text.py 68.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
# -*- coding: utf-8 -*-
# Authors: Olivier Grisel <olivier.grisel@ensta.org>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Lars Buitinck
#          Robert Layton <robertlayton@gmail.com>
#          Jochen Wersdörfer <jochen@wersdoerfer.de>
#          Roman Sinayev <roman.sinayev@gmail.com>
#
# License: BSD 3 clause
"""
The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to
build feature vectors from text documents.
"""

import array
from collections import defaultdict
from collections.abc import Mapping
from functools import partial
import numbers
from operator import itemgetter
import re
import unicodedata
import warnings

import numpy as np
import scipy.sparse as sp

from ..base import BaseEstimator, TransformerMixin
from ..preprocessing import normalize
from ._hash import FeatureHasher
from ._stop_words import ENGLISH_STOP_WORDS
from ..utils.validation import check_is_fitted, check_array, FLOAT_DTYPES
from ..utils import _IS_32BIT, deprecated
from ..utils.fixes import _astype_copy_false
from ..exceptions import NotFittedError
from ..utils.validation import _deprecate_positional_args


__all__ = ['HashingVectorizer',
           'CountVectorizer',
           'ENGLISH_STOP_WORDS',
           'TfidfTransformer',
           'TfidfVectorizer',
           'strip_accents_ascii',
           'strip_accents_unicode',
           'strip_tags']


def _preprocess(doc, accent_function=None, lower=False):
    """Chain together an optional series of text preprocessing steps to
    apply to a document.

    Parameters
    ----------
    doc: str
        The string to preprocess
    accent_function: callable, default=None
        Function for handling accented characters. Common strategies include
        normalizing and removing.
    lower: bool, default=False
        Whether to use str.lower to lowercase all fo the text

    Returns
    -------
    doc: str
        preprocessed string
    """
    if lower:
        doc = doc.lower()
    if accent_function is not None:
        doc = accent_function(doc)
    return doc


def _analyze(doc, analyzer=None, tokenizer=None, ngrams=None,
             preprocessor=None, decoder=None, stop_words=None):
    """Chain together an optional series of text processing steps to go from
    a single document to ngrams, with or without tokenizing or preprocessing.

    If analyzer is used, only the decoder argument is used, as the analyzer is
    intended to replace the preprocessor, tokenizer, and ngrams steps.

    Parameters
    ----------
    analyzer: callable, default=None
    tokenizer: callable, default=None
    ngrams: callable, default=None
    preprocessor: callable, default=None
    decoder: callable, default=None
    stop_words: list, default=None

    Returns
    -------
    ngrams: list
        A sequence of tokens, possibly with pairs, triples, etc.
    """

    if decoder is not None:
        doc = decoder(doc)
    if analyzer is not None:
        doc = analyzer(doc)
    else:
        if preprocessor is not None:
            doc = preprocessor(doc)
        if tokenizer is not None:
            doc = tokenizer(doc)
        if ngrams is not None:
            if stop_words is not None:
                doc = ngrams(doc, stop_words)
            else:
                doc = ngrams(doc)
    return doc


def strip_accents_unicode(s):
    """Transform accentuated unicode symbols into their simple counterpart

    Warning: the python-level loop and join operations make this
    implementation 20 times slower than the strip_accents_ascii basic
    normalization.

    Parameters
    ----------
    s : string
        The string to strip

    See Also
    --------
    strip_accents_ascii
        Remove accentuated char for any unicode symbol that has a direct
        ASCII equivalent.
    """
    try:
        # If `s` is ASCII-compatible, then it does not contain any accented
        # characters and we can avoid an expensive list comprehension
        s.encode("ASCII", errors="strict")
        return s
    except UnicodeEncodeError:
        normalized = unicodedata.normalize('NFKD', s)
        return ''.join([c for c in normalized if not unicodedata.combining(c)])


def strip_accents_ascii(s):
    """Transform accentuated unicode symbols into ascii or nothing

    Warning: this solution is only suited for languages that have a direct
    transliteration to ASCII symbols.

    Parameters
    ----------
    s : string
        The string to strip

    See Also
    --------
    strip_accents_unicode
        Remove accentuated char for any unicode symbol.
    """
    nkfd_form = unicodedata.normalize('NFKD', s)
    return nkfd_form.encode('ASCII', 'ignore').decode('ASCII')


def strip_tags(s):
    """Basic regexp based HTML / XML tag stripper function

    For serious HTML/XML preprocessing you should rather use an external
    library such as lxml or BeautifulSoup.

    Parameters
    ----------
    s : string
        The string to strip
    """
    return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s)


def _check_stop_list(stop):
    if stop == "english":
        return ENGLISH_STOP_WORDS
    elif isinstance(stop, str):
        raise ValueError("not a built-in stop list: %s" % stop)
    elif stop is None:
        return None
    else:  # assume it's a collection
        return frozenset(stop)


class _VectorizerMixin:
    """Provides common code for text vectorizers (tokenization logic)."""

    _white_spaces = re.compile(r"\s\s+")

    def decode(self, doc):
        """Decode the input into a string of unicode symbols.

        The decoding strategy depends on the vectorizer parameters.

