_base.py 27.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
# Authors: Nicolas Tresegnie <nicolas.tresegnie@gmail.com>
#          Sergey Feldman <sergeyfeldman@gmail.com>
# License: BSD 3 clause

import numbers
import warnings

import numpy as np
import numpy.ma as ma
from scipy import sparse
from scipy import stats

from ..base import BaseEstimator, TransformerMixin
from ..utils.sparsefuncs import _get_median
from ..utils.validation import check_is_fitted
from ..utils.validation import FLOAT_DTYPES
from ..utils.validation import _deprecate_positional_args
from ..utils._mask import _get_mask
from ..utils import is_scalar_nan


def _check_inputs_dtype(X, missing_values):
    if (X.dtype.kind in ("f", "i", "u") and
            not isinstance(missing_values, numbers.Real)):
        raise ValueError("'X' and 'missing_values' types are expected to be"
                         " both numerical. Got X.dtype={} and "
                         " type(missing_values)={}."
                         .format(X.dtype, type(missing_values)))


def _most_frequent(array, extra_value, n_repeat):
    """Compute the most frequent value in a 1d array extended with
       [extra_value] * n_repeat, where extra_value is assumed to be not part
       of the array."""
    # Compute the most frequent value in array only
    if array.size > 0:
        with warnings.catch_warnings():
            # stats.mode raises a warning when input array contains objects due
            # to incapacity to detect NaNs. Irrelevant here since input array
            # has already been NaN-masked.
            warnings.simplefilter("ignore", RuntimeWarning)
            mode = stats.mode(array)

        most_frequent_value = mode[0][0]
        most_frequent_count = mode[1][0]
    else:
        most_frequent_value = 0
        most_frequent_count = 0

    # Compare to array + [extra_value] * n_repeat
    if most_frequent_count == 0 and n_repeat == 0:
        return np.nan
    elif most_frequent_count < n_repeat:
        return extra_value
    elif most_frequent_count > n_repeat:
        return most_frequent_value
    elif most_frequent_count == n_repeat:
        # Ties the breaks. Copy the behaviour of scipy.stats.mode
        if most_frequent_value < extra_value:
            return most_frequent_value
        else:
            return extra_value


class _BaseImputer(TransformerMixin, BaseEstimator):
    """Base class for all imputers.

    It adds automatically support for `add_indicator`.
    """

    def __init__(self, *, missing_values=np.nan, add_indicator=False):
        self.missing_values = missing_values
        self.add_indicator = add_indicator

    def _fit_indicator(self, X):
        """Fit a MissingIndicator."""
        if self.add_indicator:
            self.indicator_ = MissingIndicator(
                missing_values=self.missing_values, error_on_new=False
            )
            self.indicator_.fit(X)
        else:
            self.indicator_ = None

    def _transform_indicator(self, X):
        """Compute the indicator mask.'

        Note that X must be the original data as passed to the imputer before
        any imputation, since imputation may be done inplace in some cases.
        """
        if self.add_indicator:
            if not hasattr(self, 'indicator_'):
                raise ValueError(
                    "Make sure to call _fit_indicator before "
                    "_transform_indicator"
                )
            return self.indicator_.transform(X)

    def _concatenate_indicator(self, X_imputed, X_indicator):
        """Concatenate indicator mask with the imputed data."""
        if not self.add_indicator:
            return X_imputed

        hstack = sparse.hstack if sparse.issparse(X_imputed) else np.hstack
        if X_indicator is None:
            raise ValueError(
                "Data from the missing indicator are not provided. Call "
                "_fit_indicator and _transform_indicator in the imputer "
                "implementation."
                )

        return hstack((X_imputed, X_indicator))

    def _more_tags(self):
        return {'allow_nan': is_scalar_nan(self.missing_values)}


class SimpleImputer(_BaseImputer):
    """Imputation transformer for completing missing values.

    Read more in the :ref:`User Guide <impute>`.

    .. versionadded:: 0.20
       `SimpleImputer` replaces the previous `sklearn.preprocessing.Imputer`
       estimator which is now removed.

    Parameters
    ----------
    missing_values : number, string, np.nan (default) or None
        The placeholder for the missing values. All occurrences of
        `missing_values` will be imputed. For pandas' dataframes with
        nullable integer dtypes with missing values, `missing_values`
        should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.

    strategy : string, default='mean'
        The imputation strategy.

        - If "mean", then replace missing values using the mean along
          each column. Can only be used with numeric data.
        - If "median", then replace missing values using the median along
          each column. Can only be used with numeric data.
        - If "most_frequent", then replace missing using the most frequent
          value along each column. Can be used with strings or numeric data.
        - If "constant", then replace missing values with fill_value. Can be
          used with strings or numeric data.

