multiclass.py 15.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi
#
# License: BSD 3 clause
"""
Multi-class / multi-label utility function
==========================================

"""
from collections.abc import Sequence
from itertools import chain

from scipy.sparse import issparse
from scipy.sparse.base import spmatrix
from scipy.sparse import dok_matrix
from scipy.sparse import lil_matrix

import numpy as np

from .validation import check_array, _assert_all_finite


def _unique_multiclass(y):
    if hasattr(y, '__array__'):
        return np.unique(np.asarray(y))
    else:
        return set(y)


def _unique_indicator(y):
    return np.arange(
        check_array(y, accept_sparse=['csr', 'csc', 'coo']).shape[1]
    )


_FN_UNIQUE_LABELS = {
    'binary': _unique_multiclass,
    'multiclass': _unique_multiclass,
    'multilabel-indicator': _unique_indicator,
}


def unique_labels(*ys):
    """Extract an ordered array of unique labels

    We don't allow:
        - mix of multilabel and multiclass (single label) targets
        - mix of label indicator matrix and anything else,
          because there are no explicit labels)
        - mix of label indicator matrices of different sizes
        - mix of string and integer labels

    At the moment, we also don't allow "multiclass-multioutput" input type.

    Parameters
    ----------
    *ys : array-likes

    Returns
    -------
    out : numpy array of shape [n_unique_labels]
        An ordered array of unique labels.

    Examples
    --------
    >>> from sklearn.utils.multiclass import unique_labels
    >>> unique_labels([3, 5, 5, 5, 7, 7])
    array([3, 5, 7])
    >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4])
    array([1, 2, 3, 4])
    >>> unique_labels([1, 2, 10], [5, 11])
    array([ 1,  2,  5, 10, 11])
    """
    if not ys:
        raise ValueError('No argument has been passed.')
    # Check that we don't mix label format

    ys_types = set(type_of_target(x) for x in ys)
    if ys_types == {"binary", "multiclass"}:
        ys_types = {"multiclass"}

    if len(ys_types) > 1:
        raise ValueError("Mix type of y not allowed, got types %s" % ys_types)

    label_type = ys_types.pop()

    # Check consistency for the indicator format
    if (label_type == "multilabel-indicator" and
            len(set(check_array(y,
                                accept_sparse=['csr', 'csc', 'coo']).shape[1]
                    for y in ys)) > 1):
        raise ValueError("Multi-label binary indicator input with "
                         "different numbers of labels")

    # Get the unique set of labels
    _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None)
    if not _unique_labels:
        raise ValueError("Unknown label type: %s" % repr(ys))

    ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys))

    # Check that we don't mix string type with number type
    if (len(set(isinstance(label, str) for label in ys_labels)) > 1):
        raise ValueError("Mix of label input types (string and number)")

    return np.array(sorted(ys_labels))


def _is_integral_float(y):
    return y.dtype.kind == 'f' and np.all(y.astype(int) == y)


def is_multilabel(y):
    """ Check if ``y`` is in a multilabel format.

    Parameters
    ----------
    y : numpy array of shape [n_samples]
        Target values.

    Returns
    -------
    out : bool,
        Return ``True``, if ``y`` is in a multilabel format, else ```False``.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils.multiclass import is_multilabel
    >>> is_multilabel([0, 1, 0, 1])
    False
    >>> is_multilabel([[1], [0, 2], []])
    False
    >>> is_multilabel(np.array([[1, 0], [0, 0]]))
    True
    >>> is_multilabel(np.array([[1], [0], [0]]))
    False
    >>> is_multilabel(np.array([[1, 0, 0]]))
    True
    """
    if hasattr(y, '__array__') or isinstance(y, Sequence):
        y = np.asarray(y)
    if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1):
        return False

    if issparse(y):
        if isinstance(y, (dok_matrix, lil_matrix)):
            y = y.tocsr()
        return (len(y.data) == 0 or np.unique(y.data).size == 1 and
                (y.dtype.kind in 'biu' or  # bool, int, uint
                 _is_integral_float(np.unique(y.data))))
    else:
        labels = np.unique(y)

        return len(labels) < 3 and (y.dtype.kind in 'biu' or  # bool, int, uint
                                    _is_integral_float(labels))


def check_classification_targets(y):
    """Ensure that target y is of a non-regression type.

    Only the following target types (as defined in type_of_target) are allowed:
        'binary', 'multiclass', 'multiclass-multioutput',
        'multilabel-indicator', 'multilabel-sequences'

    Parameters
    ----------
    y : array-like
    """
    y_type = type_of_target(y)
    if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',
                      'multilabel-indicator', 'multilabel-sequences']:
        raise ValueError("Unknown label type: %r" % y_type)


def type_of_target(y):
    """Determine the type of data indicated by the target.

