test_sparsefuncs.py
22.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
import pytest
import numpy as np
import scipy.sparse as sp
from scipy import linalg
from numpy.testing import assert_array_almost_equal, assert_array_equal
from numpy.random import RandomState
from sklearn.datasets import make_classification
from sklearn.utils.sparsefuncs import (mean_variance_axis,
incr_mean_variance_axis,
inplace_column_scale,
inplace_row_scale,
inplace_swap_row, inplace_swap_column,
min_max_axis,
count_nonzero, csc_median_axis_0)
from sklearn.utils.sparsefuncs_fast import (assign_rows_csr,
inplace_csr_row_normalize_l1,
inplace_csr_row_normalize_l2,
csr_row_norms)
from sklearn.utils._testing import assert_allclose
def test_mean_variance_axis0():
X, _ = make_classification(5, 4, random_state=0)
# Sparsify the array a little bit
X[0, 0] = 0
X[2, 1] = 0
X[4, 3] = 0
X_lil = sp.lil_matrix(X)
X_lil[1, 0] = 0
X[1, 0] = 0
with pytest.raises(TypeError):
mean_variance_axis(X_lil, axis=0)
X_csr = sp.csr_matrix(X_lil)
X_csc = sp.csc_matrix(X_lil)
expected_dtypes = [(np.float32, np.float32),
(np.float64, np.float64),
(np.int32, np.float64),
(np.int64, np.float64)]
for input_dtype, output_dtype in expected_dtypes:
X_test = X.astype(input_dtype)
for X_sparse in (X_csr, X_csc):
X_sparse = X_sparse.astype(input_dtype)
X_means, X_vars = mean_variance_axis(X_sparse, axis=0)
assert X_means.dtype == output_dtype
assert X_vars.dtype == output_dtype
assert_array_almost_equal(X_means, np.mean(X_test, axis=0))
assert_array_almost_equal(X_vars, np.var(X_test, axis=0))
def test_mean_variance_axis1():
X, _ = make_classification(5, 4, random_state=0)
# Sparsify the array a little bit
X[0, 0] = 0
X[2, 1] = 0
X[4, 3] = 0
X_lil = sp.lil_matrix(X)
X_lil[1, 0] = 0
X[1, 0] = 0
with pytest.raises(TypeError):
mean_variance_axis(X_lil, axis=1)
X_csr = sp.csr_matrix(X_lil)
X_csc = sp.csc_matrix(X_lil)
expected_dtypes = [(np.float32, np.float32),
(np.float64, np.float64),
(np.int32, np.float64),
(np.int64, np.float64)]
for input_dtype, output_dtype in expected_dtypes:
X_test = X.astype(input_dtype)
for X_sparse in (X_csr, X_csc):
X_sparse = X_sparse.astype(input_dtype)
X_means, X_vars = mean_variance_axis(X_sparse, axis=0)
assert X_means.dtype == output_dtype
assert X_vars.dtype == output_dtype
assert_array_almost_equal(X_means, np.mean(X_test, axis=0))
assert_array_almost_equal(X_vars, np.var(X_test, axis=0))
def test_incr_mean_variance_axis():
for axis in [0, 1]:
rng = np.random.RandomState(0)
n_features = 50
n_samples = 10
data_chunks = [rng.randint(0, 2, size=n_features)
for i in range(n_samples)]
# default params for incr_mean_variance
last_mean = np.zeros(n_features)
last_var = np.zeros_like(last_mean)
last_n = np.zeros_like(last_mean, dtype=np.int64)
# Test errors
X = np.array(data_chunks[0])
X = np.atleast_2d(X)
X_lil = sp.lil_matrix(X)
X_csr = sp.csr_matrix(X_lil)
with pytest.raises(TypeError):
incr_mean_variance_axis(X=axis, axis=last_mean, last_mean=last_var,
last_var=last_n)
with pytest.raises(TypeError):
incr_mean_variance_axis(X_lil, axis=axis, last_mean=last_mean,
last_var=last_var, last_n=last_n)
# Test _incr_mean_and_var with a 1 row input
X_means, X_vars = mean_variance_axis(X_csr, axis)
X_means_incr, X_vars_incr, n_incr = \
incr_mean_variance_axis(X_csr, axis=axis, last_mean=last_mean,
last_var=last_var, last_n=last_n)
assert_array_almost_equal(X_means, X_means_incr)
assert_array_almost_equal(X_vars, X_vars_incr)
