test_dummy.py 22.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

import pytest

import numpy as np
import scipy.sparse as sp

from sklearn.base import clone
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import ignore_warnings
from sklearn.utils.stats import _weighted_percentile

from sklearn.dummy import DummyClassifier, DummyRegressor
from sklearn.exceptions import NotFittedError


@ignore_warnings
def _check_predict_proba(clf, X, y):
    proba = clf.predict_proba(X)
    # We know that we can have division by zero
    log_proba = clf.predict_log_proba(X)

    y = np.atleast_1d(y)
    if y.ndim == 1:
        y = np.reshape(y, (-1, 1))

    n_outputs = y.shape[1]
    n_samples = len(X)

    if n_outputs == 1:
        proba = [proba]
        log_proba = [log_proba]

    for k in range(n_outputs):
        assert proba[k].shape[0] == n_samples
        assert proba[k].shape[1] == len(np.unique(y[:, k]))
        assert_array_almost_equal(proba[k].sum(axis=1), np.ones(len(X)))
        # We know that we can have division by zero
        assert_array_almost_equal(np.log(proba[k]), log_proba[k])


def _check_behavior_2d(clf):
    # 1d case
    X = np.array([[0], [0], [0], [0]])  # ignored
    y = np.array([1, 2, 1, 1])
    est = clone(clf)
    est.fit(X, y)
    y_pred = est.predict(X)
    assert y.shape == y_pred.shape

    # 2d case
    y = np.array([[1, 0],
                  [2, 0],
                  [1, 0],
                  [1, 3]])
    est = clone(clf)
    est.fit(X, y)
    y_pred = est.predict(X)
    assert y.shape == y_pred.shape


def _check_behavior_2d_for_constant(clf):
    # 2d case only
    X = np.array([[0], [0], [0], [0]])  # ignored
    y = np.array([[1, 0, 5, 4, 3],
                  [2, 0, 1, 2, 5],
                  [1, 0, 4, 5, 2],
                  [1, 3, 3, 2, 0]])
    est = clone(clf)
    est.fit(X, y)
    y_pred = est.predict(X)
    assert y.shape == y_pred.shape


def _check_equality_regressor(statistic, y_learn, y_pred_learn,
                              y_test, y_pred_test):
    assert_array_almost_equal(np.tile(statistic, (y_learn.shape[0], 1)),
                              y_pred_learn)
    assert_array_almost_equal(np.tile(statistic, (y_test.shape[0], 1)),
                              y_pred_test)


def test_most_frequent_and_prior_strategy():
    X = [[0], [0], [0], [0]]  # ignored
    y = [1, 2, 1, 1]

    for strategy in ("most_frequent", "prior"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)
        assert_array_equal(clf.predict(X), np.ones(len(X)))
        _check_predict_proba(clf, X, y)

        if strategy == "prior":
            assert_array_almost_equal(clf.predict_proba([X[0]]),
                                      clf.class_prior_.reshape((1, -1)))
        else:
            assert_array_almost_equal(clf.predict_proba([X[0]]),
                                      clf.class_prior_.reshape((1, -1)) > 0.5)


def test_most_frequent_and_prior_strategy_with_2d_column_y():
    # non-regression test added in
    # https://github.com/scikit-learn/scikit-learn/pull/13545
    X = [[0], [0], [0], [0]]
    y_1d = [1, 2, 1, 1]
    y_2d = [[1], [2], [1], [1]]

    for strategy in ("most_frequent", "prior"):
        clf_1d = DummyClassifier(strategy=strategy, random_state=0)
        clf_2d = DummyClassifier(strategy=strategy, random_state=0)

        clf_1d.fit(X, y_1d)
        clf_2d.fit(X, y_2d)
        assert_array_equal(clf_1d.predict(X), clf_2d.predict(X))


def test_most_frequent_and_prior_strategy_multioutput():
    X = [[0], [0], [0], [0]]  # ignored
    y = np.array([[1, 0],
                  [2, 0],
                  [1, 0],
                  [1, 3]])

    n_samples = len(X)

    for strategy in ("prior", "most_frequent"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)
        assert_array_equal(clf.predict(X),
                           np.hstack([np.ones((n_samples, 1)),
                                      np.zeros((n_samples, 1))]))
        _check_predict_proba(clf, X, y)
        _check_behavior_2d(clf)