        .. versionadded:: 0.20
           strategy="constant" for fixed value imputation.

    fill_value : string or numerical value, default=None
        When strategy == "constant", fill_value is used to replace all
        occurrences of missing_values.
        If left to the default, fill_value will be 0 when imputing numerical
        data and "missing_value" for strings or object data types.

    verbose : integer, default=0
        Controls the verbosity of the imputer.

    copy : boolean, default=True
        If True, a copy of X will be created. If False, imputation will
        be done in-place whenever possible. Note that, in the following cases,
        a new copy will always be made, even if `copy=False`:

        - If X is not an array of floating values;
        - If X is encoded as a CSR matrix;
        - If add_indicator=True.

    add_indicator : boolean, default=False
        If True, a :class:`MissingIndicator` transform will stack onto output
        of the imputer's transform. This allows a predictive estimator
        to account for missingness despite imputation. If a feature has no
        missing values at fit/train time, the feature won't appear on
        the missing indicator even if there are missing values at
        transform/test time.

    Attributes
    ----------
    statistics_ : array of shape (n_features,)
        The imputation fill value for each feature.
        Computing statistics can result in `np.nan` values.
        During :meth:`transform`, features corresponding to `np.nan`
        statistics will be discarded.

    indicator_ : :class:`sklearn.impute.MissingIndicator`
        Indicator used to add binary indicators for missing values.
        ``None`` if add_indicator is False.

    See also
    --------
    IterativeImputer : Multivariate imputation of missing values.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.impute import SimpleImputer
    >>> imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
    >>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
    SimpleImputer()
    >>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
    >>> print(imp_mean.transform(X))
    [[ 7.   2.   3. ]
     [ 4.   3.5  6. ]
     [10.   3.5  9. ]]

    Notes
    -----
    Columns which only contained missing values at :meth:`fit` are discarded
    upon :meth:`transform` if strategy is not "constant".

    """
    @_deprecate_positional_args
    def __init__(self, *, missing_values=np.nan, strategy="mean",
                 fill_value=None, verbose=0, copy=True, add_indicator=False):
        super().__init__(
            missing_values=missing_values,
            add_indicator=add_indicator
        )
        self.strategy = strategy
        self.fill_value = fill_value
        self.verbose = verbose
        self.copy = copy

    def _validate_input(self, X, in_fit):
        allowed_strategies = ["mean", "median", "most_frequent", "constant"]
        if self.strategy not in allowed_strategies:
            raise ValueError("Can only use these strategies: {0} "
                             " got strategy={1}".format(allowed_strategies,
                                                        self.strategy))

        if self.strategy in ("most_frequent", "constant"):
            dtype = None
        else:
            dtype = FLOAT_DTYPES

        if not is_scalar_nan(self.missing_values):
            force_all_finite = True
        else:
            force_all_finite = "allow-nan"

        try:
            X = self._validate_data(X, reset=in_fit,
                                    accept_sparse='csc', dtype=dtype,
                                    force_all_finite=force_all_finite,
                                    copy=self.copy)
        except ValueError as ve:
            if "could not convert" in str(ve):
                new_ve = ValueError("Cannot use {} strategy with non-numeric "
                                    "data:\n{}".format(self.strategy, ve))
                raise new_ve from None
            else:
                raise ve

        _check_inputs_dtype(X, self.missing_values)
        if X.dtype.kind not in ("i", "u", "f", "O"):
            raise ValueError("SimpleImputer does not support data with dtype "
                             "{0}. Please provide either a numeric array (with"
                             " a floating point or integer dtype) or "
                             "categorical data represented either as an array "
                             "with integer dtype or an array of string values "
                             "with an object dtype.".format(X.dtype))

        return X

    def fit(self, X, y=None):
        """Fit the imputer on X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Input data, where ``n_samples`` is the number of samples and
            ``n_features`` is the number of features.

