_split.py 77.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
"""
The :mod:`sklearn.model_selection._split` module includes classes and
functions to split the data based on a preset strategy.
"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>,
#         Gael Varoquaux <gael.varoquaux@normalesup.org>,
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Raghav RV <rvraghav93@gmail.com>
# License: BSD 3 clause

from collections.abc import Iterable
import warnings
from itertools import chain, combinations
from math import ceil, floor
import numbers
from abc import ABCMeta, abstractmethod
from inspect import signature

import numpy as np
from scipy.special import comb

from ..utils import indexable, check_random_state, _safe_indexing
from ..utils import _approximate_mode
from ..utils.validation import _num_samples, column_or_1d
from ..utils.validation import check_array
from ..utils.validation import _deprecate_positional_args
from ..utils.multiclass import type_of_target
from ..base import _pprint

__all__ = ['BaseCrossValidator',
           'KFold',
           'GroupKFold',
           'LeaveOneGroupOut',
           'LeaveOneOut',
           'LeavePGroupsOut',
           'LeavePOut',
           'RepeatedStratifiedKFold',
           'RepeatedKFold',
           'ShuffleSplit',
           'GroupShuffleSplit',
           'StratifiedKFold',
           'StratifiedShuffleSplit',
           'PredefinedSplit',
           'train_test_split',
           'check_cv']


class BaseCrossValidator(metaclass=ABCMeta):
    """Base class for all cross-validators

    Implementations must define `_iter_test_masks` or `_iter_test_indices`.
    """
    def split(self, X, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of shape (n_samples,)
            The target variable for supervised learning problems.

        groups : array-like of shape (n_samples,), default=None
            Group labels for the samples used while splitting the dataset into
            train/test set.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.
        """
        X, y, groups = indexable(X, y, groups)
        indices = np.arange(_num_samples(X))
        for test_index in self._iter_test_masks(X, y, groups):
            train_index = indices[np.logical_not(test_index)]
            test_index = indices[test_index]
            yield train_index, test_index

    # Since subclasses must implement either _iter_test_masks or
    # _iter_test_indices, neither can be abstract.
    def _iter_test_masks(self, X=None, y=None, groups=None):
        """Generates boolean masks corresponding to test sets.

        By default, delegates to _iter_test_indices(X, y, groups)
        """
        for test_index in self._iter_test_indices(X, y, groups):
            test_mask = np.zeros(_num_samples(X), dtype=np.bool)
            test_mask[test_index] = True
            yield test_mask

    def _iter_test_indices(self, X=None, y=None, groups=None):
        """Generates integer indices corresponding to test sets."""
        raise NotImplementedError

    @abstractmethod
    def get_n_splits(self, X=None, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator"""

    def __repr__(self):
        return _build_repr(self)


class LeaveOneOut(BaseCrossValidator):
    """Leave-One-Out cross-validator

    Provides train/test indices to split data in train/test sets. Each
    sample is used once as a test set (singleton) while the remaining
    samples form the training set.

    Note: ``LeaveOneOut()`` is equivalent to ``KFold(n_splits=n)`` and
    ``LeavePOut(p=1)`` where ``n`` is the number of samples.

    Due to the high number of test sets (which is the same as the
    number of samples) this cross-validation method can be very costly.
    For large datasets one should favor :class:`KFold`, :class:`ShuffleSplit`
    or :class:`StratifiedKFold`.

    Read more in the :ref:`User Guide <cross_validation>`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import LeaveOneOut
    >>> X = np.array([[1, 2], [3, 4]])
    >>> y = np.array([1, 2])
    >>> loo = LeaveOneOut()
    >>> loo.get_n_splits(X)
    2
    >>> print(loo)
    LeaveOneOut()
    >>> for train_index, test_index in loo.split(X):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    ...     print(X_train, X_test, y_train, y_test)
    TRAIN: [1] TEST: [0]
    [[3 4]] [[1 2]] [2] [1]
    TRAIN: [0] TEST: [1]
    [[1 2]] [[3 4]] [1] [2]

    See also
    --------
    LeaveOneGroupOut
        For splitting the data according to explicit, domain-specific
        stratification of the dataset.

    GroupKFold: K-fold iterator variant with non-overlapping groups.
    """

    def _iter_test_indices(self, X, y=None, groups=None):
        n_samples = _num_samples(X)
        if n_samples <= 1:
            raise ValueError(
                'Cannot perform LeaveOneOut with n_samples={}.'.format(
                    n_samples)
            )
        return range(n_samples)

    def get_n_splits(self, X, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : object
            Always ignored, exists for compatibility.

        groups : object
            Always ignored, exists for compatibility.

        Returns
        -------
        n_splits : int
            Returns the number of splitting iterations in the cross-validator.
        """
        if X is None:
            raise ValueError("The 'X' parameter should not be None.")
        return _num_samples(X)


class LeavePOut(BaseCrossValidator):
    """Leave-P-Out cross-validator

    Provides train/test indices to split data in train/test sets. This results
    in testing on all distinct samples of size p, while the remaining n - p
    samples form the training set in each iteration.

    Note: ``LeavePOut(p)`` is NOT equivalent to
    ``KFold(n_splits=n_samples // p)`` which creates non-overlapping test sets.

    Due to the high number of iterations which grows combinatorically with the
    number of samples this cross-validation method can be very costly. For
    large datasets one should favor :class:`KFold`, :class:`StratifiedKFold`
    or :class:`ShuffleSplit`.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    p : int
        Size of the test sets. Must be strictly less than the number of
        samples.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import LeavePOut
    >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    >>> y = np.array([1, 2, 3, 4])
    >>> lpo = LeavePOut(2)
    >>> lpo.get_n_splits(X)
    6
    >>> print(lpo)
    LeavePOut(p=2)
    >>> for train_index, test_index in lpo.split(X):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    TRAIN: [2 3] TEST: [0 1]
    TRAIN: [1 3] TEST: [0 2]
    TRAIN: [1 2] TEST: [0 3]
    TRAIN: [0 3] TEST: [1 2]
    TRAIN: [0 2] TEST: [1 3]
    TRAIN: [0 1] TEST: [2 3]
    """

    def __init__(self, p):
        self.p = p

    def _iter_test_indices(self, X, y=None, groups=None):
        n_samples = _num_samples(X)
        if n_samples <= self.p:
            raise ValueError(
                'p={} must be strictly less than the number of '
                'samples={}'.format(self.p, n_samples)
            )
        for combination in combinations(range(n_samples), self.p):
            yield np.array(combination)

    def get_n_splits(self, X, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : object
            Always ignored, exists for compatibility.

        groups : object
            Always ignored, exists for compatibility.
        """
        if X is None:
            raise ValueError("The 'X' parameter should not be None.")
        return int(comb(_num_samples(X), self.p, exact=True))


class _BaseKFold(BaseCrossValidator, metaclass=ABCMeta):
    """Base class for KFold, GroupKFold, and StratifiedKFold"""

