test_histograms.py 32.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
import numpy as np

from numpy.lib.histograms import histogram, histogramdd, histogram_bin_edges
from numpy.testing import (
    assert_, assert_equal, assert_array_equal, assert_almost_equal,
    assert_array_almost_equal, assert_raises, assert_allclose,
    assert_array_max_ulp, assert_raises_regex, suppress_warnings,
    )
import pytest


class TestHistogram:

    def setup(self):
        pass

    def teardown(self):
        pass

    def test_simple(self):
        n = 100
        v = np.random.rand(n)
        (a, b) = histogram(v)
        # check if the sum of the bins equals the number of samples
        assert_equal(np.sum(a, axis=0), n)
        # check that the bin counts are evenly spaced when the data is from
        # a linear function
        (a, b) = histogram(np.linspace(0, 10, 100))
        assert_array_equal(a, 10)

    def test_one_bin(self):
        # Ticket 632
        hist, edges = histogram([1, 2, 3, 4], [1, 2])
        assert_array_equal(hist, [2, ])
        assert_array_equal(edges, [1, 2])
        assert_raises(ValueError, histogram, [1, 2], bins=0)
        h, e = histogram([1, 2], bins=1)
        assert_equal(h, np.array([2]))
        assert_allclose(e, np.array([1., 2.]))

    def test_normed(self):
        sup = suppress_warnings()
        with sup:
            rec = sup.record(np.VisibleDeprecationWarning, '.*normed.*')
            # Check that the integral of the density equals 1.
            n = 100
            v = np.random.rand(n)
            a, b = histogram(v, normed=True)
            area = np.sum(a * np.diff(b))
            assert_almost_equal(area, 1)
            assert_equal(len(rec), 1)

        sup = suppress_warnings()
        with sup:
            rec = sup.record(np.VisibleDeprecationWarning, '.*normed.*')
            # Check with non-constant bin widths (buggy but backwards
            # compatible)
            v = np.arange(10)
            bins = [0, 1, 5, 9, 10]
            a, b = histogram(v, bins, normed=True)
            area = np.sum(a * np.diff(b))
            assert_almost_equal(area, 1)
            assert_equal(len(rec), 1)

    def test_density(self):
        # Check that the integral of the density equals 1.
        n = 100
        v = np.random.rand(n)
        a, b = histogram(v, density=True)
        area = np.sum(a * np.diff(b))
        assert_almost_equal(area, 1)

        # Check with non-constant bin widths
        v = np.arange(10)
        bins = [0, 1, 3, 6, 10]
        a, b = histogram(v, bins, density=True)
        assert_array_equal(a, .1)
        assert_equal(np.sum(a * np.diff(b)), 1)

        # Test that passing False works too
        a, b = histogram(v, bins, density=False)
        assert_array_equal(a, [1, 2, 3, 4])

        # Variable bin widths are especially useful to deal with
        # infinities.
        v = np.arange(10)
        bins = [0, 1, 3, 6, np.inf]
        a, b = histogram(v, bins, density=True)
        assert_array_equal(a, [.1, .1, .1, 0.])

        # Taken from a bug report from N. Becker on the numpy-discussion
        # mailing list Aug. 6, 2010.
        counts, dmy = np.histogram(
            [1, 2, 3, 4], [0.5, 1.5, np.inf], density=True)
        assert_equal(counts, [.25, 0])

    def test_outliers(self):
        # Check that outliers are not tallied
        a = np.arange(10) + .5

        # Lower outliers
        h, b = histogram(a, range=[0, 9])
        assert_equal(h.sum(), 9)

        # Upper outliers
        h, b = histogram(a, range=[1, 10])
        assert_equal(h.sum(), 9)

        # Normalization
        h, b = histogram(a, range=[1, 9], density=True)
        assert_almost_equal((h * np.diff(b)).sum(), 1, decimal=15)

