test_naive_bayes.py 30.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

import pickle
from io import BytesIO
import numpy as np
import scipy.sparse
import pytest

from sklearn.datasets import load_digits, load_iris

from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score

from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_no_warnings

from sklearn.naive_bayes import GaussianNB, BernoulliNB
from sklearn.naive_bayes import MultinomialNB, ComplementNB
from sklearn.naive_bayes import CategoricalNB
from sklearn.naive_bayes import BaseNB, BaseDiscreteNB


# Data is just 6 separable points in the plane
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]])
y = np.array([1, 1, 1, 2, 2, 2])

# A bit more random tests
rng = np.random.RandomState(0)
X1 = rng.normal(size=(10, 3))
y1 = (rng.normal(size=(10)) > 0).astype(np.int)

# Data is 6 random integer points in a 100 dimensional space classified to
# three classes.
X2 = rng.randint(5, size=(6, 100))
y2 = np.array([1, 1, 2, 2, 3, 3])


def test_gnb():
    # Gaussian Naive Bayes classification.
    # This checks that GaussianNB implements fit and predict and returns
    # correct values for a simple toy dataset.

    clf = GaussianNB()
    y_pred = clf.fit(X, y).predict(X)
    assert_array_equal(y_pred, y)

    y_pred_proba = clf.predict_proba(X)
    y_pred_log_proba = clf.predict_log_proba(X)
    assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8)

    # Test whether label mismatch between target y and classes raises
    # an Error
    # FIXME Remove this test once the more general partial_fit tests are merged
    assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1])


def test_gnb_prior():
    # Test whether class priors are properly set.
    clf = GaussianNB().fit(X, y)
    assert_array_almost_equal(np.array([3, 3]) / 6.0,
                              clf.class_prior_, 8)
    clf.fit(X1, y1)
    # Check that the class priors sum to 1
    assert_array_almost_equal(clf.class_prior_.sum(), 1)


def test_gnb_sample_weight():
    """Test whether sample weights are properly used in GNB. """
    # Sample weights all being 1 should not change results
    sw = np.ones(6)
    clf = GaussianNB().fit(X, y)
    clf_sw = GaussianNB().fit(X, y, sw)

    assert_array_almost_equal(clf.theta_, clf_sw.theta_)
    assert_array_almost_equal(clf.sigma_, clf_sw.sigma_)

    # Fitting twice with half sample-weights should result
    # in same result as fitting once with full weights
    sw = rng.rand(y.shape[0])
    clf1 = GaussianNB().fit(X, y, sample_weight=sw)
    clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2)
    clf2.partial_fit(X, y, sample_weight=sw / 2)

    assert_array_almost_equal(clf1.theta_, clf2.theta_)
    assert_array_almost_equal(clf1.sigma_, clf2.sigma_)

    # Check that duplicate entries and correspondingly increased sample
    # weights yield the same result
    ind = rng.randint(0, X.shape[0], 20)
    sample_weight = np.bincount(ind, minlength=X.shape[0])

    clf_dupl = GaussianNB().fit(X[ind], y[ind])
    clf_sw = GaussianNB().fit(X, y, sample_weight)

    assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_)
    assert_array_almost_equal(clf_dupl.sigma_, clf_sw.sigma_)


def test_gnb_neg_priors():
    """Test whether an error is raised in case of negative priors"""
    clf = GaussianNB(priors=np.array([-1., 2.]))
    assert_raises(ValueError, clf.fit, X, y)


def test_gnb_priors():
    """Test whether the class prior override is properly used"""
    clf = GaussianNB(priors=np.array([0.3, 0.7])).fit(X, y)
    assert_array_almost_equal(clf.predict_proba([[-0.1, -0.1]]),
                              np.array([[0.825303662161683,
                                         0.174696337838317]]), 8)
    assert_array_almost_equal(clf.class_prior_, np.array([0.3, 0.7]))


