pipeline.py 38.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
"""
The :mod:`sklearn.pipeline` module implements utilities to build a composite
estimator, as a chain of transforms and estimators.
"""
# Author: Edouard Duchesnay
#         Gael Varoquaux
#         Virgile Fritsch
#         Alexandre Gramfort
#         Lars Buitinck
# License: BSD

from collections import defaultdict
from itertools import islice
import warnings

import numpy as np
from scipy import sparse
from joblib import Parallel, delayed

from .base import clone, TransformerMixin
from .utils._estimator_html_repr import _VisualBlock
from .utils.metaestimators import if_delegate_has_method
from .utils import Bunch, _print_elapsed_time
from .utils.validation import check_memory
from .utils.validation import _deprecate_positional_args

from .utils.metaestimators import _BaseComposition

__all__ = ['Pipeline', 'FeatureUnion', 'make_pipeline', 'make_union']


class Pipeline(_BaseComposition):
    """
    Pipeline of transforms with a final estimator.

    Sequentially apply a list of transforms and a final estimator.
    Intermediate steps of the pipeline must be 'transforms', that is, they
    must implement fit and transform methods.
    The final estimator only needs to implement fit.
    The transformers in the pipeline can be cached using ``memory`` argument.

    The purpose of the pipeline is to assemble several steps that can be
    cross-validated together while setting different parameters.
    For this, it enables setting parameters of the various steps using their
    names and the parameter name separated by a '__', as in the example below.
    A step's estimator may be replaced entirely by setting the parameter
    with its name to another estimator, or a transformer removed by setting
    it to 'passthrough' or ``None``.

    Read more in the :ref:`User Guide <pipeline>`.

    .. versionadded:: 0.5

    Parameters
    ----------
    steps : list
        List of (name, transform) tuples (implementing fit/transform) that are
        chained, in the order in which they are chained, with the last object
        an estimator.

    memory : str or object with the joblib.Memory interface, default=None
        Used to cache the fitted transformers of the pipeline. By default,
        no caching is performed. If a string is given, it is the path to
        the caching directory. Enabling caching triggers a clone of
        the transformers before fitting. Therefore, the transformer
        instance given to the pipeline cannot be inspected
        directly. Use the attribute ``named_steps`` or ``steps`` to
        inspect estimators within the pipeline. Caching the
        transformers is advantageous when fitting is time consuming.

    verbose : bool, default=False
        If True, the time elapsed while fitting each step will be printed as it
        is completed.

    Attributes
    ----------
    named_steps : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.
        Read-only attribute to access any step parameter by user given name.
        Keys are step names and values are steps parameters.

    See Also
    --------
    sklearn.pipeline.make_pipeline : Convenience function for simplified
        pipeline construction.

    Examples
    --------
    >>> from sklearn.svm import SVC
    >>> from sklearn.preprocessing import StandardScaler
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.pipeline import Pipeline
    >>> X, y = make_classification(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(X, y,
    ...                                                     random_state=0)
    >>> pipe = Pipeline([('scaler', StandardScaler()), ('svc', SVC())])
    >>> # The pipeline can be used as any other estimator
    >>> # and avoids leaking the test set into the train set
    >>> pipe.fit(X_train, y_train)
    Pipeline(steps=[('scaler', StandardScaler()), ('svc', SVC())])
    >>> pipe.score(X_test, y_test)
    0.88
    """

    # BaseEstimator interface
    _required_parameters = ['steps']

    @_deprecate_positional_args
    def __init__(self, steps, *, memory=None, verbose=False):
        self.steps = steps
        self.memory = memory
        self.verbose = verbose
        self._validate_steps()

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        return self._get_params('steps', deep=deep)

    def set_params(self, **kwargs):
        """Set the parameters of this estimator.

        Valid parameter keys can be listed with ``get_params()``.