def test_stratified_strategy():
    X = [[0]] * 5  # ignored
    y = [1, 2, 1, 1, 2]
    clf = DummyClassifier(strategy="stratified", random_state=0)
    clf.fit(X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)
    p = np.bincount(y_pred) / float(len(X))
    assert_almost_equal(p[1], 3. / 5, decimal=1)
    assert_almost_equal(p[2], 2. / 5, decimal=1)
    _check_predict_proba(clf, X, y)


def test_stratified_strategy_multioutput():
    X = [[0]] * 5  # ignored
    y = np.array([[2, 1],
                  [2, 2],
                  [1, 1],
                  [1, 2],
                  [1, 1]])

    clf = DummyClassifier(strategy="stratified", random_state=0)
    clf.fit(X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)

    for k in range(y.shape[1]):
        p = np.bincount(y_pred[:, k]) / float(len(X))
        assert_almost_equal(p[1], 3. / 5, decimal=1)
        assert_almost_equal(p[2], 2. / 5, decimal=1)
        _check_predict_proba(clf, X, y)

    _check_behavior_2d(clf)


def test_uniform_strategy():
    X = [[0]] * 4  # ignored
    y = [1, 2, 1, 1]
    clf = DummyClassifier(strategy="uniform", random_state=0)
    clf.fit(X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)
    p = np.bincount(y_pred) / float(len(X))
    assert_almost_equal(p[1], 0.5, decimal=1)
    assert_almost_equal(p[2], 0.5, decimal=1)
    _check_predict_proba(clf, X, y)


def test_uniform_strategy_multioutput():
    X = [[0]] * 4  # ignored
    y = np.array([[2, 1],
                  [2, 2],
                  [1, 2],
                  [1, 1]])
    clf = DummyClassifier(strategy="uniform", random_state=0)
    clf.fit(X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)

    for k in range(y.shape[1]):
        p = np.bincount(y_pred[:, k]) / float(len(X))
        assert_almost_equal(p[1], 0.5, decimal=1)
        assert_almost_equal(p[2], 0.5, decimal=1)
        _check_predict_proba(clf, X, y)

    _check_behavior_2d(clf)


def test_string_labels():
    X = [[0]] * 5
    y = ["paris", "paris", "tokyo", "amsterdam", "berlin"]
    clf = DummyClassifier(strategy="most_frequent")
    clf.fit(X, y)
    assert_array_equal(clf.predict(X), ["paris"] * 5)


@pytest.mark.parametrize("y,y_test", [
    ([2, 1, 1, 1], [2, 2, 1, 1]),
    (np.array([[2, 2],
               [1, 1],
               [1, 1],
               [1, 1]]),
     np.array([[2, 2],
               [2, 2],
               [1, 1],
               [1, 1]]))
])
def test_classifier_score_with_None(y, y_test):
    clf = DummyClassifier(strategy="most_frequent")
    clf.fit(None, y)
    assert clf.score(None, y_test) == 0.5


@pytest.mark.parametrize("strategy", [
    "stratified",
    "most_frequent",
    "prior",
    "uniform",
    "constant"
])
def test_classifier_prediction_independent_of_X(strategy):
    y = [0, 2, 1, 1]
    X1 = [[0]] * 4
    clf1 = DummyClassifier(strategy=strategy, random_state=0, constant=0)
    clf1.fit(X1, y)
    predictions1 = clf1.predict(X1)

    X2 = [[1]] * 4
    clf2 = DummyClassifier(strategy=strategy, random_state=0, constant=0)
    clf2.fit(X2, y)
    predictions2 = clf2.predict(X2)

    assert_array_equal(predictions1, predictions2)


def test_classifier_exceptions():
    clf = DummyClassifier(strategy="unknown")
    assert_raises(ValueError, clf.fit, [], [])

    assert_raises(NotFittedError, clf.predict, [])
    assert_raises(NotFittedError, clf.predict_proba, [])


def test_mean_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 4  # ignored
    y = random_state.randn(4)

    reg = DummyRegressor()
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.mean(y)] * len(X))


def test_mean_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    mean = np.mean(y_learn, axis=0).reshape((1, -1))