def test_gnb_priors_sum_isclose():
    # test whether the class prior sum is properly tested"""
    X = np.array([[-1, -1], [-2, -1], [-3, -2], [-4, -5], [-5, -4],
                  [1, 1], [2, 1], [3, 2], [4, 4], [5, 5]])
    priors = np.array([0.08, 0.14, 0.03, 0.16, 0.11, 0.16, 0.07, 0.14,
                       0.11, 0.0])
    Y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    clf = GaussianNB(priors=priors)
    # smoke test for issue #9633
    clf.fit(X, Y)


def test_gnb_wrong_nb_priors():
    """ Test whether an error is raised if the number of prior is different
    from the number of class"""
    clf = GaussianNB(priors=np.array([.25, .25, .25, .25]))
    assert_raises(ValueError, clf.fit, X, y)


def test_gnb_prior_greater_one():
    """Test if an error is raised if the sum of prior greater than one"""
    clf = GaussianNB(priors=np.array([2., 1.]))
    assert_raises(ValueError, clf.fit, X, y)


def test_gnb_prior_large_bias():
    """Test if good prediction when class prior favor largely one class"""
    clf = GaussianNB(priors=np.array([0.01, 0.99]))
    clf.fit(X, y)
    assert clf.predict([[-0.1, -0.1]]) == np.array([2])


def test_gnb_check_update_with_no_data():
    """ Test when the partial fit is called without any data"""
    # Create an empty array
    prev_points = 100
    mean = 0.
    var = 1.
    x_empty = np.empty((0, X.shape[1]))
    tmean, tvar = GaussianNB._update_mean_variance(prev_points, mean,
                                                   var, x_empty)
    assert tmean == mean
    assert tvar == var


def test_gnb_pfit_wrong_nb_features():
    """Test whether an error is raised when the number of feature changes
    between two partial fit"""
    clf = GaussianNB()
    # Fit for the first time the GNB
    clf.fit(X, y)
    # Partial fit a second time with an incoherent X
    assert_raises(ValueError, clf.partial_fit, np.hstack((X, X)), y)


def test_gnb_partial_fit():
    clf = GaussianNB().fit(X, y)
    clf_pf = GaussianNB().partial_fit(X, y, np.unique(y))
    assert_array_almost_equal(clf.theta_, clf_pf.theta_)
    assert_array_almost_equal(clf.sigma_, clf_pf.sigma_)
    assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_)

    clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y))
    clf_pf2.partial_fit(X[1::2], y[1::2])
    assert_array_almost_equal(clf.theta_, clf_pf2.theta_)
    assert_array_almost_equal(clf.sigma_, clf_pf2.sigma_)
    assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_)


def test_gnb_naive_bayes_scale_invariance():
    # Scaling the data should not change the prediction results
    iris = load_iris()
    X, y = iris.data, iris.target
    labels = [GaussianNB().fit(f * X, y).predict(f * X)
              for f in [1E-10, 1, 1E10]]
    assert_array_equal(labels[0], labels[1])
    assert_array_equal(labels[1], labels[2])


@pytest.mark.parametrize("cls", [MultinomialNB, BernoulliNB, CategoricalNB])
def test_discretenb_prior(cls):
    # Test whether class priors are properly set.
    clf = cls().fit(X2, y2)
    assert_array_almost_equal(np.log(np.array([2, 2, 2]) / 6.0),
                              clf.class_log_prior_, 8)


@pytest.mark.parametrize("cls", [MultinomialNB, BernoulliNB, CategoricalNB])
def test_discretenb_partial_fit(cls):
    clf1 = cls()
    clf1.fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1])

    clf2 = cls()
    clf2.partial_fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1], classes=[0, 1])
    assert_array_equal(clf1.class_count_, clf2.class_count_)
    if cls is CategoricalNB:
        for i in range(len(clf1.category_count_)):
            assert_array_equal(clf1.category_count_[i],
                               clf2.category_count_[i])
    else:
        assert_array_equal(clf1.feature_count_, clf2.feature_count_)

