test_knn.py
17 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import numpy as np
import pytest
from sklearn import config_context
from sklearn.impute import KNNImputer
from sklearn.metrics.pairwise import nan_euclidean_distances
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.neighbors import KNeighborsRegressor
from sklearn.utils._testing import assert_allclose
@pytest.mark.parametrize("weights", ["uniform", "distance"])
@pytest.mark.parametrize("n_neighbors", range(1, 6))
def test_knn_imputer_shape(weights, n_neighbors):
# Verify the shapes of the imputed matrix for different weights and
# number of neighbors.
n_rows = 10
n_cols = 2
X = np.random.rand(n_rows, n_cols)
X[0, 0] = np.nan
imputer = KNNImputer(n_neighbors=n_neighbors, weights=weights)
X_imputed = imputer.fit_transform(X)
assert X_imputed.shape == (n_rows, n_cols)
@pytest.mark.parametrize("na", [np.nan, -1])
def test_knn_imputer_default_with_invalid_input(na):
# Test imputation with default values and invalid input
# Test with inf present
X = np.array([
[np.inf, 1, 1, 2, na],
[2, 1, 2, 2, 3],
[3, 2, 3, 3, 8],
[na, 6, 0, 5, 13],
[na, 7, 0, 7, 8],
[6, 6, 2, 5, 7],
])
with pytest.raises(ValueError, match="Input contains (infinity|NaN)"):
KNNImputer(missing_values=na).fit(X)
# Test with inf present in matrix passed in transform()
X = np.array([
[np.inf, 1, 1, 2, na],
[2, 1, 2, 2, 3],
[3, 2, 3, 3, 8],
[na, 6, 0, 5, 13],
[na, 7, 0, 7, 8],
[6, 6, 2, 5, 7],
])
X_fit = np.array([
[0, 1, 1, 2, na],
[2, 1, 2, 2, 3],
[3, 2, 3, 3, 8],
[na, 6, 0, 5, 13],
[na, 7, 0, 7, 8],
[6, 6, 2, 5, 7],
])
imputer = KNNImputer(missing_values=na).fit(X_fit)
with pytest.raises(ValueError, match="Input contains (infinity|NaN)"):
imputer.transform(X)
# negative n_neighbors
with pytest.raises(ValueError, match="Expected n_neighbors > 0"):
KNNImputer(missing_values=na, n_neighbors=0).fit(X_fit)
# Test with missing_values=0 when NaN present
imputer = KNNImputer(missing_values=0, n_neighbors=2, weights="uniform")
X = np.array([
[np.nan, 0, 0, 0, 5],
[np.nan, 1, 0, np.nan, 3],
[np.nan, 2, 0, 0, 0],
[np.nan, 6, 0, 5, 13],
])
msg = (r"Input contains NaN, infinity or a value too large for "
r"dtype\('float64'\)")
with pytest.raises(ValueError, match=msg):
imputer.fit(X)
X = np.array([
[0, 0],
[np.nan, 2],
])
# Test with a metric type without NaN support
imputer = KNNImputer(metric="euclidean")
bad_metric_msg = "The selected metric does not support NaN values"
with pytest.raises(ValueError, match=bad_metric_msg):
imputer.fit(X)
@pytest.mark.parametrize("na", [np.nan, -1])
def test_knn_imputer_removes_all_na_features(na):
X = np.array([
[1, 1, na, 1, 1, 1.],
[2, 3, na, 2, 2, 2],
[3, 4, na, 3, 3, na],
[6, 4, na, na, 6, 6],
])
knn = KNNImputer(missing_values=na, n_neighbors=2).fit(X)