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor()
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)


def test_regressor_exceptions():
    reg = DummyRegressor()
    assert_raises(NotFittedError, reg.predict, [])


def test_median_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="median")
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.median(y)] * len(X))


def test_median_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    median = np.median(y_learn, axis=0).reshape((1, -1))

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor(strategy="median")
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        median, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)


def test_quantile_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="quantile", quantile=0.5)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.median(y)] * len(X))

    reg = DummyRegressor(strategy="quantile", quantile=0)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.min(y)] * len(X))

    reg = DummyRegressor(strategy="quantile", quantile=1)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.max(y)] * len(X))

    reg = DummyRegressor(strategy="quantile", quantile=0.3)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X))


def test_quantile_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    median = np.median(y_learn, axis=0).reshape((1, -1))
    quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1))

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor(strategy="quantile", quantile=0.5)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        median, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)

    # Correctness oracle
    est = DummyRegressor(strategy="quantile", quantile=0.8)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        quantile_values, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est)


def test_quantile_invalid():

    X = [[0]] * 5  # ignored
    y = [0] * 5  # ignored

    est = DummyRegressor(strategy="quantile")
    assert_raises(ValueError, est.fit, X, y)

    est = DummyRegressor(strategy="quantile", quantile=None)
    assert_raises(ValueError, est.fit, X, y)

    est = DummyRegressor(strategy="quantile", quantile=[0])
    assert_raises(ValueError, est.fit, X, y)

    est = DummyRegressor(strategy="quantile", quantile=-0.1)
    assert_raises(ValueError, est.fit, X, y)

    est = DummyRegressor(strategy="quantile", quantile=1.1)
    assert_raises(ValueError, est.fit, X, y)

    est = DummyRegressor(strategy="quantile", quantile='abc')
    assert_raises(TypeError, est.fit, X, y)


def test_quantile_strategy_empty_train():
    est = DummyRegressor(strategy="quantile", quantile=0.4)
    assert_raises(ValueError, est.fit, [], [])


def test_constant_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="constant", constant=[43])
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [43] * len(X))

    reg = DummyRegressor(strategy="constant", constant=43)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [43] * len(X))


def test_constant_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    # test with 2d array
    constants = random_state.randn(5)

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor(strategy="constant", constant=constants)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        constants, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d_for_constant(est)


def test_y_mean_attribute_regressor():
    X = [[0]] * 5
    y = [1, 2, 4, 6, 8]
    # when strategy = 'mean'
    est = DummyRegressor(strategy='mean')
    est.fit(X, y)

    assert est.constant_ == np.mean(y)


def test_unknown_strategey_regressor():
    X = [[0]] * 5
    y = [1, 2, 4, 6, 8]

    est = DummyRegressor(strategy='gona')
    assert_raises(ValueError, est.fit, X, y)


def test_constants_not_specified_regressor():
    X = [[0]] * 5
    y = [1, 2, 4, 6, 8]

    est = DummyRegressor(strategy='constant')
    assert_raises(TypeError, est.fit, X, y)


def test_constant_size_multioutput_regressor():
    random_state = np.random.RandomState(seed=1)
    X = random_state.randn(10, 10)
    y = random_state.randn(10, 5)

    est = DummyRegressor(strategy='constant', constant=[1, 2, 3, 4])
    assert_raises(ValueError, est.fit, X, y)


def test_constant_strategy():
    X = [[0], [0], [0], [0]]  # ignored
    y = [2, 1, 2, 2]

    clf = DummyClassifier(strategy="constant", random_state=0, constant=1)
    clf.fit(X, y)
    assert_array_equal(clf.predict(X), np.ones(len(X)))
    _check_predict_proba(clf, X, y)

    X = [[0], [0], [0], [0]]  # ignored
    y = ['two', 'one', 'two', 'two']
    clf = DummyClassifier(strategy="constant", random_state=0, constant='one')
    clf.fit(X, y)
    assert_array_equal(clf.predict(X), np.array(['one'] * 4))
    _check_predict_proba(clf, X, y)


def test_constant_strategy_multioutput():
    X = [[0], [0], [0], [0]]  # ignored
    y = np.array([[2, 3],
                  [1, 3],
                  [2, 3],
                  [2, 0]])

    n_samples = len(X)

    clf = DummyClassifier(strategy="constant", random_state=0,
                          constant=[1, 0])
    clf.fit(X, y)
    assert_array_equal(clf.predict(X),
                       np.hstack([np.ones((n_samples, 1)),
                                  np.zeros((n_samples, 1))]))
    _check_predict_proba(clf, X, y)


