extmath.py
25.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
"""
Extended math utilities.
"""
# Authors: Gael Varoquaux
# Alexandre Gramfort
# Alexandre T. Passos
# Olivier Grisel
# Lars Buitinck
# Stefan van der Walt
# Kyle Kastner
# Giorgio Patrini
# License: BSD 3 clause
import warnings
import numpy as np
from scipy import linalg, sparse
from . import check_random_state
from ._logistic_sigmoid import _log_logistic_sigmoid
from .sparsefuncs_fast import csr_row_norms
from .validation import check_array
from .validation import _deprecate_positional_args
from .deprecation import deprecated
def squared_norm(x):
"""Squared Euclidean or Frobenius norm of x.
Faster than norm(x) ** 2.
Parameters
----------
x : array_like
Returns
-------
float
The Euclidean norm when x is a vector, the Frobenius norm when x
is a matrix (2-d array).
"""
x = np.ravel(x, order='K')
if np.issubdtype(x.dtype, np.integer):
warnings.warn('Array type is integer, np.dot may overflow. '
'Data should be float type to avoid this issue',
UserWarning)
return np.dot(x, x)
def row_norms(X, squared=False):
"""Row-wise (squared) Euclidean norm of X.
Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports sparse
matrices and does not create an X.shape-sized temporary.
Performs no input validation.
Parameters
----------
X : array_like
The input array
squared : bool, optional (default = False)
If True, return squared norms.
Returns
-------
array_like
The row-wise (squared) Euclidean norm of X.
"""
if sparse.issparse(X):
if not isinstance(X, sparse.csr_matrix):
X = sparse.csr_matrix(X)
norms = csr_row_norms(X)
else:
norms = np.einsum('ij,ij->i', X, X)
if not squared:
np.sqrt(norms, norms)
return norms
def fast_logdet(A):
"""Compute log(det(A)) for A symmetric
Equivalent to : np.log(nl.det(A)) but more robust.
It returns -Inf if det(A) is non positive or is not defined.
Parameters
----------
A : array_like
The matrix
"""
sign, ld = np.linalg.slogdet(A)
if not sign > 0:
return -np.inf
return ld
def density(w, **kwargs):
"""Compute density of a sparse vector
Parameters
----------
w : array_like
The sparse vector
Returns
-------
float
The density of w, between 0 and 1
"""
if hasattr(w, "toarray"):
d = float(w.nnz) / (w.shape[0] * w.shape[1])
else:
d = 0 if w is None else float((w != 0).sum()) / w.size
return d
@_deprecate_positional_args
def safe_sparse_dot(a, b, *, dense_output=False):
"""Dot product that handle the sparse matrix case correctly
Parameters
----------
a : array or sparse matrix
b : array or sparse matrix
dense_output : boolean, (default=False)
When False, ``a`` and ``b`` both being sparse will yield sparse output.
When True, output will always be a dense array.
Returns
-------
dot_product : array or sparse matrix
sparse if ``a`` and ``b`` are sparse and ``dense_output=False``.
"""
if a.ndim > 2 or b.ndim > 2:
if sparse.issparse(a):
# sparse is always 2D. Implies b is 3D+
# [i, j] @ [k, ..., l, m, n] -> [i, k, ..., l, n]
b_ = np.rollaxis(b, -2)
b_2d = b_.reshape((b.shape[-2], -1))
ret = a @ b_2d
ret = ret.reshape(a.shape[0], *b_.shape[1:])
elif sparse.issparse(b):
# sparse is always 2D. Implies a is 3D+
# [k, ..., l, m] @ [i, j] -> [k, ..., l, j]
a_2d = a.reshape(-1, a.shape[-1])
ret = a_2d @ b
ret = ret.reshape(*a.shape[:-1], b.shape[1])
else:
ret = np.dot(a, b)
else:
ret = a @ b
if (sparse.issparse(a) and sparse.issparse(b)
and dense_output and hasattr(ret, "toarray")):
return ret.toarray()
return ret
@_deprecate_positional_args
def randomized_range_finder(A, *, size, n_iter,
power_iteration_normalizer='auto',
random_state=None):
"""Computes an orthonormal matrix whose range approximates the range of A.
