_spectral_embedding.py 23.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
"""Spectral Embedding"""

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Wei LI <kuantkid@gmail.com>
# License: BSD 3 clause


import warnings

import numpy as np
from scipy import sparse
from scipy.linalg import eigh
from scipy.sparse.linalg import eigsh
from scipy.sparse.csgraph import connected_components
from scipy.sparse.csgraph import laplacian as csgraph_laplacian

from ..base import BaseEstimator
from ..utils import check_random_state, check_array, check_symmetric
from ..utils.extmath import _deterministic_vector_sign_flip
from ..utils.fixes import lobpcg
from ..metrics.pairwise import rbf_kernel
from ..neighbors import kneighbors_graph, NearestNeighbors
from ..utils.validation import _deprecate_positional_args


def _graph_connected_component(graph, node_id):
    """Find the largest graph connected components that contains one
    given node

    Parameters
    ----------
    graph : array-like, shape: (n_samples, n_samples)
        adjacency matrix of the graph, non-zero weight means an edge
        between the nodes

    node_id : int
        The index of the query node of the graph

    Returns
    -------
    connected_components_matrix : array-like, shape: (n_samples,)
        An array of bool value indicating the indexes of the nodes
        belonging to the largest connected components of the given query
        node
    """
    n_node = graph.shape[0]
    if sparse.issparse(graph):
        # speed up row-wise access to boolean connection mask
        graph = graph.tocsr()
    connected_nodes = np.zeros(n_node, dtype=np.bool)
    nodes_to_explore = np.zeros(n_node, dtype=np.bool)
    nodes_to_explore[node_id] = True
    for _ in range(n_node):
        last_num_component = connected_nodes.sum()
        np.logical_or(connected_nodes, nodes_to_explore, out=connected_nodes)
        if last_num_component >= connected_nodes.sum():
            break
        indices = np.where(nodes_to_explore)[0]
        nodes_to_explore.fill(False)
        for i in indices:
            if sparse.issparse(graph):
                neighbors = graph[i].toarray().ravel()
            else:
                neighbors = graph[i]
            np.logical_or(nodes_to_explore, neighbors, out=nodes_to_explore)
    return connected_nodes


def _graph_is_connected(graph):
    """ Return whether the graph is connected (True) or Not (False)

    Parameters
    ----------
    graph : array-like or sparse matrix, shape: (n_samples, n_samples)
        adjacency matrix of the graph, non-zero weight means an edge
        between the nodes

    Returns
    -------
    is_connected : bool
        True means the graph is fully connected and False means not
    """
    if sparse.isspmatrix(graph):
        # sparse graph, find all the connected components
        n_connected_components, _ = connected_components(graph)
        return n_connected_components == 1
    else:
        # dense graph, find all connected components start from node 0
        return _graph_connected_component(graph, 0).sum() == graph.shape[0]


def _set_diag(laplacian, value, norm_laplacian):
    """Set the diagonal of the laplacian matrix and convert it to a
    sparse format well suited for eigenvalue decomposition

    Parameters
    ----------
    laplacian : array or sparse matrix
        The graph laplacian
    value : float
        The value of the diagonal
    norm_laplacian : bool
        Whether the value of the diagonal should be changed or not

    Returns
    -------
    laplacian : array or sparse matrix
        An array of matrix in a form that is well suited to fast
        eigenvalue decomposition, depending on the band width of the
        matrix.
    """
    n_nodes = laplacian.shape[0]
    # We need all entries in the diagonal to values
    if not sparse.isspmatrix(laplacian):
        if norm_laplacian:
            laplacian.flat[::n_nodes + 1] = value
    else:
        laplacian = laplacian.tocoo()
        if norm_laplacian:
            diag_idx = (laplacian.row == laplacian.col)
            laplacian.data[diag_idx] = value
        # If the matrix has a small number of diagonals (as in the
        # case of structured matrices coming from images), the
        # dia format might be best suited for matvec products:
        n_diags = np.unique(laplacian.row - laplacian.col).size
        if n_diags <= 7:
            # 3 or less outer diagonals on each side
            laplacian = laplacian.todia()
        else:
            # csr has the fastest matvec and is thus best suited to
            # arpack
            laplacian = laplacian.tocsr()
    return laplacian


@_deprecate_positional_args
def spectral_embedding(adjacency, *, n_components=8, eigen_solver=None,
                       random_state=None, eigen_tol=0.0,
                       norm_laplacian=True, drop_first=True):
    """Project the sample on the first eigenvectors of the graph Laplacian.