        Returns
        -------
        self
        """
        self._set_params('steps', **kwargs)
        return self

    def _validate_steps(self):
        names, estimators = zip(*self.steps)

        # validate names
        self._validate_names(names)

        # validate estimators
        transformers = estimators[:-1]
        estimator = estimators[-1]

        for t in transformers:
            if t is None or t == 'passthrough':
                continue
            if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
                    hasattr(t, "transform")):
                raise TypeError("All intermediate steps should be "
                                "transformers and implement fit and transform "
                                "or be the string 'passthrough' "
                                "'%s' (type %s) doesn't" % (t, type(t)))

        # We allow last estimator to be None as an identity transformation
        if (estimator is not None and estimator != 'passthrough'
                and not hasattr(estimator, "fit")):
            raise TypeError(
                "Last step of Pipeline should implement fit "
                "or be the string 'passthrough'. "
                "'%s' (type %s) doesn't" % (estimator, type(estimator)))

    def _iter(self, with_final=True, filter_passthrough=True):
        """
        Generate (idx, (name, trans)) tuples from self.steps

        When filter_passthrough is True, 'passthrough' and None transformers
        are filtered out.
        """
        stop = len(self.steps)
        if not with_final:
            stop -= 1

        for idx, (name, trans) in enumerate(islice(self.steps, 0, stop)):
            if not filter_passthrough:
                yield idx, name, trans
            elif trans is not None and trans != 'passthrough':
                yield idx, name, trans

    def __len__(self):
        """
        Returns the length of the Pipeline
        """
        return len(self.steps)

    def __getitem__(self, ind):
        """Returns a sub-pipeline or a single esimtator in the pipeline

        Indexing with an integer will return an estimator; using a slice
        returns another Pipeline instance which copies a slice of this
        Pipeline. This copy is shallow: modifying (or fitting) estimators in
        the sub-pipeline will affect the larger pipeline and vice-versa.
        However, replacing a value in `step` will not affect a copy.
        """
        if isinstance(ind, slice):
            if ind.step not in (1, None):
                raise ValueError('Pipeline slicing only supports a step of 1')
            return self.__class__(self.steps[ind])
        try:
            name, est = self.steps[ind]
        except TypeError:
            # Not an int, try get step by name
            return self.named_steps[ind]
        return est

    @property
    def _estimator_type(self):
        return self.steps[-1][1]._estimator_type

    @property
    def named_steps(self):
        # Use Bunch object to improve autocomplete
        return Bunch(**dict(self.steps))

    @property
    def _final_estimator(self):
        estimator = self.steps[-1][1]
        return 'passthrough' if estimator is None else estimator

    def _log_message(self, step_idx):
        if not self.verbose:
            return None
        name, step = self.steps[step_idx]

        return '(step %d of %d) Processing %s' % (step_idx + 1,
                                                  len(self.steps),
                                                  name)

    def _check_fit_params(self, **fit_params):
        fit_params_steps = {name: {} for name, step in self.steps
                            if step is not None}
        for pname, pval in fit_params.items():
            if '__' not in pname:
                raise ValueError(
                    "Pipeline.fit does not accept the {} parameter. "
                    "You can pass parameters to specific steps of your "
                    "pipeline using the stepname__parameter format, e.g. "
                    "`Pipeline.fit(X, y, logisticregression__sample_weight"
                    "=sample_weight)`.".format(pname))
            step, param = pname.split('__', 1)
            fit_params_steps[step][param] = pval
        return fit_params_steps

    # Estimator interface

    def _fit(self, X, y=None, **fit_params_steps):
        # shallow copy of steps - this should really be steps_
        self.steps = list(self.steps)
        self._validate_steps()
        # Setup the memory
        memory = check_memory(self.memory)

        fit_transform_one_cached = memory.cache(_fit_transform_one)

        for (step_idx,
             name,
             transformer) in self._iter(with_final=False,
                                        filter_passthrough=False):
            if (transformer is None or transformer == 'passthrough'):
                with _print_elapsed_time('Pipeline',
                                         self._log_message(step_idx)):
                    continue