        # Weights
        w = np.arange(10) + .5
        h, b = histogram(a, range=[1, 9], weights=w, density=True)
        assert_equal((h * np.diff(b)).sum(), 1)

        h, b = histogram(a, bins=8, range=[1, 9], weights=w)
        assert_equal(h, w[1:-1])

    def test_arr_weights_mismatch(self):
        a = np.arange(10) + .5
        w = np.arange(11) + .5
        with assert_raises_regex(ValueError, "same shape as"):
            h, b = histogram(a, range=[1, 9], weights=w, density=True)


    def test_type(self):
        # Check the type of the returned histogram
        a = np.arange(10) + .5
        h, b = histogram(a)
        assert_(np.issubdtype(h.dtype, np.integer))

        h, b = histogram(a, density=True)
        assert_(np.issubdtype(h.dtype, np.floating))

        h, b = histogram(a, weights=np.ones(10, int))
        assert_(np.issubdtype(h.dtype, np.integer))

        h, b = histogram(a, weights=np.ones(10, float))
        assert_(np.issubdtype(h.dtype, np.floating))

    def test_f32_rounding(self):
        # gh-4799, check that the rounding of the edges works with float32
        x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
        y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
        counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
        assert_equal(counts_hist.sum(), 3.)

    def test_bool_conversion(self):
        # gh-12107
        # Reference integer histogram
        a = np.array([1, 1, 0], dtype=np.uint8)
        int_hist, int_edges = np.histogram(a)

        # Should raise an warning on booleans
        # Ensure that the histograms are equivalent, need to suppress
        # the warnings to get the actual outputs
        with suppress_warnings() as sup:
            rec = sup.record(RuntimeWarning, 'Converting input from .*')
            hist, edges = np.histogram([True, True, False])
            # A warning should be issued
            assert_equal(len(rec), 1)
            assert_array_equal(hist, int_hist)
            assert_array_equal(edges, int_edges)

    def test_weights(self):
        v = np.random.rand(100)
        w = np.ones(100) * 5
        a, b = histogram(v)
        na, nb = histogram(v, density=True)
        wa, wb = histogram(v, weights=w)
        nwa, nwb = histogram(v, weights=w, density=True)
        assert_array_almost_equal(a * 5, wa)
        assert_array_almost_equal(na, nwa)

        # Check weights are properly applied.
        v = np.linspace(0, 10, 10)
        w = np.concatenate((np.zeros(5), np.ones(5)))
        wa, wb = histogram(v, bins=np.arange(11), weights=w)
        assert_array_almost_equal(wa, w)

        # Check with integer weights
        wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
        assert_array_equal(wa, [4, 5, 0, 1])
        wa, wb = histogram(
            [1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], density=True)
        assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)

        # Check weights with non-uniform bin widths
        a, b = histogram(
            np.arange(9), [0, 1, 3, 6, 10],
            weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True)
        assert_almost_equal(a, [.2, .1, .1, .075])

    def test_exotic_weights(self):

        # Test the use of weights that are not integer or floats, but e.g.
        # complex numbers or object types.

        # Complex weights
        values = np.array([1.3, 2.5, 2.3])
        weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2])

        # Check with custom bins
        wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
        assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))

        # Check with even bins
        wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
        assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))

        # Decimal weights
        from decimal import Decimal
        values = np.array([1.3, 2.5, 2.3])
        weights = np.array([Decimal(1), Decimal(2), Decimal(3)])

        # Check with custom bins
        wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
        assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])