    @abstractmethod
    @_deprecate_positional_args
    def __init__(self, n_splits, *, shuffle, random_state):
        if not isinstance(n_splits, numbers.Integral):
            raise ValueError('The number of folds must be of Integral type. '
                             '%s of type %s was passed.'
                             % (n_splits, type(n_splits)))
        n_splits = int(n_splits)

        if n_splits <= 1:
            raise ValueError(
                "k-fold cross-validation requires at least one"
                " train/test split by setting n_splits=2 or more,"
                " got n_splits={0}.".format(n_splits))

        if not isinstance(shuffle, bool):
            raise TypeError("shuffle must be True or False;"
                            " got {0}".format(shuffle))

        if not shuffle and random_state is not None:  # None is the default
            # TODO 0.24: raise a ValueError instead of a warning
            warnings.warn(
                'Setting a random_state has no effect since shuffle is '
                'False. This will raise an error in 0.24. You should leave '
                'random_state to its default (None), or set shuffle=True.',
                FutureWarning
            )

        self.n_splits = n_splits
        self.shuffle = shuffle
        self.random_state = random_state

    def split(self, X, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of shape (n_samples,), default=None
            The target variable for supervised learning problems.

        groups : array-like of shape (n_samples,), default=None
            Group labels for the samples used while splitting the dataset into
            train/test set.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.
        """
        X, y, groups = indexable(X, y, groups)
        n_samples = _num_samples(X)
        if self.n_splits > n_samples:
            raise ValueError(
                ("Cannot have number of splits n_splits={0} greater"
                 " than the number of samples: n_samples={1}.")
                .format(self.n_splits, n_samples))

        for train, test in super().split(X, y, groups):
            yield train, test

    def get_n_splits(self, X=None, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : object
            Always ignored, exists for compatibility.

        y : object
            Always ignored, exists for compatibility.

        groups : object
            Always ignored, exists for compatibility.

        Returns
        -------
        n_splits : int
            Returns the number of splitting iterations in the cross-validator.
        """
        return self.n_splits


class KFold(_BaseKFold):
    """K-Folds cross-validator

    Provides train/test indices to split data in train/test sets. Split
    dataset into k consecutive folds (without shuffling by default).

    Each fold is then used once as a validation while the k - 1 remaining
    folds form the training set.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n_splits : int, default=5
        Number of folds. Must be at least 2.

        .. versionchanged:: 0.22
            ``n_splits`` default value changed from 3 to 5.

    shuffle : bool, default=False
        Whether to shuffle the data before splitting into batches.
        Note that the samples within each split will not be shuffled.

    random_state : int or RandomState instance, default=None
        When `shuffle` is True, `random_state` affects the ordering of the
        indices, which controls the randomness of each fold. Otherwise, this
        parameter has no effect.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import KFold
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([1, 2, 3, 4])
    >>> kf = KFold(n_splits=2)
    >>> kf.get_n_splits(X)
    2
    >>> print(kf)
    KFold(n_splits=2, random_state=None, shuffle=False)
    >>> for train_index, test_index in kf.split(X):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    TRAIN: [2 3] TEST: [0 1]
    TRAIN: [0 1] TEST: [2 3]

    Notes
    -----
    The first ``n_samples % n_splits`` folds have size
    ``n_samples // n_splits + 1``, other folds have size
    ``n_samples // n_splits``, where ``n_samples`` is the number of samples.

    Randomized CV splitters may return different results for each call of
    split. You can make the results identical by setting `random_state`
    to an integer.

    See also
    --------
    StratifiedKFold
        Takes group information into account to avoid building folds with
        imbalanced class distributions (for binary or multiclass
        classification tasks).

    GroupKFold: K-fold iterator variant with non-overlapping groups.

    RepeatedKFold: Repeats K-Fold n times.
    """
    @_deprecate_positional_args
    def __init__(self, n_splits=5, *, shuffle=False,
                 random_state=None):
        super().__init__(n_splits=n_splits, shuffle=shuffle,
                         random_state=random_state)

    def _iter_test_indices(self, X, y=None, groups=None):
        n_samples = _num_samples(X)
        indices = np.arange(n_samples)
        if self.shuffle:
            check_random_state(self.random_state).shuffle(indices)

        n_splits = self.n_splits
        fold_sizes = np.full(n_splits, n_samples // n_splits, dtype=np.int)
        fold_sizes[:n_samples % n_splits] += 1
        current = 0
        for fold_size in fold_sizes:
            start, stop = current, current + fold_size
            yield indices[start:stop]
            current = stop


class GroupKFold(_BaseKFold):
    """K-fold iterator variant with non-overlapping groups.

    The same group will not appear in two different folds (the number of
    distinct groups has to be at least equal to the number of folds).

    The folds are approximately balanced in the sense that the number of
    distinct groups is approximately the same in each fold.

    Parameters
    ----------
    n_splits : int, default=5
        Number of folds. Must be at least 2.

        .. versionchanged:: 0.22
            ``n_splits`` default value changed from 3 to 5.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import GroupKFold
    >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    >>> y = np.array([1, 2, 3, 4])
    >>> groups = np.array([0, 0, 2, 2])
    >>> group_kfold = GroupKFold(n_splits=2)
    >>> group_kfold.get_n_splits(X, y, groups)
    2
    >>> print(group_kfold)
    GroupKFold(n_splits=2)
    >>> for train_index, test_index in group_kfold.split(X, y, groups):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    ...     print(X_train, X_test, y_train, y_test)
    ...
    TRAIN: [0 1] TEST: [2 3]
    [[1 2]
     [3 4]] [[5 6]
     [7 8]] [1 2] [3 4]
    TRAIN: [2 3] TEST: [0 1]
    [[5 6]
     [7 8]] [[1 2]
     [3 4]] [3 4] [1 2]

    See also
    --------
    LeaveOneGroupOut
        For splitting the data according to explicit domain-specific
        stratification of the dataset.
    """
    def __init__(self, n_splits=5):
        super().__init__(n_splits, shuffle=False, random_state=None)

    def _iter_test_indices(self, X, y, groups):
        if groups is None:
            raise ValueError("The 'groups' parameter should not be None.")
        groups = check_array(groups, ensure_2d=False, dtype=None)

        unique_groups, groups = np.unique(groups, return_inverse=True)
        n_groups = len(unique_groups)

        if self.n_splits > n_groups:
            raise ValueError("Cannot have number of splits n_splits=%d greater"
                             " than the number of groups: %d."
                             % (self.n_splits, n_groups))

        # Weight groups by their number of occurrences
        n_samples_per_group = np.bincount(groups)

        # Distribute the most frequent groups first
        indices = np.argsort(n_samples_per_group)[::-1]
        n_samples_per_group = n_samples_per_group[indices]

        # Total weight of each fold
        n_samples_per_fold = np.zeros(self.n_splits)

        # Mapping from group index to fold index
        group_to_fold = np.zeros(len(unique_groups))

        # Distribute samples by adding the largest weight to the lightest fold
        for group_index, weight in enumerate(n_samples_per_group):
            lightest_fold = np.argmin(n_samples_per_fold)
            n_samples_per_fold[lightest_fold] += weight
            group_to_fold[indices[group_index]] = lightest_fold

        indices = group_to_fold[groups]

        for f in range(self.n_splits):
            yield np.where(indices == f)[0]

    def split(self, X, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of shape (n_samples,), default=None
            The target variable for supervised learning problems.

        groups : array-like of shape (n_samples,)
            Group labels for the samples used while splitting the dataset into
            train/test set.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.
        """
        return super().split(X, y, groups)


class StratifiedKFold(_BaseKFold):
    """Stratified K-Folds cross-validator

    Provides train/test indices to split data in train/test sets.