            if hasattr(memory, 'location'):
                # joblib >= 0.12
                if memory.location is None:
                    # we do not clone when caching is disabled to
                    # preserve backward compatibility
                    cloned_transformer = transformer
                else:
                    cloned_transformer = clone(transformer)
            elif hasattr(memory, 'cachedir'):
                # joblib < 0.11
                if memory.cachedir is None:
                    # we do not clone when caching is disabled to
                    # preserve backward compatibility
                    cloned_transformer = transformer
                else:
                    cloned_transformer = clone(transformer)
            else:
                cloned_transformer = clone(transformer)
            # Fit or load from cache the current transformer
            X, fitted_transformer = fit_transform_one_cached(
                cloned_transformer, X, y, None,
                message_clsname='Pipeline',
                message=self._log_message(step_idx),
                **fit_params_steps[name])
            # Replace the transformer of the step with the fitted
            # transformer. This is necessary when loading the transformer
            # from the cache.
            self.steps[step_idx] = (name, fitted_transformer)
        return X

    def fit(self, X, y=None, **fit_params):
        """Fit the model

        Fit all the transforms one after the other and transform the
        data, then fit the transformed data using the final estimator.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of the
            pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps of
            the pipeline.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of each step, where
            each parameter name is prefixed such that parameter ``p`` for step
            ``s`` has key ``s__p``.

        Returns
        -------
        self : Pipeline
            This estimator
        """
        fit_params_steps = self._check_fit_params(**fit_params)
        Xt = self._fit(X, y, **fit_params_steps)
        with _print_elapsed_time('Pipeline',
                                 self._log_message(len(self.steps) - 1)):
            if self._final_estimator != 'passthrough':
                fit_params_last_step = fit_params_steps[self.steps[-1][0]]
                self._final_estimator.fit(Xt, y, **fit_params_last_step)

        return self

    def fit_transform(self, X, y=None, **fit_params):
        """Fit the model and transform with the final estimator

        Fits all the transforms one after the other and transforms the
        data, then uses fit_transform on transformed data with the final
        estimator.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of the
            pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps of
            the pipeline.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of each step, where
            each parameter name is prefixed such that parameter ``p`` for step
            ``s`` has key ``s__p``.

        Returns
        -------
        Xt : array-like of shape  (n_samples, n_transformed_features)
            Transformed samples
        """
        fit_params_steps = self._check_fit_params(**fit_params)
        Xt = self._fit(X, y, **fit_params_steps)

        last_step = self._final_estimator
        with _print_elapsed_time('Pipeline',
                                 self._log_message(len(self.steps) - 1)):
            if last_step == 'passthrough':
                return Xt
            fit_params_last_step = fit_params_steps[self.steps[-1][0]]
            if hasattr(last_step, 'fit_transform'):
                return last_step.fit_transform(Xt, y, **fit_params_last_step)
            else:
                return last_step.fit(Xt, y,
                                     **fit_params_last_step).transform(Xt)

    @if_delegate_has_method(delegate='_final_estimator')
    def predict(self, X, **predict_params):
        """Apply transforms to the data, and predict with the final estimator

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        **predict_params : dict of string -> object
            Parameters to the ``predict`` called at the end of all
            transformations in the pipeline. Note that while this may be
            used to return uncertainties from some models with return_std
            or return_cov, uncertainties that are generated by the
            transformations in the pipeline are not propagated to the
            final estimator.

            .. versionadded:: 0.20

        Returns
        -------
        y_pred : array-like
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        return self.steps[-1][-1].predict(Xt, **predict_params)

    @if_delegate_has_method(delegate='_final_estimator')
    def fit_predict(self, X, y=None, **fit_params):
        """Applies fit_predict of last step in pipeline after transforms.

        Applies fit_transforms of a pipeline to the data, followed by the
        fit_predict method of the final estimator in the pipeline. Valid
        only if the final estimator implements fit_predict.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of
            the pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps
            of the pipeline.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of each step, where
            each parameter name is prefixed such that parameter ``p`` for step
            ``s`` has key ``s__p``.