        # Check with even bins
        wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
        assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])

    def test_no_side_effects(self):
        # This is a regression test that ensures that values passed to
        # ``histogram`` are unchanged.
        values = np.array([1.3, 2.5, 2.3])
        np.histogram(values, range=[-10, 10], bins=100)
        assert_array_almost_equal(values, [1.3, 2.5, 2.3])

    def test_empty(self):
        a, b = histogram([], bins=([0, 1]))
        assert_array_equal(a, np.array([0]))
        assert_array_equal(b, np.array([0, 1]))

    def test_error_binnum_type (self):
        # Tests if right Error is raised if bins argument is float
        vals = np.linspace(0.0, 1.0, num=100)
        histogram(vals, 5)
        assert_raises(TypeError, histogram, vals, 2.4)

    def test_finite_range(self):
        # Normal ranges should be fine
        vals = np.linspace(0.0, 1.0, num=100)
        histogram(vals, range=[0.25,0.75])
        assert_raises(ValueError, histogram, vals, range=[np.nan,0.75])
        assert_raises(ValueError, histogram, vals, range=[0.25,np.inf])

    def test_invalid_range(self):
        # start of range must be < end of range
        vals = np.linspace(0.0, 1.0, num=100)
        with assert_raises_regex(ValueError, "max must be larger than"):
            np.histogram(vals, range=[0.1, 0.01])

    def test_bin_edge_cases(self):
        # Ensure that floating-point computations correctly place edge cases.
        arr = np.array([337, 404, 739, 806, 1007, 1811, 2012])
        hist, edges = np.histogram(arr, bins=8296, range=(2, 2280))
        mask = hist > 0
        left_edges = edges[:-1][mask]
        right_edges = edges[1:][mask]
        for x, left, right in zip(arr, left_edges, right_edges):
            assert_(x >= left)
            assert_(x < right)

    def test_last_bin_inclusive_range(self):
        arr = np.array([0.,  0.,  0.,  1.,  2.,  3.,  3.,  4.,  5.])
        hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5))
        assert_equal(hist[-1], 1)

    def test_bin_array_dims(self):
        # gracefully handle bins object > 1 dimension
        vals = np.linspace(0.0, 1.0, num=100)
        bins = np.array([[0, 0.5], [0.6, 1.0]])
        with assert_raises_regex(ValueError, "must be 1d"):
            np.histogram(vals, bins=bins)

    def test_unsigned_monotonicity_check(self):
        # Ensures ValueError is raised if bins not increasing monotonically
        # when bins contain unsigned values (see #9222)
        arr = np.array([2])
        bins = np.array([1, 3, 1], dtype='uint64')
        with assert_raises(ValueError):
            hist, edges = np.histogram(arr, bins=bins)

    def test_object_array_of_0d(self):
        # gh-7864
        assert_raises(ValueError,
            histogram, [np.array(0.4) for i in range(10)] + [-np.inf])
        assert_raises(ValueError,
            histogram, [np.array(0.4) for i in range(10)] + [np.inf])

        # these should not crash
        np.histogram([np.array(0.5) for i in range(10)] + [.500000000000001])
        np.histogram([np.array(0.5) for i in range(10)] + [.5])

    def test_some_nan_values(self):
        # gh-7503
        one_nan = np.array([0, 1, np.nan])
        all_nan = np.array([np.nan, np.nan])

        # the internal comparisons with NaN give warnings
        sup = suppress_warnings()
        sup.filter(RuntimeWarning)
        with sup:
            # can't infer range with nan
            assert_raises(ValueError, histogram, one_nan, bins='auto')
            assert_raises(ValueError, histogram, all_nan, bins='auto')

            # explicit range solves the problem
            h, b = histogram(one_nan, bins='auto', range=(0, 1))
            assert_equal(h.sum(), 2)  # nan is not counted
            h, b = histogram(all_nan, bins='auto', range=(0, 1))
            assert_equal(h.sum(), 0)  # nan is not counted

            # as does an explicit set of bins
            h, b = histogram(one_nan, bins=[0, 1])
            assert_equal(h.sum(), 2)  # nan is not counted
            h, b = histogram(all_nan, bins=[0, 1])
            assert_equal(h.sum(), 0)  # nan is not counted

    def test_datetime(self):
        begin = np.datetime64('2000-01-01', 'D')
        offsets = np.array([0, 0, 1, 1, 2, 3, 5, 10, 20])
        bins = np.array([0, 2, 7, 20])
        dates = begin + offsets
        date_bins = begin + bins

        td = np.dtype('timedelta64[D]')

