test_pprint.py 25.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
import re
from pprint import PrettyPrinter

import numpy as np

from sklearn.utils._pprint import _EstimatorPrettyPrinter
from sklearn.linear_model import LogisticRegressionCV
from sklearn.pipeline import make_pipeline
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_selection import SelectKBest, chi2
from sklearn import set_config, config_context


# Ignore flake8 (lots of line too long issues)
# flake8: noqa

# Constructors excerpted to test pprinting
class LogisticRegression(BaseEstimator):
    def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0,
                 fit_intercept=True, intercept_scaling=1, class_weight=None,
                 random_state=None, solver='warn', max_iter=100,
                 multi_class='warn', verbose=0, warm_start=False, n_jobs=None,
                 l1_ratio=None):
        self.penalty = penalty
        self.dual = dual
        self.tol = tol
        self.C = C
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.class_weight = class_weight
        self.random_state = random_state
        self.solver = solver
        self.max_iter = max_iter
        self.multi_class = multi_class
        self.verbose = verbose
        self.warm_start = warm_start
        self.n_jobs = n_jobs
        self.l1_ratio = l1_ratio

    def fit(self, X, y):
        return self


class StandardScaler(TransformerMixin, BaseEstimator):
    def __init__(self, copy=True, with_mean=True, with_std=True):
        self.with_mean = with_mean
        self.with_std = with_std
        self.copy = copy

    def transform(self, X, copy=None):
        return self


class RFE(BaseEstimator):
    def __init__(self, estimator, n_features_to_select=None, step=1,
                 verbose=0):
        self.estimator = estimator
        self.n_features_to_select = n_features_to_select
        self.step = step
        self.verbose = verbose


class GridSearchCV(BaseEstimator):
    def __init__(self, estimator, param_grid, scoring=None,
                 n_jobs=None, iid='warn', refit=True, cv='warn', verbose=0,
                 pre_dispatch='2*n_jobs', error_score='raise-deprecating',
                 return_train_score=False):
        self.estimator = estimator
        self.param_grid = param_grid
        self.scoring = scoring
        self.n_jobs = n_jobs
        self.iid = iid
        self.refit = refit
        self.cv = cv
        self.verbose = verbose
        self.pre_dispatch = pre_dispatch
        self.error_score = error_score
        self.return_train_score = return_train_score


class CountVectorizer(BaseEstimator):
    def __init__(self, input='content', encoding='utf-8',
                 decode_error='strict', strip_accents=None,
                 lowercase=True, preprocessor=None, tokenizer=None,
                 stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
                 ngram_range=(1, 1), analyzer='word',
                 max_df=1.0, min_df=1, max_features=None,
                 vocabulary=None, binary=False, dtype=np.int64):
        self.input = input
        self.encoding = encoding
        self.decode_error = decode_error
        self.strip_accents = strip_accents
        self.preprocessor = preprocessor
        self.tokenizer = tokenizer
        self.analyzer = analyzer
        self.lowercase = lowercase
        self.token_pattern = token_pattern
        self.stop_words = stop_words
        self.max_df = max_df
        self.min_df = min_df
        self.max_features = max_features
        self.ngram_range = ngram_range
        self.vocabulary = vocabulary
        self.binary = binary
        self.dtype = dtype


class Pipeline(BaseEstimator):
    def __init__(self, steps, memory=None):
        self.steps = steps
        self.memory = memory


class SVC(BaseEstimator):
    def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto_deprecated',
                 coef0=0.0, shrinking=True, probability=False,
                 tol=1e-3, cache_size=200, class_weight=None,
                 verbose=False, max_iter=-1, decision_function_shape='ovr',
                 random_state=None):
        self.kernel = kernel
        self.degree = degree
        self.gamma = gamma
        self.coef0 = coef0
        self.tol = tol
        self.C = C
        self.shrinking = shrinking
        self.probability = probability
        self.cache_size = cache_size
        self.class_weight = class_weight
        self.verbose = verbose
        self.max_iter = max_iter
        self.decision_function_shape = decision_function_shape
        self.random_state = random_state


class PCA(BaseEstimator):
    def __init__(self, n_components=None, copy=True, whiten=False,
                 svd_solver='auto', tol=0.0, iterated_power='auto',
                 random_state=None):
        self.n_components = n_components
        self.copy = copy
        self.whiten = whiten
        self.svd_solver = svd_solver
        self.tol = tol
        self.iterated_power = iterated_power
        self.random_state = random_state