        Parameters
        ----------
        doc : str
            The string to decode.

        Returns
        -------
        doc: str
            A string of unicode symbols.
        """
        if self.input == 'filename':
            with open(doc, 'rb') as fh:
                doc = fh.read()

        elif self.input == 'file':
            doc = doc.read()

        if isinstance(doc, bytes):
            doc = doc.decode(self.encoding, self.decode_error)

        if doc is np.nan:
            raise ValueError("np.nan is an invalid document, expected byte or "
                             "unicode string.")

        return doc

    def _word_ngrams(self, tokens, stop_words=None):
        """Turn tokens into a sequence of n-grams after stop words filtering"""
        # handle stop words
        if stop_words is not None:
            tokens = [w for w in tokens if w not in stop_words]

        # handle token n-grams
        min_n, max_n = self.ngram_range
        if max_n != 1:
            original_tokens = tokens
            if min_n == 1:
                # no need to do any slicing for unigrams
                # just iterate through the original tokens
                tokens = list(original_tokens)
                min_n += 1
            else:
                tokens = []

            n_original_tokens = len(original_tokens)

            # bind method outside of loop to reduce overhead
            tokens_append = tokens.append
            space_join = " ".join

            for n in range(min_n,
                           min(max_n + 1, n_original_tokens + 1)):
                for i in range(n_original_tokens - n + 1):
                    tokens_append(space_join(original_tokens[i: i + n]))

        return tokens

    def _char_ngrams(self, text_document):
        """Tokenize text_document into a sequence of character n-grams"""
        # normalize white spaces
        text_document = self._white_spaces.sub(" ", text_document)

        text_len = len(text_document)
        min_n, max_n = self.ngram_range
        if min_n == 1:
            # no need to do any slicing for unigrams
            # iterate through the string
            ngrams = list(text_document)
            min_n += 1
        else:
            ngrams = []

        # bind method outside of loop to reduce overhead
        ngrams_append = ngrams.append

        for n in range(min_n, min(max_n + 1, text_len + 1)):
            for i in range(text_len - n + 1):
                ngrams_append(text_document[i: i + n])
        return ngrams

    def _char_wb_ngrams(self, text_document):
        """Whitespace sensitive char-n-gram tokenization.

        Tokenize text_document into a sequence of character n-grams
        operating only inside word boundaries. n-grams at the edges
        of words are padded with space."""
        # normalize white spaces
        text_document = self._white_spaces.sub(" ", text_document)

        min_n, max_n = self.ngram_range
        ngrams = []

        # bind method outside of loop to reduce overhead
        ngrams_append = ngrams.append

        for w in text_document.split():
            w = ' ' + w + ' '
            w_len = len(w)
            for n in range(min_n, max_n + 1):
                offset = 0
                ngrams_append(w[offset:offset + n])
                while offset + n < w_len:
                    offset += 1
                    ngrams_append(w[offset:offset + n])
                if offset == 0:   # count a short word (w_len < n) only once
                    break
        return ngrams

    def build_preprocessor(self):
        """Return a function to preprocess the text before tokenization.

        Returns
        -------
        preprocessor: callable
              A function to preprocess the text before tokenization.
        """
        if self.preprocessor is not None:
            return self.preprocessor

        # accent stripping
        if not self.strip_accents:
            strip_accents = None
        elif callable(self.strip_accents):
            strip_accents = self.strip_accents
        elif self.strip_accents == 'ascii':
            strip_accents = strip_accents_ascii
        elif self.strip_accents == 'unicode':
            strip_accents = strip_accents_unicode
        else:
            raise ValueError('Invalid value for "strip_accents": %s' %
                             self.strip_accents)

        return partial(
            _preprocess, accent_function=strip_accents, lower=self.lowercase
        )

    def build_tokenizer(self):
        """Return a function that splits a string into a sequence of tokens.

        Returns
        -------
        tokenizer: callable
              A function to split a string into a sequence of tokens.
        """
        if self.tokenizer is not None:
            return self.tokenizer
        token_pattern = re.compile(self.token_pattern)
        return token_pattern.findall

    def get_stop_words(self):
        """Build or fetch the effective stop words list.

        Returns
        -------
        stop_words: list or None
                A list of stop words.
        """
        return _check_stop_list(self.stop_words)

    def _check_stop_words_consistency(self, stop_words, preprocess, tokenize):
        """Check if stop words are consistent

        Returns
        -------
        is_consistent : True if stop words are consistent with the preprocessor
                        and tokenizer, False if they are not, None if the check
                        was previously performed, "error" if it could not be
                        performed (e.g. because of the use of a custom
                        preprocessor / tokenizer)
        """
        if id(self.stop_words) == getattr(self, '_stop_words_id', None):
            # Stop words are were previously validated
            return None

        # NB: stop_words is validated, unlike self.stop_words
        try:
            inconsistent = set()
            for w in stop_words or ():
                tokens = list(tokenize(preprocess(w)))
                for token in tokens:
                    if token not in stop_words:
                        inconsistent.add(token)
            self._stop_words_id = id(self.stop_words)

            if inconsistent:
                warnings.warn('Your stop_words may be inconsistent with '
                              'your preprocessing. Tokenizing the stop '
                              'words generated tokens %r not in '
                              'stop_words.' % sorted(inconsistent))
            return not inconsistent
        except Exception:
            # Failed to check stop words consistency (e.g. because a custom
            # preprocessor or tokenizer was used)
            self._stop_words_id = id(self.stop_words)
            return 'error'

    def build_analyzer(self):
        """Return a callable that handles preprocessing, tokenization
        and n-grams generation.