        # Results should be the same for integer offsets or datetime values.
        # For now, only explicit bins are supported, since linspace does not
        # work on datetimes or timedeltas
        d_count, d_edge = histogram(dates, bins=date_bins)
        t_count, t_edge = histogram(offsets.astype(td), bins=bins.astype(td))
        i_count, i_edge = histogram(offsets, bins=bins)

        assert_equal(d_count, i_count)
        assert_equal(t_count, i_count)

        assert_equal((d_edge - begin).astype(int), i_edge)
        assert_equal(t_edge.astype(int), i_edge)

        assert_equal(d_edge.dtype, dates.dtype)
        assert_equal(t_edge.dtype, td)

    def do_signed_overflow_bounds(self, dtype):
        exponent = 8 * np.dtype(dtype).itemsize - 1
        arr = np.array([-2**exponent + 4, 2**exponent - 4], dtype=dtype)
        hist, e = histogram(arr, bins=2)
        assert_equal(e, [-2**exponent + 4, 0, 2**exponent - 4])
        assert_equal(hist, [1, 1])

    def test_signed_overflow_bounds(self):
        self.do_signed_overflow_bounds(np.byte)
        self.do_signed_overflow_bounds(np.short)
        self.do_signed_overflow_bounds(np.intc)
        self.do_signed_overflow_bounds(np.int_)
        self.do_signed_overflow_bounds(np.longlong)

    def do_precision_lower_bound(self, float_small, float_large):
        eps = np.finfo(float_large).eps

        arr = np.array([1.0], float_small)
        range = np.array([1.0 + eps, 2.0], float_large)

        # test is looking for behavior when the bounds change between dtypes
        if range.astype(float_small)[0] != 1:
            return

        # previously crashed
        count, x_loc = np.histogram(arr, bins=1, range=range)
        assert_equal(count, [1])

        # gh-10322 means that the type comes from arr - this may change
        assert_equal(x_loc.dtype, float_small)

    def do_precision_upper_bound(self, float_small, float_large):
        eps = np.finfo(float_large).eps

        arr = np.array([1.0], float_small)
        range = np.array([0.0, 1.0 - eps], float_large)

        # test is looking for behavior when the bounds change between dtypes
        if range.astype(float_small)[-1] != 1:
            return

        # previously crashed
        count, x_loc = np.histogram(arr, bins=1, range=range)
        assert_equal(count, [1])

        # gh-10322 means that the type comes from arr - this may change
        assert_equal(x_loc.dtype, float_small)

    def do_precision(self, float_small, float_large):
        self.do_precision_lower_bound(float_small, float_large)
        self.do_precision_upper_bound(float_small, float_large)

    def test_precision(self):
        # not looping results in a useful stack trace upon failure
        self.do_precision(np.half, np.single)
        self.do_precision(np.half, np.double)
        self.do_precision(np.half, np.longdouble)
        self.do_precision(np.single, np.double)
        self.do_precision(np.single, np.longdouble)
        self.do_precision(np.double, np.longdouble)

    def test_histogram_bin_edges(self):
        hist, e = histogram([1, 2, 3, 4], [1, 2])
        edges = histogram_bin_edges([1, 2, 3, 4], [1, 2])
        assert_array_equal(edges, e)

        arr = np.array([0.,  0.,  0.,  1.,  2.,  3.,  3.,  4.,  5.])
        hist, e = histogram(arr, bins=30, range=(-0.5, 5))
        edges = histogram_bin_edges(arr, bins=30, range=(-0.5, 5))
        assert_array_equal(edges, e)

        hist, e = histogram(arr, bins='auto', range=(0, 1))
        edges = histogram_bin_edges(arr, bins='auto', range=(0, 1))
        assert_array_equal(edges, e)