# X.shape[axis] picks # samples
assert_array_equal(X.shape[axis], n_incr)
X_csc = sp.csc_matrix(X_lil)
X_means, X_vars = mean_variance_axis(X_csc, axis)
assert_array_almost_equal(X_means, X_means_incr)
assert_array_almost_equal(X_vars, X_vars_incr)
assert_array_equal(X.shape[axis], n_incr)
# Test _incremental_mean_and_var with whole data
X = np.vstack(data_chunks)
X_lil = sp.lil_matrix(X)
X_csr = sp.csr_matrix(X_lil)
X_csc = sp.csc_matrix(X_lil)
expected_dtypes = [(np.float32, np.float32),
(np.float64, np.float64),
(np.int32, np.float64),
(np.int64, np.float64)]
for input_dtype, output_dtype in expected_dtypes:
for X_sparse in (X_csr, X_csc):
X_sparse = X_sparse.astype(input_dtype)
last_mean = last_mean.astype(output_dtype)
last_var = last_var.astype(output_dtype)
X_means, X_vars = mean_variance_axis(X_sparse, axis)
X_means_incr, X_vars_incr, n_incr = \
incr_mean_variance_axis(X_sparse, axis=axis,
last_mean=last_mean,
last_var=last_var,
last_n=last_n)
assert X_means_incr.dtype == output_dtype
assert X_vars_incr.dtype == output_dtype
assert_array_almost_equal(X_means, X_means_incr)
assert_array_almost_equal(X_vars, X_vars_incr)
assert_array_equal(X.shape[axis], n_incr)
@pytest.mark.parametrize(
"X1, X2",
[
(sp.random(5, 2, density=0.8, format='csr', random_state=0),
sp.random(13, 2, density=0.8, format='csr', random_state=0)),
(sp.random(5, 2, density=0.8, format='csr', random_state=0),
sp.hstack([sp.csr_matrix(np.full((13, 1), fill_value=np.nan)),
sp.random(13, 1, density=0.8, random_state=42)],
format="csr"))
]
)
def test_incr_mean_variance_axis_equivalence_mean_variance(X1, X2):
# non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/16448
# check that computing the incremental mean and variance is equivalent to
# computing the mean and variance on the stacked dataset.
axis = 0
last_mean, last_var = np.zeros(X1.shape[1]), np.zeros(X1.shape[1])
last_n = np.zeros(X1.shape[1], dtype=np.int64)
updated_mean, updated_var, updated_n = incr_mean_variance_axis(
X1, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
)
updated_mean, updated_var, updated_n = incr_mean_variance_axis(
X2, axis=axis, last_mean=updated_mean, last_var=updated_var,
last_n=updated_n
)
X = sp.vstack([X1, X2])
assert_allclose(updated_mean, np.nanmean(X.A, axis=axis))
assert_allclose(updated_var, np.nanvar(X.A, axis=axis))
assert_allclose(updated_n, np.count_nonzero(~np.isnan(X.A), axis=0))
def test_incr_mean_variance_no_new_n():
# check the behaviour when we update the variance with an empty matrix
axis = 0
X1 = sp.random(5, 1, density=0.8, random_state=0).tocsr()
X2 = sp.random(0, 1, density=0.8, random_state=0).tocsr()
last_mean, last_var = np.zeros(X1.shape[1]), np.zeros(X1.shape[1])
last_n = np.zeros(X1.shape[1], dtype=np.int64)
last_mean, last_var, last_n = incr_mean_variance_axis(
X1, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
)
# update statistic with a column which should ignored
updated_mean, updated_var, updated_n = incr_mean_variance_axis(
X2, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
)
assert_allclose(updated_mean, last_mean)
assert_allclose(updated_var, last_var)
assert_allclose(updated_n, last_n)
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("sparse_constructor", [sp.csc_matrix, sp.csr_matrix])
def test_incr_mean_variance_axis_ignore_nan(axis, sparse_constructor):
old_means = np.array([535., 535., 535., 535.])
old_variances = np.array([4225., 4225., 4225., 4225.])
