test_interaction.py
11.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""Tests of interaction of matrix with other parts of numpy.
Note that tests with MaskedArray and linalg are done in separate files.
"""
import pytest
import textwrap
import warnings
import numpy as np
from numpy.testing import (assert_, assert_equal, assert_raises,
assert_raises_regex, assert_array_equal,
assert_almost_equal, assert_array_almost_equal)
def test_fancy_indexing():
# The matrix class messes with the shape. While this is always
# weird (getitem is not used, it does not have setitem nor knows
# about fancy indexing), this tests gh-3110
# 2018-04-29: moved here from core.tests.test_index.
m = np.matrix([[1, 2], [3, 4]])
assert_(isinstance(m[[0, 1, 0], :], np.matrix))
# gh-3110. Note the transpose currently because matrices do *not*
# support dimension fixing for fancy indexing correctly.
x = np.asmatrix(np.arange(50).reshape(5, 10))
assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
def test_polynomial_mapdomain():
# test that polynomial preserved matrix subtype.
# 2018-04-29: moved here from polynomial.tests.polyutils.
dom1 = [0, 4]
dom2 = [1, 3]
x = np.matrix([dom1, dom1])
res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
assert_(isinstance(res, np.matrix))
def test_sort_matrix_none():
# 2018-04-29: moved here from core.tests.test_multiarray
a = np.matrix([[2, 1, 0]])
actual = np.sort(a, axis=None)
expected = np.matrix([[0, 1, 2]])
assert_equal(actual, expected)
assert_(type(expected) is np.matrix)
def test_partition_matrix_none():
# gh-4301
# 2018-04-29: moved here from core.tests.test_multiarray
a = np.matrix([[2, 1, 0]])
actual = np.partition(a, 1, axis=None)
expected = np.matrix([[0, 1, 2]])
assert_equal(actual, expected)
assert_(type(expected) is np.matrix)
def test_dot_scalar_and_matrix_of_objects():
# Ticket #2469
# 2018-04-29: moved here from core.tests.test_multiarray
arr = np.matrix([1, 2], dtype=object)
desired = np.matrix([[3, 6]], dtype=object)
assert_equal(np.dot(arr, 3), desired)
assert_equal(np.dot(3, arr), desired)
def test_inner_scalar_and_matrix():
# 2018-04-29: moved here from core.tests.test_multiarray
for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
sca = np.array(3, dtype=dt)[()]
arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
assert_equal(np.inner(arr, sca), desired)
assert_equal(np.inner(sca, arr), desired)
def test_inner_scalar_and_matrix_of_objects():
# Ticket #4482
# 2018-04-29: moved here from core.tests.test_multiarray
arr = np.matrix([1, 2], dtype=object)
desired = np.matrix([[3, 6]], dtype=object)
assert_equal(np.inner(arr, 3), desired)
assert_equal(np.inner(3, arr), desired)
def test_iter_allocate_output_subtype():
# Make sure that the subtype with priority wins
# 2018-04-29: moved here from core.tests.test_nditer, given the
# matrix specific shape test.
# matrix vs ndarray
a = np.matrix([[1, 2], [3, 4]])
b = np.arange(4).reshape(2, 2).T
i = np.nditer([a, b, None], [],
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
assert_(type(i.operands[2]) is np.matrix)
assert_(type(i.operands[2]) is not np.ndarray)
assert_equal(i.operands[2].shape, (2, 2))
# matrix always wants things to be 2D
b = np.arange(4).reshape(1, 2, 2)
assert_raises(RuntimeError, np.nditer, [a, b, None], [],
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
# but if subtypes are disabled, the result can still work
i = np.nditer([a, b, None], [],
[['readonly'], ['readonly'],
['writeonly', 'allocate', 'no_subtype']])
assert_(type(i.operands[2]) is np.ndarray)
assert_(type(i.operands[2]) is not np.matrix)
assert_equal(i.operands[2].shape, (1, 2, 2))
def like_function():
# 2018-04-29: moved here from core.tests.test_numeric
a = np.matrix([[1, 2], [3, 4]])
for like_function in np.zeros_like, np.ones_like, np.empty_like:
b = like_function(a)
assert_(type(b) is np.matrix)
c = like_function(a, subok=False)
assert_(type(c) is not np.matrix)
def test_array_astype():
# 2018-04-29: copied here from core.tests.test_api
# subok=True passes through a matrix
a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
b = a.astype('f4', subok=True, copy=False)
assert_(a is b)
# subok=True is default, and creates a subtype on a cast
b = a.astype('i4', copy=False)
assert_equal(a, b)
assert_equal(type(b), np.matrix)
# subok=False never returns a matrix
b = a.astype('f4', subok=False, copy=False)
assert_equal(a, b)
assert_(not (a is b))
assert_(type(b) is not np.matrix)
def test_stack():
# 2018-04-29: copied here from core.tests.test_shape_base
# check np.matrix cannot be stacked
m = np.matrix([[1, 2], [3, 4]])
assert_raises_regex(ValueError, 'shape too large to be a matrix',
np.stack, [m, m])
def test_object_scalar_multiply():
# Tickets #2469 and #4482
# 2018-04-29: moved here from core.tests.test_ufunc
arr = np.matrix([1, 2], dtype=object)
desired = np.matrix([[3, 6]], dtype=object)
assert_equal(np.multiply(arr, 3), desired)
assert_equal(np.multiply(3, arr), desired)
def test_nanfunctions_matrices():
