depth of the tree.
        """
        check_is_fitted(self)
        return self.tree_.max_depth

    def get_n_leaves(self):
        """Return the number of leaves of the decision tree.

        Returns
        -------
        self.tree_.n_leaves : int
            Number of leaves.
        """
        check_is_fitted(self)
        return self.tree_.n_leaves

    def fit(self, X, y, sample_weight=None, check_input=True,
            X_idx_sorted=None):

        random_state = check_random_state(self.random_state)

        if self.ccp_alpha < 0.0:
            raise ValueError("ccp_alpha must be greater than or equal to 0")

        if check_input:
            # Need to validate separately here.
            # We can't pass multi_ouput=True because that would allow y to be
            # csr.
            check_X_params = dict(dtype=DTYPE, accept_sparse="csc")
            check_y_params = dict(ensure_2d=False, dtype=None)
            X, y = self._validate_data(X, y,
                                       validate_separately=(check_X_params,
                                                            check_y_params))
            if issparse(X):
                X.sort_indices()

                if X.indices.dtype != np.intc or X.indptr.dtype != np.intc:
                    raise ValueError("No support for np.int64 index based "
                                     "sparse matrices")

        # Determine output settings
        n_samples, self.n_features_ = X.shape
        is_classification = is_classifier(self)

        y = np.atleast_1d(y)
        expanded_class_weight = None

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        if is_classification:
            check_classification_targets(y)
            y = np.copy(y)

            self.classes_ = []
            self.n_classes_ = []

            if self.class_weight is not None:
                y_original = np.copy(y)

            y_encoded = np.zeros(y.shape, dtype=np.int)
            for k in range(self.n_outputs_):
                classes_k, y_encoded[:, k] = np.unique(y[:, k],
                                                       return_inverse=True)
                self.classes_.append(classes_k)
                self.n_classes_.append(classes_k.shape[0])
            y = y_encoded

            if self.class_weight is not None:
                expanded_class_weight = compute_sample_weight(
                    self.class_weight, y_original)

            self.n_classes_ = np.array(self.n_classes_, dtype=np.intp)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        # Check parameters
        max_depth = (np.iinfo(np.int32).max if self.max_depth is None
                     else self.max_depth)
        max_leaf_nodes = (-1 if self.max_leaf_nodes is None
                          else self.max_leaf_nodes)

        if isinstance(self.min_samples_leaf, numbers.Integral):
            if not 1 <= self.min_samples_leaf:
                raise ValueError("min_samples_leaf must be at least 1 "
                                 "or in (0, 0.5], got %s"
                                 % self.min_samples_leaf)
            min_samples_leaf = self.min_samples_leaf
        else:  # float
            if not 0. < self.min_samples_leaf <= 0.5:
                raise ValueError("min_samples_leaf must be at least 1 "
                                 "or in (0, 0.5], got %s"
                                 % self.min_samples_leaf)
            min_samples_leaf = int(ceil(self.min_samples_leaf * n_samples))

        if isinstance(self.min_samples_split, numbers.Integral):
            if not 2 <= self.min_samples_split:
                raise ValueError("min_samples_split must be an integer "
                                 "greater than 1 or a float in (0.0, 1.0]; "
                                 "got the integer %s"
                                 % self.min_samples_split)
            min_samples_split = self.min_samples_split
        else:  # float
            if not 0. < self.min_samples_split <= 1.:
                raise ValueError("min_samples_split must be an integer "
                                 "greater than 1 or a float in (0.0, 1.0]; "
                                 "got the float %s"
                                 % self.min_samples_split)
            min_samples_split = int(ceil(self.min_samples_split * n_samples))
            min_samples_split = max(2, min_samples_split)

        min_samples_split = max(min_samples_split, 2 * min_samples_leaf)

        if isinstance(self.max_features, str):
            if self.max_features == "auto":
                if is_classification:
                    max_features = max(1, int(np.sqrt(self.n_features_)))
                else:
                    max_features = self.n_features_
            elif self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features_)))
            elif self.max_features == "log2":
                max_features = max(1, int(np.log2(self.n_features_)))
            else:
                raise ValueError("Invalid value for max_features. "
                                 "Allowed string values are 'auto', "
                                 "'sqrt' or 'log2'.")
        elif self.max_features is None:
            max_features = self.n_features_
        elif isinstance(self.max_features, numbers.Integral):
            max_features = self.max_features
        else:  # float
            if self.max_features > 0.0:
                max_features = max(1,
                                   int(self.max_features * self.n_features_))
            else:
                max_features = 0

