multioutput.py 27.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
"""
This module implements multioutput regression and classification.

The estimators provided in this module are meta-estimators: they require
a base estimator to be provided in their constructor. The meta-estimator
extends single output estimators to multioutput estimators.
"""

# Author: Tim Head <betatim@gmail.com>
# Author: Hugo Bowne-Anderson <hugobowne@gmail.com>
# Author: Chris Rivera <chris.richard.rivera@gmail.com>
# Author: Michael Williamson
# Author: James Ashton Nichols <james.ashton.nichols@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import scipy.sparse as sp
from joblib import Parallel, delayed

from abc import ABCMeta, abstractmethod
from .base import BaseEstimator, clone, MetaEstimatorMixin
from .base import RegressorMixin, ClassifierMixin, is_classifier
from .model_selection import cross_val_predict
from .utils import check_array, check_X_y, check_random_state
from .utils.metaestimators import if_delegate_has_method
from .utils.validation import (check_is_fitted, has_fit_parameter,
                               _check_fit_params, _deprecate_positional_args)
from .utils.multiclass import check_classification_targets
from .utils import deprecated

__all__ = ["MultiOutputRegressor", "MultiOutputClassifier",
           "ClassifierChain", "RegressorChain"]


def _fit_estimator(estimator, X, y, sample_weight=None, **fit_params):
    estimator = clone(estimator)
    if sample_weight is not None:
        estimator.fit(X, y, sample_weight=sample_weight, **fit_params)
    else:
        estimator.fit(X, y, **fit_params)
    return estimator


def _partial_fit_estimator(estimator, X, y, classes=None, sample_weight=None,
                           first_time=True):
    if first_time:
        estimator = clone(estimator)

    if sample_weight is not None:
        if classes is not None:
            estimator.partial_fit(X, y, classes=classes,
                                  sample_weight=sample_weight)
        else:
            estimator.partial_fit(X, y, sample_weight=sample_weight)
    else:
        if classes is not None:
            estimator.partial_fit(X, y, classes=classes)
        else:
            estimator.partial_fit(X, y)
    return estimator


class _MultiOutputEstimator(BaseEstimator, MetaEstimatorMixin,
                            metaclass=ABCMeta):
    @abstractmethod
    @_deprecate_positional_args
    def __init__(self, estimator, *, n_jobs=None):
        self.estimator = estimator
        self.n_jobs = n_jobs

    @if_delegate_has_method('estimator')
    def partial_fit(self, X, y, classes=None, sample_weight=None):
        """Incrementally fit the model to data.
        Fit a separate model for each output variable.

        Parameters
        ----------
        X : (sparse) array-like, shape (n_samples, n_features)
            Data.

        y : (sparse) array-like, shape (n_samples, n_outputs)
            Multi-output targets.

        classes : list of numpy arrays, shape (n_outputs)
            Each array is unique classes for one output in str/int
            Can be obtained by via
            ``[np.unique(y[:, i]) for i in range(y.shape[1])]``, where y is the
            target matrix of the entire dataset.
            This argument is required for the first call to partial_fit
            and can be omitted in the subsequent calls.
            Note that y doesn't need to contain all labels in `classes`.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.
            Only supported if the underlying regressor supports sample
            weights.

        Returns
        -------
        self : object
        """
        X, y = check_X_y(X, y,
                         multi_output=True,
                         accept_sparse=True)

        if y.ndim == 1:
            raise ValueError("y must have at least two dimensions for "
                             "multi-output regression but has only one.")

        if (sample_weight is not None and
                not has_fit_parameter(self.estimator, 'sample_weight')):
            raise ValueError("Underlying estimator does not support"
                             " sample weights.")

        first_time = not hasattr(self, 'estimators_')

        self.estimators_ = Parallel(n_jobs=self.n_jobs)(
            delayed(_partial_fit_estimator)(
                self.estimators_[i] if not first_time else self.estimator,
                X, y[:, i],
                classes[i] if classes is not None else None,
                sample_weight, first_time) for i in range(y.shape[1]))
        return self

    def fit(self, X, y, sample_weight=None, **fit_params):
        """ Fit the model to data.
        Fit a separate model for each output variable.

        Parameters
        ----------
        X : (sparse) array-like, shape (n_samples, n_features)
            Data.

        y : (sparse) array-like, shape (n_samples, n_outputs)
            Multi-output targets. An indicator matrix turns on multilabel
            estimation.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.
            Only supported if the underlying regressor supports sample
            weights.