    The adjacency matrix is used to compute a normalized graph Laplacian
    whose spectrum (especially the eigenvectors associated to the
    smallest eigenvalues) has an interpretation in terms of minimal
    number of cuts necessary to split the graph into comparably sized
    components.

    This embedding can also 'work' even if the ``adjacency`` variable is
    not strictly the adjacency matrix of a graph but more generally
    an affinity or similarity matrix between samples (for instance the
    heat kernel of a euclidean distance matrix or a k-NN matrix).

    However care must taken to always make the affinity matrix symmetric
    so that the eigenvector decomposition works as expected.

    Note : Laplacian Eigenmaps is the actual algorithm implemented here.

    Read more in the :ref:`User Guide <spectral_embedding>`.

    Parameters
    ----------
    adjacency : array-like or sparse graph, shape: (n_samples, n_samples)
        The adjacency matrix of the graph to embed.

    n_components : integer, optional, default 8
        The dimension of the projection subspace.

    eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}, default None
        The eigenvalue decomposition strategy to use. AMG requires pyamg
        to be installed. It can be faster on very large, sparse problems,
        but may also lead to instabilities.

    random_state : int, RandomState instance, default=None
        Determines the random number generator used for the initialization of
        the lobpcg eigenvectors decomposition when ``solver`` == 'amg'. Pass
        an int for reproducible results across multiple function calls.
        See :term: `Glossary <random_state>`.

    eigen_tol : float, optional, default=0.0
        Stopping criterion for eigendecomposition of the Laplacian matrix
        when using arpack eigen_solver.

    norm_laplacian : bool, optional, default=True
        If True, then compute normalized Laplacian.

    drop_first : bool, optional, default=True
        Whether to drop the first eigenvector. For spectral embedding, this
        should be True as the first eigenvector should be constant vector for
        connected graph, but for spectral clustering, this should be kept as
        False to retain the first eigenvector.

    Returns
    -------
    embedding : array, shape=(n_samples, n_components)
        The reduced samples.

    Notes
    -----
    Spectral Embedding (Laplacian Eigenmaps) is most useful when the graph
    has one connected component. If there graph has many components, the first
    few eigenvectors will simply uncover the connected components of the graph.

    References
    ----------
    * https://en.wikipedia.org/wiki/LOBPCG

    * Toward the Optimal Preconditioned Eigensolver: Locally Optimal
      Block Preconditioned Conjugate Gradient Method
      Andrew V. Knyazev
      https://doi.org/10.1137%2FS1064827500366124
    """
    adjacency = check_symmetric(adjacency)

    try:
        from pyamg import smoothed_aggregation_solver
    except ImportError:
        if eigen_solver == "amg":
            raise ValueError("The eigen_solver was set to 'amg', but pyamg is "
                             "not available.")

    if eigen_solver is None:
        eigen_solver = 'arpack'
    elif eigen_solver not in ('arpack', 'lobpcg', 'amg'):
        raise ValueError("Unknown value for eigen_solver: '%s'."
                         "Should be 'amg', 'arpack', or 'lobpcg'"
                         % eigen_solver)

    random_state = check_random_state(random_state)

    n_nodes = adjacency.shape[0]
    # Whether to drop the first eigenvector
    if drop_first:
        n_components = n_components + 1

    if not _graph_is_connected(adjacency):
        warnings.warn("Graph is not fully connected, spectral embedding"
                      " may not work as expected.")