    This cross-validation object is a variation of KFold that returns
    stratified folds. The folds are made by preserving the percentage of
    samples for each class.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n_splits : int, default=5
        Number of folds. Must be at least 2.

        .. versionchanged:: 0.22
            ``n_splits`` default value changed from 3 to 5.

    shuffle : bool, default=False
        Whether to shuffle each class's samples before splitting into batches.
        Note that the samples within each split will not be shuffled.

    random_state : int or RandomState instance, default=None
        When `shuffle` is True, `random_state` affects the ordering of the
        indices, which controls the randomness of each fold for each class.
        Otherwise, leave `random_state` as `None`.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import StratifiedKFold
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 1, 1])
    >>> skf = StratifiedKFold(n_splits=2)
    >>> skf.get_n_splits(X, y)
    2
    >>> print(skf)
    StratifiedKFold(n_splits=2, random_state=None, shuffle=False)
    >>> for train_index, test_index in skf.split(X, y):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    TRAIN: [1 3] TEST: [0 2]
    TRAIN: [0 2] TEST: [1 3]

    Notes
    -----
    The implementation is designed to:

    * Generate test sets such that all contain the same distribution of
      classes, or as close as possible.
    * Be invariant to class label: relabelling ``y = ["Happy", "Sad"]`` to
      ``y = [1, 0]`` should not change the indices generated.
    * Preserve order dependencies in the dataset ordering, when
      ``shuffle=False``: all samples from class k in some test set were
      contiguous in y, or separated in y by samples from classes other than k.
    * Generate test sets where the smallest and largest differ by at most one
      sample.

    .. versionchanged:: 0.22
        The previous implementation did not follow the last constraint.

    See also
    --------
    RepeatedStratifiedKFold: Repeats Stratified K-Fold n times.
    """
    @_deprecate_positional_args
    def __init__(self, n_splits=5, *, shuffle=False, random_state=None):
        super().__init__(n_splits=n_splits, shuffle=shuffle,
                         random_state=random_state)

    def _make_test_folds(self, X, y=None):
        rng = check_random_state(self.random_state)
        y = np.asarray(y)
        type_of_target_y = type_of_target(y)
        allowed_target_types = ('binary', 'multiclass')
        if type_of_target_y not in allowed_target_types:
            raise ValueError(
                'Supported target types are: {}. Got {!r} instead.'.format(
                    allowed_target_types, type_of_target_y))

        y = column_or_1d(y)

        _, y_idx, y_inv = np.unique(y, return_index=True, return_inverse=True)
        # y_inv encodes y according to lexicographic order. We invert y_idx to
        # map the classes so that they are encoded by order of appearance:
        # 0 represents the first label appearing in y, 1 the second, etc.
        _, class_perm = np.unique(y_idx, return_inverse=True)
        y_encoded = class_perm[y_inv]

        n_classes = len(y_idx)
        y_counts = np.bincount(y_encoded)
        min_groups = np.min(y_counts)
        if np.all(self.n_splits > y_counts):
            raise ValueError("n_splits=%d cannot be greater than the"
                             " number of members in each class."
                             % (self.n_splits))
        if self.n_splits > min_groups:
            warnings.warn(("The least populated class in y has only %d"
                           " members, which is less than n_splits=%d."
                           % (min_groups, self.n_splits)), UserWarning)

        # Determine the optimal number of samples from each class in each fold,
        # using round robin over the sorted y. (This can be done direct from
        # counts, but that code is unreadable.)
        y_order = np.sort(y_encoded)
        allocation = np.asarray(
            [np.bincount(y_order[i::self.n_splits], minlength=n_classes)
             for i in range(self.n_splits)])

        # To maintain the data order dependencies as best as possible within
        # the stratification constraint, we assign samples from each class in
        # blocks (and then mess that up when shuffle=True).
        test_folds = np.empty(len(y), dtype='i')
        for k in range(n_classes):
            # since the kth column of allocation stores the number of samples
            # of class k in each test set, this generates blocks of fold
            # indices corresponding to the allocation for class k.
            folds_for_class = np.arange(self.n_splits).repeat(allocation[:, k])
            if self.shuffle:
                rng.shuffle(folds_for_class)
            test_folds[y_encoded == k] = folds_for_class
        return test_folds

    def _iter_test_masks(self, X, y=None, groups=None):
        test_folds = self._make_test_folds(X, y)
        for i in range(self.n_splits):
            yield test_folds == i

    def split(self, X, y, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

            Note that providing ``y`` is sufficient to generate the splits and
            hence ``np.zeros(n_samples)`` may be used as a placeholder for
            ``X`` instead of actual training data.

        y : array-like of shape (n_samples,)
            The target variable for supervised learning problems.
            Stratification is done based on the y labels.

        groups : object
            Always ignored, exists for compatibility.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.

        Notes
        -----
        Randomized CV splitters may return different results for each call of
        split. You can make the results identical by setting `random_state`
        to an integer.
        """
        y = check_array(y, ensure_2d=False, dtype=None)
        return super().split(X, y, groups)


class TimeSeriesSplit(_BaseKFold):
    """Time Series cross-validator

    .. versionadded:: 0.18

    Provides train/test indices to split time series data samples
    that are observed at fixed time intervals, in train/test sets.
    In each split, test indices must be higher than before, and thus shuffling
    in cross validator is inappropriate.

    This cross-validation object is a variation of :class:`KFold`.
    In the kth split, it returns first k folds as train set and the
    (k+1)th fold as test set.

    Note that unlike standard cross-validation methods, successive
    training sets are supersets of those that come before them.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n_splits : int, default=5
        Number of splits. Must be at least 2.

        .. versionchanged:: 0.22
            ``n_splits`` default value changed from 3 to 5.

    max_train_size : int, default=None
        Maximum size for a single training set.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import TimeSeriesSplit
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([1, 2, 3, 4, 5, 6])
    >>> tscv = TimeSeriesSplit()
    >>> print(tscv)
    TimeSeriesSplit(max_train_size=None, n_splits=5)
    >>> for train_index, test_index in tscv.split(X):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    TRAIN: [0] TEST: [1]
    TRAIN: [0 1] TEST: [2]
    TRAIN: [0 1 2] TEST: [3]
    TRAIN: [0 1 2 3] TEST: [4]
    TRAIN: [0 1 2 3 4] TEST: [5]

    Notes
    -----
    The training set has size ``i * n_samples // (n_splits + 1)
    + n_samples % (n_splits + 1)`` in the ``i``th split,
    with a test set of size ``n_samples//(n_splits + 1)``,
    where ``n_samples`` is the number of samples.
    """
    @_deprecate_positional_args
    def __init__(self, n_splits=5, *, max_train_size=None):
        super().__init__(n_splits, shuffle=False, random_state=None)
        self.max_train_size = max_train_size

    def split(self, X, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of shape (n_samples,)
            Always ignored, exists for compatibility.

        groups : array-like of shape (n_samples,)
            Always ignored, exists for compatibility.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.
        """
        X, y, groups = indexable(X, y, groups)
        n_samples = _num_samples(X)
        n_splits = self.n_splits
        n_folds = n_splits + 1
        if n_folds > n_samples:
            raise ValueError(
                ("Cannot have number of folds ={0} greater"
                 " than the number of samples: {1}.").format(n_folds,
                                                             n_samples))
        indices = np.arange(n_samples)
        test_size = (n_samples // n_folds)
        test_starts = range(test_size + n_samples % n_folds,
                            n_samples, test_size)
        for test_start in test_starts:
            if self.max_train_size and self.max_train_size < test_start:
                yield (indices[test_start - self.max_train_size:test_start],
                       indices[test_start:test_start + test_size])
            else:
                yield (indices[:test_start],
                       indices[test_start:test_start + test_size])


class LeaveOneGroupOut(BaseCrossValidator):
    """Leave One Group Out cross-validator

    Provides train/test indices to split data according to a third-party
    provided group. This group information can be used to encode arbitrary
    domain specific stratifications of the samples as integers.