class NMF(BaseEstimator):
    def __init__(self, n_components=None, init=None, solver='cd',
                 beta_loss='frobenius', tol=1e-4, max_iter=200,
                 random_state=None, alpha=0., l1_ratio=0., verbose=0,
                 shuffle=False):
        self.n_components = n_components
        self.init = init
        self.solver = solver
        self.beta_loss = beta_loss
        self.tol = tol
        self.max_iter = max_iter
        self.random_state = random_state
        self.alpha = alpha
        self.l1_ratio = l1_ratio
        self.verbose = verbose
        self.shuffle = shuffle


class SimpleImputer(BaseEstimator):
    def __init__(self, missing_values=np.nan, strategy="mean",
                 fill_value=None, verbose=0, copy=True):
        self.missing_values = missing_values
        self.strategy = strategy
        self.fill_value = fill_value
        self.verbose = verbose
        self.copy = copy


def test_basic(print_changed_only_false):
    # Basic pprint test
    lr = LogisticRegression()
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""

    expected = expected[1:]  # remove first \n
    assert lr.__repr__() == expected


def test_changed_only():
    # Make sure the changed_only param is correctly used when True (default)
    lr = LogisticRegression(C=99)
    expected = """LogisticRegression(C=99)"""
    assert lr.__repr__() == expected

    # Check with a repr that doesn't fit on a single line
    lr = LogisticRegression(C=99, class_weight=.4, fit_intercept=False,
                            tol=1234, verbose=True)
    expected = """
LogisticRegression(C=99, class_weight=0.4, fit_intercept=False, tol=1234,
                   verbose=True)"""
    expected = expected[1:]  # remove first \n
    assert lr.__repr__() == expected

    imputer = SimpleImputer(missing_values=0)
    expected = """SimpleImputer(missing_values=0)"""
    assert imputer.__repr__() == expected

    # Defaults to np.NaN, trying with float('NaN')
    imputer = SimpleImputer(missing_values=float('NaN'))
    expected = """SimpleImputer()"""
    assert imputer.__repr__() == expected

    # make sure array parameters don't throw error (see #13583)
    repr(LogisticRegressionCV(Cs=np.array([0.1, 1])))


def test_pipeline(print_changed_only_false):
    # Render a pipeline object
    pipeline = make_pipeline(StandardScaler(), LogisticRegression(C=999))
    expected = """
Pipeline(memory=None,
         steps=[('standardscaler',
                 StandardScaler(copy=True, with_mean=True, with_std=True)),
                ('logisticregression',
                 LogisticRegression(C=999, class_weight=None, dual=False,
                                    fit_intercept=True, intercept_scaling=1,
                                    l1_ratio=None, max_iter=100,
                                    multi_class='warn', n_jobs=None,
                                    penalty='l2', random_state=None,
                                    solver='warn', tol=0.0001, verbose=0,
                                    warm_start=False))],
         verbose=False)"""

    expected = expected[1:]  # remove first \n
    assert pipeline.__repr__() == expected


def test_deeply_nested(print_changed_only_false):
    # Render a deeply nested estimator
    rfe = RFE(RFE(RFE(RFE(RFE(RFE(RFE(LogisticRegression())))))))
    expected = """
RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=LogisticRegression(C=1.0,
                                                                                                                     class_weight=None,
                                                                                                                     dual=False,
                                                                                                                     fit_intercept=True,
                                                                                                                     intercept_scaling=1,
                                                                                                                     l1_ratio=None,
                                                                                                                     max_iter=100,
                                                                                                                     multi_class='warn',
                                                                                                                     n_jobs=None,
                                                                                                                     penalty='l2',
                                                                                                                     random_state=None,
                                                                                                                     solver='warn',
                                                                                                                     tol=0.0001,
                                                                                                                     verbose=0,
                                                                                                                     warm_start=False),
                                                                                        n_features_to_select=None,
                                                                                        step=1,
                                                                                        verbose=0),
                                                                          n_features_to_select=None,
                                                                          step=1,
                                                                          verbose=0),
                                                            n_features_to_select=None,
                                                            step=1, verbose=0),
                                              n_features_to_select=None, step=1,
                                              verbose=0),
                                n_features_to_select=None, step=1, verbose=0),
                  n_features_to_select=None, step=1, verbose=0),
    n_features_to_select=None, step=1, verbose=0)"""

    expected = expected[1:]  # remove first \n
    assert rfe.__repr__() == expected


def test_gridsearch(print_changed_only_false):
    # render a gridsearch
    param_grid = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
                   'C': [1, 10, 100, 1000]},
                  {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
    gs = GridSearchCV(SVC(), param_grid, cv=5)