    clf3 = cls()
    # all categories have to appear in the first partial fit
    clf3.partial_fit([[0, 1]], [0], classes=[0, 1])
    clf3.partial_fit([[1, 0]], [1])
    clf3.partial_fit([[1, 1]], [1])
    assert_array_equal(clf1.class_count_, clf3.class_count_)
    if cls is CategoricalNB:
        # the categories for each feature of CategoricalNB are mapped to an
        # index chronologically with each call of partial fit and therefore
        # the category_count matrices cannot be compared for equality
        for i in range(len(clf1.category_count_)):
            assert_array_equal(clf1.category_count_[i].shape,
                               clf3.category_count_[i].shape)
            assert_array_equal(np.sum(clf1.category_count_[i], axis=1),
                               np.sum(clf3.category_count_[i], axis=1))

        # assert category 0 occurs 1x in the first class and 0x in the 2nd
        # class
        assert_array_equal(clf1.category_count_[0][0], np.array([1, 0]))
        # assert category 1 occurs 0x in the first class and 2x in the 2nd
        # class
        assert_array_equal(clf1.category_count_[0][1], np.array([0, 2]))

        # assert category 0 occurs 0x in the first class and 1x in the 2nd
        # class
        assert_array_equal(clf1.category_count_[1][0], np.array([0, 1]))
        # assert category 1 occurs 1x in the first class and 1x in the 2nd
        # class
        assert_array_equal(clf1.category_count_[1][1], np.array([1, 1]))
    else:
        assert_array_equal(clf1.feature_count_, clf3.feature_count_)


@pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, GaussianNB,
                                 CategoricalNB])
def test_discretenb_pickle(cls):
    # Test picklability of discrete naive Bayes classifiers

    clf = cls().fit(X2, y2)
    y_pred = clf.predict(X2)

    store = BytesIO()
    pickle.dump(clf, store)
    clf = pickle.load(BytesIO(store.getvalue()))

    assert_array_equal(y_pred, clf.predict(X2))

    # Test pickling of estimator trained with partial_fit
    clf2 = cls().partial_fit(X2[:3], y2[:3], classes=np.unique(y2))
    clf2.partial_fit(X2[3:], y2[3:])
    store = BytesIO()
    pickle.dump(clf2, store)
    clf2 = pickle.load(BytesIO(store.getvalue()))
    assert_array_equal(y_pred, clf2.predict(X2))


@pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, GaussianNB,
                                 CategoricalNB])
def test_discretenb_input_check_fit(cls):
    # Test input checks for the fit method

    # check shape consistency for number of samples at fit time
    assert_raises(ValueError, cls().fit, X2, y2[:-1])

    # check shape consistency for number of input features at predict time
    clf = cls().fit(X2, y2)
    assert_raises(ValueError, clf.predict, X2[:, :-1])


@pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB])
def test_discretenb_input_check_partial_fit(cls):
    # check shape consistency
    assert_raises(ValueError, cls().partial_fit, X2, y2[:-1],
                  classes=np.unique(y2))

    # classes is required for first call to partial fit
    assert_raises(ValueError, cls().partial_fit, X2, y2)

    # check consistency of consecutive classes values
    clf = cls()
    clf.partial_fit(X2, y2, classes=np.unique(y2))
    assert_raises(ValueError, clf.partial_fit, X2, y2,
                  classes=np.arange(42))

    # check consistency of input shape for partial_fit
    assert_raises(ValueError, clf.partial_fit, X2[:, :-1], y2)

    # check consistency of input shape for predict
    assert_raises(ValueError, clf.predict, X2[:, :-1])


def test_discretenb_predict_proba():
    # Test discrete NB classes' probability scores

    # The 100s below distinguish Bernoulli from multinomial.
    # FIXME: write a test to show this.
    X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]]
    X_multinomial = [[0, 1], [1, 3], [4, 0]]