        **fit_params : dict of string -> object
            Parameters passed to the ``estimator.fit`` method of each step.

        Returns
        -------
        self : object
        """

        if not hasattr(self.estimator, "fit"):
            raise ValueError("The base estimator should implement"
                             " a fit method")

        X, y = self._validate_data(X, y, multi_output=True, accept_sparse=True)

        if is_classifier(self):
            check_classification_targets(y)

        if y.ndim == 1:
            raise ValueError("y must have at least two dimensions for "
                             "multi-output regression but has only one.")

        if (sample_weight is not None and
                not has_fit_parameter(self.estimator, 'sample_weight')):
            raise ValueError("Underlying estimator does not support"
                             " sample weights.")

        fit_params_validated = _check_fit_params(X, fit_params)

        self.estimators_ = Parallel(n_jobs=self.n_jobs)(
            delayed(_fit_estimator)(
                self.estimator, X, y[:, i], sample_weight,
                **fit_params_validated)
            for i in range(y.shape[1]))
        return self

    def predict(self, X):
        """Predict multi-output variable using a model
         trained for each target variable.

        Parameters
        ----------
        X : (sparse) array-like, shape (n_samples, n_features)
            Data.

        Returns
        -------
        y : (sparse) array-like, shape (n_samples, n_outputs)
            Multi-output targets predicted across multiple predictors.
            Note: Separate models are generated for each predictor.
        """
        check_is_fitted(self)
        if not hasattr(self.estimator, "predict"):
            raise ValueError("The base estimator should implement"
                             " a predict method")

        X = check_array(X, accept_sparse=True)

        y = Parallel(n_jobs=self.n_jobs)(
            delayed(e.predict)(X)
            for e in self.estimators_)

        return np.asarray(y).T

    def _more_tags(self):
        return {'multioutput_only': True}


class MultiOutputRegressor(RegressorMixin, _MultiOutputEstimator):
    """Multi target regression

    This strategy consists of fitting one regressor per target. This is a
    simple strategy for extending regressors that do not natively support
    multi-target regression.

    .. versionadded:: 0.18

    Parameters
    ----------
    estimator : estimator object
        An estimator object implementing :term:`fit` and :term:`predict`.

    n_jobs : int or None, optional (default=None)
        The number of jobs to run in parallel for :meth:`fit`.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        When individual estimators are fast to train or predict
        using `n_jobs>1` can result in slower performance due
        to the overhead of spawning processes.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None

    Attributes
    ----------
    estimators_ : list of ``n_output`` estimators
        Estimators used for predictions.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.datasets import load_linnerud
    >>> from sklearn.multioutput import MultiOutputRegressor
    >>> from sklearn.linear_model import Ridge
    >>> X, y = load_linnerud(return_X_y=True)
    >>> clf = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y)
    >>> clf.predict(X[[0]])
    array([[176..., 35..., 57...]])
    """
    @_deprecate_positional_args
    def __init__(self, estimator, *, n_jobs=None):
        super().__init__(estimator, n_jobs=n_jobs)

    @if_delegate_has_method('estimator')
    def partial_fit(self, X, y, sample_weight=None):
        """Incrementally fit the model to data.
        Fit a separate model for each output variable.

        Parameters
        ----------
        X : (sparse) array-like, shape (n_samples, n_features)
            Data.

        y : (sparse) array-like, shape (n_samples, n_outputs)
            Multi-output targets.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.
            Only supported if the underlying regressor supports sample
            weights.

        Returns
        -------
        self : object
        """
        super().partial_fit(
            X, y, sample_weight=sample_weight)


class MultiOutputClassifier(ClassifierMixin, _MultiOutputEstimator):
    """Multi target classification

    This strategy consists of fitting one classifier per target. This is a
    simple strategy for extending classifiers that do not natively support
    multi-target classification

    Parameters
    ----------
    estimator : estimator object
        An estimator object implementing :term:`fit`, :term:`score` and
        :term:`predict_proba`.

    n_jobs : int or None, optional (default=None)
        The number of jobs to use for the computation.
        It does each target variable in y in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None

    Attributes
    ----------
    classes_ : array, shape = (n_classes,)
        Class labels.

    estimators_ : list of ``n_output`` estimators
        Estimators used for predictions.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.datasets import make_multilabel_classification
    >>> from sklearn.multioutput import MultiOutputClassifier
    >>> from sklearn.neighbors import KNeighborsClassifier