        Returns
        -------
        analyzer: callable
            A function to handle preprocessing, tokenization
            and n-grams generation.
        """

        if callable(self.analyzer):
            return partial(
                _analyze, analyzer=self.analyzer, decoder=self.decode
            )

        preprocess = self.build_preprocessor()

        if self.analyzer == 'char':
            return partial(_analyze, ngrams=self._char_ngrams,
                           preprocessor=preprocess, decoder=self.decode)

        elif self.analyzer == 'char_wb':

            return partial(_analyze, ngrams=self._char_wb_ngrams,
                           preprocessor=preprocess, decoder=self.decode)

        elif self.analyzer == 'word':
            stop_words = self.get_stop_words()
            tokenize = self.build_tokenizer()
            self._check_stop_words_consistency(stop_words, preprocess,
                                               tokenize)
            return partial(_analyze, ngrams=self._word_ngrams,
                           tokenizer=tokenize, preprocessor=preprocess,
                           decoder=self.decode, stop_words=stop_words)

        else:
            raise ValueError('%s is not a valid tokenization scheme/analyzer' %
                             self.analyzer)

    def _validate_vocabulary(self):
        vocabulary = self.vocabulary
        if vocabulary is not None:
            if isinstance(vocabulary, set):
                vocabulary = sorted(vocabulary)
            if not isinstance(vocabulary, Mapping):
                vocab = {}
                for i, t in enumerate(vocabulary):
                    if vocab.setdefault(t, i) != i:
                        msg = "Duplicate term in vocabulary: %r" % t
                        raise ValueError(msg)
                vocabulary = vocab
            else:
                indices = set(vocabulary.values())
                if len(indices) != len(vocabulary):
                    raise ValueError("Vocabulary contains repeated indices.")
                for i in range(len(vocabulary)):
                    if i not in indices:
                        msg = ("Vocabulary of size %d doesn't contain index "
                               "%d." % (len(vocabulary), i))
                        raise ValueError(msg)
            if not vocabulary:
                raise ValueError("empty vocabulary passed to fit")
            self.fixed_vocabulary_ = True
            self.vocabulary_ = dict(vocabulary)
        else:
            self.fixed_vocabulary_ = False

    def _check_vocabulary(self):
        """Check if vocabulary is empty or missing (not fitted)"""
        if not hasattr(self, 'vocabulary_'):
            self._validate_vocabulary()
            if not self.fixed_vocabulary_:
                raise NotFittedError("Vocabulary not fitted or provided")

        if len(self.vocabulary_) == 0:
            raise ValueError("Vocabulary is empty")

    def _validate_params(self):
        """Check validity of ngram_range parameter"""
        min_n, max_m = self.ngram_range
        if min_n > max_m:
            raise ValueError(
                "Invalid value for ngram_range=%s "
                "lower boundary larger than the upper boundary."
                % str(self.ngram_range))

    def _warn_for_unused_params(self):

        if self.tokenizer is not None and self.token_pattern is not None:
            warnings.warn("The parameter 'token_pattern' will not be used"
                          " since 'tokenizer' is not None'")

        if self.preprocessor is not None and callable(self.analyzer):
            warnings.warn("The parameter 'preprocessor' will not be used"
                          " since 'analyzer' is callable'")

        if (self.ngram_range != (1, 1) and self.ngram_range is not None
                and callable(self.analyzer)):
            warnings.warn("The parameter 'ngram_range' will not be used"
                          " since 'analyzer' is callable'")
        if self.analyzer != 'word' or callable(self.analyzer):
            if self.stop_words is not None:
                warnings.warn("The parameter 'stop_words' will not be used"
                              " since 'analyzer' != 'word'")
            if self.token_pattern is not None and \
               self.token_pattern != r"(?u)\b\w\w+\b":
                warnings.warn("The parameter 'token_pattern' will not be used"
                              " since 'analyzer' != 'word'")
            if self.tokenizer is not None:
                warnings.warn("The parameter 'tokenizer' will not be used"
                              " since 'analyzer' != 'word'")


@deprecated("VectorizerMixin is deprecated in version "
            "0.22 and will be removed in version 0.24.")
class VectorizerMixin(_VectorizerMixin):
    pass


class HashingVectorizer(TransformerMixin, _VectorizerMixin, BaseEstimator):
    """Convert a collection of text documents to a matrix of token occurrences

    It turns a collection of text documents into a scipy.sparse matrix holding
    token occurrence counts (or binary occurrence information), possibly
    normalized as token frequencies if norm='l1' or projected on the euclidean
    unit sphere if norm='l2'.

    This text vectorizer implementation uses the hashing trick to find the
    token string name to feature integer index mapping.