class TestHistogramOptimBinNums:
    """
    Provide test coverage when using provided estimators for optimal number of
    bins
    """

    def test_empty(self):
        estimator_list = ['fd', 'scott', 'rice', 'sturges',
                          'doane', 'sqrt', 'auto', 'stone']
        # check it can deal with empty data
        for estimator in estimator_list:
            a, b = histogram([], bins=estimator)
            assert_array_equal(a, np.array([0]))
            assert_array_equal(b, np.array([0, 1]))

    def test_simple(self):
        """
        Straightforward testing with a mixture of linspace data (for
        consistency). All test values have been precomputed and the values
        shouldn't change
        """
        # Some basic sanity checking, with some fixed data.
        # Checking for the correct number of bins
        basic_test = {50:   {'fd': 4,  'scott': 4,  'rice': 8,  'sturges': 7,
                             'doane': 8, 'sqrt': 8, 'auto': 7, 'stone': 2},
                      500:  {'fd': 8,  'scott': 8,  'rice': 16, 'sturges': 10,
                             'doane': 12, 'sqrt': 23, 'auto': 10, 'stone': 9},
                      5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14,
                             'doane': 17, 'sqrt': 71, 'auto': 17, 'stone': 20}}

        for testlen, expectedResults in basic_test.items():
            # Create some sort of non uniform data to test with
            # (2 peak uniform mixture)
            x1 = np.linspace(-10, -1, testlen // 5 * 2)
            x2 = np.linspace(1, 10, testlen // 5 * 3)
            x = np.concatenate((x1, x2))
            for estimator, numbins in expectedResults.items():
                a, b = np.histogram(x, estimator)
                assert_equal(len(a), numbins, err_msg="For the {0} estimator "
                             "with datasize of {1}".format(estimator, testlen))

    def test_small(self):
        """
        Smaller datasets have the potential to cause issues with the data
        adaptive methods, especially the FD method. All bin numbers have been
        precalculated.
        """
        small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
                         'doane': 1, 'sqrt': 1, 'stone': 1},
                     2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2,
                         'doane': 1, 'sqrt': 2, 'stone': 1},
                     3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3,
                         'doane': 3, 'sqrt': 2, 'stone': 1}}

        for testlen, expectedResults in small_dat.items():
            testdat = np.arange(testlen)
            for estimator, expbins in expectedResults.items():
                a, b = np.histogram(testdat, estimator)
                assert_equal(len(a), expbins, err_msg="For the {0} estimator "
                             "with datasize of {1}".format(estimator, testlen))

    def test_incorrect_methods(self):
        """
        Check a Value Error is thrown when an unknown string is passed in
        """
        check_list = ['mad', 'freeman', 'histograms', 'IQR']
        for estimator in check_list:
            assert_raises(ValueError, histogram, [1, 2, 3], estimator)

    def test_novariance(self):
        """
        Check that methods handle no variance in data
        Primarily for Scott and FD as the SD and IQR are both 0 in this case
        """
        novar_dataset = np.ones(100)
        novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
                            'doane': 1, 'sqrt': 1, 'auto': 1, 'stone': 1}

        for estimator, numbins in novar_resultdict.items():
            a, b = np.histogram(novar_dataset, estimator)
            assert_equal(len(a), numbins, err_msg="{0} estimator, "
                         "No Variance test".format(estimator))

    def test_limited_variance(self):
        """
        Check when IQR is 0, but variance exists, we return the sturges value
        and not the fd value.
        """
        lim_var_data = np.ones(1000)
        lim_var_data[:3] = 0
        lim_var_data[-4:] = 100

        edges_auto = histogram_bin_edges(lim_var_data, 'auto')
        assert_equal(edges_auto, np.linspace(0, 100, 12))

        edges_fd = histogram_bin_edges(lim_var_data, 'fd')
        assert_equal(edges_fd, np.array([0, 100]))

        edges_sturges = histogram_bin_edges(lim_var_data, 'sturges')
        assert_equal(edges_sturges, np.linspace(0, 100, 12))

    def test_outlier(self):
        """
        Check the FD, Scott and Doane with outliers.