        Returns
        -------
        self : SimpleImputer
        """
        X = self._validate_input(X, in_fit=True)
        super()._fit_indicator(X)

        # default fill_value is 0 for numerical input and "missing_value"
        # otherwise
        if self.fill_value is None:
            if X.dtype.kind in ("i", "u", "f"):
                fill_value = 0
            else:
                fill_value = "missing_value"
        else:
            fill_value = self.fill_value

        # fill_value should be numerical in case of numerical input
        if (self.strategy == "constant" and
                X.dtype.kind in ("i", "u", "f") and
                not isinstance(fill_value, numbers.Real)):
            raise ValueError("'fill_value'={0} is invalid. Expected a "
                             "numerical value when imputing numerical "
                             "data".format(fill_value))

        if sparse.issparse(X):
            # missing_values = 0 not allowed with sparse data as it would
            # force densification
            if self.missing_values == 0:
                raise ValueError("Imputation not possible when missing_values "
                                 "== 0 and input is sparse. Provide a dense "
                                 "array instead.")
            else:
                self.statistics_ = self._sparse_fit(X,
                                                    self.strategy,
                                                    self.missing_values,
                                                    fill_value)
        else:
            self.statistics_ = self._dense_fit(X,
                                               self.strategy,
                                               self.missing_values,
                                               fill_value)
        return self

    def _sparse_fit(self, X, strategy, missing_values, fill_value):
        """Fit the transformer on sparse data."""
        mask_data = _get_mask(X.data, missing_values)
        n_implicit_zeros = X.shape[0] - np.diff(X.indptr)

        statistics = np.empty(X.shape[1])

        if strategy == "constant":
            # for constant strategy, self.statistcs_ is used to store
            # fill_value in each column
            statistics.fill(fill_value)
        else:
            for i in range(X.shape[1]):
                column = X.data[X.indptr[i]:X.indptr[i + 1]]
                mask_column = mask_data[X.indptr[i]:X.indptr[i + 1]]
                column = column[~mask_column]

                # combine explicit and implicit zeros
                mask_zeros = _get_mask(column, 0)
                column = column[~mask_zeros]
                n_explicit_zeros = mask_zeros.sum()
                n_zeros = n_implicit_zeros[i] + n_explicit_zeros

                if strategy == "mean":
                    s = column.size + n_zeros
                    statistics[i] = np.nan if s == 0 else column.sum() / s

                elif strategy == "median":
                    statistics[i] = _get_median(column,
                                                n_zeros)

                elif strategy == "most_frequent":
                    statistics[i] = _most_frequent(column,
                                                   0,
                                                   n_zeros)
        return statistics

    def _dense_fit(self, X, strategy, missing_values, fill_value):
        """Fit the transformer on dense data."""
        mask = _get_mask(X, missing_values)
        masked_X = ma.masked_array(X, mask=mask)

        # Mean
        if strategy == "mean":
            mean_masked = np.ma.mean(masked_X, axis=0)
            # Avoid the warning "Warning: converting a masked element to nan."
            mean = np.ma.getdata(mean_masked)
            mean[np.ma.getmask(mean_masked)] = np.nan

            return mean

        # Median
        elif strategy == "median":
            median_masked = np.ma.median(masked_X, axis=0)
            # Avoid the warning "Warning: converting a masked element to nan."
            median = np.ma.getdata(median_masked)
            median[np.ma.getmaskarray(median_masked)] = np.nan

            return median

        # Most frequent
        elif strategy == "most_frequent":
            # Avoid use of scipy.stats.mstats.mode due to the required
            # additional overhead and slow benchmarking performance.
            # See Issue 14325 and PR 14399 for full discussion.

            # To be able access the elements by columns
            X = X.transpose()
            mask = mask.transpose()

            if X.dtype.kind == "O":
                most_frequent = np.empty(X.shape[0], dtype=object)
            else:
                most_frequent = np.empty(X.shape[0])

            for i, (row, row_mask) in enumerate(zip(X[:], mask[:])):
                row_mask = np.logical_not(row_mask).astype(np.bool)
                row = row[row_mask]
                most_frequent[i] = _most_frequent(row, np.nan, 0)

            return most_frequent

        # Constant
        elif strategy == "constant":
            # for constant strategy, self.statistcs_ is used to store
            # fill_value in each column
            return np.full(X.shape[1], fill_value, dtype=X.dtype)

    def transform(self, X):
        """Impute all missing values in X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The input data to complete.
        """
        check_is_fitted(self)

        X = self._validate_input(X, in_fit=False)
        X_indicator = super()._transform_indicator(X)

        statistics = self.statistics_

        if X.shape[1] != statistics.shape[0]:
            raise ValueError("X has %d features per sample, expected %d"
                             % (X.shape[1], self.statistics_.shape[0]))

        # Delete the invalid columns if strategy is not constant
        if self.strategy == "constant":
            valid_statistics = statistics
        else:
            # same as np.isnan but also works for object dtypes
            invalid_mask = _get_mask(statistics, np.nan)
            valid_mask = np.logical_not(invalid_mask)
            valid_statistics = statistics[valid_mask]
            valid_statistics_indexes = np.flatnonzero(valid_mask)

            if invalid_mask.any():
                missing = np.arange(X.shape[1])[invalid_mask]
                if self.verbose:
                    warnings.warn("Deleting features without "
                                  "observed values: %s" % missing)
                X = X[:, valid_statistics_indexes]