        self.max_features_ = max_features

        if len(y) != n_samples:
            raise ValueError("Number of labels=%d does not match "
                             "number of samples=%d" % (len(y), n_samples))
        if not 0 <= self.min_weight_fraction_leaf <= 0.5:
            raise ValueError("min_weight_fraction_leaf must in [0, 0.5]")
        if max_depth <= 0:
            raise ValueError("max_depth must be greater than zero. ")
        if not (0 < max_features <= self.n_features_):
            raise ValueError("max_features must be in (0, n_features]")
        if not isinstance(max_leaf_nodes, numbers.Integral):
            raise ValueError("max_leaf_nodes must be integral number but was "
                             "%r" % max_leaf_nodes)
        if -1 < max_leaf_nodes < 2:
            raise ValueError(("max_leaf_nodes {0} must be either None "
                              "or larger than 1").format(max_leaf_nodes))

        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, DOUBLE)

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        # Set min_weight_leaf from min_weight_fraction_leaf
        if sample_weight is None:
            min_weight_leaf = (self.min_weight_fraction_leaf *
                               n_samples)
        else:
            min_weight_leaf = (self.min_weight_fraction_leaf *
                               np.sum(sample_weight))

        min_impurity_split = self.min_impurity_split
        if min_impurity_split is not None:
            warnings.warn("The min_impurity_split parameter is deprecated. "
                          "Its default value has changed from 1e-7 to 0 in "
                          "version 0.23, and it will be removed in 0.25. "
                          "Use the min_impurity_decrease parameter instead.",
                          FutureWarning)

            if min_impurity_split < 0.:
                raise ValueError("min_impurity_split must be greater than "
                                 "or equal to 0")
        else:
            min_impurity_split = 0

        if self.min_impurity_decrease < 0.:
            raise ValueError("min_impurity_decrease must be greater than "
                             "or equal to 0")

        if self.presort != 'deprecated':
            warnings.warn("The parameter 'presort' is deprecated and has no "
                          "effect. It will be removed in v0.24. You can "
                          "suppress this warning by not passing any value "
                          "to the 'presort' parameter.",
                          FutureWarning)

        # Build tree
        criterion = self.criterion
        if not isinstance(criterion, Criterion):
            if is_classification:
                criterion = CRITERIA_CLF[self.criterion](self.n_outputs_,
                                                         self.n_classes_)
            else:
                criterion = CRITERIA_REG[self.criterion](self.n_outputs_,
                                                         n_samples)

        SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS

        splitter = self.splitter
        if not isinstance(self.splitter, Splitter):
            splitter = SPLITTERS[self.splitter](criterion,
                                                self.max_features_,
                                                min_samples_leaf,
                                                min_weight_leaf,
                                                random_state)

        if is_classifier(self):
            self.tree_ = Tree(self.n_features_,
                              self.n_classes_, self.n_outputs_)
        else:
            self.tree_ = Tree(self.n_features_,
                              # TODO: tree should't need this in this case
                              np.array([1] * self.n_outputs_, dtype=np.intp),
                              self.n_outputs_)

        # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise
        if max_leaf_nodes < 0:
            builder = DepthFirstTreeBuilder(splitter, min_samples_split,
                                            min_samples_leaf,
                                            min_weight_leaf,
                                            max_depth,
                                            self.min_impurity_decrease,
                                            min_impurity_split)
        else:
            builder = BestFirstTreeBuilder(splitter, min_samples_split,
                                           min_samples_leaf,
                                           min_weight_leaf,
                                           max_depth,
                                           max_leaf_nodes,
                                           self.min_impurity_decrease,
                                           min_impurity_split)

        builder.build(self.tree_, X, y, sample_weight, X_idx_sorted)

        if self.n_outputs_ == 1 and is_classifier(self):
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        self._prune_tree()

        return self

    def _validate_X_predict(self, X, check_input):
        """Validate X whenever one tries to predict, apply, predict_proba"""
        if check_input:
            X = check_array(X, dtype=DTYPE, accept_sparse="csr")
            if issparse(X) and (X.indices.dtype != np.intc or
                                X.indptr.dtype != np.intc):
                raise ValueError("No support for np.int64 index based "
                                 "sparse matrices")

        n_features = X.shape[1]
        if self.n_features_ != n_features:
            raise ValueError("Number of features of the model must "
                             "match the input. Model n_features is %s and "
                             "input n_features is %s "
                             % (self.n_features_, n_features))

        return X

    def predict(self, X, check_input=True):
        """Predict class or regression value for X.