    # test binary case (1-d output)
    y = [0, 0, 2]  # 2 is regression test for binary case, 02e673
    for cls, X in zip([BernoulliNB, MultinomialNB],
                      [X_bernoulli, X_multinomial]):
        clf = cls().fit(X, y)
        assert clf.predict(X[-1:]) == 2
        assert clf.predict_proba([X[0]]).shape == (1, 2)
        assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1),
                                  np.array([1., 1.]), 6)

    # test multiclass case (2-d output, must sum to one)
    y = [0, 1, 2]
    for cls, X in zip([BernoulliNB, MultinomialNB],
                      [X_bernoulli, X_multinomial]):
        clf = cls().fit(X, y)
        assert clf.predict_proba(X[0:1]).shape == (1, 3)
        assert clf.predict_proba(X[:2]).shape == (2, 3)
        assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1)
        assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1)
        assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1)
        assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1)


@pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB])
def test_discretenb_uniform_prior(cls):
    # Test whether discrete NB classes fit a uniform prior
    # when fit_prior=False and class_prior=None

    clf = cls()
    clf.set_params(fit_prior=False)
    clf.fit([[0], [0], [1]], [0, 0, 1])
    prior = np.exp(clf.class_log_prior_)
    assert_array_almost_equal(prior, np.array([.5, .5]))


@pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB])
def test_discretenb_provide_prior(cls):
    # Test whether discrete NB classes use provided prior

    clf = cls(class_prior=[0.5, 0.5])
    clf.fit([[0], [0], [1]], [0, 0, 1])
    prior = np.exp(clf.class_log_prior_)
    assert_array_almost_equal(prior, np.array([.5, .5]))

    # Inconsistent number of classes with prior
    assert_raises(ValueError, clf.fit, [[0], [1], [2]], [0, 1, 2])
    assert_raises(ValueError, clf.partial_fit, [[0], [1]], [0, 1],
                  classes=[0, 1, 1])


@pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB])
def test_discretenb_provide_prior_with_partial_fit(cls):
    # Test whether discrete NB classes use provided prior
    # when using partial_fit

    iris = load_iris()
    iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split(
        iris.data, iris.target, test_size=0.4, random_state=415)

    for prior in [None, [0.3, 0.3, 0.4]]:
        clf_full = cls(class_prior=prior)
        clf_full.fit(iris.data, iris.target)
        clf_partial = cls(class_prior=prior)
        clf_partial.partial_fit(iris_data1, iris_target1,
                                classes=[0, 1, 2])
        clf_partial.partial_fit(iris_data2, iris_target2)
        assert_array_almost_equal(clf_full.class_log_prior_,
                                  clf_partial.class_log_prior_)


@pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB, CategoricalNB])
def test_discretenb_sample_weight_multiclass(cls):
    # check shape consistency for number of samples at fit time
    X = [
        [0, 0, 1],
        [0, 1, 1],
        [0, 1, 1],
        [1, 0, 0],
    ]
    y = [0, 0, 1, 2]
    sample_weight = np.array([1, 1, 2, 2], dtype=np.float64)
    sample_weight /= sample_weight.sum()
    clf = cls().fit(X, y, sample_weight=sample_weight)
    assert_array_equal(clf.predict(X), [0, 1, 1, 2])

    # Check sample weight using the partial_fit method
    clf = cls()
    clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2],
                    sample_weight=sample_weight[:2])
    clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3])
    clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:])
    assert_array_equal(clf.predict(X), [0, 1, 1, 2])


@pytest.mark.parametrize('cls', [BernoulliNB, MultinomialNB])
def test_discretenb_coef_intercept_shape(cls):
    # coef_ and intercept_ should have shapes as in other linear models.
    # Non-regression test for issue #2127.
    X = [[1, 0, 0], [1, 1, 1]]
    y = [1, 2]  # binary classification
    clf = cls()

    clf.fit(X, y)
    assert clf.coef_.shape == (1, 3)
    assert clf.intercept_.shape == (1,)