    For instance the groups could be the year of collection of the samples
    and thus allow for cross-validation against time-based splits.

    Read more in the :ref:`User Guide <cross_validation>`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import LeaveOneGroupOut
    >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    >>> y = np.array([1, 2, 1, 2])
    >>> groups = np.array([1, 1, 2, 2])
    >>> logo = LeaveOneGroupOut()
    >>> logo.get_n_splits(X, y, groups)
    2
    >>> logo.get_n_splits(groups=groups)  # 'groups' is always required
    2
    >>> print(logo)
    LeaveOneGroupOut()
    >>> for train_index, test_index in logo.split(X, y, groups):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    ...     print(X_train, X_test, y_train, y_test)
    TRAIN: [2 3] TEST: [0 1]
    [[5 6]
     [7 8]] [[1 2]
     [3 4]] [1 2] [1 2]
    TRAIN: [0 1] TEST: [2 3]
    [[1 2]
     [3 4]] [[5 6]
     [7 8]] [1 2] [1 2]

    """

    def _iter_test_masks(self, X, y, groups):
        if groups is None:
            raise ValueError("The 'groups' parameter should not be None.")
        # We make a copy of groups to avoid side-effects during iteration
        groups = check_array(groups, copy=True, ensure_2d=False, dtype=None)
        unique_groups = np.unique(groups)
        if len(unique_groups) <= 1:
            raise ValueError(
                "The groups parameter contains fewer than 2 unique groups "
                "(%s). LeaveOneGroupOut expects at least 2." % unique_groups)
        for i in unique_groups:
            yield groups == i

    def get_n_splits(self, X=None, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : object
            Always ignored, exists for compatibility.

        y : object
            Always ignored, exists for compatibility.

        groups : array-like of shape (n_samples,)
            Group labels for the samples used while splitting the dataset into
            train/test set. This 'groups' parameter must always be specified to
            calculate the number of splits, though the other parameters can be
            omitted.

        Returns
        -------
        n_splits : int
            Returns the number of splitting iterations in the cross-validator.
        """
        if groups is None:
            raise ValueError("The 'groups' parameter should not be None.")
        groups = check_array(groups, ensure_2d=False, dtype=None)
        return len(np.unique(groups))

    def split(self, X, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of shape (n_samples,), default=None
            The target variable for supervised learning problems.

        groups : array-like of shape (n_samples,)
            Group labels for the samples used while splitting the dataset into
            train/test set.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.
        """
        return super().split(X, y, groups)


class LeavePGroupsOut(BaseCrossValidator):
    """Leave P Group(s) Out cross-validator

    Provides train/test indices to split data according to a third-party
    provided group. This group information can be used to encode arbitrary
    domain specific stratifications of the samples as integers.

    For instance the groups could be the year of collection of the samples
    and thus allow for cross-validation against time-based splits.

    The difference between LeavePGroupsOut and LeaveOneGroupOut is that
    the former builds the test sets with all the samples assigned to
    ``p`` different values of the groups while the latter uses samples
    all assigned the same groups.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n_groups : int
        Number of groups (``p``) to leave out in the test split.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import LeavePGroupsOut
    >>> X = np.array([[1, 2], [3, 4], [5, 6]])
    >>> y = np.array([1, 2, 1])
    >>> groups = np.array([1, 2, 3])
    >>> lpgo = LeavePGroupsOut(n_groups=2)
    >>> lpgo.get_n_splits(X, y, groups)
    3
    >>> lpgo.get_n_splits(groups=groups)  # 'groups' is always required
    3
    >>> print(lpgo)
    LeavePGroupsOut(n_groups=2)
    >>> for train_index, test_index in lpgo.split(X, y, groups):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    ...     print(X_train, X_test, y_train, y_test)
    TRAIN: [2] TEST: [0 1]
    [[5 6]] [[1 2]
     [3 4]] [1] [1 2]
    TRAIN: [1] TEST: [0 2]
    [[3 4]] [[1 2]
     [5 6]] [2] [1 1]
    TRAIN: [0] TEST: [1 2]
    [[1 2]] [[3 4]
     [5 6]] [1] [2 1]

    See also
    --------
    GroupKFold: K-fold iterator variant with non-overlapping groups.
    """

    def __init__(self, n_groups):
        self.n_groups = n_groups

    def _iter_test_masks(self, X, y, groups):
        if groups is None:
            raise ValueError("The 'groups' parameter should not be None.")
        groups = check_array(groups, copy=True, ensure_2d=False, dtype=None)
        unique_groups = np.unique(groups)
        if self.n_groups >= len(unique_groups):
            raise ValueError(
                "The groups parameter contains fewer than (or equal to) "
                "n_groups (%d) numbers of unique groups (%s). LeavePGroupsOut "
                "expects that at least n_groups + 1 (%d) unique groups be "
                "present" % (self.n_groups, unique_groups, self.n_groups + 1))
        combi = combinations(range(len(unique_groups)), self.n_groups)
        for indices in combi:
            test_index = np.zeros(_num_samples(X), dtype=np.bool)
            for l in unique_groups[np.array(indices)]:
                test_index[groups == l] = True
            yield test_index

    def get_n_splits(self, X=None, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : object
            Always ignored, exists for compatibility.

        y : object
            Always ignored, exists for compatibility.

        groups : array-like of shape (n_samples,)
            Group labels for the samples used while splitting the dataset into
            train/test set. This 'groups' parameter must always be specified to
            calculate the number of splits, though the other parameters can be
            omitted.

        Returns
        -------
        n_splits : int
            Returns the number of splitting iterations in the cross-validator.
        """
        if groups is None:
            raise ValueError("The 'groups' parameter should not be None.")
        groups = check_array(groups, ensure_2d=False, dtype=None)
        return int(comb(len(np.unique(groups)), self.n_groups, exact=True))

    def split(self, X, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of shape (n_samples,), default=None
            The target variable for supervised learning problems.

        groups : array-like of shape (n_samples,)
            Group labels for the samples used while splitting the dataset into
            train/test set.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.
        """
        return super().split(X, y, groups)


class _RepeatedSplits(metaclass=ABCMeta):
    """Repeated splits for an arbitrary randomized CV splitter.

    Repeats splits for cross-validators n times with different randomization
    in each repetition.