        # Do actual imputation
        if sparse.issparse(X):
            if self.missing_values == 0:
                raise ValueError("Imputation not possible when missing_values "
                                 "== 0 and input is sparse. Provide a dense "
                                 "array instead.")
            else:
                mask = _get_mask(X.data, self.missing_values)
                indexes = np.repeat(
                    np.arange(len(X.indptr) - 1, dtype=np.int),
                    np.diff(X.indptr))[mask]

                X.data[mask] = valid_statistics[indexes].astype(X.dtype,
                                                                copy=False)
        else:
            mask = _get_mask(X, self.missing_values)
            n_missing = np.sum(mask, axis=0)
            values = np.repeat(valid_statistics, n_missing)
            coordinates = np.where(mask.transpose())[::-1]

            X[coordinates] = values

        return super()._concatenate_indicator(X, X_indicator)


class MissingIndicator(TransformerMixin, BaseEstimator):
    """Binary indicators for missing values.

    Note that this component typically should not be used in a vanilla
    :class:`Pipeline` consisting of transformers and a classifier, but rather
    could be added using a :class:`FeatureUnion` or :class:`ColumnTransformer`.

    Read more in the :ref:`User Guide <impute>`.

    .. versionadded:: 0.20

    Parameters
    ----------
    missing_values : number, string, np.nan (default) or None
        The placeholder for the missing values. All occurrences of
        `missing_values` will be imputed. For pandas' dataframes with
        nullable integer dtypes with missing values, `missing_values`
        should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.

    features : str, default=None
        Whether the imputer mask should represent all or a subset of
        features.

        - If "missing-only" (default), the imputer mask will only represent
          features containing missing values during fit time.
        - If "all", the imputer mask will represent all features.

    sparse : boolean or "auto", default=None
        Whether the imputer mask format should be sparse or dense.

        - If "auto" (default), the imputer mask will be of same type as
          input.
        - If True, the imputer mask will be a sparse matrix.
        - If False, the imputer mask will be a numpy array.

    error_on_new : boolean, default=None
        If True (default), transform will raise an error when there are
        features with missing values in transform that have no missing values
        in fit. This is applicable only when ``features="missing-only"``.

    Attributes
    ----------
    features_ : ndarray, shape (n_missing_features,) or (n_features,)
        The features indices which will be returned when calling ``transform``.
        They are computed during ``fit``. For ``features='all'``, it is
        to ``range(n_features)``.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.impute import MissingIndicator
    >>> X1 = np.array([[np.nan, 1, 3],
    ...                [4, 0, np.nan],
    ...                [8, 1, 0]])
    >>> X2 = np.array([[5, 1, np.nan],
    ...                [np.nan, 2, 3],
    ...                [2, 4, 0]])
    >>> indicator = MissingIndicator()
    >>> indicator.fit(X1)
    MissingIndicator()
    >>> X2_tr = indicator.transform(X2)
    >>> X2_tr
    array([[False,  True],
           [ True, False],
           [False, False]])

    """
    @_deprecate_positional_args
    def __init__(self, *, missing_values=np.nan, features="missing-only",
                 sparse="auto", error_on_new=True):
        self.missing_values = missing_values
        self.features = features
        self.sparse = sparse
        self.error_on_new = error_on_new

    def _get_missing_features_info(self, X):
        """Compute the imputer mask and the indices of the features
        containing missing values.

        Parameters
        ----------
        X : {ndarray or sparse matrix}, shape (n_samples, n_features)
            The input data with missing values. Note that ``X`` has been
            checked in ``fit`` and ``transform`` before to call this function.

        Returns
        -------
        imputer_mask : {ndarray or sparse matrix}, shape \
        (n_samples, n_features)
            The imputer mask of the original data.

        features_with_missing : ndarray, shape (n_features_with_missing)
            The features containing missing values.