@pytest.mark.parametrize('y, params, err_msg', [
    ([2, 1, 2, 2],
     {'random_state': 0},
     "Constant.*has to be specified"),
    ([2, 1, 2, 2],
     {'constant': [2, 0]},
     "Constant.*should have shape"),
    (np.transpose([[2, 1, 2, 2], [2, 1, 2, 2]]),
     {'constant': 2},
     "Constant.*should have shape"),
    ([2, 1, 2, 2],
     {'constant': 'my-constant'},
     "constant=my-constant.*Possible values.*\\[1, 2]"),
    (np.transpose([[2, 1, 2, 2], [2, 1, 2, 2]]),
     {'constant': [2, 'unknown']},
     "constant=\\[2, 'unknown'].*Possible values.*\\[1, 2]")],
    ids=["no-constant", "too-many-constant", "not-enough-output",
         "single-output", "multi-output"]
)
def test_constant_strategy_exceptions(y, params, err_msg):
    X = [[0], [0], [0], [0]]

    clf = DummyClassifier(strategy="constant", **params)

    with pytest.raises(ValueError, match=err_msg):
        clf.fit(X, y)


def test_classification_sample_weight():
    X = [[0], [0], [1]]
    y = [0, 1, 0]
    sample_weight = [0.1, 1., 0.1]

    clf = DummyClassifier(strategy="stratified").fit(X, y, sample_weight)
    assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1. / 1.2])


def test_constant_strategy_sparse_target():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[0, 1],
                                [4, 0],
                                [1, 1],
                                [1, 4],
                                [1, 1]]))

    n_samples = len(X)

    clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0])
    clf.fit(X, y)
    y_pred = clf.predict(X)
    assert sp.issparse(y_pred)
    assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)),
                                                    np.zeros((n_samples, 1))]))


def test_uniform_strategy_sparse_target_warning():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[2, 1],
                                [2, 2],
                                [1, 4],
                                [4, 2],
                                [1, 1]]))

    clf = DummyClassifier(strategy="uniform", random_state=0)
    assert_warns_message(UserWarning,
                         "the uniform strategy would not save memory",
                         clf.fit, X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)

    for k in range(y.shape[1]):
        p = np.bincount(y_pred[:, k]) / float(len(X))
        assert_almost_equal(p[1], 1 / 3, decimal=1)
        assert_almost_equal(p[2], 1 / 3, decimal=1)
        assert_almost_equal(p[4], 1 / 3, decimal=1)


def test_stratified_strategy_sparse_target():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[4, 1],
                                [0, 0],
                                [1, 1],
                                [1, 4],
                                [1, 1]]))

    clf = DummyClassifier(strategy="stratified", random_state=0)
    clf.fit(X, y)

    X = [[0]] * 500
    y_pred = clf.predict(X)
    assert sp.issparse(y_pred)
    y_pred = y_pred.toarray()

    for k in range(y.shape[1]):
        p = np.bincount(y_pred[:, k]) / float(len(X))
        assert_almost_equal(p[1], 3. / 5, decimal=1)
        assert_almost_equal(p[0], 1. / 5, decimal=1)
        assert_almost_equal(p[4], 1. / 5, decimal=1)


def test_most_frequent_and_prior_strategy_sparse_target():
    X = [[0]] * 5  # ignored
    y = sp.csc_matrix(np.array([[1, 0],
                                [1, 3],
                                [4, 0],
                                [0, 1],
                                [1, 0]]))

    n_samples = len(X)
    y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])
    for strategy in ("most_frequent", "prior"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)

        y_pred = clf.predict(X)
        assert sp.issparse(y_pred)
        assert_array_equal(y_pred.toarray(), y_expected)


def test_dummy_regressor_sample_weight(n_samples=10):
    random_state = np.random.RandomState(seed=1)