        The FD estimates a smaller binwidth since it's less affected by
        outliers. Since the range is so (artificially) large, this means more
        bins, most of which will be empty, but the data of interest usually is
        unaffected. The Scott estimator is more affected and returns fewer bins,
        despite most of the variance being in one area of the data. The Doane
        estimator lies somewhere between the other two.
        """
        xcenter = np.linspace(-10, 10, 50)
        outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter))

        outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11, 'stone': 6}

        for estimator, numbins in outlier_resultdict.items():
            a, b = np.histogram(outlier_dataset, estimator)
            assert_equal(len(a), numbins)

    def test_scott_vs_stone(self):
        """Verify that Scott's rule and Stone's rule converges for normally distributed data"""

        def nbins_ratio(seed, size):
            rng = np.random.RandomState(seed)
            x = rng.normal(loc=0, scale=2, size=size)
            a, b = len(np.histogram(x, 'stone')[0]), len(np.histogram(x, 'scott')[0])
            return a / (a + b)

        ll = [[nbins_ratio(seed, size) for size in np.geomspace(start=10, stop=100, num=4).round().astype(int)]
              for seed in range(10)]

        # the average difference between the two methods decreases as the dataset size increases.
        avg = abs(np.mean(ll, axis=0) - 0.5)
        assert_almost_equal(avg, [0.15, 0.09, 0.08, 0.03], decimal=2)

    def test_simple_range(self):
        """
        Straightforward testing with a mixture of linspace data (for
        consistency). Adding in a 3rd mixture that will then be
        completely ignored. All test values have been precomputed and
        the shouldn't change.
        """
        # some basic sanity checking, with some fixed data.
        # Checking for the correct number of bins
        basic_test = {
                      50:   {'fd': 8,  'scott': 8,  'rice': 15,
                             'sturges': 14, 'auto': 14, 'stone': 8},
                      500:  {'fd': 15, 'scott': 16, 'rice': 32,
                             'sturges': 20, 'auto': 20, 'stone': 80},
                      5000: {'fd': 33, 'scott': 33, 'rice': 69,
                             'sturges': 27, 'auto': 33, 'stone': 80}
                     }

        for testlen, expectedResults in basic_test.items():
            # create some sort of non uniform data to test with
            # (3 peak uniform mixture)
            x1 = np.linspace(-10, -1, testlen // 5 * 2)
            x2 = np.linspace(1, 10, testlen // 5 * 3)
            x3 = np.linspace(-100, -50, testlen)
            x = np.hstack((x1, x2, x3))
            for estimator, numbins in expectedResults.items():
                a, b = np.histogram(x, estimator, range = (-20, 20))
                msg = "For the {0} estimator".format(estimator)
                msg += " with datasize of {0}".format(testlen)
                assert_equal(len(a), numbins, err_msg=msg)

    @pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott',
                                      'stone', 'rice', 'sturges'])
    def test_signed_integer_data(self, bins):
        # Regression test for gh-14379.
        a = np.array([-2, 0, 127], dtype=np.int8)
        hist, edges = np.histogram(a, bins=bins)
        hist32, edges32 = np.histogram(a.astype(np.int32), bins=bins)
        assert_array_equal(hist, hist32)
        assert_array_equal(edges, edges32)

    def test_simple_weighted(self):
        """
        Check that weighted data raises a TypeError
        """
        estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto']
        for estimator in estimator_list:
            assert_raises(TypeError, histogram, [1, 2, 3],
                          estimator, weights=[1, 2, 3])


class TestHistogramdd:

    def test_simple(self):
        x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
                      [.5,  .5, 1.5], [.5,  1.5, 2.5], [.5,  2.5, 2.5]])
        H, edges = histogramdd(x, (2, 3, 3),
                               range=[[-1, 1], [0, 3], [0, 3]])
        answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]],
                           [[0, 1, 0], [0, 0, 1], [0, 0, 1]]])
        assert_array_equal(H, answer)

        # Check normalization
        ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
        H, edges = histogramdd(x, bins=ed, density=True)
        assert_(np.all(H == answer / 12.))