        For a classification model, the predicted class for each sample in X is
        returned. For a regression model, the predicted value based on X is
        returned.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The predicted classes, or the predict values.
        """
        check_is_fitted(self)
        X = self._validate_X_predict(X, check_input)
        proba = self.tree_.predict(X)
        n_samples = X.shape[0]

        # Classification
        if is_classifier(self):
            if self.n_outputs_ == 1:
                return self.classes_.take(np.argmax(proba, axis=1), axis=0)

            else:
                class_type = self.classes_[0].dtype
                predictions = np.zeros((n_samples, self.n_outputs_),
                                       dtype=class_type)
                for k in range(self.n_outputs_):
                    predictions[:, k] = self.classes_[k].take(
                        np.argmax(proba[:, k], axis=1),
                        axis=0)

                return predictions

        # Regression
        else:
            if self.n_outputs_ == 1:
                return proba[:, 0]

            else:
                return proba[:, :, 0]

    def apply(self, X, check_input=True):
        """Return the index of the leaf that each sample is predicted as.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        X_leaves : array-like of shape (n_samples,)
            For each datapoint x in X, return the index of the leaf x
            ends up in. Leaves are numbered within
            ``[0; self.tree_.node_count)``, possibly with gaps in the
            numbering.
        """
        check_is_fitted(self)
        X = self._validate_X_predict(X, check_input)
        return self.tree_.apply(X)

    def decision_path(self, X, check_input=True):
        """Return the decision path in the tree.

        .. versionadded:: 0.18

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        indicator : sparse matrix of shape (n_samples, n_nodes)
            Return a node indicator CSR matrix where non zero elements
            indicates that the samples goes through the nodes.
        """
        X = self._validate_X_predict(X, check_input)
        return self.tree_.decision_path(X)

    def _prune_tree(self):
        """Prune tree using Minimal Cost-Complexity Pruning."""
        check_is_fitted(self)

        if self.ccp_alpha < 0.0:
            raise ValueError("ccp_alpha must be greater than or equal to 0")

        if self.ccp_alpha == 0.0:
            return

        # build pruned tree
        if is_classifier(self):
            n_classes = np.atleast_1d(self.n_classes_)
            pruned_tree = Tree(self.n_features_, n_classes, self.n_outputs_)
        else:
            pruned_tree = Tree(self.n_features_,
                               # TODO: the tree shouldn't need this param
                               np.array([1] * self.n_outputs_, dtype=np.intp),
                               self.n_outputs_)
        _build_pruned_tree_ccp(pruned_tree, self.tree_, self.ccp_alpha)

        self.tree_ = pruned_tree

    def cost_complexity_pruning_path(self, X, y, sample_weight=None):
        """Compute the pruning path during Minimal Cost-Complexity Pruning.

        See :ref:`minimal_cost_complexity_pruning` for details on the pruning
        process.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The target values (class labels) as integers or strings.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. Splits are also
            ignored if they would result in any single class carrying a
            negative weight in either child node.

        Returns
        -------
        ccp_path : :class:`~sklearn.utils.Bunch`
            Dictionary-like object, with the following attributes.

            ccp_alphas : ndarray
                Effective alphas of subtree during pruning.

            impurities : ndarray
                Sum of the impurities of the subtree leaves for the
                corresponding alpha value in ``ccp_alphas``.
        """
        est = clone(self).set_params(ccp_alpha=0.0)
        est.fit(X, y, sample_weight=sample_weight)
        return Bunch(**ccp_pruning_path(est.tree_))

    @property
    def feature_importances_(self):
        """Return the feature importances.

        The importance of a feature is computed as the (normalized) total
        reduction of the criterion brought by that feature.
        It is also known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

        Returns
        -------
        feature_importances_ : ndarray of shape (n_features,)
            Normalized total reduction of criteria by feature
            (Gini importance).
        """
        check_is_fitted(self)

        return self.tree_.compute_feature_importances()


# =============================================================================
# Public estimators
# =============================================================================

class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree):
    """A decision tree classifier.