    X = [[0]] * n_samples
    y = random_state.rand(n_samples)
    sample_weight = random_state.rand(n_samples)

    est = DummyRegressor(strategy="mean").fit(X, y, sample_weight)
    assert est.constant_ == np.average(y, weights=sample_weight)

    est = DummyRegressor(strategy="median").fit(X, y, sample_weight)
    assert est.constant_ == _weighted_percentile(y, sample_weight, 50.)

    est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y,
                                                                sample_weight)
    assert est.constant_ == _weighted_percentile(y, sample_weight, 95.)


def test_dummy_regressor_on_3D_array():
    X = np.array([[['foo']], [['bar']], [['baz']]])
    y = np.array([2, 2, 2])
    y_expected = np.array([2, 2, 2])
    cls = DummyRegressor()
    cls.fit(X, y)
    y_pred = cls.predict(X)
    assert_array_equal(y_pred, y_expected)


def test_dummy_classifier_on_3D_array():
    X = np.array([[['foo']], [['bar']], [['baz']]])
    y = [2, 2, 2]
    y_expected = [2, 2, 2]
    y_proba_expected = [[1], [1], [1]]
    cls = DummyClassifier(strategy="stratified")
    cls.fit(X, y)
    y_pred = cls.predict(X)
    y_pred_proba = cls.predict_proba(X)
    assert_array_equal(y_pred, y_expected)
    assert_array_equal(y_pred_proba, y_proba_expected)


def test_dummy_regressor_return_std():
    X = [[0]] * 3  # ignored
    y = np.array([2, 2, 2])
    y_std_expected = np.array([0, 0, 0])
    cls = DummyRegressor()
    cls.fit(X, y)
    y_pred_list = cls.predict(X, return_std=True)
    # there should be two elements when return_std is True
    assert len(y_pred_list) == 2
    # the second element should be all zeros
    assert_array_equal(y_pred_list[1], y_std_expected)


@pytest.mark.parametrize("y,y_test", [
    ([1, 1, 1, 2], [1.25] * 4),
    (np.array([[2, 2],
               [1, 1],
               [1, 1],
               [1, 1]]),
     [[1.25, 1.25]] * 4)

])
def test_regressor_score_with_None(y, y_test):
    reg = DummyRegressor()
    reg.fit(None, y)
    assert reg.score(None, y_test) == 1.0


@pytest.mark.parametrize("strategy", [
    "mean",
    "median",
    "quantile",
    "constant"
])
def test_regressor_prediction_independent_of_X(strategy):
    y = [0, 2, 1, 1]
    X1 = [[0]] * 4
    reg1 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7)
    reg1.fit(X1, y)
    predictions1 = reg1.predict(X1)

    X2 = [[1]] * 4
    reg2 = DummyRegressor(strategy=strategy, constant=0, quantile=0.7)
    reg2.fit(X2, y)
    predictions2 = reg2.predict(X2)

    assert_array_equal(predictions1, predictions2)


@pytest.mark.parametrize(
    "strategy", ["stratified", "most_frequent", "prior", "uniform", "constant"]
)
def test_dtype_of_classifier_probas(strategy):
    y = [0, 2, 1, 1]
    X = np.zeros(4)
    model = DummyClassifier(strategy=strategy, random_state=0, constant=0)
    probas = model.fit(X, y).predict_proba(X)

    assert probas.dtype == np.float64


@pytest.mark.filterwarnings("ignore:The default value of strategy.*")  # 0.24
@pytest.mark.parametrize('Dummy', (DummyRegressor, DummyClassifier))
def test_n_features_in_(Dummy):
    X = [[1, 2]]
    y = [0]
    d = Dummy()
    assert not hasattr(d, 'n_features_in_')
    d.fit(X, y)
    assert d.n_features_in_ is None


@pytest.mark.parametrize("Dummy", (DummyRegressor, DummyClassifier))
def test_outputs_2d_deprecation(Dummy):
    X = [[1, 2]]
    y = [0]
    with pytest.warns(FutureWarning,
                      match="will be removed in version 0.24"):
        Dummy().fit(X, y).outputs_2d_


# TODO: Remove in 0.24 when DummyClassifier's `strategy` default updates
def test_strategy_stratified_deprecated_for_prior():
    X, y = [[1, 2]], [0]

    msg = ("The default value of strategy will change from "
           "stratified to prior in 0.24")
    with pytest.warns(FutureWarning, match=msg):
        DummyClassifier().fit(X, y)