        Returns
        -------
        y_pred : array-like
        """
        fit_params_steps = self._check_fit_params(**fit_params)
        Xt = self._fit(X, y, **fit_params_steps)

        fit_params_last_step = fit_params_steps[self.steps[-1][0]]
        with _print_elapsed_time('Pipeline',
                                 self._log_message(len(self.steps) - 1)):
            y_pred = self.steps[-1][-1].fit_predict(Xt, y,
                                                    **fit_params_last_step)
        return y_pred

    @if_delegate_has_method(delegate='_final_estimator')
    def predict_proba(self, X):
        """Apply transforms, and predict_proba of the final estimator

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        y_proba : array-like of shape (n_samples, n_classes)
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        return self.steps[-1][-1].predict_proba(Xt)

    @if_delegate_has_method(delegate='_final_estimator')
    def decision_function(self, X):
        """Apply transforms, and decision_function of the final estimator

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        y_score : array-like of shape (n_samples, n_classes)
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        return self.steps[-1][-1].decision_function(Xt)

    @if_delegate_has_method(delegate='_final_estimator')
    def score_samples(self, X):
        """Apply transforms, and score_samples of the final estimator.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        y_score : ndarray of shape (n_samples,)
        """
        Xt = X
        for _, _, transformer in self._iter(with_final=False):
            Xt = transformer.transform(Xt)
        return self.steps[-1][-1].score_samples(Xt)

    @if_delegate_has_method(delegate='_final_estimator')
    def predict_log_proba(self, X):
        """Apply transforms, and predict_log_proba of the final estimator

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        y_score : array-like of shape (n_samples, n_classes)
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        return self.steps[-1][-1].predict_log_proba(Xt)

    @property
    def transform(self):
        """Apply transforms, and transform with the final estimator

        This also works where final estimator is ``None``: all prior
        transformations are applied.

        Parameters
        ----------
        X : iterable
            Data to transform. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        Xt : array-like of shape  (n_samples, n_transformed_features)
        """
        # _final_estimator is None or has transform, otherwise attribute error
        # XXX: Handling the None case means we can't use if_delegate_has_method
        if self._final_estimator != 'passthrough':
            self._final_estimator.transform
        return self._transform

    def _transform(self, X):
        Xt = X
        for _, _, transform in self._iter():
            Xt = transform.transform(Xt)
        return Xt

    @property
    def inverse_transform(self):
        """Apply inverse transformations in reverse order

        All estimators in the pipeline must support ``inverse_transform``.

        Parameters
        ----------
        Xt : array-like of shape  (n_samples, n_transformed_features)
            Data samples, where ``n_samples`` is the number of samples and
            ``n_features`` is the number of features. Must fulfill
            input requirements of last step of pipeline's
            ``inverse_transform`` method.

        Returns
        -------
        Xt : array-like of shape (n_samples, n_features)
        """
        # raise AttributeError if necessary for hasattr behaviour
        # XXX: Handling the None case means we can't use if_delegate_has_method
        for _, _, transform in self._iter():
            transform.inverse_transform
        return self._inverse_transform

    def _inverse_transform(self, X):
        Xt = X
        reverse_iter = reversed(list(self._iter()))
        for _, _, transform in reverse_iter:
            Xt = transform.inverse_transform(Xt)
        return Xt

    @if_delegate_has_method(delegate='_final_estimator')
    def score(self, X, y=None, sample_weight=None):
        """Apply transforms, and score with the final estimator

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        y : iterable, default=None
            Targets used for scoring. Must fulfill label requirements for all
            steps of the pipeline.

        sample_weight : array-like, default=None
            If not None, this argument is passed as ``sample_weight`` keyword
            argument to the ``score`` method of the final estimator.

        Returns
        -------
        score : float
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        score_params = {}
        if sample_weight is not None:
            score_params['sample_weight'] = sample_weight
        return self.steps[-1][-1].score(Xt, y, **score_params)

    @property
    def classes_(self):
        return self.steps[-1][-1].classes_

    @property
    def _pairwise(self):
        # check if first estimator expects pairwise input
        return getattr(self.steps[0][1], '_pairwise', False)

