_mds.py
16.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
"""
Multi-dimensional Scaling (MDS)
"""
# author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
# License: BSD
import numpy as np
from joblib import Parallel, delayed, effective_n_jobs
import warnings
from ..base import BaseEstimator
from ..metrics import euclidean_distances
from ..utils import check_random_state, check_array, check_symmetric
from ..isotonic import IsotonicRegression
from ..utils.validation import _deprecate_positional_args
def _smacof_single(dissimilarities, metric=True, n_components=2, init=None,
max_iter=300, verbose=0, eps=1e-3, random_state=None):
"""Computes multidimensional scaling using SMACOF algorithm
Parameters
----------
dissimilarities : ndarray, shape (n_samples, n_samples)
Pairwise dissimilarities between the points. Must be symmetric.
metric : boolean, optional, default: True
Compute metric or nonmetric SMACOF algorithm.
n_components : int, optional, default: 2
Number of dimensions in which to immerse the dissimilarities. If an
``init`` array is provided, this option is overridden and the shape of
``init`` is used to determine the dimensionality of the embedding
space.
init : ndarray, shape (n_samples, n_components), optional, default: None
Starting configuration of the embedding to initialize the algorithm. By
default, the algorithm is initialized with a randomly chosen array.
max_iter : int, optional, default: 300
Maximum number of iterations of the SMACOF algorithm for a single run.
verbose : int, optional, default: 0
Level of verbosity.
eps : float, optional, default: 1e-3
Relative tolerance with respect to stress at which to declare
convergence.
random_state : int, RandomState instance, default=None
Determines the random number generator used to initialize the centers.
Pass an int for reproducible results across multiple function calls.
See :term: `Glossary <random_state>`.
Returns
-------
X : ndarray, shape (n_samples, n_components)
Coordinates of the points in a ``n_components``-space.
stress : float
The final value of the stress (sum of squared distance of the
disparities and the distances for all constrained points).
n_iter : int
The number of iterations corresponding to the best stress.
"""
dissimilarities = check_symmetric(dissimilarities, raise_exception=True)
n_samples = dissimilarities.shape[0]
random_state = check_random_state(random_state)
sim_flat = ((1 - np.tri(n_samples)) * dissimilarities).ravel()
sim_flat_w = sim_flat[sim_flat != 0]
if init is None:
# Randomly choose initial configuration
X = random_state.rand(n_samples * n_components)
X = X.reshape((n_samples, n_components))
else:
# overrides the parameter p
n_components = init.shape[1]
if n_samples != init.shape[0]:
raise ValueError("init matrix should be of shape (%d, %d)" %
(n_samples, n_components))
X = init
old_stress = None
ir = IsotonicRegression()
for it in range(max_iter):
# Compute distance and monotonic regression
dis = euclidean_distances(X)
if metric:
disparities = dissimilarities
else:
dis_flat = dis.ravel()
# dissimilarities with 0 are considered as missing values
dis_flat_w = dis_flat[sim_flat != 0]
# Compute the disparities using a monotonic regression
disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w)
disparities = dis_flat.copy()
disparities[sim_flat != 0] = disparities_flat
disparities = disparities.reshape((n_samples, n_samples))
disparities *= np.sqrt((n_samples * (n_samples - 1) / 2) /
(disparities ** 2).sum())
# Compute stress
stress = ((dis.ravel() - disparities.ravel()) ** 2).sum() / 2
# Update X using the Guttman transform
dis[dis == 0] = 1e-5
ratio = disparities / dis
B = - ratio
B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1)
X = 1. / n_samples * np.dot(B, X)
dis = np.sqrt((X ** 2).sum(axis=1)).sum()
if verbose >= 2:
print('it: %d, stress %s' % (it, stress))
if old_stress is not None:
if(old_stress - stress / dis) < eps:
if verbose:
print('breaking at iteration %d with stress %s' % (it,
stress))
break
old_stress = stress / dis
return X, stress, it + 1
@_deprecate_positional_args
def smacof(dissimilarities, *, metric=True, n_components=2, init=None,
n_init=8, n_jobs=None, max_iter=300, verbose=0, eps=1e-3,
random_state=None, return_n_iter=False):
"""Computes multidimensional scaling using the SMACOF algorithm.
The SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm is a
multidimensional scaling algorithm which minimizes an objective function
(the *stress*) using a majorization technique. Stress majorization, also
known as the Guttman Transform, guarantees a monotone convergence of
stress, and is more powerful than traditional techniques such as gradient
descent.
The SMACOF algorithm for metric MDS can summarized by the following steps:
1. Set an initial start configuration, randomly or not.
2. Compute the stress
3. Compute the Guttman Transform
4. Iterate 2 and 3 until convergence.
The nonmetric algorithm adds a monotonic regression step before computing
the stress.
Parameters
----------
dissimilarities : ndarray, shape (n_samples, n_samples)
Pairwise dissimilarities between the points. Must be symmetric.
metric : boolean, optional, default: True
Compute metric or nonmetric SMACOF algorithm.
n_components : int, optional, default: 2
Number of dimensions in which to immerse the dissimilarities. If an
``init`` array is provided, this option is overridden and the shape of
``init`` is used to determine the dimensionality of the embedding
space.
init : ndarray, shape (n_samples, n_components), optional, default: None
Starting configuration of the embedding to initialize the algorithm. By
default, the algorithm is initialized with a randomly chosen array.
n_init : int, optional, default: 8
Number of times the SMACOF algorithm will be run with different
initializations. The final results will be the best output of the runs,
determined by the run with the smallest final stress. If ``init`` is
provided, this option is overridden and a single run is performed.
n_jobs : int or None, optional (default=None)
The number of jobs to use for the computation. If multiple
initializations are used (``n_init``), each run of the algorithm is
computed in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
max_iter : int, optional, default: 300
Maximum number of iterations of the SMACOF algorithm for a single run.
verbose : int, optional, default: 0
Level of verbosity.
eps : float, optional, default: 1e-3
Relative tolerance with respect to stress at which to declare
convergence.
random_state : int, RandomState instance, default=None
Determines the random number generator used to initialize the centers.
Pass an int for reproducible results across multiple function calls.
See :term: `Glossary <random_state>`.
return_n_iter : bool, optional, default: False
Whether or not to return the number of iterations.
Returns
-------
X : ndarray, shape (n_samples, n_components)
Coordinates of the points in a ``n_components``-space.
stress : float
The final value of the stress (sum of squared distance of the
disparities and the distances for all constrained points).
n_iter : int
The number of iterations corresponding to the best stress. Returned
only if ``return_n_iter`` is set to ``True``.
Notes
-----
"Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
Groenen P. Springer Series in Statistics (1997)
"Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
Psychometrika, 29 (1964)
"Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis" Kruskal, J. Psychometrika, 29, (1964)
"""
dissimilarities = check_array(dissimilarities)
random_state = check_random_state(random_state)
if hasattr(init, '__array__'):
init = np.asarray(init).copy()
if not n_init == 1:
warnings.warn(
'Explicit initial positions passed: '
'performing only one init of the MDS instead of %d'
% n_init)
n_init = 1
best_pos, best_stress = None, None
if effective_n_jobs(n_jobs) == 1:
for it in range(n_init):
pos, stress, n_iter_ = _smacof_single(
dissimilarities, metric=metric,
n_components=n_components, init=init,
max_iter=max_iter, verbose=verbose,
eps=eps, random_state=random_state)
if best_stress is None or stress < best_stress:
best_stress = stress
best_pos = pos.copy()
best_iter = n_iter_
else:
seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)
results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))(
delayed(_smacof_single)(
dissimilarities, metric=metric, n_components=n_components,
init=init, max_iter=max_iter, verbose=verbose, eps=eps,
random_state=seed)
for seed in seeds)
positions, stress, n_iters = zip(*results)
best = np.argmin(stress)
best_stress = stress[best]
best_pos = positions[best]
best_iter = n_iters[best]
if return_n_iter:
return best_pos, best_stress, best_iter
else:
return best_pos, best_stress
class MDS(BaseEstimator):
"""Multidimensional scaling
Read more in the :ref:`User Guide <multidimensional_scaling>`.