    Read more in the :ref:`User Guide <tree>`.

    Parameters
    ----------
    criterion : {"gini", "entropy"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "entropy" for the information gain.

    splitter : {"best", "random"}, default="best"
        The strategy used to choose the split at each node. Supported
        strategies are "best" to choose the best split and "random" to choose
        the best random split.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float or {"auto", "sqrt", "log2"}, default=None
        The number of features to consider when looking for the best split:

            - If int, then consider `max_features` features at each split.
            - If float, then `max_features` is a fraction and
              `int(max_features * n_features)` features are considered at each
              split.
            - If "auto", then `max_features=sqrt(n_features)`.
            - If "sqrt", then `max_features=sqrt(n_features)`.
            - If "log2", then `max_features=log2(n_features)`.
            - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance, default=None
        Controls the randomness of the estimator. The features are always
        randomly permuted at each split, even if ``splitter`` is set to
        ``"best"``. When ``max_features < n_features``, the algorithm will
        select ``max_features`` at random at each split before finding the best
        split among them. But the best found split may vary across different
        runs, even if ``max_features=n_features``. That is the case, if the
        improvement of the criterion is identical for several splits and one
        split has to be selected at random. To obtain a deterministic behaviour
        during fitting, ``random_state`` has to be fixed to an integer.
        See :term:`Glossary <random_state>` for details.

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=0
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    class_weight : dict, list of dict or "balanced", default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If None, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        Note that for multioutput (including multilabel) weights should be
        defined for each class of every column in its own dict. For example,
        for four-class multilabel classification weights should be
        [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
        [{1:1}, {2:5}, {3:1}, {4:1}].

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    presort : deprecated, default='deprecated'
        This parameter is deprecated and will be removed in v0.24.

        .. deprecated:: 0.22

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,) or list of ndarray
        The classes labels (single output problem),
        or a list of arrays of class labels (multi-output problem).

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance [4]_.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    max_features_ : int
        The inferred value of max_features.

    n_classes_ : int or list of int
        The number of classes (for single output problems),
        or a list containing the number of classes for each
        output (for multi-output problems).

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    tree_ : Tree
        The underlying Tree object. Please refer to
        ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
        :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
        for basic usage of these attributes.

    See Also
    --------
    DecisionTreeRegressor : A decision tree regressor.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------

    .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning

    .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification
           and Regression Trees", Wadsworth, Belmont, CA, 1984.

    .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical
           Learning", Springer, 2009.

    .. [4] L. Breiman, and A. Cutler, "Random Forests",
           https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.model_selection import cross_val_score
    >>> from sklearn.tree import DecisionTreeClassifier
    >>> clf = DecisionTreeClassifier(random_state=0)
    >>> iris = load_iris()
    >>> cross_val_score(clf, iris.data, iris.target, cv=10)
    ...                             # doctest: +SKIP
    ...
    array([ 1.     ,  0.93...,  0.86...,  0.93...,  0.93...,
            0.93...,  0.93...,  1.     ,  0.93...,  1.      ])
    """
    @_deprecate_positional_args
    def __init__(self, *,
                 criterion="gini",
                 splitter="best",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features=None,
                 random_state=None,
                 max_leaf_nodes=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 class_weight=None,
                 presort='deprecated',
                 ccp_alpha=0.0):
        super().__init__(
            criterion=criterion,
            splitter=splitter,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            class_weight=class_weight,
            random_state=random_state,
            min_impurity_decrease=min_impurity_decrease,
            min_impurity_split=min_impurity_split,
            presort=presort,
            ccp_alpha=ccp_alpha)

    def fit(self, X, y, sample_weight=None, check_input=True,
            X_idx_sorted=None):
        """Build a decision tree classifier from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The target values (class labels) as integers or strings.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. Splits are also
            ignored if they would result in any single class carrying a
            negative weight in either child node.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        X_idx_sorted : array-like of shape (n_samples, n_features), \
                default=None
            The indexes of the sorted training input samples. If many tree
            are grown on the same dataset, this allows the ordering to be
            cached between trees. If None, the data will be sorted here.
            Don't use this parameter unless you know what to do.

        Returns
        -------
        self : DecisionTreeClassifier
            Fitted estimator.
        """

        super().fit(
            X, y,
            sample_weight=sample_weight,
            check_input=check_input,
            X_idx_sorted=X_idx_sorted)
        return self

    def predict_proba(self, X, check_input=True):
        """Predict class probabilities of the input samples X.