Parameters
----------
A : 2D array
The input data matrix
size : integer
Size of the return array
n_iter : integer
Number of power iterations used to stabilize the result
power_iteration_normalizer : 'auto' (default), 'QR', 'LU', 'none'
Whether the power iterations are normalized with step-by-step
QR factorization (the slowest but most accurate), 'none'
(the fastest but numerically unstable when `n_iter` is large, e.g.
typically 5 or larger), or 'LU' factorization (numerically stable
but can lose slightly in accuracy). The 'auto' mode applies no
normalization if `n_iter` <= 2 and switches to LU otherwise.
.. versionadded:: 0.18
random_state : int, RandomState instance or None, optional (default=None)
The seed of the pseudo random number generator to use when shuffling
the data, i.e. getting the random vectors to initialize the algorithm.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
Returns
-------
Q : 2D array
A (size x size) projection matrix, the range of which
approximates well the range of the input matrix A.
Notes
-----
Follows Algorithm 4.3 of
Finding structure with randomness: Stochastic algorithms for constructing
approximate matrix decompositions
Halko, et al., 2009 (arXiv:909) https://arxiv.org/pdf/0909.4061.pdf
An implementation of a randomized algorithm for principal component
analysis
A. Szlam et al. 2014
"""
random_state = check_random_state(random_state)
# Generating normal random vectors with shape: (A.shape[1], size)
Q = random_state.normal(size=(A.shape[1], size))
if A.dtype.kind == 'f':
# Ensure f32 is preserved as f32
Q = Q.astype(A.dtype, copy=False)
# Deal with "auto" mode
if power_iteration_normalizer == 'auto':
if n_iter <= 2:
power_iteration_normalizer = 'none'
else:
power_iteration_normalizer = 'LU'
# Perform power iterations with Q to further 'imprint' the top
# singular vectors of A in Q
for i in range(n_iter):
if power_iteration_normalizer == 'none':
Q = safe_sparse_dot(A, Q)
Q = safe_sparse_dot(A.T, Q)
elif power_iteration_normalizer == 'LU':
Q, _ = linalg.lu(safe_sparse_dot(A, Q), permute_l=True)
Q, _ = linalg.lu(safe_sparse_dot(A.T, Q), permute_l=True)
elif power_iteration_normalizer == 'QR':
Q, _ = linalg.qr(safe_sparse_dot(A, Q), mode='economic')
Q, _ = linalg.qr(safe_sparse_dot(A.T, Q), mode='economic')
# Sample the range of A using by linear projection of Q
# Extract an orthonormal basis
Q, _ = linalg.qr(safe_sparse_dot(A, Q), mode='economic')
return Q
@_deprecate_positional_args
def randomized_svd(M, n_components, *, n_oversamples=10, n_iter='auto',
power_iteration_normalizer='auto', transpose='auto',
flip_sign=True, random_state=0):
"""Computes a truncated randomized SVD
Parameters
----------
M : ndarray or sparse matrix
Matrix to decompose
n_components : int
Number of singular values and vectors to extract.
n_oversamples : int (default is 10)
Additional number of random vectors to sample the range of M so as
to ensure proper conditioning. The total number of random vectors
used to find the range of M is n_components + n_oversamples. Smaller
number can improve speed but can negatively impact the quality of
approximation of singular vectors and singular values.
n_iter : int or 'auto' (default is 'auto')
Number of power iterations. It can be used to deal with very noisy
problems. When 'auto', it is set to 4, unless `n_components` is small
(< .1 * min(X.shape)) `n_iter` in which case is set to 7.
This improves precision with few components.