    expected = """
GridSearchCV(cv=5, error_score='raise-deprecating',
             estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
                           decision_function_shape='ovr', degree=3,
                           gamma='auto_deprecated', kernel='rbf', max_iter=-1,
                           probability=False, random_state=None, shrinking=True,
                           tol=0.001, verbose=False),
             iid='warn', n_jobs=None,
             param_grid=[{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],
                          'kernel': ['rbf']},
                         {'C': [1, 10, 100, 1000], 'kernel': ['linear']}],
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)"""

    expected = expected[1:]  # remove first \n
    assert gs.__repr__() == expected


def test_gridsearch_pipeline(print_changed_only_false):
    # render a pipeline inside a gridsearch
    pp = _EstimatorPrettyPrinter(compact=True, indent=1, indent_at_name=True)

    pipeline = Pipeline([
        ('reduce_dim', PCA()),
        ('classify', SVC())
    ])
    N_FEATURES_OPTIONS = [2, 4, 8]
    C_OPTIONS = [1, 10, 100, 1000]
    param_grid = [
        {
            'reduce_dim': [PCA(iterated_power=7), NMF()],
            'reduce_dim__n_components': N_FEATURES_OPTIONS,
            'classify__C': C_OPTIONS
        },
        {
            'reduce_dim': [SelectKBest(chi2)],
            'reduce_dim__k': N_FEATURES_OPTIONS,
            'classify__C': C_OPTIONS
        }
    ]
    gspipline = GridSearchCV(pipeline, cv=3, n_jobs=1, param_grid=param_grid)
    expected = """
GridSearchCV(cv=3, error_score='raise-deprecating',
             estimator=Pipeline(memory=None,
                                steps=[('reduce_dim',
                                        PCA(copy=True, iterated_power='auto',
                                            n_components=None,
                                            random_state=None,
                                            svd_solver='auto', tol=0.0,
                                            whiten=False)),
                                       ('classify',
                                        SVC(C=1.0, cache_size=200,
                                            class_weight=None, coef0=0.0,
                                            decision_function_shape='ovr',
                                            degree=3, gamma='auto_deprecated',
                                            kernel='rbf', max_iter=-1,
                                            probability=False,
                                            random_state=None, shrinking=True,
                                            tol=0.001, verbose=False))]),
             iid='warn', n_jobs=1,
             param_grid=[{'classify__C': [1, 10, 100, 1000],
                          'reduce_dim': [PCA(copy=True, iterated_power=7,
                                             n_components=None,
                                             random_state=None,
                                             svd_solver='auto', tol=0.0,
                                             whiten=False),
                                         NMF(alpha=0.0, beta_loss='frobenius',
                                             init=None, l1_ratio=0.0,
                                             max_iter=200, n_components=None,
                                             random_state=None, shuffle=False,
                                             solver='cd', tol=0.0001,
                                             verbose=0)],
                          'reduce_dim__n_components': [2, 4, 8]},
                         {'classify__C': [1, 10, 100, 1000],
                          'reduce_dim': [SelectKBest(k=10,
                                                     score_func=<function chi2 at some_address>)],
                          'reduce_dim__k': [2, 4, 8]}],
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)"""

    expected = expected[1:]  # remove first \n
    repr_ = pp.pformat(gspipline)
    # Remove address of '<function chi2 at 0x.....>' for reproducibility
    repr_ = re.sub('function chi2 at 0x.*>',
                   'function chi2 at some_address>', repr_)
    assert repr_ == expected


def test_n_max_elements_to_show(print_changed_only_false):

    n_max_elements_to_show = 30
    pp = _EstimatorPrettyPrinter(
        compact=True, indent=1, indent_at_name=True,
        n_max_elements_to_show=n_max_elements_to_show
    )

    # No ellipsis
    vocabulary = {i: i for i in range(n_max_elements_to_show)}
    vectorizer = CountVectorizer(vocabulary=vocabulary)

    expected = r"""
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
                dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
                lowercase=True, max_df=1.0, max_features=None, min_df=1,
                ngram_range=(1, 1), preprocessor=None, stop_words=None,
                strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
                tokenizer=None,
                vocabulary={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7,
                            8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14,
                            15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20,
                            21: 21, 22: 22, 23: 23, 24: 24, 25: 25, 26: 26,
                            27: 27, 28: 28, 29: 29})"""

    expected = expected[1:]  # remove first \n
    assert pp.pformat(vectorizer) == expected

    # Now with ellipsis
    vocabulary = {i: i for i in range(n_max_elements_to_show + 1)}
    vectorizer = CountVectorizer(vocabulary=vocabulary)

    expected = r"""
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
                dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
                lowercase=True, max_df=1.0, max_features=None, min_df=1,
                ngram_range=(1, 1), preprocessor=None, stop_words=None,
                strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
                tokenizer=None,
                vocabulary={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7,
                            8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14,
                            15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20,
                            21: 21, 22: 22, 23: 23, 24: 24, 25: 25, 26: 26,
                            27: 27, 28: 28, 29: 29, ...})"""

    expected = expected[1:]  # remove first \n
    assert pp.pformat(vectorizer) == expected