@pytest.mark.parametrize('kind', ('dense', 'sparse'))
def test_mnnb(kind):
    # Test Multinomial Naive Bayes classification.
    # This checks that MultinomialNB implements fit and predict and returns
    # correct values for a simple toy dataset.

    if kind == 'dense':
        X = X2
    elif kind == 'sparse':
        X = scipy.sparse.csr_matrix(X2)

    # Check the ability to predict the learning set.
    clf = MultinomialNB()
    assert_raises(ValueError, clf.fit, -X, y2)
    y_pred = clf.fit(X, y2).predict(X)

    assert_array_equal(y_pred, y2)

    # Verify that np.log(clf.predict_proba(X)) gives the same results as
    # clf.predict_log_proba(X)
    y_pred_proba = clf.predict_proba(X)
    y_pred_log_proba = clf.predict_log_proba(X)
    assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8)

    # Check that incremental fitting yields the same results
    clf2 = MultinomialNB()
    clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2))
    clf2.partial_fit(X[2:5], y2[2:5])
    clf2.partial_fit(X[5:], y2[5:])

    y_pred2 = clf2.predict(X)
    assert_array_equal(y_pred2, y2)

    y_pred_proba2 = clf2.predict_proba(X)
    y_pred_log_proba2 = clf2.predict_log_proba(X)
    assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8)
    assert_array_almost_equal(y_pred_proba2, y_pred_proba)
    assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba)

    # Partial fit on the whole data at once should be the same as fit too
    clf3 = MultinomialNB()
    clf3.partial_fit(X, y2, classes=np.unique(y2))

    y_pred3 = clf3.predict(X)
    assert_array_equal(y_pred3, y2)
    y_pred_proba3 = clf3.predict_proba(X)
    y_pred_log_proba3 = clf3.predict_log_proba(X)
    assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8)
    assert_array_almost_equal(y_pred_proba3, y_pred_proba)
    assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba)


def test_mnb_prior_unobserved_targets():
    # test smoothing of prior for yet unobserved targets

    # Create toy training data
    X = np.array([[0, 1], [1, 0]])
    y = np.array([0, 1])

    clf = MultinomialNB()

    assert_no_warnings(
        clf.partial_fit, X, y, classes=[0, 1, 2]
    )

    assert clf.predict([[0, 1]]) == 0
    assert clf.predict([[1, 0]]) == 1
    assert clf.predict([[1, 1]]) == 0

    # add a training example with previously unobserved class
    assert_no_warnings(
        clf.partial_fit, [[1, 1]], [2]
    )

    assert clf.predict([[0, 1]]) == 0
    assert clf.predict([[1, 0]]) == 1
    assert clf.predict([[1, 1]]) == 2


def test_mnb_sample_weight():
    clf = MultinomialNB()
    clf.fit([[1, 2], [1, 2], [1, 0]],
            [0, 0, 1],
            sample_weight=[1, 1, 4])
    assert_array_equal(clf.predict([[1, 0]]), [1])
    positive_prior = np.exp(clf.intercept_[0])
    assert_array_almost_equal([1 - positive_prior, positive_prior],
                              [1 / 3., 2 / 3.])


def test_bnb():
    # Tests that BernoulliNB when alpha=1.0 gives the same values as
    # those given for the toy example in Manning, Raghavan, and
    # Schuetze's "Introduction to Information Retrieval" book:
    # https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

    # Training data points are:
    # Chinese Beijing Chinese (class: China)
    # Chinese Chinese Shanghai (class: China)
    # Chinese Macao (class: China)
    # Tokyo Japan Chinese (class: Japan)

    # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo
    X = np.array([[1, 1, 0, 0, 0, 0],
                  [0, 1, 0, 0, 1, 0],
                  [0, 1, 0, 1, 0, 0],
                  [0, 1, 1, 0, 0, 1]])

    # Classes are China (0), Japan (1)
    Y = np.array([0, 0, 0, 1])

    # Fit BernoulliBN w/ alpha = 1.0
    clf = BernoulliNB(alpha=1.0)
    clf.fit(X, Y)

    # Check the class prior is correct
    class_prior = np.array([0.75, 0.25])
    assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior)