.. versionchanged:: 0.18
power_iteration_normalizer : 'auto' (default), 'QR', 'LU', 'none'
Whether the power iterations are normalized with step-by-step
QR factorization (the slowest but most accurate), 'none'
(the fastest but numerically unstable when `n_iter` is large, e.g.
typically 5 or larger), or 'LU' factorization (numerically stable
but can lose slightly in accuracy). The 'auto' mode applies no
normalization if `n_iter` <= 2 and switches to LU otherwise.
.. versionadded:: 0.18
transpose : True, False or 'auto' (default)
Whether the algorithm should be applied to M.T instead of M. The
result should approximately be the same. The 'auto' mode will
trigger the transposition if M.shape[1] > M.shape[0] since this
implementation of randomized SVD tend to be a little faster in that
case.
.. versionchanged:: 0.18
flip_sign : boolean, (True by default)
The output of a singular value decomposition is only unique up to a
permutation of the signs of the singular vectors. If `flip_sign` is
set to `True`, the sign ambiguity is resolved by making the largest
loadings for each component in the left singular vectors positive.
random_state : int, RandomState instance or None, optional (default=None)
The seed of the pseudo random number generator to use when shuffling
the data, i.e. getting the random vectors to initialize the algorithm.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
Notes
-----
This algorithm finds a (usually very good) approximate truncated
singular value decomposition using randomization to speed up the
computations. It is particularly fast on large matrices on which
you wish to extract only a small number of components. In order to
obtain further speed up, `n_iter` can be set <=2 (at the cost of
loss of precision).
References
----------
* Finding structure with randomness: Stochastic algorithms for constructing
approximate matrix decompositions
Halko, et al., 2009 https://arxiv.org/abs/0909.4061
* A randomized algorithm for the decomposition of matrices
Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert
* An implementation of a randomized algorithm for principal component
analysis
A. Szlam et al. 2014
"""
if isinstance(M, (sparse.lil_matrix, sparse.dok_matrix)):
warnings.warn("Calculating SVD of a {} is expensive. "
"csr_matrix is more efficient.".format(
type(M).__name__),
sparse.SparseEfficiencyWarning)
random_state = check_random_state(random_state)
n_random = n_components + n_oversamples
n_samples, n_features = M.shape
if n_iter == 'auto':
# Checks if the number of iterations is explicitly specified
# Adjust n_iter. 7 was found a good compromise for PCA. See #5299
n_iter = 7 if n_components < .1 * min(M.shape) else 4
if transpose == 'auto':
transpose = n_samples < n_features
if transpose:
# this implementation is a bit faster with smaller shape[1]
M = M.T
Q = randomized_range_finder(
M, size=n_random, n_iter=n_iter,
power_iteration_normalizer=power_iteration_normalizer,
random_state=random_state)
# project M to the (k + p) dimensional space using the basis vectors
B = safe_sparse_dot(Q.T, M)
# compute the SVD on the thin matrix: (k + p) wide
Uhat, s, V = linalg.svd(B, full_matrices=False)
del B
U = np.dot(Q, Uhat)
if flip_sign:
if not transpose:
U, V = svd_flip(U, V)
else:
# In case of transpose u_based_decision=false
# to actually flip based on u and not v.
U, V = svd_flip(U, V, u_based_decision=False)
if transpose:
# transpose back the results according to the input convention
return V[:n_components, :].T, s[:n_components], U[:, :n_components].T
else:
return U[:, :n_components], s[:n_components], V[:n_components, :]
@_deprecate_positional_args
def weighted_mode(a, w, *, axis=0):
"""Returns an array of the weighted modal (most common) value in a
If there is more than one such value, only the first is returned.
The bin-count for the modal bins is also returned.
This is an extension of the algorithm in scipy.stats.mode.
Parameters
----------
a : array_like
n-dimensional array of which to find mode(s).
w : array_like
n-dimensional array of weights for each value
axis : int, optional
Axis along which to operate. Default is 0, i.e. the first axis.