    Parameters
    ----------
    cv : callable
        Cross-validator class.

    n_repeats : int, default=10
        Number of times cross-validator needs to be repeated.

    random_state : int or RandomState instance, default=None
        Passes `random_state` to the arbitrary repeating cross validator.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    **cvargs : additional params
        Constructor parameters for cv. Must not contain random_state
        and shuffle.
    """
    @_deprecate_positional_args
    def __init__(self, cv, *, n_repeats=10, random_state=None, **cvargs):
        if not isinstance(n_repeats, numbers.Integral):
            raise ValueError("Number of repetitions must be of Integral type.")

        if n_repeats <= 0:
            raise ValueError("Number of repetitions must be greater than 0.")

        if any(key in cvargs for key in ('random_state', 'shuffle')):
            raise ValueError(
                "cvargs must not contain random_state or shuffle.")

        self.cv = cv
        self.n_repeats = n_repeats
        self.random_state = random_state
        self.cvargs = cvargs

    def split(self, X, y=None, groups=None):
        """Generates indices to split data into training and test set.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of length n_samples
            The target variable for supervised learning problems.

        groups : array-like of shape (n_samples,), default=None
            Group labels for the samples used while splitting the dataset into
            train/test set.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.
        """
        n_repeats = self.n_repeats
        rng = check_random_state(self.random_state)

        for idx in range(n_repeats):
            cv = self.cv(random_state=rng, shuffle=True,
                         **self.cvargs)
            for train_index, test_index in cv.split(X, y, groups):
                yield train_index, test_index

    def get_n_splits(self, X=None, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : object
            Always ignored, exists for compatibility.
            ``np.zeros(n_samples)`` may be used as a placeholder.

        y : object
            Always ignored, exists for compatibility.
            ``np.zeros(n_samples)`` may be used as a placeholder.

        groups : array-like of shape (n_samples,), default=None
            Group labels for the samples used while splitting the dataset into
            train/test set.

        Returns
        -------
        n_splits : int
            Returns the number of splitting iterations in the cross-validator.
        """
        rng = check_random_state(self.random_state)
        cv = self.cv(random_state=rng, shuffle=True,
                     **self.cvargs)
        return cv.get_n_splits(X, y, groups) * self.n_repeats

    def __repr__(self):
        return _build_repr(self)


class RepeatedKFold(_RepeatedSplits):
    """Repeated K-Fold cross validator.

    Repeats K-Fold n times with different randomization in each repetition.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n_splits : int, default=5
        Number of folds. Must be at least 2.

    n_repeats : int, default=10
        Number of times cross-validator needs to be repeated.

    random_state : int or RandomState instance, default=None
        Controls the randomness of each repeated cross-validation instance.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import RepeatedKFold
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 1, 1])
    >>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=2652124)
    >>> for train_index, test_index in rkf.split(X):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    ...
    TRAIN: [0 1] TEST: [2 3]
    TRAIN: [2 3] TEST: [0 1]
    TRAIN: [1 2] TEST: [0 3]
    TRAIN: [0 3] TEST: [1 2]

    Notes
    -----
    Randomized CV splitters may return different results for each call of
    split. You can make the results identical by setting `random_state`
    to an integer.

    See also
    --------
    RepeatedStratifiedKFold: Repeats Stratified K-Fold n times.
    """
    @_deprecate_positional_args
    def __init__(self, *, n_splits=5, n_repeats=10, random_state=None):
        super().__init__(
            KFold, n_repeats=n_repeats,
            random_state=random_state, n_splits=n_splits)


class RepeatedStratifiedKFold(_RepeatedSplits):
    """Repeated Stratified K-Fold cross validator.

    Repeats Stratified K-Fold n times with different randomization in each
    repetition.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n_splits : int, default=5
        Number of folds. Must be at least 2.

    n_repeats : int, default=10
        Number of times cross-validator needs to be repeated.

    random_state : int or RandomState instance, default=None
        Controls the generation of the random states for each repetition.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import RepeatedStratifiedKFold
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 1, 1])
    >>> rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2,
    ...     random_state=36851234)
    >>> for train_index, test_index in rskf.split(X, y):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    ...
    TRAIN: [1 2] TEST: [0 3]
    TRAIN: [0 3] TEST: [1 2]
    TRAIN: [1 3] TEST: [0 2]
    TRAIN: [0 2] TEST: [1 3]

    Notes
    -----
    Randomized CV splitters may return different results for each call of
    split. You can make the results identical by setting `random_state`
    to an integer.

    See also
    --------
    RepeatedKFold: Repeats K-Fold n times.
    """
    @_deprecate_positional_args
    def __init__(self, *, n_splits=5, n_repeats=10, random_state=None):
        super().__init__(
            StratifiedKFold, n_repeats=n_repeats, random_state=random_state,
            n_splits=n_splits)


class BaseShuffleSplit(metaclass=ABCMeta):
    """Base class for ShuffleSplit and StratifiedShuffleSplit"""
    @_deprecate_positional_args
    def __init__(self, n_splits=10, *, test_size=None, train_size=None,
                 random_state=None):
        self.n_splits = n_splits
        self.test_size = test_size
        self.train_size = train_size
        self.random_state = random_state
        self._default_test_size = 0.1

    def split(self, X, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of shape (n_samples,)
            The target variable for supervised learning problems.

        groups : array-like of shape (n_samples,), default=None
            Group labels for the samples used while splitting the dataset into
            train/test set.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.

        Notes
        -----
        Randomized CV splitters may return different results for each call of
        split. You can make the results identical by setting `random_state`
        to an integer.
        """
        X, y, groups = indexable(X, y, groups)
        for train, test in self._iter_indices(X, y, groups):
            yield train, test

    @abstractmethod
    def _iter_indices(self, X, y=None, groups=None):
        """Generate (train, test) indices"""

    def get_n_splits(self, X=None, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : object
            Always ignored, exists for compatibility.

        y : object
            Always ignored, exists for compatibility.

        groups : object
            Always ignored, exists for compatibility.

        Returns
        -------
        n_splits : int
            Returns the number of splitting iterations in the cross-validator.
        """
        return self.n_splits

    def __repr__(self):
        return _build_repr(self)


class ShuffleSplit(BaseShuffleSplit):
    """Random permutation cross-validator

    Yields indices to split data into training and test sets.

    Note: contrary to other cross-validation strategies, random splits
    do not guarantee that all folds will be different, although this is
    still very likely for sizeable datasets.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n_splits : int, default=10
        Number of re-shuffling & splitting iterations.

    test_size : float or int, default=None
        If float, should be between 0.0 and 1.0 and represent the proportion
        of the dataset to include in the test split. If int, represents the
        absolute number of test samples. If None, the value is set to the
        complement of the train size. If ``train_size`` is also None, it will
        be set to 0.1.

    train_size : float or int, default=None
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split. If
        int, represents the absolute number of train samples. If None,
        the value is automatically set to the complement of the test size.