    This strategy has several advantages:

    - it is very low memory scalable to large datasets as there is no need to
      store a vocabulary dictionary in memory

    - it is fast to pickle and un-pickle as it holds no state besides the
      constructor parameters

    - it can be used in a streaming (partial fit) or parallel pipeline as there
      is no state computed during fit.

    There are also a couple of cons (vs using a CountVectorizer with an
    in-memory vocabulary):

    - there is no way to compute the inverse transform (from feature indices to
      string feature names) which can be a problem when trying to introspect
      which features are most important to a model.

    - there can be collisions: distinct tokens can be mapped to the same
      feature index. However in practice this is rarely an issue if n_features
      is large enough (e.g. 2 ** 18 for text classification problems).

    - no IDF weighting as this would render the transformer stateful.

    The hash function employed is the signed 32-bit version of Murmurhash3.

    Read more in the :ref:`User Guide <text_feature_extraction>`.

    Parameters
    ----------

    input : string {'filename', 'file', 'content'}, default='content'
        If 'filename', the sequence passed as an argument to fit is
        expected to be a list of filenames that need reading to fetch
        the raw content to analyze.

        If 'file', the sequence items must have a 'read' method (file-like
        object) that is called to fetch the bytes in memory.

        Otherwise the input is expected to be a sequence of items that
        can be of type string or byte.

    encoding : string, default='utf-8'
        If bytes or files are given to analyze, this encoding is used to
        decode.

    decode_error : {'strict', 'ignore', 'replace'}, default='strict'
        Instruction on what to do if a byte sequence is given to analyze that
        contains characters not of the given `encoding`. By default, it is
        'strict', meaning that a UnicodeDecodeError will be raised. Other
        values are 'ignore' and 'replace'.

    strip_accents : {'ascii', 'unicode'}, default=None
        Remove accents and perform other character normalization
        during the preprocessing step.
        'ascii' is a fast method that only works on characters that have
        an direct ASCII mapping.
        'unicode' is a slightly slower method that works on any characters.
        None (default) does nothing.

        Both 'ascii' and 'unicode' use NFKD normalization from
        :func:`unicodedata.normalize`.

    lowercase : bool, default=True
        Convert all characters to lowercase before tokenizing.

    preprocessor : callable, default=None
        Override the preprocessing (string transformation) stage while
        preserving the tokenizing and n-grams generation steps.
        Only applies if ``analyzer is not callable``.

    tokenizer : callable, default=None
        Override the string tokenization step while preserving the
        preprocessing and n-grams generation steps.
        Only applies if ``analyzer == 'word'``.

    stop_words : string {'english'}, list, default=None
        If 'english', a built-in stop word list for English is used.
        There are several known issues with 'english' and you should
        consider an alternative (see :ref:`stop_words`).

        If a list, that list is assumed to contain stop words, all of which
        will be removed from the resulting tokens.
        Only applies if ``analyzer == 'word'``.

    token_pattern : string
        Regular expression denoting what constitutes a "token", only used
        if ``analyzer == 'word'``. The default regexp selects tokens of 2
        or more alphanumeric characters (punctuation is completely ignored
        and always treated as a token separator).

    ngram_range : tuple (min_n, max_n), default=(1, 1)
        The lower and upper boundary of the range of n-values for different
        n-grams to be extracted. All values of n such that min_n <= n <= max_n
        will be used. For example an ``ngram_range`` of ``(1, 1)`` means only
        unigrams, ``(1, 2)`` means unigrams and bigrams, and ``(2, 2)`` means
        only bigrams.
        Only applies if ``analyzer is not callable``.

    analyzer : string, {'word', 'char', 'char_wb'} or callable, \
            default='word'
        Whether the feature should be made of word or character n-grams.
        Option 'char_wb' creates character n-grams only from text inside
        word boundaries; n-grams at the edges of words are padded with space.

        If a callable is passed it is used to extract the sequence of features
        out of the raw, unprocessed input.

        .. versionchanged:: 0.21

        Since v0.21, if ``input`` is ``filename`` or ``file``, the data is
        first read from the file and then passed to the given callable
        analyzer.

    n_features : int, default=(2 ** 20)
        The number of features (columns) in the output matrices. Small numbers
        of features are likely to cause hash collisions, but large numbers
        will cause larger coefficient dimensions in linear learners.

    binary : bool, default=False.
        If True, all non zero counts are set to 1. This is useful for discrete
        probabilistic models that model binary events rather than integer
        counts.

    norm : {'l1', 'l2'}, default='l2'
        Norm used to normalize term vectors. None for no normalization.

    alternate_sign : bool, default=True
        When True, an alternating sign is added to the features as to
        approximately conserve the inner product in the hashed space even for
        small n_features. This approach is similar to sparse random projection.

        .. versionadded:: 0.19

    dtype : type, default=np.float64
        Type of the matrix returned by fit_transform() or transform().