    # Check the feature probabilities are correct
    feature_prob = np.array([[0.4, 0.8, 0.2, 0.4, 0.4, 0.2],
                             [1 / 3.0, 2 / 3.0, 2 / 3.0, 1 / 3.0, 1 / 3.0,
                              2 / 3.0]])
    assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob)

    # Testing data point is:
    # Chinese Chinese Chinese Tokyo Japan
    X_test = np.array([[0, 1, 1, 0, 0, 1]])

    # Check the predictive probabilities are correct
    unnorm_predict_proba = np.array([[0.005183999999999999,
                                      0.02194787379972565]])
    predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba)
    assert_array_almost_equal(clf.predict_proba(X_test), predict_proba)


def test_bnb_feature_log_prob():
    # Test for issue #4268.
    # Tests that the feature log prob value computed by BernoulliNB when
    # alpha=1.0 is equal to the expression given in Manning, Raghavan,
    # and Schuetze's "Introduction to Information Retrieval" book:
    # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

    X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]])
    Y = np.array([0, 0, 1, 2, 2])

    # Fit Bernoulli NB w/ alpha = 1.0
    clf = BernoulliNB(alpha=1.0)
    clf.fit(X, Y)

    # Manually form the (log) numerator and denominator that
    # constitute P(feature presence | class)
    num = np.log(clf.feature_count_ + 1.0)
    denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T

    # Check manual estimate matches
    assert_array_almost_equal(clf.feature_log_prob_, (num - denom))


def test_cnb():
    # Tests ComplementNB when alpha=1.0 for the toy example in Manning,
    # Raghavan, and Schuetze's "Introduction to Information Retrieval" book:
    # https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

    # Training data points are:
    # Chinese Beijing Chinese (class: China)
    # Chinese Chinese Shanghai (class: China)
    # Chinese Macao (class: China)
    # Tokyo Japan Chinese (class: Japan)

    # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo.
    X = np.array([[1, 1, 0, 0, 0, 0],
                  [0, 1, 0, 0, 1, 0],
                  [0, 1, 0, 1, 0, 0],
                  [0, 1, 1, 0, 0, 1]])

    # Classes are China (0), Japan (1).
    Y = np.array([0, 0, 0, 1])

    # Check that weights are correct. See steps 4-6 in Table 4 of
    # Rennie et al. (2003).
    theta = np.array([
        [
            (0 + 1) / (3 + 6),
            (1 + 1) / (3 + 6),
            (1 + 1) / (3 + 6),
            (0 + 1) / (3 + 6),
            (0 + 1) / (3 + 6),
            (1 + 1) / (3 + 6)
        ],
        [
            (1 + 1) / (6 + 6),
            (3 + 1) / (6 + 6),
            (0 + 1) / (6 + 6),
            (1 + 1) / (6 + 6),
            (1 + 1) / (6 + 6),
            (0 + 1) / (6 + 6)
        ]])

    weights = np.zeros(theta.shape)
    normed_weights = np.zeros(theta.shape)
    for i in range(2):
        weights[i] = -np.log(theta[i])
        normed_weights[i] = weights[i] / weights[i].sum()

    # Verify inputs are nonnegative.
    clf = ComplementNB(alpha=1.0)
    assert_raises(ValueError, clf.fit, -X, Y)

    clf.fit(X, Y)

    # Check that counts/weights are correct.
    feature_count = np.array([[1, 3, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]])
    assert_array_equal(clf.feature_count_, feature_count)
    class_count = np.array([3, 1])
    assert_array_equal(clf.class_count_, class_count)
    feature_all = np.array([1, 4, 1, 1, 1, 1])
    assert_array_equal(clf.feature_all_, feature_all)
    assert_array_almost_equal(clf.feature_log_prob_, weights)

    clf = ComplementNB(alpha=1.0, norm=True)
    clf.fit(X, Y)
    assert_array_almost_equal(clf.feature_log_prob_, normed_weights)


def test_categoricalnb():
    # Check the ability to predict the training set.
    clf = CategoricalNB()
    y_pred = clf.fit(X2, y2).predict(X2)
    assert_array_equal(y_pred, y2)