    >>> X, y = make_multilabel_classification(n_classes=3, random_state=0)
    >>> clf = MultiOutputClassifier(KNeighborsClassifier()).fit(X, y)
    >>> clf.predict(X[-2:])
    array([[1, 1, 0], [1, 1, 1]])
    """
    @_deprecate_positional_args
    def __init__(self, estimator, *, n_jobs=None):
        super().__init__(estimator, n_jobs=n_jobs)

    def fit(self, X, Y, sample_weight=None, **fit_params):
        """Fit the model to data matrix X and targets Y.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input data.
        Y : array-like of shape (n_samples, n_classes)
            The target values.
        sample_weight : array-like of shape (n_samples,) or None
            Sample weights. If None, then samples are equally weighted.
            Only supported if the underlying classifier supports sample
            weights.
        **fit_params : dict of string -> object
            Parameters passed to the ``estimator.fit`` method of each step.

        Returns
        -------
        self : object
        """
        super().fit(X, Y, sample_weight, **fit_params)
        self.classes_ = [estimator.classes_ for estimator in self.estimators_]
        return self

    @property
    def predict_proba(self):
        """Probability estimates.
        Returns prediction probabilities for each class of each output.

        This method will raise a ``ValueError`` if any of the
        estimators do not have ``predict_proba``.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Data

        Returns
        -------
        p : array of shape (n_samples, n_classes), or a list of n_outputs \
            such arrays if n_outputs > 1.
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.

            .. versionchanged:: 0.19
                This function now returns a list of arrays where the length of
                the list is ``n_outputs``, and each array is (``n_samples``,
                ``n_classes``) for that particular output.
        """
        check_is_fitted(self)
        if not all([hasattr(estimator, "predict_proba")
                    for estimator in self.estimators_]):
            raise AttributeError("The base estimator should "
                                 "implement predict_proba method")
        return self._predict_proba

    def _predict_proba(self, X):
        results = [estimator.predict_proba(X) for estimator in
                   self.estimators_]
        return results

    def score(self, X, y):
        """Returns the mean accuracy on the given test data and labels.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            Test samples

        y : array-like, shape [n_samples, n_outputs]
            True values for X

        Returns
        -------
        scores : float
            accuracy_score of self.predict(X) versus y
        """
        check_is_fitted(self)
        n_outputs_ = len(self.estimators_)
        if y.ndim == 1:
            raise ValueError("y must have at least two dimensions for "
                             "multi target classification but has only one")
        if y.shape[1] != n_outputs_:
            raise ValueError("The number of outputs of Y for fit {0} and"
                             " score {1} should be same".
                             format(n_outputs_, y.shape[1]))
        y_pred = self.predict(X)
        return np.mean(np.all(y == y_pred, axis=1))

    def _more_tags(self):
        # FIXME
        return {'_skip_test': True}


class _BaseChain(BaseEstimator, metaclass=ABCMeta):
    @_deprecate_positional_args
    def __init__(self, base_estimator, *, order=None, cv=None,
                 random_state=None):
        self.base_estimator = base_estimator
        self.order = order
        self.cv = cv
        self.random_state = random_state

    @abstractmethod
    def fit(self, X, Y, **fit_params):
        """Fit the model to data matrix X and targets Y.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The input data.
        Y : array-like, shape (n_samples, n_classes)
            The target values.
        **fit_params : dict of string -> object
            Parameters passed to the `fit` method of each step.

        Returns
        -------
        self : object
        """
        X, Y = self._validate_data(X, Y, multi_output=True, accept_sparse=True)

        random_state = check_random_state(self.random_state)
        check_array(X, accept_sparse=True)
        self.order_ = self.order
        if self.order_ is None:
            self.order_ = np.array(range(Y.shape[1]))
        elif isinstance(self.order_, str):
            if self.order_ == 'random':
                self.order_ = random_state.permutation(Y.shape[1])
        elif sorted(self.order_) != list(range(Y.shape[1])):
            raise ValueError("invalid order")

        self.estimators_ = [clone(self.base_estimator)
                            for _ in range(Y.shape[1])]

        if self.cv is None:
            Y_pred_chain = Y[:, self.order_]
            if sp.issparse(X):
                X_aug = sp.hstack((X, Y_pred_chain), format='lil')
                X_aug = X_aug.tocsr()
            else:
                X_aug = np.hstack((X, Y_pred_chain))