    laplacian, dd = csgraph_laplacian(adjacency, normed=norm_laplacian,
                                      return_diag=True)
    if (eigen_solver == 'arpack' or eigen_solver != 'lobpcg' and
       (not sparse.isspmatrix(laplacian) or n_nodes < 5 * n_components)):
        # lobpcg used with eigen_solver='amg' has bugs for low number of nodes
        # for details see the source code in scipy:
        # https://github.com/scipy/scipy/blob/v0.11.0/scipy/sparse/linalg/eigen
        # /lobpcg/lobpcg.py#L237
        # or matlab:
        # https://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m
        laplacian = _set_diag(laplacian, 1, norm_laplacian)

        # Here we'll use shift-invert mode for fast eigenvalues
        # (see https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html
        #  for a short explanation of what this means)
        # Because the normalized Laplacian has eigenvalues between 0 and 2,
        # I - L has eigenvalues between -1 and 1.  ARPACK is most efficient
        # when finding eigenvalues of largest magnitude (keyword which='LM')
        # and when these eigenvalues are very large compared to the rest.
        # For very large, very sparse graphs, I - L can have many, many
        # eigenvalues very near 1.0.  This leads to slow convergence.  So
        # instead, we'll use ARPACK's shift-invert mode, asking for the
        # eigenvalues near 1.0.  This effectively spreads-out the spectrum
        # near 1.0 and leads to much faster convergence: potentially an
        # orders-of-magnitude speedup over simply using keyword which='LA'
        # in standard mode.
        try:
            # We are computing the opposite of the laplacian inplace so as
            # to spare a memory allocation of a possibly very large array
            laplacian *= -1
            v0 = random_state.uniform(-1, 1, laplacian.shape[0])
            _, diffusion_map = eigsh(
                laplacian, k=n_components, sigma=1.0, which='LM',
                tol=eigen_tol, v0=v0)
            embedding = diffusion_map.T[n_components::-1]
            if norm_laplacian:
                embedding = embedding / dd
        except RuntimeError:
            # When submatrices are exactly singular, an LU decomposition
            # in arpack fails. We fallback to lobpcg
            eigen_solver = "lobpcg"
            # Revert the laplacian to its opposite to have lobpcg work
            laplacian *= -1

    elif eigen_solver == 'amg':
        # Use AMG to get a preconditioner and speed up the eigenvalue
        # problem.
        if not sparse.issparse(laplacian):
            warnings.warn("AMG works better for sparse matrices")
        # lobpcg needs double precision floats
        laplacian = check_array(laplacian, dtype=np.float64,
                                accept_sparse=True)
        laplacian = _set_diag(laplacian, 1, norm_laplacian)

        # The Laplacian matrix is always singular, having at least one zero
        # eigenvalue, corresponding to the trivial eigenvector, which is a
        # constant. Using a singular matrix for preconditioning may result in
        # random failures in LOBPCG and is not supported by the existing
        # theory:
        #     see https://doi.org/10.1007/s10208-015-9297-1
        # Shift the Laplacian so its diagononal is not all ones. The shift
        # does change the eigenpairs however, so we'll feed the shifted
        # matrix to the solver and afterward set it back to the original.
        diag_shift = 1e-5 * sparse.eye(laplacian.shape[0])
        laplacian += diag_shift
        ml = smoothed_aggregation_solver(check_array(laplacian,
                                                     accept_sparse='csr'))
        laplacian -= diag_shift

        M = ml.aspreconditioner()
        X = random_state.rand(laplacian.shape[0], n_components + 1)
        X[:, 0] = dd.ravel()
        _, diffusion_map = lobpcg(laplacian, X, M=M, tol=1.e-5,
                                  largest=False)
        embedding = diffusion_map.T
        if norm_laplacian:
            embedding = embedding / dd
        if embedding.shape[0] == 1:
            raise ValueError