old_sample_count = np.array([2, 2, 2, 2], dtype=np.int64)
X = sparse_constructor(
np.array([[170, 170, 170, 170],
[430, 430, 430, 430],
[300, 300, 300, 300]]))
X_nan = sparse_constructor(
np.array([[170, np.nan, 170, 170],
[np.nan, 170, 430, 430],
[430, 430, np.nan, 300],
[300, 300, 300, np.nan]]))
# we avoid creating specific data for axis 0 and 1: translating the data is
# enough.
if axis:
X = X.T
X_nan = X_nan.T
# take a copy of the old statistics since they are modified in place.
X_means, X_vars, X_sample_count = incr_mean_variance_axis(
X, axis=axis, last_mean=old_means.copy(),
last_var=old_variances.copy(), last_n=old_sample_count.copy())
X_nan_means, X_nan_vars, X_nan_sample_count = incr_mean_variance_axis(
X_nan, axis=axis, last_mean=old_means.copy(),
last_var=old_variances.copy(), last_n=old_sample_count.copy())
assert_allclose(X_nan_means, X_means)
assert_allclose(X_nan_vars, X_vars)
assert_allclose(X_nan_sample_count, X_sample_count)
def test_mean_variance_illegal_axis():
X, _ = make_classification(5, 4, random_state=0)
# Sparsify the array a little bit
X[0, 0] = 0
X[2, 1] = 0
X[4, 3] = 0
X_csr = sp.csr_matrix(X)
with pytest.raises(ValueError):
mean_variance_axis(X_csr, axis=-3)
with pytest.raises(ValueError):
mean_variance_axis(X_csr, axis=2)
with pytest.raises(ValueError):
mean_variance_axis(X_csr, axis=-1)
with pytest.raises(ValueError):
incr_mean_variance_axis(X_csr, axis=-3, last_mean=None, last_var=None,
last_n=None)
with pytest.raises(ValueError):
incr_mean_variance_axis(X_csr, axis=2, last_mean=None, last_var=None,
last_n=None)
with pytest.raises(ValueError):
incr_mean_variance_axis(X_csr, axis=-1, last_mean=None, last_var=None,
last_n=None)
def test_densify_rows():
for dtype in (np.float32, np.float64):
X = sp.csr_matrix([[0, 3, 0],
[2, 4, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=dtype)
X_rows = np.array([0, 2, 3], dtype=np.intp)
out = np.ones((6, X.shape[1]), dtype=dtype)
out_rows = np.array([1, 3, 4], dtype=np.intp)
expect = np.ones_like(out)
expect[out_rows] = X[X_rows, :].toarray()
assign_rows_csr(X, X_rows, out_rows, out)
assert_array_equal(out, expect)
def test_inplace_column_scale():
rng = np.random.RandomState(0)
X = sp.rand(100, 200, 0.05)
Xr = X.tocsr()
Xc = X.tocsc()
XA = X.toarray()
scale = rng.rand(200)
XA *= scale
inplace_column_scale(Xc, scale)
inplace_column_scale(Xr, scale)
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
assert_array_almost_equal(XA, Xc.toarray())
assert_array_almost_equal(XA, Xr.toarray())
with pytest.raises(TypeError):
inplace_column_scale(X.tolil(), scale)
X = X.astype(np.float32)
scale = scale.astype(np.float32)
Xr = X.tocsr()
Xc = X.tocsc()
XA = X.toarray()
XA *= scale
inplace_column_scale(Xc, scale)
inplace_column_scale(Xr, scale)
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
assert_array_almost_equal(XA, Xc.toarray())
assert_array_almost_equal(XA, Xr.toarray())
with pytest.raises(TypeError):
inplace_column_scale(X.tolil(), scale)
def test_inplace_row_scale():
rng = np.random.RandomState(0)
X = sp.rand(100, 200, 0.05)
Xr = X.tocsr()
Xc = X.tocsc()
XA = X.toarray()
scale = rng.rand(100)
XA *= scale.reshape(-1, 1)
inplace_row_scale(Xc, scale)
inplace_row_scale(Xr, scale)
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
assert_array_almost_equal(XA, Xc.toarray())
assert_array_almost_equal(XA, Xr.toarray())
with pytest.raises(TypeError):
inplace_column_scale(X.tolil(), scale)
X = X.astype(np.float32)
scale = scale.astype(np.float32)
Xr = X.tocsr()
Xc = X.tocsc()
XA = X.toarray()
XA *= scale.reshape(-1, 1)
inplace_row_scale(Xc, scale)
inplace_row_scale(Xr, scale)
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