        elif sp.issparse(X):
            Y_pred_chain = sp.lil_matrix((X.shape[0], Y.shape[1]))
            X_aug = sp.hstack((X, Y_pred_chain), format='lil')

        else:
            Y_pred_chain = np.zeros((X.shape[0], Y.shape[1]))
            X_aug = np.hstack((X, Y_pred_chain))

        del Y_pred_chain

        for chain_idx, estimator in enumerate(self.estimators_):
            y = Y[:, self.order_[chain_idx]]
            estimator.fit(X_aug[:, :(X.shape[1] + chain_idx)], y,
                          **fit_params)
            if self.cv is not None and chain_idx < len(self.estimators_) - 1:
                col_idx = X.shape[1] + chain_idx
                cv_result = cross_val_predict(
                    self.base_estimator, X_aug[:, :col_idx],
                    y=y, cv=self.cv)
                if sp.issparse(X_aug):
                    X_aug[:, col_idx] = np.expand_dims(cv_result, 1)
                else:
                    X_aug[:, col_idx] = cv_result

        return self

    def predict(self, X):
        """Predict on the data matrix X using the ClassifierChain model.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The input data.

        Returns
        -------
        Y_pred : array-like, shape (n_samples, n_classes)
            The predicted values.

        """
        check_is_fitted(self)
        X = check_array(X, accept_sparse=True)
        Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
        for chain_idx, estimator in enumerate(self.estimators_):
            previous_predictions = Y_pred_chain[:, :chain_idx]
            if sp.issparse(X):
                if chain_idx == 0:
                    X_aug = X
                else:
                    X_aug = sp.hstack((X, previous_predictions))
            else:
                X_aug = np.hstack((X, previous_predictions))
            Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)

        inv_order = np.empty_like(self.order_)
        inv_order[self.order_] = np.arange(len(self.order_))
        Y_pred = Y_pred_chain[:, inv_order]

        return Y_pred


class ClassifierChain(MetaEstimatorMixin, ClassifierMixin, _BaseChain):
    """A multi-label model that arranges binary classifiers into a chain.

    Each model makes a prediction in the order specified by the chain using
    all of the available features provided to the model plus the predictions
    of models that are earlier in the chain.

    Read more in the :ref:`User Guide <classifierchain>`.

    .. versionadded:: 0.19

    Parameters
    ----------
    base_estimator : estimator
        The base estimator from which the classifier chain is built.

    order : array-like of shape (n_outputs,) or 'random', optional
        By default the order will be determined by the order of columns in
        the label matrix Y.::

            order = [0, 1, 2, ..., Y.shape[1] - 1]

        The order of the chain can be explicitly set by providing a list of
        integers. For example, for a chain of length 5.::

            order = [1, 3, 2, 4, 0]

        means that the first model in the chain will make predictions for
        column 1 in the Y matrix, the second model will make predictions
        for column 3, etc.

        If order is 'random' a random ordering will be used.

    cv : int, cross-validation generator or an iterable, optional \
    (default=None)
        Determines whether to use cross validated predictions or true
        labels for the results of previous estimators in the chain.
        If cv is None the true labels are used when fitting. Otherwise
        possible inputs for cv are:

        - integer, to specify the number of folds in a (Stratified)KFold,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

    random_state : int, RandomState instance or None, optional (default=None)
        If ``order='random'``, determines random number generation for the
        chain order.
        In addition, it controls the random seed given at each `base_estimator`
        at each chaining iteration. Thus, it is only used when `base_estimator`
        exposes a `random_state`.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    classes_ : list
        A list of arrays of length ``len(estimators_)`` containing the
        class labels for each estimator in the chain.

    estimators_ : list
        A list of clones of base_estimator.

    order_ : list
        The order of labels in the classifier chain.

    See also
    --------
    RegressorChain: Equivalent for regression
    MultioutputClassifier: Classifies each output independently rather than
        chaining.

    References
    ----------
    Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, "Classifier
    Chains for Multi-label Classification", 2009.

    """

    def fit(self, X, Y):
        """Fit the model to data matrix X and targets Y.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The input data.
        Y : array-like, shape (n_samples, n_classes)
            The target values.