    # Also test with lists
    param_grid = {'C': list(range(n_max_elements_to_show))}
    gs = GridSearchCV(SVC(), param_grid)
    expected = """
GridSearchCV(cv='warn', error_score='raise-deprecating',
             estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
                           decision_function_shape='ovr', degree=3,
                           gamma='auto_deprecated', kernel='rbf', max_iter=-1,
                           probability=False, random_state=None, shrinking=True,
                           tol=0.001, verbose=False),
             iid='warn', n_jobs=None,
             param_grid={'C': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
                               15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
                               27, 28, 29]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)"""

    expected = expected[1:]  # remove first \n
    assert pp.pformat(gs) == expected

    # Now with ellipsis
    param_grid = {'C': list(range(n_max_elements_to_show + 1))}
    gs = GridSearchCV(SVC(), param_grid)
    expected = """
GridSearchCV(cv='warn', error_score='raise-deprecating',
             estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
                           decision_function_shape='ovr', degree=3,
                           gamma='auto_deprecated', kernel='rbf', max_iter=-1,
                           probability=False, random_state=None, shrinking=True,
                           tol=0.001, verbose=False),
             iid='warn', n_jobs=None,
             param_grid={'C': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
                               15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
                               27, 28, 29, ...]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)"""

    expected = expected[1:]  # remove first \n
    assert pp.pformat(gs) == expected


def test_bruteforce_ellipsis(print_changed_only_false):
    # Check that the bruteforce ellipsis (used when the number of non-blank
    # characters exceeds N_CHAR_MAX) renders correctly.

    lr = LogisticRegression()

    # test when the left and right side of the ellipsis aren't on the same
    # line.
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   in...
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""

    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=150)

    # test with very small N_CHAR_MAX
    # Note that N_CHAR_MAX is not strictly enforced, but it's normal: to avoid
    # weird reprs we still keep the whole line of the right part (after the
    # ellipsis).
    expected = """
Lo...
                   warm_start=False)"""

    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=4)

    # test with N_CHAR_MAX == number of non-blank characters: In this case we
    # don't want ellipsis
    full_repr = lr.__repr__(N_CHAR_MAX=float('inf'))
    n_nonblank = len(''.join(full_repr.split()))
    assert lr.__repr__(N_CHAR_MAX=n_nonblank) == full_repr
    assert '...' not in full_repr

    # test with N_CHAR_MAX == number of non-blank characters - 10: the left and
    # right side of the ellispsis are on different lines. In this case we
    # want to expend the whole line of the right side
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_i...
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""
    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 10)

    # test with N_CHAR_MAX == number of non-blank characters - 10: the left and
    # right side of the ellispsis are on the same line. In this case we don't
    # want to expend the whole line of the right side, just add the ellispsis
    # between the 2 sides.
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter...,
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""
    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 4)

    # test with N_CHAR_MAX == number of non-blank characters - 2: the left and
    # right side of the ellispsis are on the same line, but adding the ellipsis
    # would actually make the repr longer. So we don't add the ellipsis.
    expected = """
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='warn', n_jobs=None, penalty='l2',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm_start=False)"""
    expected = expected[1:]  # remove first \n
    assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 2)


def test_builtin_prettyprinter():
    # non regression test than ensures we can still use the builtin
    # PrettyPrinter class for estimators (as done e.g. by joblib).
    # Used to be a bug

    PrettyPrinter().pprint(LogisticRegression())


def test_kwargs_in_init():
    # Make sure the changed_only=True mode is OK when an argument is passed as
    # kwargs.
    # Non-regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/17206

    class WithKWargs(BaseEstimator):
        # Estimator with a kwargs argument. These need to hack around
        # set_params and get_params. Here we mimic what LightGBM does.
        def __init__(self, a='willchange', b='unchanged', **kwargs):
            self.a = a
            self.b = b
            self._other_params = {}
            self.set_params(**kwargs)

        def get_params(self, deep=True):
            params = super().get_params(deep=deep)
            params.update(self._other_params)
            return params

        def set_params(self, **params):
            for key, value in params.items():
                setattr(self, key, value)
                self._other_params[key] = value
            return self

    est = WithKWargs(a='something', c='abcd', d=None)

    expected = "WithKWargs(a='something', c='abcd', d=None)"
    assert expected == est.__repr__()

    with config_context(print_changed_only=False):
        expected = "WithKWargs(a='something', b='unchanged', c='abcd', d=None)"
        assert expected == est.__repr__()