    if eigen_solver == "lobpcg":
        # lobpcg needs double precision floats
        laplacian = check_array(laplacian, dtype=np.float64,
                                accept_sparse=True)
        if n_nodes < 5 * n_components + 1:
            # see note above under arpack why lobpcg has problems with small
            # number of nodes
            # lobpcg will fallback to eigh, so we short circuit it
            if sparse.isspmatrix(laplacian):
                laplacian = laplacian.toarray()
            _, diffusion_map = eigh(laplacian)
            embedding = diffusion_map.T[:n_components]
            if norm_laplacian:
                embedding = embedding / dd
        else:
            laplacian = _set_diag(laplacian, 1, norm_laplacian)
            # We increase the number of eigenvectors requested, as lobpcg
            # doesn't behave well in low dimension
            X = random_state.rand(laplacian.shape[0], n_components + 1)
            X[:, 0] = dd.ravel()
            _, diffusion_map = lobpcg(laplacian, X, tol=1e-15,
                                      largest=False, maxiter=2000)
            embedding = diffusion_map.T[:n_components]
            if norm_laplacian:
                embedding = embedding / dd
            if embedding.shape[0] == 1:
                raise ValueError

    embedding = _deterministic_vector_sign_flip(embedding)
    if drop_first:
        return embedding[1:n_components].T
    else:
        return embedding[:n_components].T


class SpectralEmbedding(BaseEstimator):
    """Spectral embedding for non-linear dimensionality reduction.

    Forms an affinity matrix given by the specified function and
    applies spectral decomposition to the corresponding graph laplacian.
    The resulting transformation is given by the value of the
    eigenvectors for each data point.

    Note : Laplacian Eigenmaps is the actual algorithm implemented here.

    Read more in the :ref:`User Guide <spectral_embedding>`.

    Parameters
    ----------
    n_components : integer, default: 2
        The dimension of the projected subspace.

    affinity : string or callable, default : "nearest_neighbors"
        How to construct the affinity matrix.
         - 'nearest_neighbors' : construct the affinity matrix by computing a
           graph of nearest neighbors.
         - 'rbf' : construct the affinity matrix by computing a radial basis
           function (RBF) kernel.
         - 'precomputed' : interpret ``X`` as a precomputed affinity matrix.
         - 'precomputed_nearest_neighbors' : interpret ``X`` as a sparse graph
           of precomputed nearest neighbors, and constructs the affinity matrix
           by selecting the ``n_neighbors`` nearest neighbors.
         - callable : use passed in function as affinity
           the function takes in data matrix (n_samples, n_features)
           and return affinity matrix (n_samples, n_samples).

    gamma : float, optional, default : 1/n_features
        Kernel coefficient for rbf kernel.

    random_state : int, RandomState instance, default=None
        Determines the random number generator used for the initialization of
        the lobpcg eigenvectors when ``solver`` == 'amg'.  Pass an int for
        reproducible results across multiple function calls.
        See :term: `Glossary <random_state>`.

    eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
        The eigenvalue decomposition strategy to use. AMG requires pyamg
        to be installed. It can be faster on very large, sparse problems.

    n_neighbors : int, default : max(n_samples/10 , 1)
        Number of nearest neighbors for nearest_neighbors graph building.

    n_jobs : int or None, optional (default=None)
        The number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------

    embedding_ : array, shape = (n_samples, n_components)
        Spectral embedding of the training matrix.

    affinity_matrix_ : array, shape = (n_samples, n_samples)
        Affinity_matrix constructed from samples or precomputed.

    n_neighbors_ : int
        Number of nearest neighbors effectively used.

    Examples
    --------
    >>> from sklearn.datasets import load_digits
    >>> from sklearn.manifold import SpectralEmbedding
    >>> X, _ = load_digits(return_X_y=True)
    >>> X.shape
    (1797, 64)
    >>> embedding = SpectralEmbedding(n_components=2)
    >>> X_transformed = embedding.fit_transform(X[:100])
    >>> X_transformed.shape
    (100, 2)

    References
    ----------

    - A Tutorial on Spectral Clustering, 2007
      Ulrike von Luxburg
      http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

    - On Spectral Clustering: Analysis and an algorithm, 2001
      Andrew Y. Ng, Michael I. Jordan, Yair Weiss
      http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100

    - Normalized cuts and image segmentation, 2000
      Jianbo Shi, Jitendra Malik
      http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
    """
    @_deprecate_positional_args
    def __init__(self, n_components=2, *, affinity="nearest_neighbors",
                 gamma=None, random_state=None, eigen_solver=None,
                 n_neighbors=None, n_jobs=None):
        self.n_components = n_components
        self.affinity = affinity
        self.gamma = gamma
        self.random_state = random_state
        self.eigen_solver = eigen_solver
        self.n_neighbors = n_neighbors
        self.n_jobs = n_jobs

    @property
    def _pairwise(self):
        return self.affinity in ["precomputed",
                                 "precomputed_nearest_neighbors"]

    def _get_affinity_matrix(self, X, Y=None):
        """Calculate the affinity matrix from data
        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training vector, where n_samples is the number of samples
            and n_features is the number of features.