        # Check that H has the correct shape.
        H, edges = histogramdd(x, (2, 3, 4),
                               range=[[-1, 1], [0, 3], [0, 4]],
                               density=True)
        answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
                           [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
        assert_array_almost_equal(H, answer / 6., 4)
        # Check that a sequence of arrays is accepted and H has the correct
        # shape.
        z = [np.squeeze(y) for y in np.split(x, 3, axis=1)]
        H, edges = histogramdd(
            z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
        answer = np.array([[[0, 0], [0, 0], [0, 0]],
                           [[0, 1], [0, 0], [1, 0]],
                           [[0, 1], [0, 0], [0, 0]],
                           [[0, 0], [0, 0], [0, 0]]])
        assert_array_equal(H, answer)

        Z = np.zeros((5, 5, 5))
        Z[list(range(5)), list(range(5)), list(range(5))] = 1.
        H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5)
        assert_array_equal(H, Z)

    def test_shape_3d(self):
        # All possible permutations for bins of different lengths in 3D.
        bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
                (4, 5, 6))
        r = np.random.rand(10, 3)
        for b in bins:
            H, edges = histogramdd(r, b)
            assert_(H.shape == b)

    def test_shape_4d(self):
        # All possible permutations for bins of different lengths in 4D.
        bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
                (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
                (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
                (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
                (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
                (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))

        r = np.random.rand(10, 4)
        for b in bins:
            H, edges = histogramdd(r, b)
            assert_(H.shape == b)

    def test_weights(self):
        v = np.random.rand(100, 2)
        hist, edges = histogramdd(v)
        n_hist, edges = histogramdd(v, density=True)
        w_hist, edges = histogramdd(v, weights=np.ones(100))
        assert_array_equal(w_hist, hist)
        w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, density=True)
        assert_array_equal(w_hist, n_hist)
        w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2)
        assert_array_equal(w_hist, 2 * hist)

    def test_identical_samples(self):
        x = np.zeros((10, 2), int)
        hist, edges = histogramdd(x, bins=2)
        assert_array_equal(edges[0], np.array([-0.5, 0., 0.5]))

    def test_empty(self):
        a, b = histogramdd([[], []], bins=([0, 1], [0, 1]))
        assert_array_max_ulp(a, np.array([[0.]]))
        a, b = np.histogramdd([[], [], []], bins=2)
        assert_array_max_ulp(a, np.zeros((2, 2, 2)))

    def test_bins_errors(self):
        # There are two ways to specify bins. Check for the right errors
        # when mixing those.
        x = np.arange(8).reshape(2, 4)
        assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5])
        assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1])
        assert_raises(
            ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]])
        assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]]))

    def test_inf_edges(self):
        # Test using +/-inf bin edges works. See #1788.
        with np.errstate(invalid='ignore'):
            x = np.arange(6).reshape(3, 2)
            expected = np.array([[1, 0], [0, 1], [0, 1]])
            h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]])
            assert_allclose(h, expected)
            h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])])
            assert_allclose(h, expected)
            h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]])
            assert_allclose(h, expected)