Returns
-------
vals : ndarray
Array of modal values.
score : ndarray
Array of weighted counts for each mode.
Examples
--------
>>> from sklearn.utils.extmath import weighted_mode
>>> x = [4, 1, 4, 2, 4, 2]
>>> weights = [1, 1, 1, 1, 1, 1]
>>> weighted_mode(x, weights)
(array([4.]), array([3.]))
The value 4 appears three times: with uniform weights, the result is
simply the mode of the distribution.
>>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's
>>> weighted_mode(x, weights)
(array([2.]), array([3.5]))
The value 2 has the highest score: it appears twice with weights of
1.5 and 2: the sum of these is 3.5.
See Also
--------
scipy.stats.mode
"""
if axis is None:
a = np.ravel(a)
w = np.ravel(w)
axis = 0
else:
a = np.asarray(a)
w = np.asarray(w)
if a.shape != w.shape:
w = np.full(a.shape, w, dtype=w.dtype)
scores = np.unique(np.ravel(a)) # get ALL unique values
testshape = list(a.shape)
testshape[axis] = 1
oldmostfreq = np.zeros(testshape)
oldcounts = np.zeros(testshape)
for score in scores:
template = np.zeros(a.shape)
ind = (a == score)
template[ind] = w[ind]
counts = np.expand_dims(np.sum(template, axis), axis)
mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
oldcounts = np.maximum(counts, oldcounts)
oldmostfreq = mostfrequent
return mostfrequent, oldcounts
def cartesian(arrays, out=None):
"""Generate a cartesian product of input arrays.
Parameters
----------
arrays : list of array-like
1-D arrays to form the cartesian product of.
out : ndarray
Array to place the cartesian product in.
Returns
-------
out : ndarray
2-D array of shape (M, len(arrays)) containing cartesian products
formed of input arrays.
Examples
--------
>>> cartesian(([1, 2, 3], [4, 5], [6, 7]))
array([[1, 4, 6],
[1, 4, 7],
[1, 5, 6],
[1, 5, 7],
[2, 4, 6],
[2, 4, 7],
[2, 5, 6],
[2, 5, 7],
[3, 4, 6],
[3, 4, 7],
[3, 5, 6],
[3, 5, 7]])
"""
arrays = [np.asarray(x) for x in arrays]
shape = (len(x) for x in arrays)
dtype = arrays[0].dtype
ix = np.indices(shape)
ix = ix.reshape(len(arrays), -1).T
if out is None:
out = np.empty_like(ix, dtype=dtype)
for n, arr in enumerate(arrays):
out[:, n] = arrays[n][ix[:, n]]
return out
def svd_flip(u, v, u_based_decision=True):
"""Sign correction to ensure deterministic output from SVD.
Adjusts the columns of u and the rows of v such that the loadings in the
columns in u that are largest in absolute value are always positive.
Parameters
----------
u : ndarray
u and v are the output of `linalg.svd` or
:func:`~sklearn.utils.extmath.randomized_svd`, with matching inner
dimensions so one can compute `np.dot(u * s, v)`.
v : ndarray
u and v are the output of `linalg.svd` or
:func:`~sklearn.utils.extmath.randomized_svd`, with matching inner
dimensions so one can compute `np.dot(u * s, v)`.
u_based_decision : boolean, (default=True)
If True, use the columns of u as the basis for sign flipping.
Otherwise, use the rows of v. The choice of which variable to base the
decision on is generally algorithm dependent.
Returns
-------
u_adjusted, v_adjusted : arrays with the same dimensions as the input.