X_transform = knn.transform(X)
assert not np.isnan(X_transform).any()
assert X_transform.shape == (4, 5)
X_test = np.arange(0, 12).reshape(2, 6)
X_transform = knn.transform(X_test)
assert_allclose(X_test[:, [0, 1, 3, 4, 5]], X_transform)
@pytest.mark.parametrize("na", [np.nan, -1])
def test_knn_imputer_zero_nan_imputes_the_same(na):
# Test with an imputable matrix and compare with different missing_values
X_zero = np.array([
[1, 0, 1, 1, 1.],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 0],
[6, 6, 0, 6, 6],
])
X_nan = np.array([
[1, na, 1, 1, 1.],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, na],
[6, 6, na, 6, 6],
])
X_imputed = np.array([
[1, 2.5, 1, 1, 1.],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 1.5],
[6, 6, 2.5, 6, 6],
])
imputer_zero = KNNImputer(missing_values=0, n_neighbors=2,
weights="uniform")
imputer_nan = KNNImputer(missing_values=na, n_neighbors=2,
weights="uniform")
assert_allclose(imputer_zero.fit_transform(X_zero), X_imputed)
assert_allclose(imputer_zero.fit_transform(X_zero),
imputer_nan.fit_transform(X_nan))
@pytest.mark.parametrize("na", [np.nan, -1])
def test_knn_imputer_verify(na):
# Test with an imputable matrix
X = np.array([
[1, 0, 0, 1],
[2, 1, 2, na],
[3, 2, 3, na],
[na, 4, 5, 5],
[6, na, 6, 7],
[8, 8, 8, 8],
[16, 15, 18, 19],
])
X_imputed = np.array([
[1, 0, 0, 1],
[2, 1, 2, 8],
[3, 2, 3, 8],
[4, 4, 5, 5],
[6, 3, 6, 7],
[8, 8, 8, 8],
[16, 15, 18, 19],
])
imputer = KNNImputer(missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed)
# Test when there is not enough neighbors
X = np.array([
[1, 0, 0, na],
[2, 1, 2, na],
[3, 2, 3, na],
[4, 4, 5, na],
[6, 7, 6, na],
[8, 8, 8, na],
[20, 20, 20, 20],
[22, 22, 22, 22]
])
# Not enough neighbors, use column mean from training
X_impute_value = (20 + 22) / 2
X_imputed = np.array([
[1, 0, 0, X_impute_value],
[2, 1, 2, X_impute_value],
[3, 2, 3, X_impute_value],
[4, 4, 5, X_impute_value],
[6, 7, 6, X_impute_value],
[8, 8, 8, X_impute_value],
[20, 20, 20, 20],
[22, 22, 22, 22]
])
imputer = KNNImputer(missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed)
# Test when data in fit() and transform() are different
X = np.array([
[0, 0],
[na, 2],
[4, 3],
[5, 6],
[7, 7],
[9, 8],
[11, 16]
])
X1 = np.array([
[1, 0],
[3, 2],
[4, na]
])
X_2_1 = (0 + 3 + 6 + 7 + 8) / 5
X1_imputed = np.array([
[1, 0],
[3, 2],
[4, X_2_1]
])
imputer = KNNImputer(missing_values=na)
assert_allclose(imputer.fit(X).transform(X1), X1_imputed)
@pytest.mark.parametrize("na", [np.nan, -1])
def test_knn_imputer_one_n_neighbors(na):
X = np.array([
[0, 0],
[na, 2],
[4, 3],
[5, na],
[7, 7],
[na, 8],
[14, 13]
])
X_imputed = np.array([
[0, 0],
[4, 2],
[4, 3],
[5, 3],
[7, 7],
[7, 8],
[14, 13]
])