    Examples
    --------
    >>> from sklearn.feature_extraction.text import HashingVectorizer
    >>> corpus = [
    ...     'This is the first document.',
    ...     'This document is the second document.',
    ...     'And this is the third one.',
    ...     'Is this the first document?',
    ... ]
    >>> vectorizer = HashingVectorizer(n_features=2**4)
    >>> X = vectorizer.fit_transform(corpus)
    >>> print(X.shape)
    (4, 16)

    See Also
    --------
    CountVectorizer, TfidfVectorizer

    """
    @_deprecate_positional_args
    def __init__(self, *, input='content', encoding='utf-8',
                 decode_error='strict', strip_accents=None,
                 lowercase=True, preprocessor=None, tokenizer=None,
                 stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
                 ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20),
                 binary=False, norm='l2', alternate_sign=True,
                 dtype=np.float64):
        self.input = input
        self.encoding = encoding
        self.decode_error = decode_error
        self.strip_accents = strip_accents
        self.preprocessor = preprocessor
        self.tokenizer = tokenizer
        self.analyzer = analyzer
        self.lowercase = lowercase
        self.token_pattern = token_pattern
        self.stop_words = stop_words
        self.n_features = n_features
        self.ngram_range = ngram_range
        self.binary = binary
        self.norm = norm
        self.alternate_sign = alternate_sign
        self.dtype = dtype

    def partial_fit(self, X, y=None):
        """Does nothing: this transformer is stateless.

        This method is just there to mark the fact that this transformer
        can work in a streaming setup.

        Parameters
        ----------
        X : ndarray of shape [n_samples, n_features]
            Training data.
        """
        return self

    def fit(self, X, y=None):
        """Does nothing: this transformer is stateless.

        Parameters
        ----------
        X : ndarray of shape [n_samples, n_features]
            Training data.
        """
        # triggers a parameter validation
        if isinstance(X, str):
            raise ValueError(
                "Iterable over raw text documents expected, "
                "string object received.")

        self._warn_for_unused_params()
        self._validate_params()

        self._get_hasher().fit(X, y=y)
        return self

    def transform(self, X):
        """Transform a sequence of documents to a document-term matrix.

        Parameters
        ----------
        X : iterable over raw text documents, length = n_samples
            Samples. Each sample must be a text document (either bytes or
            unicode strings, file name or file object depending on the
            constructor argument) which will be tokenized and hashed.

        Returns
        -------
        X : sparse matrix of shape (n_samples, n_features)
            Document-term matrix.
        """
        if isinstance(X, str):
            raise ValueError(
                "Iterable over raw text documents expected, "
                "string object received.")

        self._validate_params()

        analyzer = self.build_analyzer()
        X = self._get_hasher().transform(analyzer(doc) for doc in X)
        if self.binary:
            X.data.fill(1)
        if self.norm is not None:
            X = normalize(X, norm=self.norm, copy=False)
        return X

    def fit_transform(self, X, y=None):
        """Transform a sequence of documents to a document-term matrix.

        Parameters
        ----------
        X : iterable over raw text documents, length = n_samples
            Samples. Each sample must be a text document (either bytes or
            unicode strings, file name or file object depending on the
            constructor argument) which will be tokenized and hashed.
        y : any
            Ignored. This parameter exists only for compatibility with
            sklearn.pipeline.Pipeline.

        Returns
        -------
        X : sparse matrix of shape (n_samples, n_features)
            Document-term matrix.
        """
        return self.fit(X, y).transform(X)

    def _get_hasher(self):
        return FeatureHasher(n_features=self.n_features,
                             input_type='string', dtype=self.dtype,
                             alternate_sign=self.alternate_sign)

    def _more_tags(self):
        return {'X_types': ['string']}


def _document_frequency(X):
    """Count the number of non-zero values for each feature in sparse X."""
    if sp.isspmatrix_csr(X):
        return np.bincount(X.indices, minlength=X.shape[1])
    else:
        return np.diff(X.indptr)


class CountVectorizer(_VectorizerMixin, BaseEstimator):
    """Convert a collection of text documents to a matrix of token counts

    This implementation produces a sparse representation of the counts using
    scipy.sparse.csr_matrix.

    If you do not provide an a-priori dictionary and you do not use an analyzer
    that does some kind of feature selection then the number of features will
    be equal to the vocabulary size found by analyzing the data.

    Read more in the :ref:`User Guide <text_feature_extraction>`.

    Parameters
    ----------
    input : string {'filename', 'file', 'content'}, default='content'
        If 'filename', the sequence passed as an argument to fit is
        expected to be a list of filenames that need reading to fetch
        the raw content to analyze.

        If 'file', the sequence items must have a 'read' method (file-like
        object) that is called to fetch the bytes in memory.

        Otherwise the input is expected to be a sequence of items that
        can be of type string or byte.

    encoding : string, default='utf-8'
        If bytes or files are given to analyze, this encoding is used to
        decode.

    decode_error : {'strict', 'ignore', 'replace'}, default='strict'
        Instruction on what to do if a byte sequence is given to analyze that
        contains characters not of the given `encoding`. By default, it is
        'strict', meaning that a UnicodeDecodeError will be raised. Other
        values are 'ignore' and 'replace'.

    strip_accents : {'ascii', 'unicode'}, default=None
        Remove accents and perform other character normalization
        during the preprocessing step.
        'ascii' is a fast method that only works on characters that have
        an direct ASCII mapping.
        'unicode' is a slightly slower method that works on any characters.
        None (default) does nothing.