"""
if u_based_decision:
# columns of u, rows of v
max_abs_cols = np.argmax(np.abs(u), axis=0)
signs = np.sign(u[max_abs_cols, range(u.shape[1])])
u *= signs
v *= signs[:, np.newaxis]
else:
# rows of v, columns of u
max_abs_rows = np.argmax(np.abs(v), axis=1)
signs = np.sign(v[range(v.shape[0]), max_abs_rows])
u *= signs
v *= signs[:, np.newaxis]
return u, v
def log_logistic(X, out=None):
"""Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``.
This implementation is numerically stable because it splits positive and
negative values::
-log(1 + exp(-x_i)) if x_i > 0
x_i - log(1 + exp(x_i)) if x_i <= 0
For the ordinary logistic function, use ``scipy.special.expit``.
Parameters
----------
X : array-like, shape (M, N) or (M, )
Argument to the logistic function
out : array-like, shape: (M, N) or (M, ), optional:
Preallocated output array.
Returns
-------
out : array, shape (M, N) or (M, )
Log of the logistic function evaluated at every point in x
Notes
-----
See the blog post describing this implementation:
http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/
"""
is_1d = X.ndim == 1
X = np.atleast_2d(X)
X = check_array(X, dtype=np.float64)
n_samples, n_features = X.shape
if out is None:
out = np.empty_like(X)
_log_logistic_sigmoid(n_samples, n_features, X, out)
if is_1d:
return np.squeeze(out)
return out
def softmax(X, copy=True):
"""
Calculate the softmax function.
The softmax function is calculated by
np.exp(X) / np.sum(np.exp(X), axis=1)
This will cause overflow when large values are exponentiated.
Hence the largest value in each row is subtracted from each data
point to prevent this.
Parameters
----------
X : array-like of floats, shape (M, N)
Argument to the logistic function
copy : bool, optional
Copy X or not.
Returns
-------
out : array, shape (M, N)
Softmax function evaluated at every point in x
"""
if copy:
X = np.copy(X)
max_prob = np.max(X, axis=1).reshape((-1, 1))
X -= max_prob
np.exp(X, X)
sum_prob = np.sum(X, axis=1).reshape((-1, 1))
X /= sum_prob
return X
@deprecated("safe_min is deprecated in version 0.22 and will be removed "
"in version 0.24.")
def safe_min(X):
"""Returns the minimum value of a dense or a CSR/CSC matrix.
Adapated from https://stackoverflow.com/q/13426580
.. deprecated:: 0.22.0
Parameters
----------
X : array_like
The input array or sparse matrix
Returns
-------
Float
The min value of X
"""
if sparse.issparse(X):
if len(X.data) == 0:
return 0
m = X.data.min()
return m if X.getnnz() == X.size else min(m, 0)
else:
return X.min()
def make_nonnegative(X, min_value=0):
"""Ensure `X.min()` >= `min_value`.
Parameters
----------
X : array_like
The matrix to make non-negative
min_value : float
The threshold value
Returns
-------
array_like
The thresholded array
Raises
------
ValueError
When X is sparse
"""
min_ = X.min()
if min_ < min_value:
if sparse.issparse(X):
raise ValueError("Cannot make the data matrix"
" nonnegative because it is sparse."
" Adding a value to every entry would"
" make it no longer sparse.")
X = X + (min_value - min_)
return X
# Use at least float64 for the accumulating functions to avoid precision issue
# see https://github.com/numpy/numpy/issues/9393. The float64 is also retained
# as it is in case the float overflows
def _safe_accumulator_op(op, x, *args, **kwargs):
"""
This function provides numpy accumulator functions with a float64 dtype
when used on a floating point input. This prevents accumulator overflow on
smaller floating point dtypes.