imputer = KNNImputer(n_neighbors=1, missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed)
@pytest.mark.parametrize("na", [np.nan, -1])
def test_knn_imputer_all_samples_are_neighbors(na):
X = np.array([
[0, 0],
[na, 2],
[4, 3],
[5, na],
[7, 7],
[na, 8],
[14, 13]
])
X_imputed = np.array([
[0, 0],
[6, 2],
[4, 3],
[5, 5.5],
[7, 7],
[6, 8],
[14, 13]
])
n_neighbors = X.shape[0] - 1
imputer = KNNImputer(n_neighbors=n_neighbors, missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed)
n_neighbors = X.shape[0]
imputer_plus1 = KNNImputer(n_neighbors=n_neighbors, missing_values=na)
assert_allclose(imputer_plus1.fit_transform(X), X_imputed)
@pytest.mark.parametrize("na", [np.nan, -1])
def test_knn_imputer_weight_uniform(na):
X = np.array([
[0, 0],
[na, 2],
[4, 3],
[5, 6],
[7, 7],
[9, 8],
[11, 10]
])
# Test with "uniform" weight (or unweighted)
X_imputed_uniform = np.array([
[0, 0],
[5, 2],
[4, 3],
[5, 6],
[7, 7],
[9, 8],
[11, 10]
])
imputer = KNNImputer(weights="uniform", missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed_uniform)
# Test with "callable" weight
def no_weight(dist):
return None
imputer = KNNImputer(weights=no_weight, missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed_uniform)
# Test with "callable" uniform weight
def uniform_weight(dist):
return np.ones_like(dist)
imputer = KNNImputer(weights=uniform_weight, missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed_uniform)
@pytest.mark.parametrize("na", [np.nan, -1])
def test_knn_imputer_weight_distance(na):
X = np.array([
[0, 0],
[na, 2],
[4, 3],
[5, 6],
[7, 7],
[9, 8],
[11, 10]
])
# Test with "distance" weight
nn = KNeighborsRegressor(metric="euclidean", weights="distance")
X_rows_idx = [0, 2, 3, 4, 5, 6]
nn.fit(X[X_rows_idx, 1:], X[X_rows_idx, 0])
knn_imputed_value = nn.predict(X[1:2, 1:])[0]
# Manual calculation
X_neighbors_idx = [0, 2, 3, 4, 5]
dist = nan_euclidean_distances(X[1:2, :], X, missing_values=na)
weights = 1 / dist[:, X_neighbors_idx].ravel()
manual_imputed_value = np.average(X[X_neighbors_idx, 0], weights=weights)
X_imputed_distance1 = np.array([
[0, 0],
[manual_imputed_value, 2],
[4, 3],
[5, 6],
[7, 7],
[9, 8],
[11, 10]
])
# NearestNeighbor calculation
X_imputed_distance2 = np.array([
[0, 0],
[knn_imputed_value, 2],
[4, 3],
[5, 6],
[7, 7],
[9, 8],
[11, 10]
])
imputer = KNNImputer(weights="distance", missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed_distance1)
assert_allclose(imputer.fit_transform(X), X_imputed_distance2)
# Test with weights = "distance" and n_neighbors=2
X = np.array([
[na, 0, 0],
[2, 1, 2],
[3, 2, 3],
[4, 5, 5],
])
# neighbors are rows 1, 2, the nan_euclidean_distances are:
dist_0_1 = np.sqrt((3/2)*((1 - 0)**2 + (2 - 0)**2))
dist_0_2 = np.sqrt((3/2)*((2 - 0)**2 + (3 - 0)**2))