        The predicted class probability is the fraction of samples of the same
        class in a leaf.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \
            such arrays if n_outputs > 1
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        check_is_fitted(self)
        X = self._validate_X_predict(X, check_input)
        proba = self.tree_.predict(X)

        if self.n_outputs_ == 1:
            proba = proba[:, :self.n_classes_]
            normalizer = proba.sum(axis=1)[:, np.newaxis]
            normalizer[normalizer == 0.0] = 1.0
            proba /= normalizer

            return proba

        else:
            all_proba = []

            for k in range(self.n_outputs_):
                proba_k = proba[:, k, :self.n_classes_[k]]
                normalizer = proba_k.sum(axis=1)[:, np.newaxis]
                normalizer[normalizer == 0.0] = 1.0
                proba_k /= normalizer
                all_proba.append(proba_k)

            return all_proba

    def predict_log_proba(self, X):
        """Predict class log-probabilities of the input samples X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \
            such arrays if n_outputs > 1
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        proba = self.predict_proba(X)

        if self.n_outputs_ == 1:
            return np.log(proba)

        else:
            for k in range(self.n_outputs_):
                proba[k] = np.log(proba[k])

            return proba


class DecisionTreeRegressor(RegressorMixin, BaseDecisionTree):
    """A decision tree regressor.

    Read more in the :ref:`User Guide <tree>`.

    Parameters
    ----------
    criterion : {"mse", "friedman_mse", "mae"}, default="mse"
        The function to measure the quality of a split. Supported criteria
        are "mse" for the mean squared error, which is equal to variance
        reduction as feature selection criterion and minimizes the L2 loss
        using the mean of each terminal node, "friedman_mse", which uses mean
        squared error with Friedman's improvement score for potential splits,
        and "mae" for the mean absolute error, which minimizes the L1 loss
        using the median of each terminal node.

        .. versionadded:: 0.18
           Mean Absolute Error (MAE) criterion.

    splitter : {"best", "random"}, default="best"
        The strategy used to choose the split at each node. Supported
        strategies are "best" to choose the best split and "random" to choose
        the best random split.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float or {"auto", "sqrt", "log2"}, default=None
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance, default=None
        Controls the randomness of the estimator. The features are always
        randomly permuted at each split, even if ``splitter`` is set to
        ``"best"``. When ``max_features < n_features``, the algorithm will
        select ``max_features`` at random at each split before finding the best
        split among them. But the best found split may vary across different
        runs, even if ``max_features=n_features``. That is the case, if the
        improvement of the criterion is identical for several splits and one
        split has to be selected at random. To obtain a deterministic behaviour
        during fitting, ``random_state`` has to be fixed to an integer.
        See :term:`Glossary <random_state>` for details.

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, (default=0)
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    presort : deprecated, default='deprecated'
        This parameter is deprecated and will be removed in v0.24.

        .. deprecated:: 0.22

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    Attributes
    ----------
    feature_importances_ : ndarray of shape (n_features,)
        The feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the
        (normalized) total reduction of the criterion brought
        by that feature. It is also known as the Gini importance [4]_.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    max_features_ : int
        The inferred value of max_features.

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    tree_ : Tree
        The underlying Tree object. Please refer to
        ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
        :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
        for basic usage of these attributes.

    See Also
    --------
    DecisionTreeClassifier : A decision tree classifier.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------

    .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning

    .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification
           and Regression Trees", Wadsworth, Belmont, CA, 1984.

    .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical
           Learning", Springer, 2009.

    .. [4] L. Breiman, and A. Cutler, "Random Forests",
           https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.model_selection import cross_val_score
    >>> from sklearn.tree import DecisionTreeRegressor
    >>> X, y = load_diabetes(return_X_y=True)
    >>> regressor = DecisionTreeRegressor(random_state=0)
    >>> cross_val_score(regressor, X, y, cv=10)
    ...                    # doctest: +SKIP
    ...
    array([-0.39..., -0.46...,  0.02...,  0.06..., -0.50...,
           0.16...,  0.11..., -0.73..., -0.30..., -0.00...])
    """
    @_deprecate_positional_args
    def __init__(self, *,
                 criterion="mse",
                 splitter="best",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features=None,
                 random_state=None,
                 max_leaf_nodes=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 presort='deprecated',
                 ccp_alpha=0.0):
        super().__init__(
            criterion=criterion,
            splitter=splitter,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            random_state=random_state,
            min_impurity_decrease=min_impurity_decrease,
            min_impurity_split=min_impurity_split,
            presort=presort,
            ccp_alpha=ccp_alpha)

    def fit(self, X, y, sample_weight=None, check_input=True,
            X_idx_sorted=None):
        """Build a decision tree regressor from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The target values (real numbers). Use ``dtype=np.float64`` and
            ``order='C'`` for maximum efficiency.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node.