        """
        if sparse.issparse(X):
            mask = _get_mask(X.data, self.missing_values)

            # The imputer mask will be constructed with the same sparse format
            # as X.
            sparse_constructor = (sparse.csr_matrix if X.format == 'csr'
                                  else sparse.csc_matrix)
            imputer_mask = sparse_constructor(
                (mask, X.indices.copy(), X.indptr.copy()),
                shape=X.shape, dtype=bool)
            imputer_mask.eliminate_zeros()

            if self.features == 'missing-only':
                n_missing = imputer_mask.getnnz(axis=0)

            if self.sparse is False:
                imputer_mask = imputer_mask.toarray()
            elif imputer_mask.format == 'csr':
                imputer_mask = imputer_mask.tocsc()
        else:
            imputer_mask = _get_mask(X, self.missing_values)

            if self.features == 'missing-only':
                n_missing = imputer_mask.sum(axis=0)

            if self.sparse is True:
                imputer_mask = sparse.csc_matrix(imputer_mask)

        if self.features == 'all':
            features_indices = np.arange(X.shape[1])
        else:
            features_indices = np.flatnonzero(n_missing)

        return imputer_mask, features_indices

    def _validate_input(self, X, in_fit):
        if not is_scalar_nan(self.missing_values):
            force_all_finite = True
        else:
            force_all_finite = "allow-nan"
        X = self._validate_data(X, reset=in_fit,
                                accept_sparse=('csc', 'csr'), dtype=None,
                                force_all_finite=force_all_finite)
        _check_inputs_dtype(X, self.missing_values)
        if X.dtype.kind not in ("i", "u", "f", "O"):
            raise ValueError("MissingIndicator does not support data with "
                             "dtype {0}. Please provide either a numeric array"
                             " (with a floating point or integer dtype) or "
                             "categorical data represented either as an array "
                             "with integer dtype or an array of string values "
                             "with an object dtype.".format(X.dtype))

        if sparse.issparse(X) and self.missing_values == 0:
            # missing_values = 0 not allowed with sparse data as it would
            # force densification
            raise ValueError("Sparse input with missing_values=0 is "
                             "not supported. Provide a dense "
                             "array instead.")

        return X

    def _fit(self, X, y=None):
        """Fit the transformer on X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Input data, where ``n_samples`` is the number of samples and
            ``n_features`` is the number of features.

        Returns
        -------
        imputer_mask : {ndarray or sparse matrix}, shape (n_samples, \
        n_features)
            The imputer mask of the original data.

        """
        X = self._validate_input(X, in_fit=True)
        self._n_features = X.shape[1]

        if self.features not in ('missing-only', 'all'):
            raise ValueError("'features' has to be either 'missing-only' or "
                             "'all'. Got {} instead.".format(self.features))

        if not ((isinstance(self.sparse, str) and
                self.sparse == "auto") or isinstance(self.sparse, bool)):
            raise ValueError("'sparse' has to be a boolean or 'auto'. "
                             "Got {!r} instead.".format(self.sparse))

        missing_features_info = self._get_missing_features_info(X)
        self.features_ = missing_features_info[1]

        return missing_features_info[0]

    def fit(self, X, y=None):
        """Fit the transformer on X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Input data, where ``n_samples`` is the number of samples and
            ``n_features`` is the number of features.

        Returns
        -------
        self : object
            Returns self.
        """
        self._fit(X, y)

        return self

    def transform(self, X):
        """Generate missing values indicator for X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The input data to complete.

        Returns
        -------
        Xt : {ndarray or sparse matrix}, shape (n_samples, n_features) \
        or (n_samples, n_features_with_missing)
            The missing indicator for input data. The data type of ``Xt``
            will be boolean.

        """
        check_is_fitted(self)
        X = self._validate_input(X, in_fit=False)

        if X.shape[1] != self._n_features:
            raise ValueError("X has a different number of features "
                             "than during fitting.")

        imputer_mask, features = self._get_missing_features_info(X)

        if self.features == "missing-only":
            features_diff_fit_trans = np.setdiff1d(features, self.features_)
            if (self.error_on_new and features_diff_fit_trans.size > 0):
                raise ValueError("The features {} have missing values "
                                 "in transform but have no missing values "
                                 "in fit.".format(features_diff_fit_trans))

            if self.features_.size < self._n_features:
                imputer_mask = imputer_mask[:, self.features_]

        return imputer_mask

    def fit_transform(self, X, y=None):
        """Generate missing values indicator for X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            The input data to complete.

        Returns
        -------
        Xt : {ndarray or sparse matrix}, shape (n_samples, n_features) \
        or (n_samples, n_features_with_missing)
            The missing indicator for input data. The data type of ``Xt``
            will be boolean.

        """
        imputer_mask = self._fit(X, y)

        if self.features_.size < self._n_features:
            imputer_mask = imputer_mask[:, self.features_]

        return imputer_mask

    def _more_tags(self):
        return {'allow_nan': True,
                'X_types': ['2darray', 'string']}