# Check that it works and that type and
# shape are preserved
# 2018-04-29: moved here from core.tests.test_nanfunctions
mat = np.matrix(np.eye(3))
for f in [np.nanmin, np.nanmax]:
res = f(mat, axis=0)
assert_(isinstance(res, np.matrix))
assert_(res.shape == (1, 3))
res = f(mat, axis=1)
assert_(isinstance(res, np.matrix))
assert_(res.shape == (3, 1))
res = f(mat)
assert_(np.isscalar(res))
# check that rows of nan are dealt with for subclasses (#4628)
mat[1] = np.nan
for f in [np.nanmin, np.nanmax]:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
res = f(mat, axis=0)
assert_(isinstance(res, np.matrix))
assert_(not np.any(np.isnan(res)))
assert_(len(w) == 0)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
res = f(mat, axis=1)
assert_(isinstance(res, np.matrix))
assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
and not np.isnan(res[2, 0]))
assert_(len(w) == 1, 'no warning raised')
assert_(issubclass(w[0].category, RuntimeWarning))
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
res = f(mat)
assert_(np.isscalar(res))
assert_(res != np.nan)
assert_(len(w) == 0)
def test_nanfunctions_matrices_general():
# Check that it works and that type and
# shape are preserved
# 2018-04-29: moved here from core.tests.test_nanfunctions
mat = np.matrix(np.eye(3))
for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
np.nanmean, np.nanvar, np.nanstd):
res = f(mat, axis=0)
assert_(isinstance(res, np.matrix))
assert_(res.shape == (1, 3))
res = f(mat, axis=1)
assert_(isinstance(res, np.matrix))
assert_(res.shape == (3, 1))
res = f(mat)
assert_(np.isscalar(res))
for f in np.nancumsum, np.nancumprod:
res = f(mat, axis=0)
assert_(isinstance(res, np.matrix))
assert_(res.shape == (3, 3))
res = f(mat, axis=1)
assert_(isinstance(res, np.matrix))
assert_(res.shape == (3, 3))
res = f(mat)
assert_(isinstance(res, np.matrix))
assert_(res.shape == (1, 3*3))
def test_average_matrix():
# 2018-04-29: moved here from core.tests.test_function_base.
y = np.matrix(np.random.rand(5, 5))
assert_array_equal(y.mean(0), np.average(y, 0))
a = np.matrix([[1, 2], [3, 4]])
w = np.matrix([[1, 2], [3, 4]])
r = np.average(a, axis=0, weights=w)
assert_equal(type(r), np.matrix)
assert_equal(r, [[2.5, 10.0/3]])
def test_trapz_matrix():
# Test to make sure matrices give the same answer as ndarrays
# 2018-04-29: moved here from core.tests.test_function_base.
x = np.linspace(0, 5)
y = x * x
r = np.trapz(y, x)
mx = np.matrix(x)
my = np.matrix(y)
mr = np.trapz(my, mx)
assert_almost_equal(mr, r)
def test_ediff1d_matrix():
# 2018-04-29: moved here from core.tests.test_arraysetops.
assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
def test_apply_along_axis_matrix():
# this test is particularly malicious because matrix
# refuses to become 1d
# 2018-04-29: moved here from core.tests.test_shape_base.
def double(row):
return row * 2
m = np.matrix([[0, 1], [2, 3]])
expected = np.matrix([[0, 2], [4, 6]])
result = np.apply_along_axis(double, 0, m)
assert_(isinstance(result, np.matrix))
assert_array_equal(result, expected)
result = np.apply_along_axis(double, 1, m)
assert_(isinstance(result, np.matrix))
assert_array_equal(result, expected)
def test_kron_matrix():
# 2018-04-29: moved here from core.tests.test_shape_base.
a = np.ones([2, 2])
m = np.asmatrix(a)
assert_equal(type(np.kron(a, a)), np.ndarray)
assert_equal(type(np.kron(m, m)), np.matrix)
assert_equal(type(np.kron(a, m)), np.matrix)
assert_equal(type(np.kron(m, a)), np.matrix)
class TestConcatenatorMatrix:
# 2018-04-29: moved here from core.tests.test_index_tricks.
def test_matrix(self):
a = [1, 2]
b = [3, 4]
ab_r = np.r_['r', a, b]
ab_c = np.r_['c', a, b]
assert_equal(type(ab_r), np.matrix)
assert_equal(type(ab_c), np.matrix)
assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
assert_raises(ValueError, lambda: np.r_['rc', a, b])
def test_matrix_scalar(self):
r = np.r_['r', [1, 2], 3]
assert_equal(type(r), np.matrix)
assert_equal(np.array(r), [[1, 2, 3]])
def test_matrix_builder(self):
a = np.array([1])
b = np.array([2])
c = np.array([3])
d = np.array([4])
actual = np.r_['a, b; c, d']
expected = np.bmat([[a, b], [c, d]])
assert_equal(actual, expected)
assert_equal(type(actual), type(expected))
def test_array_equal_error_message_matrix():
# 2018-04-29: moved here from testing.tests.test_utils.
with pytest.raises(AssertionError) as exc_info:
assert_equal(np.array([1, 2]), np.matrix([1, 2]))
msg = str(exc_info.value)
msg_reference = textwrap.dedent("""\
Arrays are not equal
(shapes (2,), (1, 2) mismatch)
x: array([1, 2])
y: matrix([[1, 2]])""")
assert_equal(msg, msg_reference)
def test_array_almost_equal_matrix():
# Matrix slicing keeps things 2-D, while array does not necessarily.
# See gh-8452.
# 2018-04-29: moved here from testing.tests.test_utils.
m1 = np.matrix([[1., 2.]])
m2 = np.matrix([[1., np.nan]])
m3 = np.matrix([[1., -np.inf]])
m4 = np.matrix([[np.nan, np.inf]])
m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
for assert_func in assert_array_almost_equal, assert_almost_equal:
for m in m1, m2, m3, m4, m5:
assert_func(m, m)
a = np.array(m)
assert_func(a, m)
assert_func(m, a)