Parameters
----------
op : function
A numpy accumulator function such as np.mean or np.sum
x : numpy array
A numpy array to apply the accumulator function
*args : positional arguments
Positional arguments passed to the accumulator function after the
input x
**kwargs : keyword arguments
Keyword arguments passed to the accumulator function
Returns
-------
result : The output of the accumulator function passed to this function
"""
if np.issubdtype(x.dtype, np.floating) and x.dtype.itemsize < 8:
result = op(x, *args, **kwargs, dtype=np.float64)
else:
result = op(x, *args, **kwargs)
return result
def _incremental_mean_and_var(X, last_mean, last_variance, last_sample_count):
"""Calculate mean update and a Youngs and Cramer variance update.
last_mean and last_variance are statistics computed at the last step by the
function. Both must be initialized to 0.0. In case no scaling is required
last_variance can be None. The mean is always required and returned because
necessary for the calculation of the variance. last_n_samples_seen is the
number of samples encountered until now.
From the paper "Algorithms for computing the sample variance: analysis and
recommendations", by Chan, Golub, and LeVeque.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Data to use for variance update
last_mean : array-like, shape: (n_features,)
last_variance : array-like, shape: (n_features,)
last_sample_count : array-like, shape (n_features,)
Returns
-------
updated_mean : array, shape (n_features,)
updated_variance : array, shape (n_features,)
If None, only mean is computed
updated_sample_count : array, shape (n_features,)
Notes
-----
NaNs are ignored during the algorithm.
References
----------
T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample
variance: recommendations, The American Statistician, Vol. 37, No. 3,
pp. 242-247
Also, see the sparse implementation of this in
`utils.sparsefuncs.incr_mean_variance_axis` and
`utils.sparsefuncs_fast.incr_mean_variance_axis0`
"""
# old = stats until now
# new = the current increment
# updated = the aggregated stats
last_sum = last_mean * last_sample_count
new_sum = _safe_accumulator_op(np.nansum, X, axis=0)
new_sample_count = np.sum(~np.isnan(X), axis=0)
updated_sample_count = last_sample_count + new_sample_count
updated_mean = (last_sum + new_sum) / updated_sample_count
if last_variance is None:
updated_variance = None
else:
new_unnormalized_variance = (
_safe_accumulator_op(np.nanvar, X, axis=0) * new_sample_count)
last_unnormalized_variance = last_variance * last_sample_count
with np.errstate(divide='ignore', invalid='ignore'):
last_over_new_count = last_sample_count / new_sample_count
updated_unnormalized_variance = (
last_unnormalized_variance + new_unnormalized_variance +
last_over_new_count / updated_sample_count *
(last_sum / last_over_new_count - new_sum) ** 2)
zeros = last_sample_count == 0
updated_unnormalized_variance[zeros] = new_unnormalized_variance[zeros]
updated_variance = updated_unnormalized_variance / updated_sample_count
return updated_mean, updated_variance, updated_sample_count
def _deterministic_vector_sign_flip(u):
"""Modify the sign of vectors for reproducibility
Flips the sign of elements of all the vectors (rows of u) such that
the absolute maximum element of each vector is positive.
Parameters
----------
u : ndarray
Array with vectors as its rows.
Returns
-------
u_flipped : ndarray with same shape as u
Array with the sign flipped vectors as its rows.
"""
max_abs_rows = np.argmax(np.abs(u), axis=1)
signs = np.sign(u[range(u.shape[0]), max_abs_rows])
u *= signs[:, np.newaxis]
return u
def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08):
"""Use high precision for cumsum and check that final value matches sum
Parameters
----------
arr : array-like
To be cumulatively summed as flat
axis : int, optional
Axis along which the cumulative sum is computed.
The default (None) is to compute the cumsum over the flattened array.
rtol : float
Relative tolerance, see ``np.allclose``
atol : float
Absolute tolerance, see ``np.allclose``
"""
out = np.cumsum(arr, axis=axis, dtype=np.float64)
expected = np.sum(arr, axis=axis, dtype=np.float64)
if not np.all(np.isclose(out.take(-1, axis=axis), expected, rtol=rtol,
atol=atol, equal_nan=True)):
warnings.warn('cumsum was found to be unstable: '
'its last element does not correspond to sum',
RuntimeWarning)
return out