    random_state : int or RandomState instance, default=None
        Controls the randomness of the training and testing indices produced.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import ShuffleSplit
    >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [3, 4], [5, 6]])
    >>> y = np.array([1, 2, 1, 2, 1, 2])
    >>> rs = ShuffleSplit(n_splits=5, test_size=.25, random_state=0)
    >>> rs.get_n_splits(X)
    5
    >>> print(rs)
    ShuffleSplit(n_splits=5, random_state=0, test_size=0.25, train_size=None)
    >>> for train_index, test_index in rs.split(X):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    TRAIN: [1 3 0 4] TEST: [5 2]
    TRAIN: [4 0 2 5] TEST: [1 3]
    TRAIN: [1 2 4 0] TEST: [3 5]
    TRAIN: [3 4 1 0] TEST: [5 2]
    TRAIN: [3 5 1 0] TEST: [2 4]
    >>> rs = ShuffleSplit(n_splits=5, train_size=0.5, test_size=.25,
    ...                   random_state=0)
    >>> for train_index, test_index in rs.split(X):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    TRAIN: [1 3 0] TEST: [5 2]
    TRAIN: [4 0 2] TEST: [1 3]
    TRAIN: [1 2 4] TEST: [3 5]
    TRAIN: [3 4 1] TEST: [5 2]
    TRAIN: [3 5 1] TEST: [2 4]
    """
    @_deprecate_positional_args
    def __init__(self, n_splits=10, *, test_size=None, train_size=None,
                 random_state=None):
        super().__init__(
            n_splits=n_splits,
            test_size=test_size,
            train_size=train_size,
            random_state=random_state)
        self._default_test_size = 0.1

    def _iter_indices(self, X, y=None, groups=None):
        n_samples = _num_samples(X)
        n_train, n_test = _validate_shuffle_split(
            n_samples, self.test_size, self.train_size,
            default_test_size=self._default_test_size)

        rng = check_random_state(self.random_state)
        for i in range(self.n_splits):
            # random partition
            permutation = rng.permutation(n_samples)
            ind_test = permutation[:n_test]
            ind_train = permutation[n_test:(n_test + n_train)]
            yield ind_train, ind_test


class GroupShuffleSplit(ShuffleSplit):
    '''Shuffle-Group(s)-Out cross-validation iterator

    Provides randomized train/test indices to split data according to a
    third-party provided group. This group information can be used to encode
    arbitrary domain specific stratifications of the samples as integers.

    For instance the groups could be the year of collection of the samples
    and thus allow for cross-validation against time-based splits.

    The difference between LeavePGroupsOut and GroupShuffleSplit is that
    the former generates splits using all subsets of size ``p`` unique groups,
    whereas GroupShuffleSplit generates a user-determined number of random
    test splits, each with a user-determined fraction of unique groups.

    For example, a less computationally intensive alternative to
    ``LeavePGroupsOut(p=10)`` would be
    ``GroupShuffleSplit(test_size=10, n_splits=100)``.

    Note: The parameters ``test_size`` and ``train_size`` refer to groups, and
    not to samples, as in ShuffleSplit.


    Parameters
    ----------
    n_splits : int, default=5
        Number of re-shuffling & splitting iterations.

    test_size : float, int, default=0.2
        If float, should be between 0.0 and 1.0 and represent the proportion
        of groups to include in the test split (rounded up). If int,
        represents the absolute number of test groups. If None, the value is
        set to the complement of the train size.
        The default will change in version 0.21. It will remain 0.2 only
        if ``train_size`` is unspecified, otherwise it will complement
        the specified ``train_size``.

    train_size : float or int, default=None
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the groups to include in the train split. If
        int, represents the absolute number of train groups. If None,
        the value is automatically set to the complement of the test size.

    random_state : int or RandomState instance, default=None
        Controls the randomness of the training and testing indices produced.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import GroupShuffleSplit
    >>> X = np.ones(shape=(8, 2))
    >>> y = np.ones(shape=(8, 1))
    >>> groups = np.array([1, 1, 2, 2, 2, 3, 3, 3])
    >>> print(groups.shape)
    (8,)
    >>> gss = GroupShuffleSplit(n_splits=2, train_size=.7, random_state=42)
    >>> gss.get_n_splits()
    2
    >>> for train_idx, test_idx in gss.split(X, y, groups):
    ...     print("TRAIN:", train_idx, "TEST:", test_idx)
    TRAIN: [2 3 4 5 6 7] TEST: [0 1]
    TRAIN: [0 1 5 6 7] TEST: [2 3 4]
    '''
    @_deprecate_positional_args
    def __init__(self, n_splits=5, *, test_size=None, train_size=None,
                 random_state=None):
        super().__init__(
            n_splits=n_splits,
            test_size=test_size,
            train_size=train_size,
            random_state=random_state)
        self._default_test_size = 0.2

    def _iter_indices(self, X, y, groups):
        if groups is None:
            raise ValueError("The 'groups' parameter should not be None.")
        groups = check_array(groups, ensure_2d=False, dtype=None)
        classes, group_indices = np.unique(groups, return_inverse=True)
        for group_train, group_test in super()._iter_indices(X=classes):
            # these are the indices of classes in the partition
            # invert them into data indices

            train = np.flatnonzero(np.in1d(group_indices, group_train))
            test = np.flatnonzero(np.in1d(group_indices, group_test))

            yield train, test

    def split(self, X, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : array-like of shape (n_samples,), default=None
            The target variable for supervised learning problems.

        groups : array-like of shape (n_samples,)
            Group labels for the samples used while splitting the dataset into
            train/test set.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.

        Notes
        -----
        Randomized CV splitters may return different results for each call of
        split. You can make the results identical by setting `random_state`
        to an integer.
        """
        return super().split(X, y, groups)


class StratifiedShuffleSplit(BaseShuffleSplit):
    """Stratified ShuffleSplit cross-validator

    Provides train/test indices to split data in train/test sets.

    This cross-validation object is a merge of StratifiedKFold and
    ShuffleSplit, which returns stratified randomized folds. The folds
    are made by preserving the percentage of samples for each class.

    Note: like the ShuffleSplit strategy, stratified random splits
    do not guarantee that all folds will be different, although this is
    still very likely for sizeable datasets.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    n_splits : int, default=10
        Number of re-shuffling & splitting iterations.

    test_size : float or int, default=None
        If float, should be between 0.0 and 1.0 and represent the proportion
        of the dataset to include in the test split. If int, represents the
        absolute number of test samples. If None, the value is set to the
        complement of the train size. If ``train_size`` is also None, it will
        be set to 0.1.

    train_size : float or int, default=None
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split. If
        int, represents the absolute number of train samples. If None,
        the value is automatically set to the complement of the test size.

    random_state : int or RandomState instance, default=None
        Controls the randomness of the training and testing indices produced.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import StratifiedShuffleSplit
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 0, 1, 1, 1])
    >>> sss = StratifiedShuffleSplit(n_splits=5, test_size=0.5, random_state=0)
    >>> sss.get_n_splits(X, y)
    5
    >>> print(sss)
    StratifiedShuffleSplit(n_splits=5, random_state=0, ...)
    >>> for train_index, test_index in sss.split(X, y):
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    TRAIN: [5 2 3] TEST: [4 1 0]
    TRAIN: [5 1 4] TEST: [0 2 3]
    TRAIN: [5 0 2] TEST: [4 3 1]
    TRAIN: [4 1 0] TEST: [2 3 5]
    TRAIN: [0 5 1] TEST: [3 4 2]
    """
    @_deprecate_positional_args
    def __init__(self, n_splits=10, *, test_size=None, train_size=None,
                 random_state=None):
        super().__init__(
            n_splits=n_splits,
            test_size=test_size,
            train_size=train_size,
            random_state=random_state)
        self._default_test_size = 0.1

    def _iter_indices(self, X, y, groups=None):
        n_samples = _num_samples(X)
        y = check_array(y, ensure_2d=False, dtype=None)
        n_train, n_test = _validate_shuffle_split(
            n_samples, self.test_size, self.train_size,
            default_test_size=self._default_test_size)

        if y.ndim == 2:
            # for multi-label y, map each distinct row to a string repr
            # using join because str(row) uses an ellipsis if len(row) > 1000
            y = np.array([' '.join(row.astype('str')) for row in y])

        classes, y_indices = np.unique(y, return_inverse=True)
        n_classes = classes.shape[0]

        class_counts = np.bincount(y_indices)
        if np.min(class_counts) < 2:
            raise ValueError("The least populated class in y has only 1"
                             " member, which is too few. The minimum"
                             " number of groups for any class cannot"
                             " be less than 2.")