Parameters
----------
n_components : int, optional, default: 2
Number of dimensions in which to immerse the dissimilarities.
metric : boolean, optional, default: True
If ``True``, perform metric MDS; otherwise, perform nonmetric MDS.
n_init : int, optional, default: 4
Number of times the SMACOF algorithm will be run with different
initializations. The final results will be the best output of the runs,
determined by the run with the smallest final stress.
max_iter : int, optional, default: 300
Maximum number of iterations of the SMACOF algorithm for a single run.
verbose : int, optional, default: 0
Level of verbosity.
eps : float, optional, default: 1e-3
Relative tolerance with respect to stress at which to declare
convergence.
n_jobs : int or None, optional (default=None)
The number of jobs to use for the computation. If multiple
initializations are used (``n_init``), each run of the algorithm is
computed in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
random_state : int, RandomState instance, default=None
Determines the random number generator used to initialize the centers.
Pass an int for reproducible results across multiple function calls.
See :term: `Glossary <random_state>`.
dissimilarity : 'euclidean' | 'precomputed', optional, default: 'euclidean'
Dissimilarity measure to use:
- 'euclidean':
Pairwise Euclidean distances between points in the dataset.
- 'precomputed':
Pre-computed dissimilarities are passed directly to ``fit`` and
``fit_transform``.
Attributes
----------
embedding_ : array-like, shape (n_samples, n_components)
Stores the position of the dataset in the embedding space.
stress_ : float
The final value of the stress (sum of squared distance of the
disparities and the distances for all constrained points).
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.manifold import MDS
>>> X, _ = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> embedding = MDS(n_components=2)
>>> X_transformed = embedding.fit_transform(X[:100])
>>> X_transformed.shape
(100, 2)
References
----------
"Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
Groenen P. Springer Series in Statistics (1997)
"Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
Psychometrika, 29 (1964)
"Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis" Kruskal, J. Psychometrika, 29, (1964)
"""
@_deprecate_positional_args
def __init__(self, n_components=2, *, metric=True, n_init=4,
max_iter=300, verbose=0, eps=1e-3, n_jobs=None,
random_state=None, dissimilarity="euclidean"):
self.n_components = n_components
self.dissimilarity = dissimilarity
self.metric = metric
self.n_init = n_init
self.max_iter = max_iter
self.eps = eps
self.verbose = verbose
self.n_jobs = n_jobs
self.random_state = random_state
@property
def _pairwise(self):
return self.kernel == "precomputed"
def fit(self, X, y=None, init=None):
"""
Computes the position of the points in the embedding space
Parameters
----------
X : array, shape (n_samples, n_features) or (n_samples, n_samples)
Input data. If ``dissimilarity=='precomputed'``, the input should
be the dissimilarity matrix.
y : Ignored
init : ndarray, shape (n_samples,), optional, default: None
Starting configuration of the embedding to initialize the SMACOF
algorithm. By default, the algorithm is initialized with a randomly
chosen array.
"""
self.fit_transform(X, init=init)
return self
def fit_transform(self, X, y=None, init=None):
"""
Fit the data from X, and returns the embedded coordinates
Parameters
----------
X : array, shape (n_samples, n_features) or (n_samples, n_samples)
Input data. If ``dissimilarity=='precomputed'``, the input should
be the dissimilarity matrix.
y : Ignored
init : ndarray, shape (n_samples,), optional, default: None
Starting configuration of the embedding to initialize the SMACOF
algorithm. By default, the algorithm is initialized with a randomly
chosen array.
"""
X = self._validate_data(X)
if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed":
warnings.warn("The MDS API has changed. ``fit`` now constructs an"
" dissimilarity matrix from data. To use a custom "
"dissimilarity matrix, set "
"``dissimilarity='precomputed'``.")
if self.dissimilarity == "precomputed":
self.dissimilarity_matrix_ = X
elif self.dissimilarity == "euclidean":
self.dissimilarity_matrix_ = euclidean_distances(X)
else:
raise ValueError("Proximity must be 'precomputed' or 'euclidean'."
" Got %s instead" % str(self.dissimilarity))
self.embedding_, self.stress_, self.n_iter_ = smacof(
self.dissimilarity_matrix_, metric=self.metric,
n_components=self.n_components, init=init, n_init=self.n_init,
n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose,
eps=self.eps, random_state=self.random_state,
return_n_iter=True)
return self.embedding_