    @property
    def n_features_in_(self):
        # delegate to first step (which will call _check_is_fitted)
        return self.steps[0][1].n_features_in_

    def _sk_visual_block_(self):
        _, estimators = zip(*self.steps)

        def _get_name(name, est):
            if est is None or est == 'passthrough':
                return f'{name}: passthrough'
            # Is an estimator
            return f'{name}: {est.__class__.__name__}'
        names = [_get_name(name, est) for name, est in self.steps]
        name_details = [str(est) for est in estimators]
        return _VisualBlock('serial', estimators,
                            names=names,
                            name_details=name_details,
                            dash_wrapped=False)


def _name_estimators(estimators):
    """Generate names for estimators."""

    names = [
        estimator
        if isinstance(estimator, str) else type(estimator).__name__.lower()
        for estimator in estimators
    ]
    namecount = defaultdict(int)
    for est, name in zip(estimators, names):
        namecount[name] += 1

    for k, v in list(namecount.items()):
        if v == 1:
            del namecount[k]

    for i in reversed(range(len(estimators))):
        name = names[i]
        if name in namecount:
            names[i] += "-%d" % namecount[name]
            namecount[name] -= 1

    return list(zip(names, estimators))


def make_pipeline(*steps, **kwargs):
    """Construct a Pipeline from the given estimators.

    This is a shorthand for the Pipeline constructor; it does not require, and
    does not permit, naming the estimators. Instead, their names will be set
    to the lowercase of their types automatically.

    Parameters
    ----------
    *steps : list of estimators.

    memory : str or object with the joblib.Memory interface, default=None
        Used to cache the fitted transformers of the pipeline. By default,
        no caching is performed. If a string is given, it is the path to
        the caching directory. Enabling caching triggers a clone of
        the transformers before fitting. Therefore, the transformer
        instance given to the pipeline cannot be inspected
        directly. Use the attribute ``named_steps`` or ``steps`` to
        inspect estimators within the pipeline. Caching the
        transformers is advantageous when fitting is time consuming.

    verbose : bool, default=False
        If True, the time elapsed while fitting each step will be printed as it
        is completed.

    See Also
    --------
    sklearn.pipeline.Pipeline : Class for creating a pipeline of
        transforms with a final estimator.

    Examples
    --------
    >>> from sklearn.naive_bayes import GaussianNB
    >>> from sklearn.preprocessing import StandardScaler
    >>> make_pipeline(StandardScaler(), GaussianNB(priors=None))
    Pipeline(steps=[('standardscaler', StandardScaler()),
                    ('gaussiannb', GaussianNB())])

    Returns
    -------
    p : Pipeline
    """
    memory = kwargs.pop('memory', None)
    verbose = kwargs.pop('verbose', False)
    if kwargs:
        raise TypeError('Unknown keyword arguments: "{}"'
                        .format(list(kwargs.keys())[0]))
    return Pipeline(_name_estimators(steps), memory=memory, verbose=verbose)


def _transform_one(transformer, X, y, weight, **fit_params):
    res = transformer.transform(X)
    # if we have a weight for this transformer, multiply output
    if weight is None:
        return res
    return res * weight


def _fit_transform_one(transformer,
                       X,
                       y,
                       weight,
                       message_clsname='',
                       message=None,
                       **fit_params):
    """
    Fits ``transformer`` to ``X`` and ``y``. The transformed result is returned
    with the fitted transformer. If ``weight`` is not ``None``, the result will
    be multiplied by ``weight``.
    """
    with _print_elapsed_time(message_clsname, message):
        if hasattr(transformer, 'fit_transform'):
            res = transformer.fit_transform(X, y, **fit_params)
        else:
            res = transformer.fit(X, y, **fit_params).transform(X)

    if weight is None:
        return res, transformer
    return res * weight, transformer


def _fit_one(transformer,
             X,
             y,
             weight,
             message_clsname='',
             message=None,
             **fit_params):
    """
    Fits ``transformer`` to ``X`` and ``y``.
    """
    with _print_elapsed_time(message_clsname, message):
        return transformer.fit(X, y, **fit_params)


class FeatureUnion(TransformerMixin, _BaseComposition):
    """Concatenates results of multiple transformer objects.

    This estimator applies a list of transformer objects in parallel to the
    input data, then concatenates the results. This is useful to combine
    several feature extraction mechanisms into a single transformer.