    def test_rightmost_binedge(self):
        # Test event very close to rightmost binedge. See Github issue #4266
        x = [0.9999999995]
        bins = [[0., 0.5, 1.0]]
        hist, _ = histogramdd(x, bins=bins)
        assert_(hist[0] == 0.0)
        assert_(hist[1] == 1.)
        x = [1.0]
        bins = [[0., 0.5, 1.0]]
        hist, _ = histogramdd(x, bins=bins)
        assert_(hist[0] == 0.0)
        assert_(hist[1] == 1.)
        x = [1.0000000001]
        bins = [[0., 0.5, 1.0]]
        hist, _ = histogramdd(x, bins=bins)
        assert_(hist[0] == 0.0)
        assert_(hist[1] == 0.0)
        x = [1.0001]
        bins = [[0., 0.5, 1.0]]
        hist, _ = histogramdd(x, bins=bins)
        assert_(hist[0] == 0.0)
        assert_(hist[1] == 0.0)

    def test_finite_range(self):
        vals = np.random.random((100, 3))
        histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]])
        assert_raises(ValueError, histogramdd, vals,
                      range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]])
        assert_raises(ValueError, histogramdd, vals,
                      range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]])

    def test_equal_edges(self):
        """ Test that adjacent entries in an edge array can be equal """
        x = np.array([0, 1, 2])
        y = np.array([0, 1, 2])
        x_edges = np.array([0, 2, 2])
        y_edges = 1
        hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))

        hist_expected = np.array([
            [2.],
            [1.],  # x == 2 falls in the final bin
        ])
        assert_equal(hist, hist_expected)

    def test_edge_dtype(self):
        """ Test that if an edge array is input, its type is preserved """
        x = np.array([0, 10, 20])
        y = x / 10
        x_edges = np.array([0, 5, 15, 20])
        y_edges = x_edges / 10
        hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))

        assert_equal(edges[0].dtype, x_edges.dtype)
        assert_equal(edges[1].dtype, y_edges.dtype)

    def test_large_integers(self):
        big = 2**60  # Too large to represent with a full precision float

        x = np.array([0], np.int64)
        x_edges = np.array([-1, +1], np.int64)
        y = big + x
        y_edges = big + x_edges

        hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))

        assert_equal(hist[0, 0], 1)

    def test_density_non_uniform_2d(self):
        # Defines the following grid:
        #
        #    0 2     8
        #   0+-+-----+
        #    + |     +
        #    + |     +
        #   6+-+-----+
        #   8+-+-----+
        x_edges = np.array([0, 2, 8])
        y_edges = np.array([0, 6, 8])
        relative_areas = np.array([
            [3, 9],
            [1, 3]])

        # ensure the number of points in each region is proportional to its area
        x = np.array([1] + [1]*3 + [7]*3 + [7]*9)
        y = np.array([7] + [1]*3 + [7]*3 + [1]*9)

        # sanity check that the above worked as intended
        hist, edges = histogramdd((y, x), bins=(y_edges, x_edges))
        assert_equal(hist, relative_areas)

        # resulting histogram should be uniform, since counts and areas are proportional
        hist, edges = histogramdd((y, x), bins=(y_edges, x_edges), density=True)
        assert_equal(hist, 1 / (8*8))

    def test_density_non_uniform_1d(self):
        # compare to histogram to show the results are the same
        v = np.arange(10)
        bins = np.array([0, 1, 3, 6, 10])
        hist, edges = histogram(v, bins, density=True)
        hist_dd, edges_dd = histogramdd((v,), (bins,), density=True)
        assert_equal(hist, hist_dd)
        assert_equal(edges, edges_dd[0])

    def test_density_via_normed(self):
        # normed should simply alias to density argument
        v = np.arange(10)
        bins = np.array([0, 1, 3, 6, 10])
        hist, edges = histogram(v, bins, density=True)
        hist_dd, edges_dd = histogramdd((v,), (bins,), normed=True)
        assert_equal(hist, hist_dd)
        assert_equal(edges, edges_dd[0])

    def test_density_normed_redundancy(self):
        v = np.arange(10)
        bins = np.array([0, 1, 3, 6, 10])
        with assert_raises_regex(TypeError, "Cannot specify both"):
            hist_dd, edges_dd = histogramdd((v,), (bins,),
                                            density=True,
                                            normed=True)