METADATA
6.41 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
Metadata-Version: 2.1
Name: threadpoolctl
Version: 2.1.0
Summary: threadpoolctl
Home-page: https://github.com/joblib/threadpoolctl
License: UNKNOWN
Author: Thomas Moreau
Author-email: thomas.moreau.2010@gmail.com
Requires-Python: >=3.5
Description-Content-Type: text/markdown
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Topic :: Software Development :: Libraries :: Python Modules
# Thread-pool Controls [![Build Status](https://dev.azure.com/joblib/threadpoolctl/_apis/build/status/joblib.threadpoolctl?branchName=master)](https://dev.azure.com/joblib/threadpoolctl/_build/latest?definitionId=1&branchName=master) [![codecov](https://codecov.io/gh/joblib/threadpoolctl/branch/master/graph/badge.svg)](https://codecov.io/gh/joblib/threadpoolctl)
Python helpers to limit the number of threads used in the
threadpool-backed of common native libraries used for scientific
computing and data science (e.g. BLAS and OpenMP).
Fine control of the underlying thread-pool size can be useful in
workloads that involve nested parallelism so as to mitigate
oversubscription issues.
## Installation
- For users, install the last published version from PyPI:
```bash
pip install threadpoolctl
```
- For contributors, install from the source repository in developer
mode:
```bash
pip install -r dev-requirements.txt
flit install --symlink
```
then you run the tests with pytest:
```bash
pytest
```
## Usage
### Command Line Interface
Get a JSON description of thread-pools initialized when importing python
packages such as numpy or scipy for instance:
```
python -m threadpoolctl -i numpy scipy.linalg
[
{
"filepath": "/home/ogrisel/miniconda3/envs/tmp/lib/libmkl_rt.so",
"prefix": "libmkl_rt",
"user_api": "blas",
"internal_api": "mkl",
"version": "2019.0.4",
"num_threads": 2,
"threading_layer": "intel"
},
{
"filepath": "/home/ogrisel/miniconda3/envs/tmp/lib/libiomp5.so",
"prefix": "libiomp",
"user_api": "openmp",
"internal_api": "openmp",
"version": null,
"num_threads": 4
}
]
```
The JSON information is written on STDOUT. If some of the packages are missing,
a warning message is displayed on STDERR.
### Python Runtime Programmatic Introspection
Introspect the current state of the threadpool-enabled runtime libraries
that are loaded when importing Python packages:
```python
>>> from threadpoolctl import threadpool_info
>>> from pprint import pprint
>>> pprint(threadpool_info())
[]
>>> import numpy
>>> pprint(threadpool_info())
[{'filepath': '/home/ogrisel/miniconda3/envs/tmp/lib/libmkl_rt.so',
'internal_api': 'mkl',
'num_threads': 2,
'prefix': 'libmkl_rt',
'threading_layer': 'intel',
'user_api': 'blas',
'version': '2019.0.4'},
{'filepath': '/home/ogrisel/miniconda3/envs/tmp/lib/libiomp5.so',
'internal_api': 'openmp',
'num_threads': 4,
'prefix': 'libiomp',
'user_api': 'openmp',
'version': None}]
>>> import xgboost
>>> pprint(threadpool_info())
[{'filepath': '/home/ogrisel/miniconda3/envs/tmp/lib/libmkl_rt.so',
'internal_api': 'mkl',
'num_threads': 2,
'prefix': 'libmkl_rt',
'threading_layer': 'intel',
'user_api': 'blas',
'version': '2019.0.4'},
{'filepath': '/home/ogrisel/miniconda3/envs/tmp/lib/libiomp5.so',
'internal_api': 'openmp',
'num_threads': 4,
'prefix': 'libiomp',
'user_api': 'openmp',
'version': None},
{'filepath': '/home/ogrisel/miniconda3/envs/tmp/lib/libgomp.so.1.0.0',
'internal_api': 'openmp',
'num_threads': 4,
'prefix': 'libgomp',
'user_api': 'openmp',
'version': None}]
```
In the above example, `numpy` was installed from the default anaconda channel and
comes with the MKL and its Intel OpenMP (`libiomp5`) implementation while
`xgboost` was installed from pypi.org and links against GNU OpenMP (`libgomp`)
so both OpenMP runtimes are loaded in the same Python program.
### Setting the Maximum Size of Thread-Pools
Control the number of threads used by the underlying runtime libraries
in specific sections of your Python program:
```python
from threadpoolctl import threadpool_limits
import numpy as np
with threadpool_limits(limits=1, user_api='blas'):
# In this block, calls to blas implementation (like openblas or MKL)
# will be limited to use only one thread. They can thus be used jointly
# with thread-parallelism.
a = np.random.randn(1000, 1000)
a_squared = a @ a
```
### Known Limitations
- `threadpool_limits` can fail to limit the number of inner threads when nesting
parallel loops managed by distinct OpenMP runtime implementations (for instance
libgomp from GCC and libomp from clang/llvm or libiomp from ICC).
See the `test_openmp_nesting` function in [tests/test_threadpoolctl.py](
https://github.com/joblib/threadpoolctl/blob/master/tests/test_threadpoolctl.py)
for an example. More information can be found at:
https://github.com/jeremiedbb/Nested_OpenMP
Note however that this problem does not happen when `threadpool_limits` is
used to limit the number of threads used internally by BLAS calls that are
themselves nested under OpenMP parallel loops. `threadpool_limits` works as
expected, even if the inner BLAS implementation relies on a distinct OpenMP
implementation.
- Using Intel OpenMP (ICC) and LLVM OpenMP (clang) in the same Python program
under Linux is known to cause problems. See the following guide for more details
and workarounds:
https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md
## Maintainers
To make a release:
Bump the version number (`__version__`) in `threadpoolctl.py`.
Build the distribution archives:
```bash
pip install flit
flit build
```
Check the contents of `dist/`.
If everything is fine, make a commit for the release, tag it, push the
tag to github and then:
```bash
flit publish
```
### Credits
The initial dynamic library introspection code was written by @anton-malakhov
for the smp package available at https://github.com/IntelPython/smp .
threadpoolctl extends this for other operationg systems. Contrary to smp,
threadpoolctl does not attempt to limit the size of Python multiprocessing
pools (threads or processes) or set operating system-level CPU affinity
constraints: threadpoolctl only interacts with native libraries via their
public runtime APIs.