    Parameters of the transformers may be set using its name and the parameter
    name separated by a '__'. A transformer may be replaced entirely by
    setting the parameter with its name to another transformer,
    or removed by setting to 'drop'.

    Read more in the :ref:`User Guide <feature_union>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    transformer_list : list of (string, transformer) tuples
        List of transformer objects to be applied to the data. The first
        half of each tuple is the name of the transformer.

        .. versionchanged:: 0.22
           Deprecated `None` as a transformer in favor of 'drop'.

    n_jobs : int, default=None
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None

    transformer_weights : dict, default=None
        Multiplicative weights for features per transformer.
        Keys are transformer names, values the weights.

    verbose : bool, default=False
        If True, the time elapsed while fitting each transformer will be
        printed as it is completed.

    See Also
    --------
    sklearn.pipeline.make_union : Convenience function for simplified
        feature union construction.

    Examples
    --------
    >>> from sklearn.pipeline import FeatureUnion
    >>> from sklearn.decomposition import PCA, TruncatedSVD
    >>> union = FeatureUnion([("pca", PCA(n_components=1)),
    ...                       ("svd", TruncatedSVD(n_components=2))])
    >>> X = [[0., 1., 3], [2., 2., 5]]
    >>> union.fit_transform(X)
    array([[ 1.5       ,  3.0...,  0.8...],
           [-1.5       ,  5.7..., -0.4...]])
    """
    _required_parameters = ["transformer_list"]

    @_deprecate_positional_args
    def __init__(self, transformer_list, *, n_jobs=None,
                 transformer_weights=None, verbose=False):
        self.transformer_list = transformer_list
        self.n_jobs = n_jobs
        self.transformer_weights = transformer_weights
        self.verbose = verbose
        self._validate_transformers()

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        return self._get_params('transformer_list', deep=deep)

    def set_params(self, **kwargs):
        """Set the parameters of this estimator.

        Valid parameter keys can be listed with ``get_params()``.

        Returns
        -------
        self
        """
        self._set_params('transformer_list', **kwargs)
        return self

    def _validate_transformers(self):
        names, transformers = zip(*self.transformer_list)

        # validate names
        self._validate_names(names)

        # validate estimators
        for t in transformers:
            # TODO: Remove in 0.24 when None is removed
            if t is None:
                warnings.warn("Using None as a transformer is deprecated "
                              "in version 0.22 and will be removed in "
                              "version 0.24. Please use 'drop' instead.",
                              FutureWarning)
                continue
            if t == 'drop':
                continue
            if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
                    hasattr(t, "transform")):
                raise TypeError("All estimators should implement fit and "
                                "transform. '%s' (type %s) doesn't" %
                                (t, type(t)))

    def _iter(self):
        """
        Generate (name, trans, weight) tuples excluding None and
        'drop' transformers.
        """
        get_weight = (self.transformer_weights or {}).get
        return ((name, trans, get_weight(name))
                for name, trans in self.transformer_list
                if trans is not None and trans != 'drop')

    def get_feature_names(self):
        """Get feature names from all transformers.

        Returns
        -------
        feature_names : list of strings
            Names of the features produced by transform.
        """
        feature_names = []
        for name, trans, weight in self._iter():
            if not hasattr(trans, 'get_feature_names'):
                raise AttributeError("Transformer %s (type %s) does not "
                                     "provide get_feature_names."
                                     % (str(name), type(trans).__name__))
            feature_names.extend([name + "__" + f for f in
                                  trans.get_feature_names()])
        return feature_names

    def fit(self, X, y=None, **fit_params):
        """Fit all transformers using X.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data, used to fit transformers.

        y : array-like of shape (n_samples, n_outputs), default=None
            Targets for supervised learning.

        Returns
        -------
        self : FeatureUnion
            This estimator
        """
        transformers = self._parallel_func(X, y, fit_params, _fit_one)
        if not transformers:
            # All transformers are None
            return self

        self._update_transformer_list(transformers)
        return self

    def fit_transform(self, X, y=None, **fit_params):
        """Fit all transformers, transform the data and concatenate results.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data to be transformed.

        y : array-like of shape (n_samples, n_outputs), default=None
            Targets for supervised learning.