assert_array_almost_equal(XA, Xc.toarray())
assert_array_almost_equal(XA, Xr.toarray())
with pytest.raises(TypeError):
inplace_column_scale(X.tolil(), scale)
def test_inplace_swap_row():
X = np.array([[0, 3, 0],
[2, 4, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float64)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
swap = linalg.get_blas_funcs(('swap',), (X,))
swap = swap[0]
X[0], X[-1] = swap(X[0], X[-1])
inplace_swap_row(X_csr, 0, -1)
inplace_swap_row(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[2], X[3] = swap(X[2], X[3])
inplace_swap_row(X_csr, 2, 3)
inplace_swap_row(X_csc, 2, 3)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
with pytest.raises(TypeError):
inplace_swap_row(X_csr.tolil())
X = np.array([[0, 3, 0],
[2, 4, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float32)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
swap = linalg.get_blas_funcs(('swap',), (X,))
swap = swap[0]
X[0], X[-1] = swap(X[0], X[-1])
inplace_swap_row(X_csr, 0, -1)
inplace_swap_row(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[2], X[3] = swap(X[2], X[3])
inplace_swap_row(X_csr, 2, 3)
inplace_swap_row(X_csc, 2, 3)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
with pytest.raises(TypeError):
inplace_swap_row(X_csr.tolil())
def test_inplace_swap_column():
X = np.array([[0, 3, 0],
[2, 4, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float64)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
swap = linalg.get_blas_funcs(('swap',), (X,))
swap = swap[0]
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
inplace_swap_column(X_csr, 0, -1)
inplace_swap_column(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
inplace_swap_column(X_csr, 0, 1)
inplace_swap_column(X_csc, 0, 1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
with pytest.raises(TypeError):
inplace_swap_column(X_csr.tolil())
X = np.array([[0, 3, 0],
[2, 4, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float32)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
swap = linalg.get_blas_funcs(('swap',), (X,))
swap = swap[0]
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
inplace_swap_column(X_csr, 0, -1)
inplace_swap_column(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
inplace_swap_column(X_csr, 0, 1)
inplace_swap_column(X_csc, 0, 1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
with pytest.raises(TypeError):
inplace_swap_column(X_csr.tolil())
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("axis", [0, 1, None])
@pytest.mark.parametrize("sparse_format", [sp.csr_matrix, sp.csc_matrix])
@pytest.mark.parametrize(
"missing_values, min_func, max_func, ignore_nan",
[(0, np.min, np.max, False),
(np.nan, np.nanmin, np.nanmax, True)]
)
@pytest.mark.parametrize("large_indices", [True, False])
def test_min_max(dtype, axis, sparse_format, missing_values, min_func,
max_func, ignore_nan, large_indices):
X = np.array([[0, 3, 0],
[2, -1, missing_values],
[0, 0, 0],
[9, missing_values, 7],
[4, 0, 5]], dtype=dtype)
X_sparse = sparse_format(X)
if large_indices:
X_sparse.indices = X_sparse.indices.astype('int64')
X_sparse.indptr = X_sparse.indptr.astype('int64')
mins_sparse, maxs_sparse = min_max_axis(X_sparse, axis=axis,
ignore_nan=ignore_nan)
assert_array_equal(mins_sparse, min_func(X, axis=axis))
assert_array_equal(maxs_sparse, max_func(X, axis=axis))
def test_min_max_axis_errors():
X = np.array([[0, 3, 0],
[2, -1, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float64)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
with pytest.raises(TypeError):
min_max_axis(X_csr.tolil(), axis=0)
with pytest.raises(ValueError):
min_max_axis(X_csr, axis=2)
with pytest.raises(ValueError):