imputed_value = np.average([2, 3], weights=[1 / dist_0_1, 1 / dist_0_2])
X_imputed = np.array([
[imputed_value, 0, 0],
[2, 1, 2],
[3, 2, 3],
[4, 5, 5],
])
imputer = KNNImputer(n_neighbors=2, weights="distance", missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed)
# Test with varying missingness patterns
X = np.array([
[1, 0, 0, 1],
[0, na, 1, na],
[1, 1, 1, na],
[0, 1, 0, 0],
[0, 0, 0, 0],
[1, 0, 1, 1],
[10, 10, 10, 10],
])
# Get weights of donor neighbors
dist = nan_euclidean_distances(X, missing_values=na)
r1c1_nbor_dists = dist[1, [0, 2, 3, 4, 5]]
r1c3_nbor_dists = dist[1, [0, 3, 4, 5, 6]]
r1c1_nbor_wt = 1 / r1c1_nbor_dists
r1c3_nbor_wt = 1 / r1c3_nbor_dists
r2c3_nbor_dists = dist[2, [0, 3, 4, 5, 6]]
r2c3_nbor_wt = 1 / r2c3_nbor_dists
# Collect donor values
col1_donor_values = np.ma.masked_invalid(X[[0, 2, 3, 4, 5], 1]).copy()
col3_donor_values = np.ma.masked_invalid(X[[0, 3, 4, 5, 6], 3]).copy()
# Final imputed values
r1c1_imp = np.ma.average(col1_donor_values, weights=r1c1_nbor_wt)
r1c3_imp = np.ma.average(col3_donor_values, weights=r1c3_nbor_wt)
r2c3_imp = np.ma.average(col3_donor_values, weights=r2c3_nbor_wt)
X_imputed = np.array([
[1, 0, 0, 1],
[0, r1c1_imp, 1, r1c3_imp],
[1, 1, 1, r2c3_imp],
[0, 1, 0, 0],
[0, 0, 0, 0],
[1, 0, 1, 1],
[10, 10, 10, 10],
])
imputer = KNNImputer(weights="distance", missing_values=na)
assert_allclose(imputer.fit_transform(X), X_imputed)
X = np.array([
[0, 0, 0, na],
[1, 1, 1, na],
[2, 2, na, 2],
[3, 3, 3, 3],
[4, 4, 4, 4],
[5, 5, 5, 5],
[6, 6, 6, 6],
[na, 7, 7, 7]
])
dist = pairwise_distances(X, metric="nan_euclidean", squared=False,
missing_values=na)
# Calculate weights
r0c3_w = 1.0 / dist[0, 2:-1]
r1c3_w = 1.0 / dist[1, 2:-1]
r2c2_w = 1.0 / dist[2, (0, 1, 3, 4, 5)]
r7c0_w = 1.0 / dist[7, 2:7]
# Calculate weighted averages
r0c3 = np.average(X[2:-1, -1], weights=r0c3_w)
r1c3 = np.average(X[2:-1, -1], weights=r1c3_w)
r2c2 = np.average(X[(0, 1, 3, 4, 5), 2], weights=r2c2_w)
r7c0 = np.average(X[2:7, 0], weights=r7c0_w)
X_imputed = np.array([
[0, 0, 0, r0c3],
[1, 1, 1, r1c3],
[2, 2, r2c2, 2],
[3, 3, 3, 3],
[4, 4, 4, 4],
[5, 5, 5, 5],
[6, 6, 6, 6],
[r7c0, 7, 7, 7]
])
imputer_comp_wt = KNNImputer(missing_values=na, weights="distance")
assert_allclose(imputer_comp_wt.fit_transform(X), X_imputed)
def test_knn_imputer_callable_metric():
# Define callable metric that returns the l1 norm:
def custom_callable(x, y, missing_values=np.nan, squared=False):
x = np.ma.array(x, mask=np.isnan(x))
y = np.ma.array(y, mask=np.isnan(y))
dist = np.nansum(np.abs(x-y))
return dist
X = np.array([
[4, 3, 3, np.nan],
[6, 9, 6, 9],
[4, 8, 6, 9],
[np.nan, 9, 11, 10.]
])
X_0_3 = (9 + 9) / 2
X_3_0 = (6 + 4) / 2
X_imputed = np.array([
[4, 3, 3, X_0_3],
[6, 9, 6, 9],
[4, 8, 6, 9],
[X_3_0, 9, 11, 10.]