        Returns
        -------
        X_t : array-like or sparse matrix of \
                shape (n_samples, sum_n_components)
            hstack of results of transformers. sum_n_components is the
            sum of n_components (output dimension) over transformers.
        """
        results = self._parallel_func(X, y, fit_params, _fit_transform_one)
        if not results:
            # All transformers are None
            return np.zeros((X.shape[0], 0))

        Xs, transformers = zip(*results)
        self._update_transformer_list(transformers)

        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

    def _log_message(self, name, idx, total):
        if not self.verbose:
            return None
        return '(step %d of %d) Processing %s' % (idx, total, name)

    def _parallel_func(self, X, y, fit_params, func):
        """Runs func in parallel on X and y"""
        self.transformer_list = list(self.transformer_list)
        self._validate_transformers()
        transformers = list(self._iter())

        return Parallel(n_jobs=self.n_jobs)(delayed(func)(
            transformer, X, y, weight,
            message_clsname='FeatureUnion',
            message=self._log_message(name, idx, len(transformers)),
            **fit_params) for idx, (name, transformer,
                                    weight) in enumerate(transformers, 1))

    def transform(self, X):
        """Transform X separately by each transformer, concatenate results.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data to be transformed.

        Returns
        -------
        X_t : array-like or sparse matrix of \
                shape (n_samples, sum_n_components)
            hstack of results of transformers. sum_n_components is the
            sum of n_components (output dimension) over transformers.
        """
        for _, t in self.transformer_list:
            # TODO: Remove in 0.24 when None is removed
            if t is None:
                warnings.warn("Using None as a transformer is deprecated "
                              "in version 0.22 and will be removed in "
                              "version 0.24. Please use 'drop' instead.",
                              FutureWarning)
                continue
        Xs = Parallel(n_jobs=self.n_jobs)(
            delayed(_transform_one)(trans, X, None, weight)
            for name, trans, weight in self._iter())
        if not Xs:
            # All transformers are None
            return np.zeros((X.shape[0], 0))
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

    def _update_transformer_list(self, transformers):
        transformers = iter(transformers)
        self.transformer_list[:] = [(name, old if old is None or old == 'drop'
                                     else next(transformers))
                                    for name, old in self.transformer_list]

    @property
    def n_features_in_(self):
        # X is passed to all transformers so we just delegate to the first one
        return self.transformer_list[0][1].n_features_in_

    def _sk_visual_block_(self):
        names, transformers = zip(*self.transformer_list)
        return _VisualBlock('parallel', transformers, names=names)


def make_union(*transformers, **kwargs):
    """
    Construct a FeatureUnion from the given transformers.

    This is a shorthand for the FeatureUnion constructor; it does not require,
    and does not permit, naming the transformers. Instead, they will be given
    names automatically based on their types. It also does not allow weighting.

    Parameters
    ----------
    *transformers : list of estimators

    n_jobs : int, default=None
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None

    verbose : bool, default=False
        If True, the time elapsed while fitting each transformer will be
        printed as it is completed.

    Returns
    -------
    f : FeatureUnion

    See Also
    --------
    sklearn.pipeline.FeatureUnion : Class for concatenating the results
        of multiple transformer objects.

    Examples
    --------
    >>> from sklearn.decomposition import PCA, TruncatedSVD
    >>> from sklearn.pipeline import make_union
    >>> make_union(PCA(), TruncatedSVD())
     FeatureUnion(transformer_list=[('pca', PCA()),
                                   ('truncatedsvd', TruncatedSVD())])
    """
    n_jobs = kwargs.pop('n_jobs', None)
    verbose = kwargs.pop('verbose', False)
    if kwargs:
        # We do not currently support `transformer_weights` as we may want to
        # change its type spec in make_union
        raise TypeError('Unknown keyword arguments: "{}"'
                        .format(list(kwargs.keys())[0]))
    return FeatureUnion(
        _name_estimators(transformers), n_jobs=n_jobs, verbose=verbose)