        if n_train < n_classes:
            raise ValueError('The train_size = %d should be greater or '
                             'equal to the number of classes = %d' %
                             (n_train, n_classes))
        if n_test < n_classes:
            raise ValueError('The test_size = %d should be greater or '
                             'equal to the number of classes = %d' %
                             (n_test, n_classes))

        # Find the sorted list of instances for each class:
        # (np.unique above performs a sort, so code is O(n logn) already)
        class_indices = np.split(np.argsort(y_indices, kind='mergesort'),
                                 np.cumsum(class_counts)[:-1])

        rng = check_random_state(self.random_state)

        for _ in range(self.n_splits):
            # if there are ties in the class-counts, we want
            # to make sure to break them anew in each iteration
            n_i = _approximate_mode(class_counts, n_train, rng)
            class_counts_remaining = class_counts - n_i
            t_i = _approximate_mode(class_counts_remaining, n_test, rng)

            train = []
            test = []

            for i in range(n_classes):
                permutation = rng.permutation(class_counts[i])
                perm_indices_class_i = class_indices[i].take(permutation,
                                                             mode='clip')

                train.extend(perm_indices_class_i[:n_i[i]])
                test.extend(perm_indices_class_i[n_i[i]:n_i[i] + t_i[i]])

            train = rng.permutation(train)
            test = rng.permutation(test)

            yield train, test

    def split(self, X, y, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

            Note that providing ``y`` is sufficient to generate the splits and
            hence ``np.zeros(n_samples)`` may be used as a placeholder for
            ``X`` instead of actual training data.

        y : array-like of shape (n_samples,) or (n_samples, n_labels)
            The target variable for supervised learning problems.
            Stratification is done based on the y labels.

        groups : object
            Always ignored, exists for compatibility.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.

        Notes
        -----
        Randomized CV splitters may return different results for each call of
        split. You can make the results identical by setting `random_state`
        to an integer.
        """
        y = check_array(y, ensure_2d=False, dtype=None)
        return super().split(X, y, groups)


def _validate_shuffle_split(n_samples, test_size, train_size,
                            default_test_size=None):
    """
    Validation helper to check if the test/test sizes are meaningful wrt to the
    size of the data (n_samples)
    """
    if test_size is None and train_size is None:
        test_size = default_test_size

    test_size_type = np.asarray(test_size).dtype.kind
    train_size_type = np.asarray(train_size).dtype.kind

    if (test_size_type == 'i' and (test_size >= n_samples or test_size <= 0)
       or test_size_type == 'f' and (test_size <= 0 or test_size >= 1)):
        raise ValueError('test_size={0} should be either positive and smaller'
                         ' than the number of samples {1} or a float in the '
                         '(0, 1) range'.format(test_size, n_samples))

    if (train_size_type == 'i' and (train_size >= n_samples or train_size <= 0)
       or train_size_type == 'f' and (train_size <= 0 or train_size >= 1)):
        raise ValueError('train_size={0} should be either positive and smaller'
                         ' than the number of samples {1} or a float in the '
                         '(0, 1) range'.format(train_size, n_samples))

    if train_size is not None and train_size_type not in ('i', 'f'):
        raise ValueError("Invalid value for train_size: {}".format(train_size))
    if test_size is not None and test_size_type not in ('i', 'f'):
        raise ValueError("Invalid value for test_size: {}".format(test_size))

    if (train_size_type == 'f' and test_size_type == 'f' and
            train_size + test_size > 1):
        raise ValueError(
            'The sum of test_size and train_size = {}, should be in the (0, 1)'
            ' range. Reduce test_size and/or train_size.'
            .format(train_size + test_size))

    if test_size_type == 'f':
        n_test = ceil(test_size * n_samples)
    elif test_size_type == 'i':
        n_test = float(test_size)

    if train_size_type == 'f':
        n_train = floor(train_size * n_samples)
    elif train_size_type == 'i':
        n_train = float(train_size)

    if train_size is None:
        n_train = n_samples - n_test
    elif test_size is None:
        n_test = n_samples - n_train

    if n_train + n_test > n_samples:
        raise ValueError('The sum of train_size and test_size = %d, '
                         'should be smaller than the number of '
                         'samples %d. Reduce test_size and/or '
                         'train_size.' % (n_train + n_test, n_samples))

    n_train, n_test = int(n_train), int(n_test)

    if n_train == 0:
        raise ValueError(
            'With n_samples={}, test_size={} and train_size={}, the '
            'resulting train set will be empty. Adjust any of the '
            'aforementioned parameters.'.format(n_samples, test_size,
                                                train_size)
        )

    return n_train, n_test


class PredefinedSplit(BaseCrossValidator):
    """Predefined split cross-validator

    Provides train/test indices to split data into train/test sets using a
    predefined scheme specified by the user with the ``test_fold`` parameter.

    Read more in the :ref:`User Guide <cross_validation>`.

    .. versionadded:: 0.16

    Parameters
    ----------
    test_fold : array-like of shape (n_samples,)
        The entry ``test_fold[i]`` represents the index of the test set that
        sample ``i`` belongs to. It is possible to exclude sample ``i`` from
        any test set (i.e. include sample ``i`` in every training set) by
        setting ``test_fold[i]`` equal to -1.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import PredefinedSplit
    >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
    >>> y = np.array([0, 0, 1, 1])
    >>> test_fold = [0, 1, -1, 1]
    >>> ps = PredefinedSplit(test_fold)
    >>> ps.get_n_splits()
    2
    >>> print(ps)
    PredefinedSplit(test_fold=array([ 0,  1, -1,  1]))
    >>> for train_index, test_index in ps.split():
    ...     print("TRAIN:", train_index, "TEST:", test_index)
    ...     X_train, X_test = X[train_index], X[test_index]
    ...     y_train, y_test = y[train_index], y[test_index]
    TRAIN: [1 2 3] TEST: [0]
    TRAIN: [0 2] TEST: [1 3]
    """

    def __init__(self, test_fold):
        self.test_fold = np.array(test_fold, dtype=np.int)
        self.test_fold = column_or_1d(self.test_fold)
        self.unique_folds = np.unique(self.test_fold)
        self.unique_folds = self.unique_folds[self.unique_folds != -1]

    def split(self, X=None, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : object
            Always ignored, exists for compatibility.

        y : object
            Always ignored, exists for compatibility.

        groups : object
            Always ignored, exists for compatibility.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.
        """
        ind = np.arange(len(self.test_fold))
        for test_index in self._iter_test_masks():
            train_index = ind[np.logical_not(test_index)]
            test_index = ind[test_index]
            yield train_index, test_index

    def _iter_test_masks(self):
        """Generates boolean masks corresponding to test sets."""
        for f in self.unique_folds:
            test_index = np.where(self.test_fold == f)[0]
            test_mask = np.zeros(len(self.test_fold), dtype=np.bool)
            test_mask[test_index] = True
            yield test_mask

    def get_n_splits(self, X=None, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : object
            Always ignored, exists for compatibility.

        y : object
            Always ignored, exists for compatibility.

        groups : object
            Always ignored, exists for compatibility.