    Note that this type is the most specific type that can be inferred.
    For example:

        * ``binary`` is more specific but compatible with ``multiclass``.
        * ``multiclass`` of integers is more specific but compatible with
          ``continuous``.
        * ``multilabel-indicator`` is more specific but compatible with
          ``multiclass-multioutput``.

    Parameters
    ----------
    y : array-like

    Returns
    -------
    target_type : string
        One of:

        * 'continuous': `y` is an array-like of floats that are not all
          integers, and is 1d or a column vector.
        * 'continuous-multioutput': `y` is a 2d array of floats that are
          not all integers, and both dimensions are of size > 1.
        * 'binary': `y` contains <= 2 discrete values and is 1d or a column
          vector.
        * 'multiclass': `y` contains more than two discrete values, is not a
          sequence of sequences, and is 1d or a column vector.
        * 'multiclass-multioutput': `y` is a 2d array that contains more
          than two discrete values, is not a sequence of sequences, and both
          dimensions are of size > 1.
        * 'multilabel-indicator': `y` is a label indicator matrix, an array
          of two dimensions with at least two columns, and at most 2 unique
          values.
        * 'unknown': `y` is array-like but none of the above, such as a 3d
          array, sequence of sequences, or an array of non-sequence objects.

    Examples
    --------
    >>> import numpy as np
    >>> type_of_target([0.1, 0.6])
    'continuous'
    >>> type_of_target([1, -1, -1, 1])
    'binary'
    >>> type_of_target(['a', 'b', 'a'])
    'binary'
    >>> type_of_target([1.0, 2.0])
    'binary'
    >>> type_of_target([1, 0, 2])
    'multiclass'
    >>> type_of_target([1.0, 0.0, 3.0])
    'multiclass'
    >>> type_of_target(['a', 'b', 'c'])
    'multiclass'
    >>> type_of_target(np.array([[1, 2], [3, 1]]))
    'multiclass-multioutput'
    >>> type_of_target([[1, 2]])
    'multilabel-indicator'
    >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]]))
    'continuous-multioutput'
    >>> type_of_target(np.array([[0, 1], [1, 1]]))
    'multilabel-indicator'
    """
    valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__'))
             and not isinstance(y, str))

    if not valid:
        raise ValueError('Expected array-like (array or non-string sequence), '
                         'got %r' % y)

    sparse_pandas = (y.__class__.__name__ in ['SparseSeries', 'SparseArray'])
    if sparse_pandas:
        raise ValueError("y cannot be class 'SparseSeries' or 'SparseArray'")

    if is_multilabel(y):
        return 'multilabel-indicator'

    try:
        y = np.asarray(y)
    except ValueError:
        # Known to fail in numpy 1.3 for array of arrays
        return 'unknown'

    # The old sequence of sequences format
    try:
        if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence)
                and not isinstance(y[0], str)):
            raise ValueError('You appear to be using a legacy multi-label data'
                             ' representation. Sequence of sequences are no'
                             ' longer supported; use a binary array or sparse'
                             ' matrix instead - the MultiLabelBinarizer'
                             ' transformer can convert to this format.')
    except IndexError:
        pass

    # Invalid inputs
    if y.ndim > 2 or (y.dtype == object and len(y) and
                      not isinstance(y.flat[0], str)):
        return 'unknown'  # [[[1, 2]]] or [obj_1] and not ["label_1"]

    if y.ndim == 2 and y.shape[1] == 0:
        return 'unknown'  # [[]]

    if y.ndim == 2 and y.shape[1] > 1:
        suffix = "-multioutput"  # [[1, 2], [1, 2]]
    else:
        suffix = ""  # [1, 2, 3] or [[1], [2], [3]]

    # check float and contains non-integer float values
    if y.dtype.kind == 'f' and np.any(y != y.astype(int)):
        # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.]
        _assert_all_finite(y)
        return 'continuous' + suffix

    if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1):
        return 'multiclass' + suffix  # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]]
    else:
        return 'binary'  # [1, 2] or [["a"], ["b"]]


def _check_partial_fit_first_call(clf, classes=None):
    """Private helper function for factorizing common classes param logic

    Estimators that implement the ``partial_fit`` API need to be provided with
    the list of possible classes at the first call to partial_fit.

    Subsequent calls to partial_fit should check that ``classes`` is still
    consistent with a previous value of ``clf.classes_`` when provided.

    This function returns True if it detects that this was the first call to
    ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also
    set on ``clf``.