min_max_axis(X_csc, axis=-3)
def test_count_nonzero():
X = np.array([[0, 3, 0],
[2, -1, 0],
[0, 0, 0],
[9, 8, 7],
[4, 0, 5]], dtype=np.float64)
X_csr = sp.csr_matrix(X)
X_csc = sp.csc_matrix(X)
X_nonzero = X != 0
sample_weight = [.5, .2, .3, .1, .1]
X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None]
for axis in [0, 1, -1, -2, None]:
assert_array_almost_equal(count_nonzero(X_csr, axis=axis),
X_nonzero.sum(axis=axis))
assert_array_almost_equal(count_nonzero(X_csr, axis=axis,
sample_weight=sample_weight),
X_nonzero_weighted.sum(axis=axis))
with pytest.raises(TypeError):
count_nonzero(X_csc)
with pytest.raises(ValueError):
count_nonzero(X_csr, axis=2)
assert (count_nonzero(X_csr, axis=0).dtype ==
count_nonzero(X_csr, axis=1).dtype)
assert (count_nonzero(X_csr, axis=0, sample_weight=sample_weight).dtype ==
count_nonzero(X_csr, axis=1, sample_weight=sample_weight).dtype)
# Check dtypes with large sparse matrices too
# XXX: test fails on 32bit (Windows/Linux)
try:
X_csr.indices = X_csr.indices.astype(np.int64)
X_csr.indptr = X_csr.indptr.astype(np.int64)
assert (count_nonzero(X_csr, axis=0).dtype ==
count_nonzero(X_csr, axis=1).dtype)
assert (count_nonzero(X_csr, axis=0,
sample_weight=sample_weight).dtype ==
count_nonzero(X_csr, axis=1,
sample_weight=sample_weight).dtype)
except TypeError as e:
assert ("according to the rule 'safe'" in e.args[0]
and np.intp().nbytes < 8), e
def test_csc_row_median():
# Test csc_row_median actually calculates the median.
# Test that it gives the same output when X is dense.
rng = np.random.RandomState(0)
X = rng.rand(100, 50)
dense_median = np.median(X, axis=0)
csc = sp.csc_matrix(X)
sparse_median = csc_median_axis_0(csc)
assert_array_equal(sparse_median, dense_median)
# Test that it gives the same output when X is sparse
X = rng.rand(51, 100)
X[X < 0.7] = 0.0
ind = rng.randint(0, 50, 10)
X[ind] = -X[ind]
csc = sp.csc_matrix(X)
dense_median = np.median(X, axis=0)
sparse_median = csc_median_axis_0(csc)
assert_array_equal(sparse_median, dense_median)
# Test for toy data.
X = [[0, -2], [-1, -1], [1, 0], [2, 1]]
csc = sp.csc_matrix(X)
assert_array_equal(csc_median_axis_0(csc), np.array([0.5, -0.5]))
X = [[0, -2], [-1, -5], [1, -3]]
csc = sp.csc_matrix(X)
assert_array_equal(csc_median_axis_0(csc), np.array([0., -3]))
# Test that it raises an Error for non-csc matrices.
with pytest.raises(TypeError):
csc_median_axis_0(sp.csr_matrix(X))
def test_inplace_normalize():
ones = np.ones((10, 1))
rs = RandomState(10)
for inplace_csr_row_normalize in (inplace_csr_row_normalize_l1,
inplace_csr_row_normalize_l2):
for dtype in (np.float64, np.float32):
X = rs.randn(10, 5).astype(dtype)
X_csr = sp.csr_matrix(X)
for index_dtype in [np.int32, np.int64]:
# csr_matrix will use int32 indices by default,
# up-casting those to int64 when necessary
if index_dtype is np.int64:
X_csr.indptr = X_csr.indptr.astype(index_dtype)
X_csr.indices = X_csr.indices.astype(index_dtype)
assert X_csr.indices.dtype == index_dtype
assert X_csr.indptr.dtype == index_dtype
inplace_csr_row_normalize(X_csr)
assert X_csr.dtype == dtype
if inplace_csr_row_normalize is inplace_csr_row_normalize_l2:
X_csr.data **= 2
assert_array_almost_equal(np.abs(X_csr).sum(axis=1), ones)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_csr_row_norms(dtype):
# checks that csr_row_norms returns the same output as
# scipy.sparse.linalg.norm, and that the dype is the same as X.dtype.
X = sp.random(100, 10, format='csr', dtype=dtype, random_state=42)
scipy_norms = sp.linalg.norm(X, axis=1)**2
norms = csr_row_norms(X)
assert norms.dtype == dtype
rtol = 1e-6 if dtype == np.float32 else 1e-7
assert_allclose(norms, scipy_norms, rtol=rtol)