        Both 'ascii' and 'unicode' use NFKD normalization from
        :func:`unicodedata.normalize`.

    lowercase : bool, default=True
        Convert all characters to lowercase before tokenizing.

    preprocessor : callable, default=None
        Override the preprocessing (string transformation) stage while
        preserving the tokenizing and n-grams generation steps.
        Only applies if ``analyzer is not callable``.

    tokenizer : callable, default=None
        Override the string tokenization step while preserving the
        preprocessing and n-grams generation steps.
        Only applies if ``analyzer == 'word'``.

    stop_words : string {'english'}, list, default=None
        If 'english', a built-in stop word list for English is used.
        There are several known issues with 'english' and you should
        consider an alternative (see :ref:`stop_words`).

        If a list, that list is assumed to contain stop words, all of which
        will be removed from the resulting tokens.
        Only applies if ``analyzer == 'word'``.

        If None, no stop words will be used. max_df can be set to a value
        in the range [0.7, 1.0) to automatically detect and filter stop
        words based on intra corpus document frequency of terms.

    token_pattern : string
        Regular expression denoting what constitutes a "token", only used
        if ``analyzer == 'word'``. The default regexp select tokens of 2
        or more alphanumeric characters (punctuation is completely ignored
        and always treated as a token separator).

    ngram_range : tuple (min_n, max_n), default=(1, 1)
        The lower and upper boundary of the range of n-values for different
        word n-grams or char n-grams to be extracted. All values of n such
        such that min_n <= n <= max_n will be used. For example an
        ``ngram_range`` of ``(1, 1)`` means only unigrams, ``(1, 2)`` means
        unigrams and bigrams, and ``(2, 2)`` means only bigrams.
        Only applies if ``analyzer is not callable``.

    analyzer : string, {'word', 'char', 'char_wb'} or callable, \
            default='word'
        Whether the feature should be made of word n-gram or character
        n-grams.
        Option 'char_wb' creates character n-grams only from text inside
        word boundaries; n-grams at the edges of words are padded with space.

        If a callable is passed it is used to extract the sequence of features
        out of the raw, unprocessed input.

        .. versionchanged:: 0.21

        Since v0.21, if ``input`` is ``filename`` or ``file``, the data is
        first read from the file and then passed to the given callable
        analyzer.

    max_df : float in range [0.0, 1.0] or int, default=1.0
        When building the vocabulary ignore terms that have a document
        frequency strictly higher than the given threshold (corpus-specific
        stop words).
        If float, the parameter represents a proportion of documents, integer
        absolute counts.
        This parameter is ignored if vocabulary is not None.

    min_df : float in range [0.0, 1.0] or int, default=1
        When building the vocabulary ignore terms that have a document
        frequency strictly lower than the given threshold. This value is also
        called cut-off in the literature.
        If float, the parameter represents a proportion of documents, integer
        absolute counts.
        This parameter is ignored if vocabulary is not None.

    max_features : int, default=None
        If not None, build a vocabulary that only consider the top
        max_features ordered by term frequency across the corpus.

        This parameter is ignored if vocabulary is not None.

    vocabulary : Mapping or iterable, default=None
        Either a Mapping (e.g., a dict) where keys are terms and values are
        indices in the feature matrix, or an iterable over terms. If not
        given, a vocabulary is determined from the input documents. Indices
        in the mapping should not be repeated and should not have any gap
        between 0 and the largest index.

    binary : bool, default=False
        If True, all non zero counts are set to 1. This is useful for discrete
        probabilistic models that model binary events rather than integer
        counts.

    dtype : type, default=np.int64
        Type of the matrix returned by fit_transform() or transform().

    Attributes
    ----------
    vocabulary_ : dict
        A mapping of terms to feature indices.

    fixed_vocabulary_: boolean
        True if a fixed vocabulary of term to indices mapping
        is provided by the user

    stop_words_ : set
        Terms that were ignored because they either:

          - occurred in too many documents (`max_df`)
          - occurred in too few documents (`min_df`)
          - were cut off by feature selection (`max_features`).

        This is only available if no vocabulary was given.

    Examples
    --------
    >>> from sklearn.feature_extraction.text import CountVectorizer
    >>> corpus = [
    ...     'This is the first document.',
    ...     'This document is the second document.',
    ...     'And this is the third one.',
    ...     'Is this the first document?',
    ... ]
    >>> vectorizer = CountVectorizer()
    >>> X = vectorizer.fit_transform(corpus)
    >>> print(vectorizer.get_feature_names())
    ['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
    >>> print(X.toarray())
    [[0 1 1 1 0 0 1 0 1]
     [0 2 0 1 0 1 1 0 1]
     [1 0 0 1 1 0 1 1 1]
     [0 1 1 1 0 0 1 0 1]]
    >>> vectorizer2 = CountVectorizer(analyzer='word', ngram_range=(2, 2))
    >>> X2 = vectorizer2.fit_transform(corpus)
    >>> print(vectorizer2.get_feature_names())
    ['and this', 'document is', 'first document', 'is the', 'is this',
    'second document', 'the first', 'the second', 'the third', 'third one',
     'this document', 'this is', 'this the']
     >>> print(X2.toarray())
     [[0 0 1 1 0 0 1 0 0 0 0 1 0]
     [0 1 0 1 0 1 0 1 0 0 1 0 0]
     [1 0 0 1 0 0 0 0 1 1 0 1 0]
     [0 0 1 0 1 0 1 0 0 0 0 0 1]]