    """
    if getattr(clf, 'classes_', None) is None and classes is None:
        raise ValueError("classes must be passed on the first call "
                         "to partial_fit.")

    elif classes is not None:
        if getattr(clf, 'classes_', None) is not None:
            if not np.array_equal(clf.classes_, unique_labels(classes)):
                raise ValueError(
                    "`classes=%r` is not the same as on last call "
                    "to partial_fit, was: %r" % (classes, clf.classes_))

        else:
            # This is the first call to partial_fit
            clf.classes_ = unique_labels(classes)
            return True

    # classes is None and clf.classes_ has already previously been set:
    # nothing to do
    return False


def class_distribution(y, sample_weight=None):
    """Compute class priors from multioutput-multiclass target data

    Parameters
    ----------
    y : array like or sparse matrix of size (n_samples, n_outputs)
        The labels for each example.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    classes : list of size n_outputs of arrays of size (n_classes,)
        List of classes for each column.

    n_classes : list of integers of size n_outputs
        Number of classes in each column

    class_prior : list of size n_outputs of arrays of size (n_classes,)
        Class distribution of each column.

    """
    classes = []
    n_classes = []
    class_prior = []

    n_samples, n_outputs = y.shape
    if sample_weight is not None:
        sample_weight = np.asarray(sample_weight)

    if issparse(y):
        y = y.tocsc()
        y_nnz = np.diff(y.indptr)

        for k in range(n_outputs):
            col_nonzero = y.indices[y.indptr[k]:y.indptr[k + 1]]
            # separate sample weights for zero and non-zero elements
            if sample_weight is not None:
                nz_samp_weight = sample_weight[col_nonzero]
                zeros_samp_weight_sum = (np.sum(sample_weight) -
                                         np.sum(nz_samp_weight))
            else:
                nz_samp_weight = None
                zeros_samp_weight_sum = y.shape[0] - y_nnz[k]

            classes_k, y_k = np.unique(y.data[y.indptr[k]:y.indptr[k + 1]],
                                       return_inverse=True)
            class_prior_k = np.bincount(y_k, weights=nz_samp_weight)

            # An explicit zero was found, combine its weight with the weight
            # of the implicit zeros
            if 0 in classes_k:
                class_prior_k[classes_k == 0] += zeros_samp_weight_sum

            # If an there is an implicit zero and it is not in classes and
            # class_prior, make an entry for it
            if 0 not in classes_k and y_nnz[k] < y.shape[0]:
                classes_k = np.insert(classes_k, 0, 0)
                class_prior_k = np.insert(class_prior_k, 0,
                                          zeros_samp_weight_sum)

            classes.append(classes_k)
            n_classes.append(classes_k.shape[0])
            class_prior.append(class_prior_k / class_prior_k.sum())
    else:
        for k in range(n_outputs):
            classes_k, y_k = np.unique(y[:, k], return_inverse=True)
            classes.append(classes_k)
            n_classes.append(classes_k.shape[0])
            class_prior_k = np.bincount(y_k, weights=sample_weight)
            class_prior.append(class_prior_k / class_prior_k.sum())

    return (classes, n_classes, class_prior)


def _ovr_decision_function(predictions, confidences, n_classes):
    """Compute a continuous, tie-breaking OvR decision function from OvO.

    It is important to include a continuous value, not only votes,
    to make computing AUC or calibration meaningful.

    Parameters
    ----------
    predictions : array-like, shape (n_samples, n_classifiers)
        Predicted classes for each binary classifier.

    confidences : array-like, shape (n_samples, n_classifiers)
        Decision functions or predicted probabilities for positive class
        for each binary classifier.

    n_classes : int
        Number of classes. n_classifiers must be
        ``n_classes * (n_classes - 1 ) / 2``
    """
    n_samples = predictions.shape[0]
    votes = np.zeros((n_samples, n_classes))
    sum_of_confidences = np.zeros((n_samples, n_classes))

    k = 0
    for i in range(n_classes):
        for j in range(i + 1, n_classes):
            sum_of_confidences[:, i] -= confidences[:, k]
            sum_of_confidences[:, j] += confidences[:, k]
            votes[predictions[:, k] == 0, i] += 1
            votes[predictions[:, k] == 1, j] += 1
            k += 1

    # Monotonically transform the sum_of_confidences to (-1/3, 1/3)
    # and add it with votes. The monotonic transformation  is
    # f: x -> x / (3 * (|x| + 1)), it uses 1/3 instead of 1/2
    # to ensure that we won't reach the limits and change vote order.
    # The motivation is to use confidence levels as a way to break ties in
    # the votes without switching any decision made based on a difference
    # of 1 vote.
    transformed_confidences = (sum_of_confidences /
                               (3 * (np.abs(sum_of_confidences) + 1)))
    return votes + transformed_confidences