            If affinity is "precomputed"
            X : array-like, shape (n_samples, n_samples),
            Interpret X as precomputed adjacency graph computed from
            samples.

        Y: Ignored

        Returns
        -------
        affinity_matrix, shape (n_samples, n_samples)
        """
        if self.affinity == 'precomputed':
            self.affinity_matrix_ = X
            return self.affinity_matrix_
        if self.affinity == 'precomputed_nearest_neighbors':
            estimator = NearestNeighbors(n_neighbors=self.n_neighbors,
                                         n_jobs=self.n_jobs,
                                         metric="precomputed").fit(X)
            connectivity = estimator.kneighbors_graph(X=X, mode='connectivity')
            self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
            return self.affinity_matrix_
        if self.affinity == 'nearest_neighbors':
            if sparse.issparse(X):
                warnings.warn("Nearest neighbors affinity currently does "
                              "not support sparse input, falling back to "
                              "rbf affinity")
                self.affinity = "rbf"
            else:
                self.n_neighbors_ = (self.n_neighbors
                                     if self.n_neighbors is not None
                                     else max(int(X.shape[0] / 10), 1))
                self.affinity_matrix_ = kneighbors_graph(X, self.n_neighbors_,
                                                         include_self=True,
                                                         n_jobs=self.n_jobs)
                # currently only symmetric affinity_matrix supported
                self.affinity_matrix_ = 0.5 * (self.affinity_matrix_ +
                                               self.affinity_matrix_.T)
                return self.affinity_matrix_
        if self.affinity == 'rbf':
            self.gamma_ = (self.gamma
                           if self.gamma is not None else 1.0 / X.shape[1])
            self.affinity_matrix_ = rbf_kernel(X, gamma=self.gamma_)
            return self.affinity_matrix_
        self.affinity_matrix_ = self.affinity(X)
        return self.affinity_matrix_

    def fit(self, X, y=None):
        """Fit the model from data in X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Training vector, where n_samples is the number of samples
            and n_features is the number of features.

            If affinity is "precomputed"
            X : {array-like, sparse matrix}, shape (n_samples, n_samples),
            Interpret X as precomputed adjacency graph computed from
            samples.

        Returns
        -------
        self : object
            Returns the instance itself.
        """

        X = self._validate_data(X, accept_sparse='csr', ensure_min_samples=2,
                                estimator=self)

        random_state = check_random_state(self.random_state)
        if isinstance(self.affinity, str):
            if self.affinity not in {"nearest_neighbors", "rbf", "precomputed",
                                     "precomputed_nearest_neighbors"}:
                raise ValueError(("%s is not a valid affinity. Expected "
                                  "'precomputed', 'rbf', 'nearest_neighbors' "
                                  "or a callable.") % self.affinity)
        elif not callable(self.affinity):
            raise ValueError(("'affinity' is expected to be an affinity "
                              "name or a callable. Got: %s") % self.affinity)

        affinity_matrix = self._get_affinity_matrix(X)
        self.embedding_ = spectral_embedding(affinity_matrix,
                                             n_components=self.n_components,
                                             eigen_solver=self.eigen_solver,
                                             random_state=random_state)
        return self

    def fit_transform(self, X, y=None):
        """Fit the model from data in X and transform X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Training vector, where n_samples is the number of samples
            and n_features is the number of features.

            If affinity is "precomputed"
            X : {array-like, sparse matrix}, shape (n_samples, n_samples),
            Interpret X as precomputed adjacency graph computed from
            samples.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
        """
        self.fit(X)
        return self.embedding_