    See Also
    --------
    HashingVectorizer, TfidfVectorizer

    Notes
    -----
    The ``stop_words_`` attribute can get large and increase the model size
    when pickling. This attribute is provided only for introspection and can
    be safely removed using delattr or set to None before pickling.
    """
    @_deprecate_positional_args
    def __init__(self, *, input='content', encoding='utf-8',
                 decode_error='strict', strip_accents=None,
                 lowercase=True, preprocessor=None, tokenizer=None,
                 stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
                 ngram_range=(1, 1), analyzer='word',
                 max_df=1.0, min_df=1, max_features=None,
                 vocabulary=None, binary=False, dtype=np.int64):
        self.input = input
        self.encoding = encoding
        self.decode_error = decode_error
        self.strip_accents = strip_accents
        self.preprocessor = preprocessor
        self.tokenizer = tokenizer
        self.analyzer = analyzer
        self.lowercase = lowercase
        self.token_pattern = token_pattern
        self.stop_words = stop_words
        self.max_df = max_df
        self.min_df = min_df
        if max_df < 0 or min_df < 0:
            raise ValueError("negative value for max_df or min_df")
        self.max_features = max_features
        if max_features is not None:
            if (not isinstance(max_features, numbers.Integral) or
                    max_features <= 0):
                raise ValueError(
                    "max_features=%r, neither a positive integer nor None"
                    % max_features)
        self.ngram_range = ngram_range
        self.vocabulary = vocabulary
        self.binary = binary
        self.dtype = dtype

    def _sort_features(self, X, vocabulary):
        """Sort features by name

        Returns a reordered matrix and modifies the vocabulary in place
        """
        sorted_features = sorted(vocabulary.items())
        map_index = np.empty(len(sorted_features), dtype=X.indices.dtype)
        for new_val, (term, old_val) in enumerate(sorted_features):
            vocabulary[term] = new_val
            map_index[old_val] = new_val

        X.indices = map_index.take(X.indices, mode='clip')
        return X

    def _limit_features(self, X, vocabulary, high=None, low=None,
                        limit=None):
        """Remove too rare or too common features.

        Prune features that are non zero in more samples than high or less
        documents than low, modifying the vocabulary, and restricting it to
        at most the limit most frequent.

        This does not prune samples with zero features.
        """
        if high is None and low is None and limit is None:
            return X, set()

        # Calculate a mask based on document frequencies
        dfs = _document_frequency(X)
        mask = np.ones(len(dfs), dtype=bool)
        if high is not None:
            mask &= dfs <= high
        if low is not None:
            mask &= dfs >= low
        if limit is not None and mask.sum() > limit:
            tfs = np.asarray(X.sum(axis=0)).ravel()
            mask_inds = (-tfs[mask]).argsort()[:limit]
            new_mask = np.zeros(len(dfs), dtype=bool)
            new_mask[np.where(mask)[0][mask_inds]] = True
            mask = new_mask

        new_indices = np.cumsum(mask) - 1  # maps old indices to new
        removed_terms = set()
        for term, old_index in list(vocabulary.items()):
            if mask[old_index]:
                vocabulary[term] = new_indices[old_index]
            else:
                del vocabulary[term]
                removed_terms.add(term)
        kept_indices = np.where(mask)[0]
        if len(kept_indices) == 0:
            raise ValueError("After pruning, no terms remain. Try a lower"
                             " min_df or a higher max_df.")
        return X[:, kept_indices], removed_terms

    def _count_vocab(self, raw_documents, fixed_vocab):
        """Create sparse feature matrix, and vocabulary where fixed_vocab=False
        """
        if fixed_vocab:
            vocabulary = self.vocabulary_
        else:
            # Add a new value when a new vocabulary item is seen
            vocabulary = defaultdict()
            vocabulary.default_factory = vocabulary.__len__

        analyze = self.build_analyzer()
        j_indices = []
        indptr = []

        values = _make_int_array()
        indptr.append(0)
        for doc in raw_documents:
            feature_counter = {}
            for feature in analyze(doc):
                try:
                    feature_idx = vocabulary[feature]
                    if feature_idx not in feature_counter:
                        feature_counter[feature_idx] = 1
                    else:
                        feature_counter[feature_idx] += 1
                except KeyError:
                    # Ignore out-of-vocabulary items for fixed_vocab=True
                    continue

            j_indices.extend(feature_counter.keys())
            values.extend(feature_counter.values())
            indptr.append(len(j_indices))

        if not fixed_vocab:
            # disable defaultdict behaviour
            vocabulary = dict(vocabulary)
            if not vocabulary:
                raise ValueError("empty vocabulary; perhaps the documents only"
                                 " contain stop words")

        if indptr[-1] > np.iinfo(np.int32).max:  # = 2**31 - 1
            if _IS_32BIT:
                raise ValueError(('sparse CSR array has {} non-zero '
                                  'elements and requires 64 bit indexing, '
                                  'which is unsupported with 32 bit Python.')
                                 .format(indptr[-1]))
            indices_dtype = np.int64

        else:
            indices_dtype = np.int32
        j_indices = np.asarray(j_indices, dtype=indices_dtype)
        indptr = np.asarray(indptr, dtype=indices_dtype)
        values = np.frombuffer(values, dtype=np.intc)

        X = sp.csr_matrix((values, j_indices, indptr),
                          shape=(len(indptr) - 1, len(vocabulary)),
                          dtype=self.dtype)
        X.sort_indices()
        return vocabulary, X

    def fit(self, raw_documents, y=None):
        """Learn a vocabulary dictionary of all tokens in the raw documents.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which yields either str, unicode or file objects.