        check_input : bool, default=True
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        X_idx_sorted : array-like of shape (n_samples, n_features), \
            default=None
            The indexes of the sorted training input samples. If many tree
            are grown on the same dataset, this allows the ordering to be
            cached between trees. If None, the data will be sorted here.
            Don't use this parameter unless you know what to do.

        Returns
        -------
        self : DecisionTreeRegressor
            Fitted estimator.
        """

        super().fit(
            X, y,
            sample_weight=sample_weight,
            check_input=check_input,
            X_idx_sorted=X_idx_sorted)
        return self

    @property
    def classes_(self):
        # TODO: Remove method in 0.24
        msg = ("the classes_ attribute is to be deprecated from version "
               "0.22 and will be removed in 0.24.")
        warnings.warn(msg, FutureWarning)
        return np.array([None] * self.n_outputs_)

    @property
    def n_classes_(self):
        # TODO: Remove method in 0.24
        msg = ("the n_classes_ attribute is to be deprecated from version "
               "0.22 and will be removed in 0.24.")
        warnings.warn(msg, FutureWarning)
        return np.array([1] * self.n_outputs_, dtype=np.intp)

    def _compute_partial_dependence_recursion(self, grid, target_features):
        """Fast partial dependence computation.

        Parameters
        ----------
        grid : ndarray of shape (n_samples, n_target_features)
            The grid points on which the partial dependence should be
            evaluated.
        target_features : ndarray of shape (n_target_features)
            The set of target features for which the partial dependence
            should be evaluated.

        Returns
        -------
        averaged_predictions : ndarray of shape (n_samples,)
            The value of the partial dependence function on each grid point.
        """
        grid = np.asarray(grid, dtype=DTYPE, order='C')
        averaged_predictions = np.zeros(shape=grid.shape[0],
                                        dtype=np.float64, order='C')

        self.tree_.compute_partial_dependence(
            grid, target_features, averaged_predictions)
        return averaged_predictions


class ExtraTreeClassifier(DecisionTreeClassifier):
    """An extremely randomized tree classifier.

    Extra-trees differ from classic decision trees in the way they are built.
    When looking for the best split to separate the samples of a node into two
    groups, random splits are drawn for each of the `max_features` randomly
    selected features and the best split among those is chosen. When
    `max_features` is set 1, this amounts to building a totally random
    decision tree.

    Warning: Extra-trees should only be used within ensemble methods.

    Read more in the :ref:`User Guide <tree>`.

    Parameters
    ----------
    criterion : {"gini", "entropy"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "entropy" for the information gain.

    splitter : {"random", "best"}, default="random"
        The strategy used to choose the split at each node. Supported
        strategies are "best" to choose the best split and "random" to choose
        the best random split.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float, {"auto", "sqrt", "log2"} or None, default="auto"
        The number of features to consider when looking for the best split:

            - If int, then consider `max_features` features at each split.
            - If float, then `max_features` is a fraction and
              `int(max_features * n_features)` features are considered at each
              split.
            - If "auto", then `max_features=sqrt(n_features)`.
            - If "sqrt", then `max_features=sqrt(n_features)`.
            - If "log2", then `max_features=log2(n_features)`.
            - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance, default=None
        Used to pick randomly the `max_features` used at each split.
        See :term:`Glossary <random_state>` for details.

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, (default=0)
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    class_weight : dict, list of dict or "balanced", default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If None, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        Note that for multioutput (including multilabel) weights should be
        defined for each class of every column in its own dict. For example,
        for four-class multilabel classification weights should be
        [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
        [{1:1}, {2:5}, {3:1}, {4:1}].

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,) or list of ndarray
        The classes labels (single output problem),
        or a list of arrays of class labels (multi-output problem).

    max_features_ : int
        The inferred value of max_features.

    n_classes_ : int or list of int
        The number of classes (for single output problems),
        or a list containing the number of classes for each
        output (for multi-output problems).