    X3 = np.array([[1, 4], [2, 5]])
    y3 = np.array([1, 2])
    clf = CategoricalNB(alpha=1, fit_prior=False)

    clf.fit(X3, y3)

    # Check error is raised for X with negative entries
    X = np.array([[0, -1]])
    y = np.array([1])
    error_msg = "Negative values in data passed to CategoricalNB (input X)"
    assert_raise_message(ValueError, error_msg, clf.predict, X)
    assert_raise_message(ValueError, error_msg, clf.fit, X, y)

    # Check error is raised for incorrect X
    X = np.array([[1, 4, 1], [2, 5, 6]])
    msg = "Expected input with 2 features, got 3 instead"
    assert_raise_message(ValueError, msg, clf.predict, X)

    # Test alpha
    X3_test = np.array([[2, 5]])
    # alpha=1 increases the count of all categories by one so the final
    # probability for each category is not 50/50 but 1/3 to 2/3
    bayes_numerator = np.array([[1/3*1/3, 2/3*2/3]])
    bayes_denominator = bayes_numerator.sum()
    assert_array_almost_equal(clf.predict_proba(X3_test),
                              bayes_numerator / bayes_denominator)

    # Assert category_count has counted all features
    assert len(clf.category_count_) == X3.shape[1]

    # Check sample_weight
    X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]])
    y = np.array([1, 1, 2, 2])
    clf = CategoricalNB(alpha=1, fit_prior=False)
    clf.fit(X, y)
    assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([1]))

    for factor in [1., 0.3, 5, 0.0001]:
        X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]])
        y = np.array([1, 1, 2, 2])
        sample_weight = np.array([1, 1, 10, 0.1]) * factor
        clf = CategoricalNB(alpha=1, fit_prior=False)
        clf.fit(X, y, sample_weight=sample_weight)
        assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([2]))


def test_alpha():
    # Setting alpha=0 should not output nan results when p(x_i|y_j)=0 is a case
    X = np.array([[1, 0], [1, 1]])
    y = np.array([0, 1])
    nb = BernoulliNB(alpha=0.)
    assert_warns(UserWarning, nb.partial_fit, X, y, classes=[0, 1])
    assert_warns(UserWarning, nb.fit, X, y)
    prob = np.array([[1, 0], [0, 1]])
    assert_array_almost_equal(nb.predict_proba(X), prob)

    nb = MultinomialNB(alpha=0.)
    assert_warns(UserWarning, nb.partial_fit, X, y, classes=[0, 1])
    assert_warns(UserWarning, nb.fit, X, y)
    prob = np.array([[2. / 3, 1. / 3], [0, 1]])
    assert_array_almost_equal(nb.predict_proba(X), prob)

    nb = CategoricalNB(alpha=0.)
    assert_warns(UserWarning, nb.fit, X, y)
    prob = np.array([[1., 0.], [0., 1.]])
    assert_array_almost_equal(nb.predict_proba(X), prob)

    # Test sparse X
    X = scipy.sparse.csr_matrix(X)
    nb = BernoulliNB(alpha=0.)
    assert_warns(UserWarning, nb.fit, X, y)
    prob = np.array([[1, 0], [0, 1]])
    assert_array_almost_equal(nb.predict_proba(X), prob)

    nb = MultinomialNB(alpha=0.)
    assert_warns(UserWarning, nb.fit, X, y)
    prob = np.array([[2. / 3, 1. / 3], [0, 1]])
    assert_array_almost_equal(nb.predict_proba(X), prob)