])
imputer = KNNImputer(n_neighbors=2, metric=custom_callable)
assert_allclose(imputer.fit_transform(X), X_imputed)
@pytest.mark.parametrize("working_memory", [None, 0])
@pytest.mark.parametrize("na", [-1, np.nan])
# Note that we use working_memory=0 to ensure that chunking is tested, even
# for a small dataset. However, it should raise a UserWarning that we ignore.
@pytest.mark.filterwarnings("ignore:adhere to working_memory")
def test_knn_imputer_with_simple_example(na, working_memory):
X = np.array([
[0, na, 0, na],
[1, 1, 1, na],
[2, 2, na, 2],
[3, 3, 3, 3],
[4, 4, 4, 4],
[5, 5, 5, 5],
[6, 6, 6, 6],
[na, 7, 7, 7]
])
r0c1 = np.mean(X[1:6, 1])
r0c3 = np.mean(X[2:-1, -1])
r1c3 = np.mean(X[2:-1, -1])
r2c2 = np.mean(X[[0, 1, 3, 4, 5], 2])
r7c0 = np.mean(X[2:-1, 0])
X_imputed = np.array([
[0, r0c1, 0, r0c3],
[1, 1, 1, r1c3],
[2, 2, r2c2, 2],
[3, 3, 3, 3],
[4, 4, 4, 4],
[5, 5, 5, 5],
[6, 6, 6, 6],
[r7c0, 7, 7, 7]
])
with config_context(working_memory=working_memory):
imputer_comp = KNNImputer(missing_values=na)
assert_allclose(imputer_comp.fit_transform(X), X_imputed)
@pytest.mark.parametrize("na", [-1, np.nan])
@pytest.mark.parametrize("weights", ['uniform', 'distance'])
def test_knn_imputer_not_enough_valid_distances(na, weights):
# Samples with needed feature has nan distance
X1 = np.array([
[na, 11],
[na, 1],
[3, na]
])
X1_imputed = np.array([
[3, 11],
[3, 1],
[3, 6]
])
knn = KNNImputer(missing_values=na, n_neighbors=1, weights=weights)
assert_allclose(knn.fit_transform(X1), X1_imputed)
X2 = np.array([[4, na]])
X2_imputed = np.array([[4, 6]])
assert_allclose(knn.transform(X2), X2_imputed)
@pytest.mark.parametrize("na", [-1, np.nan])
def test_knn_imputer_drops_all_nan_features(na):
X1 = np.array([
[na, 1],
[na, 2]
])
knn = KNNImputer(missing_values=na, n_neighbors=1)
X1_expected = np.array([[1], [2]])
assert_allclose(knn.fit_transform(X1), X1_expected)
X2 = np.array([
[1, 2],
[3, na]
])
X2_expected = np.array([[2], [1.5]])
assert_allclose(knn.transform(X2), X2_expected)
@pytest.mark.parametrize("working_memory", [None, 0])
@pytest.mark.parametrize("na", [-1, np.nan])
def test_knn_imputer_distance_weighted_not_enough_neighbors(na,
working_memory):
X = np.array([
[3, na],
[2, na],
[na, 4],
[5, 6],
[6, 8],
[na, 5]
])
dist = pairwise_distances(X, metric="nan_euclidean", squared=False,
missing_values=na)
X_01 = np.average(X[3:5, 1], weights=1/dist[0, 3:5])
X_11 = np.average(X[3:5, 1], weights=1/dist[1, 3:5])
X_20 = np.average(X[3:5, 0], weights=1/dist[2, 3:5])
X_50 = np.average(X[3:5, 0], weights=1/dist[5, 3:5])
X_expected = np.array([
[3, X_01],
[2, X_11],
[X_20, 4],
[5, 6],
[6, 8],
[X_50, 5]
])
with config_context(working_memory=working_memory):
knn_3 = KNNImputer(missing_values=na, n_neighbors=3,
weights='distance')
assert_allclose(knn_3.fit_transform(X), X_expected)
knn_4 = KNNImputer(missing_values=na, n_neighbors=4,
weights='distance')
assert_allclose(knn_4.fit_transform(X), X_expected)
@pytest.mark.parametrize("na, allow_nan", [(-1, False), (np.nan, True)])
def test_knn_tags(na, allow_nan):
knn = KNNImputer(missing_values=na)
assert knn._get_tags()["allow_nan"] == allow_nan