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    tree_ : Tree
        The underlying Tree object. Please refer to
        ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
        :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
        for basic usage of these attributes.

    See Also
    --------
    ExtraTreeRegressor : An extremely randomized tree regressor.
    sklearn.ensemble.ExtraTreesClassifier : An extra-trees classifier.
    sklearn.ensemble.ExtraTreesRegressor : An extra-trees regressor.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------

    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.ensemble import BaggingClassifier
    >>> from sklearn.tree import ExtraTreeClassifier
    >>> X, y = load_iris(return_X_y=True)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...    X, y, random_state=0)
    >>> extra_tree = ExtraTreeClassifier(random_state=0)
    >>> cls = BaggingClassifier(extra_tree, random_state=0).fit(
    ...    X_train, y_train)
    >>> cls.score(X_test, y_test)
    0.8947...
    """
    @_deprecate_positional_args
    def __init__(self, *,
                 criterion="gini",
                 splitter="random",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 random_state=None,
                 max_leaf_nodes=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 class_weight=None,
                 ccp_alpha=0.0):
        super().__init__(
            criterion=criterion,
            splitter=splitter,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            class_weight=class_weight,
            min_impurity_decrease=min_impurity_decrease,
            min_impurity_split=min_impurity_split,
            random_state=random_state,
            ccp_alpha=ccp_alpha)


class ExtraTreeRegressor(DecisionTreeRegressor):
    """An extremely randomized tree regressor.

    Extra-trees differ from classic decision trees in the way they are built.
    When looking for the best split to separate the samples of a node into two
    groups, random splits are drawn for each of the `max_features` randomly
    selected features and the best split among those is chosen. When
    `max_features` is set 1, this amounts to building a totally random
    decision tree.

    Warning: Extra-trees should only be used within ensemble methods.

    Read more in the :ref:`User Guide <tree>`.

    Parameters
    ----------
    criterion : {"mse", "friedman_mse", "mae"}, default="mse"
        The function to measure the quality of a split. Supported criteria
        are "mse" for the mean squared error, which is equal to variance
        reduction as feature selection criterion, and "mae" for the mean
        absolute error.

        .. versionadded:: 0.18
           Mean Absolute Error (MAE) criterion.

    splitter : {"random", "best"}, default="random"
        The strategy used to choose the split at each node. Supported
        strategies are "best" to choose the best split and "random" to choose
        the best random split.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float, {"auto", "sqrt", "log2"} or None, default="auto"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance, default=None
        Used to pick randomly the `max_features` used at each split.
        See :term:`Glossary <random_state>` for details.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, (default=0)
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    Attributes
    ----------
    max_features_ : int
        The inferred value of max_features.

    n_features_ : int
        The number of features when ``fit`` is performed.

    feature_importances_ : ndarray of shape (n_features,)
        Return impurity-based feature importances (the higher, the more
        important the feature).

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    tree_ : Tree
        The underlying Tree object. Please refer to
        ``help(sklearn.tree._tree.Tree)`` for attributes of Tree object and
        :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py`
        for basic usage of these attributes.

    See Also
    --------
    ExtraTreeClassifier : An extremely randomized tree classifier.
    sklearn.ensemble.ExtraTreesClassifier : An extra-trees classifier.
    sklearn.ensemble.ExtraTreesRegressor : An extra-trees regressor.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------

    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.ensemble import BaggingRegressor
    >>> from sklearn.tree import ExtraTreeRegressor
    >>> X, y = load_diabetes(return_X_y=True)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=0)
    >>> extra_tree = ExtraTreeRegressor(random_state=0)
    >>> reg = BaggingRegressor(extra_tree, random_state=0).fit(
    ...     X_train, y_train)
    >>> reg.score(X_test, y_test)
    0.33...
    """
    @_deprecate_positional_args
    def __init__(self, *,
                 criterion="mse",
                 splitter="random",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 random_state=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 max_leaf_nodes=None,
                 ccp_alpha=0.0):
        super().__init__(
            criterion=criterion,
            splitter=splitter,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_features=max_features,
            max_leaf_nodes=max_leaf_nodes,
            min_impurity_decrease=min_impurity_decrease,
            min_impurity_split=min_impurity_split,
            random_state=random_state,
            ccp_alpha=ccp_alpha)