        Returns
        -------
        self : object
        """
        super().fit(X, Y)
        self.classes_ = [estimator.classes_
                         for chain_idx, estimator
                         in enumerate(self.estimators_)]
        return self

    @if_delegate_has_method('base_estimator')
    def predict_proba(self, X):
        """Predict probability estimates.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)

        Returns
        -------
        Y_prob : array-like, shape (n_samples, n_classes)
        """
        X = check_array(X, accept_sparse=True)
        Y_prob_chain = np.zeros((X.shape[0], len(self.estimators_)))
        Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
        for chain_idx, estimator in enumerate(self.estimators_):
            previous_predictions = Y_pred_chain[:, :chain_idx]
            if sp.issparse(X):
                X_aug = sp.hstack((X, previous_predictions))
            else:
                X_aug = np.hstack((X, previous_predictions))
            Y_prob_chain[:, chain_idx] = estimator.predict_proba(X_aug)[:, 1]
            Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
        inv_order = np.empty_like(self.order_)
        inv_order[self.order_] = np.arange(len(self.order_))
        Y_prob = Y_prob_chain[:, inv_order]

        return Y_prob

    @if_delegate_has_method('base_estimator')
    def decision_function(self, X):
        """Evaluate the decision_function of the models in the chain.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        Y_decision : array-like, shape (n_samples, n_classes )
            Returns the decision function of the sample for each model
            in the chain.
        """
        Y_decision_chain = np.zeros((X.shape[0], len(self.estimators_)))
        Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
        for chain_idx, estimator in enumerate(self.estimators_):
            previous_predictions = Y_pred_chain[:, :chain_idx]
            if sp.issparse(X):
                X_aug = sp.hstack((X, previous_predictions))
            else:
                X_aug = np.hstack((X, previous_predictions))
            Y_decision_chain[:, chain_idx] = estimator.decision_function(X_aug)
            Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)

        inv_order = np.empty_like(self.order_)
        inv_order[self.order_] = np.arange(len(self.order_))
        Y_decision = Y_decision_chain[:, inv_order]

        return Y_decision

    def _more_tags(self):
        return {'_skip_test': True,
                'multioutput_only': True}


class RegressorChain(MetaEstimatorMixin, RegressorMixin, _BaseChain):
    """A multi-label model that arranges regressions into a chain.

    Each model makes a prediction in the order specified by the chain using
    all of the available features provided to the model plus the predictions
    of models that are earlier in the chain.

    Read more in the :ref:`User Guide <regressorchain>`.

    .. versionadded:: 0.20

    Parameters
    ----------
    base_estimator : estimator
        The base estimator from which the classifier chain is built.

    order : array-like of shape (n_outputs,) or 'random', optional
        By default the order will be determined by the order of columns in
        the label matrix Y.::

            order = [0, 1, 2, ..., Y.shape[1] - 1]

        The order of the chain can be explicitly set by providing a list of
        integers. For example, for a chain of length 5.::

            order = [1, 3, 2, 4, 0]

        means that the first model in the chain will make predictions for
        column 1 in the Y matrix, the second model will make predictions
        for column 3, etc.

        If order is 'random' a random ordering will be used.

    cv : int, cross-validation generator or an iterable, optional \
    (default=None)
        Determines whether to use cross validated predictions or true
        labels for the results of previous estimators in the chain.
        If cv is None the true labels are used when fitting. Otherwise
        possible inputs for cv are:

        - integer, to specify the number of folds in a (Stratified)KFold,
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

    random_state : int, RandomState instance or None, optional (default=None)
        If ``order='random'``, determines random number generation for the
        chain order.
        In addition, it controls the random seed given at each `base_estimator`
        at each chaining iteration. Thus, it is only used when `base_estimator`
        exposes a `random_state`.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    estimators_ : list
        A list of clones of base_estimator.

    order_ : list
        The order of labels in the classifier chain.

    See also
    --------
    ClassifierChain: Equivalent for classification
    MultioutputRegressor: Learns each output independently rather than
        chaining.

    """

    def fit(self, X, Y, **fit_params):
        """Fit the model to data matrix X and targets Y.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The input data.
        Y : array-like, shape (n_samples, n_classes)
            The target values.

        **fit_params : dict of string -> object
            Parameters passed to the `fit` method at each step
            of the regressor chain.

        Returns
        -------
        self : object
        """
        super().fit(X, Y, **fit_params)
        return self

    def _more_tags(self):
        return {'multioutput_only': True}


# TODO: remove in 0.24
@deprecated("MultiOutputEstimator is deprecated in version "
            "0.22 and will be removed in version 0.24.")
class MultiOutputEstimator(_MultiOutputEstimator):
    pass