    # Test for alpha < 0
    X = np.array([[1, 0], [1, 1]])
    y = np.array([0, 1])
    expected_msg = ('Smoothing parameter alpha = -1.0e-01. '
                    'alpha should be > 0.')
    b_nb = BernoulliNB(alpha=-0.1)
    m_nb = MultinomialNB(alpha=-0.1)
    c_nb = CategoricalNB(alpha=-0.1)
    assert_raise_message(ValueError, expected_msg, b_nb.fit, X, y)
    assert_raise_message(ValueError, expected_msg, m_nb.fit, X, y)
    assert_raise_message(ValueError, expected_msg, c_nb.fit, X, y)

    b_nb = BernoulliNB(alpha=-0.1)
    m_nb = MultinomialNB(alpha=-0.1)
    assert_raise_message(ValueError, expected_msg, b_nb.partial_fit,
                         X, y, classes=[0, 1])
    assert_raise_message(ValueError, expected_msg, m_nb.partial_fit,
                         X, y, classes=[0, 1])


def test_alpha_vector():
    X = np.array([[1, 0], [1, 1]])
    y = np.array([0, 1])

    # Setting alpha=np.array with same length
    # as number of features should be fine
    alpha = np.array([1, 2])
    nb = MultinomialNB(alpha=alpha)
    nb.partial_fit(X, y, classes=[0, 1])

    # Test feature probabilities uses pseudo-counts (alpha)
    feature_prob = np.array([[1 / 2, 1 / 2], [2 / 5, 3 / 5]])
    assert_array_almost_equal(nb.feature_log_prob_, np.log(feature_prob))

    # Test predictions
    prob = np.array([[5 / 9, 4 / 9], [25 / 49, 24 / 49]])
    assert_array_almost_equal(nb.predict_proba(X), prob)

    # Test alpha non-negative
    alpha = np.array([1., -0.1])
    expected_msg = ('Smoothing parameter alpha = -1.0e-01. '
                    'alpha should be > 0.')
    m_nb = MultinomialNB(alpha=alpha)
    assert_raise_message(ValueError, expected_msg, m_nb.fit, X, y)

    # Test that too small pseudo-counts are replaced
    ALPHA_MIN = 1e-10
    alpha = np.array([ALPHA_MIN / 2, 0.5])
    m_nb = MultinomialNB(alpha=alpha)
    m_nb.partial_fit(X, y, classes=[0, 1])
    assert_array_almost_equal(m_nb._check_alpha(),
                              [ALPHA_MIN, 0.5],
                              decimal=12)

    # Test correct dimensions
    alpha = np.array([1., 2., 3.])
    m_nb = MultinomialNB(alpha=alpha)
    expected_msg = ('alpha should be a scalar or a numpy array '
                    'with shape [n_features]')
    assert_raise_message(ValueError, expected_msg, m_nb.fit, X, y)


def test_check_accuracy_on_digits():
    # Non regression test to make sure that any further refactoring / optim
    # of the NB models do not harm the performance on a slightly non-linearly
    # separable dataset
    X, y = load_digits(return_X_y=True)
    binary_3v8 = np.logical_or(y == 3, y == 8)
    X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8]

    # Multinomial NB
    scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10)
    assert scores.mean() > 0.86

    scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10)
    assert scores.mean() > 0.94

    # Bernoulli NB
    scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10)
    assert scores.mean() > 0.83

    scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10)
    assert scores.mean() > 0.92

    # Gaussian NB
    scores = cross_val_score(GaussianNB(), X, y, cv=10)
    assert scores.mean() > 0.77

    scores = cross_val_score(GaussianNB(var_smoothing=0.1), X, y, cv=10)
    assert scores.mean() > 0.89

    scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10)
    assert scores.mean() > 0.86


# TODO: remove in 0.24
def test_deprecations():

    class A(BaseNB, GaussianNB):
        pass

    class B(BaseDiscreteNB, CategoricalNB):
        pass

    with pytest.warns(FutureWarning, match="is deprecated in version 0.22"):
        A()

    with pytest.warns(FutureWarning, match="is deprecated in version 0.22"):
        B()