        Returns
        -------
        n_splits : int
            Returns the number of splitting iterations in the cross-validator.
        """
        return len(self.unique_folds)


class _CVIterableWrapper(BaseCrossValidator):
    """Wrapper class for old style cv objects and iterables."""
    def __init__(self, cv):
        self.cv = list(cv)

    def get_n_splits(self, X=None, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : object
            Always ignored, exists for compatibility.

        y : object
            Always ignored, exists for compatibility.

        groups : object
            Always ignored, exists for compatibility.

        Returns
        -------
        n_splits : int
            Returns the number of splitting iterations in the cross-validator.
        """
        return len(self.cv)

    def split(self, X=None, y=None, groups=None):
        """Generate indices to split data into training and test set.

        Parameters
        ----------
        X : object
            Always ignored, exists for compatibility.

        y : object
            Always ignored, exists for compatibility.

        groups : object
            Always ignored, exists for compatibility.

        Yields
        ------
        train : ndarray
            The training set indices for that split.

        test : ndarray
            The testing set indices for that split.
        """
        for train, test in self.cv:
            yield train, test


@_deprecate_positional_args
def check_cv(cv=5, y=None, *, classifier=False):
    """Input checker utility for building a cross-validator

    Parameters
    ----------
    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:
        - None, to use the default 5-fold cross validation,
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if classifier is True and ``y`` is either
        binary or multiclass, :class:`StratifiedKFold` is used. In all other
        cases, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value changed from 3-fold to 5-fold.

    y : array-like, default=None
        The target variable for supervised learning problems.

    classifier : bool, default=False
        Whether the task is a classification task, in which case
        stratified KFold will be used.

    Returns
    -------
    checked_cv : a cross-validator instance.
        The return value is a cross-validator which generates the train/test
        splits via the ``split`` method.
    """
    cv = 5 if cv is None else cv
    if isinstance(cv, numbers.Integral):
        if (classifier and (y is not None) and
                (type_of_target(y) in ('binary', 'multiclass'))):
            return StratifiedKFold(cv)
        else:
            return KFold(cv)

    if not hasattr(cv, 'split') or isinstance(cv, str):
        if not isinstance(cv, Iterable) or isinstance(cv, str):
            raise ValueError("Expected cv as an integer, cross-validation "
                             "object (from sklearn.model_selection) "
                             "or an iterable. Got %s." % cv)
        return _CVIterableWrapper(cv)

    return cv  # New style cv objects are passed without any modification


def train_test_split(*arrays, **options):
    """Split arrays or matrices into random train and test subsets

    Quick utility that wraps input validation and
    ``next(ShuffleSplit().split(X, y))`` and application to input data
    into a single call for splitting (and optionally subsampling) data in a
    oneliner.

    Read more in the :ref:`User Guide <cross_validation>`.

    Parameters
    ----------
    *arrays : sequence of indexables with same length / shape[0]
        Allowed inputs are lists, numpy arrays, scipy-sparse
        matrices or pandas dataframes.

    test_size : float or int, default=None
        If float, should be between 0.0 and 1.0 and represent the proportion
        of the dataset to include in the test split. If int, represents the
        absolute number of test samples. If None, the value is set to the
        complement of the train size. If ``train_size`` is also None, it will
        be set to 0.25.

    train_size : float or int, default=None
        If float, should be between 0.0 and 1.0 and represent the
        proportion of the dataset to include in the train split. If
        int, represents the absolute number of train samples. If None,
        the value is automatically set to the complement of the test size.

    random_state : int or RandomState instance, default=None
        Controls the shuffling applied to the data before applying the split.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.


    shuffle : bool, default=True
        Whether or not to shuffle the data before splitting. If shuffle=False
        then stratify must be None.

    stratify : array-like, default=None
        If not None, data is split in a stratified fashion, using this as
        the class labels.

    Returns
    -------
    splitting : list, length=2 * len(arrays)
        List containing train-test split of inputs.

        .. versionadded:: 0.16
            If the input is sparse, the output will be a
            ``scipy.sparse.csr_matrix``. Else, output type is the same as the
            input type.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.model_selection import train_test_split
    >>> X, y = np.arange(10).reshape((5, 2)), range(5)
    >>> X
    array([[0, 1],
           [2, 3],
           [4, 5],
           [6, 7],
           [8, 9]])
    >>> list(y)
    [0, 1, 2, 3, 4]

    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, test_size=0.33, random_state=42)
    ...
    >>> X_train
    array([[4, 5],
           [0, 1],
           [6, 7]])
    >>> y_train
    [2, 0, 3]
    >>> X_test
    array([[2, 3],
           [8, 9]])
    >>> y_test
    [1, 4]

    >>> train_test_split(y, shuffle=False)
    [[0, 1, 2], [3, 4]]

    """
    n_arrays = len(arrays)
    if n_arrays == 0:
        raise ValueError("At least one array required as input")
    test_size = options.pop('test_size', None)
    train_size = options.pop('train_size', None)
    random_state = options.pop('random_state', None)
    stratify = options.pop('stratify', None)
    shuffle = options.pop('shuffle', True)

    if options:
        raise TypeError("Invalid parameters passed: %s" % str(options))

    arrays = indexable(*arrays)

    n_samples = _num_samples(arrays[0])
    n_train, n_test = _validate_shuffle_split(n_samples, test_size, train_size,
                                              default_test_size=0.25)

    if shuffle is False:
        if stratify is not None:
            raise ValueError(
                "Stratified train/test split is not implemented for "
                "shuffle=False")

        train = np.arange(n_train)
        test = np.arange(n_train, n_train + n_test)

    else:
        if stratify is not None:
            CVClass = StratifiedShuffleSplit
        else:
            CVClass = ShuffleSplit

        cv = CVClass(test_size=n_test,
                     train_size=n_train,
                     random_state=random_state)

        train, test = next(cv.split(X=arrays[0], y=stratify))

    return list(chain.from_iterable((_safe_indexing(a, train),
                                     _safe_indexing(a, test)) for a in arrays))


# Tell nose that train_test_split is not a test.
# (Needed for external libraries that may use nose.)
# Use setattr to avoid mypy errors when monkeypatching.
setattr(train_test_split, '__test__', False)


def _build_repr(self):
    # XXX This is copied from BaseEstimator's get_params
    cls = self.__class__
    init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
    # Ignore varargs, kw and default values and pop self
    init_signature = signature(init)
    # Consider the constructor parameters excluding 'self'
    if init is object.__init__:
        args = []
    else:
        args = sorted([p.name for p in init_signature.parameters.values()
                       if p.name != 'self' and p.kind != p.VAR_KEYWORD])
    class_name = self.__class__.__name__
    params = dict()
    for key in args:
        # We need deprecation warnings to always be on in order to
        # catch deprecated param values.
        # This is set in utils/__init__.py but it gets overwritten
        # when running under python3 somehow.
        warnings.simplefilter("always", FutureWarning)
        try:
            with warnings.catch_warnings(record=True) as w:
                value = getattr(self, key, None)
                if value is None and hasattr(self, 'cvargs'):
                    value = self.cvargs.get(key, None)
            if len(w) and w[0].category == FutureWarning:
                # if the parameter is deprecated, don't show it
                continue
        finally:
            warnings.filters.pop(0)
        params[key] = value

    return '%s(%s)' % (class_name, _pprint(params, offset=len(class_name)))