        Returns
        -------
        self
        """
        self._warn_for_unused_params()
        self.fit_transform(raw_documents)
        return self

    def fit_transform(self, raw_documents, y=None):
        """Learn the vocabulary dictionary and return document-term matrix.

        This is equivalent to fit followed by transform, but more efficiently
        implemented.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which yields either str, unicode or file objects.

        Returns
        -------
        X : array of shape (n_samples, n_features)
            Document-term matrix.
        """
        # We intentionally don't call the transform method to make
        # fit_transform overridable without unwanted side effects in
        # TfidfVectorizer.
        if isinstance(raw_documents, str):
            raise ValueError(
                "Iterable over raw text documents expected, "
                "string object received.")

        self._validate_params()
        self._validate_vocabulary()
        max_df = self.max_df
        min_df = self.min_df
        max_features = self.max_features

        vocabulary, X = self._count_vocab(raw_documents,
                                          self.fixed_vocabulary_)

        if self.binary:
            X.data.fill(1)

        if not self.fixed_vocabulary_:
            n_doc = X.shape[0]
            max_doc_count = (max_df
                             if isinstance(max_df, numbers.Integral)
                             else max_df * n_doc)
            min_doc_count = (min_df
                             if isinstance(min_df, numbers.Integral)
                             else min_df * n_doc)
            if max_doc_count < min_doc_count:
                raise ValueError(
                    "max_df corresponds to < documents than min_df")
            if max_features is not None:
                X = self._sort_features(X, vocabulary)
            X, self.stop_words_ = self._limit_features(X, vocabulary,
                                                       max_doc_count,
                                                       min_doc_count,
                                                       max_features)
            if max_features is None:
                X = self._sort_features(X, vocabulary)
            self.vocabulary_ = vocabulary

        return X

    def transform(self, raw_documents):
        """Transform documents to document-term matrix.

        Extract token counts out of raw text documents using the vocabulary
        fitted with fit or the one provided to the constructor.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which yields either str, unicode or file objects.

        Returns
        -------
        X : sparse matrix of shape (n_samples, n_features)
            Document-term matrix.
        """
        if isinstance(raw_documents, str):
            raise ValueError(
                "Iterable over raw text documents expected, "
                "string object received.")
        self._check_vocabulary()

        # use the same matrix-building strategy as fit_transform
        _, X = self._count_vocab(raw_documents, fixed_vocab=True)
        if self.binary:
            X.data.fill(1)
        return X

    def inverse_transform(self, X):
        """Return terms per document with nonzero entries in X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Document-term matrix.

        Returns
        -------
        X_inv : list of arrays of shape (n_samples,)
            List of arrays of terms.
        """
        self._check_vocabulary()

        if sp.issparse(X):
            # We need CSR format for fast row manipulations.
            X = X.tocsr()
        else:
            # We need to convert X to a matrix, so that the indexing
            # returns 2D objects
            X = np.asmatrix(X)
        n_samples = X.shape[0]

        terms = np.array(list(self.vocabulary_.keys()))
        indices = np.array(list(self.vocabulary_.values()))
        inverse_vocabulary = terms[np.argsort(indices)]

        return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel()
                for i in range(n_samples)]

    def get_feature_names(self):
        """Array mapping from feature integer indices to feature name.

        Returns
        -------
        feature_names : list
            A list of feature names.
        """

        self._check_vocabulary()

        return [t for t, i in sorted(self.vocabulary_.items(),
                                     key=itemgetter(1))]

    def _more_tags(self):
        return {'X_types': ['string']}


def _make_int_array():
    """Construct an array.array of a type suitable for scipy.sparse indices."""
    return array.array(str("i"))


class TfidfTransformer(TransformerMixin, BaseEstimator):
    """Transform a count matrix to a normalized tf or tf-idf representation

    Tf means term-frequency while tf-idf means term-frequency times inverse
    document-frequency. This is a common term weighting scheme in information
    retrieval, that has also found good use in document classification.

    The goal of using tf-idf instead of the raw frequencies of occurrence of a
    token in a given document is to scale down the impact of tokens that occur
    very frequently in a given corpus and that are hence empirically less
    informative than features that occur in a small fraction of the training
    corpus.

    The formula that is used to compute the tf-idf for a term t of a document d
    in a document set is tf-idf(t, d) = tf(t, d) * idf(t), and the idf is
    computed as idf(t) = log [ n / df(t) ] + 1 (if ``smooth_idf=False``), where
    n is the total number of documents in the document set and df(t) is the
    document frequency of t; the document frequency is the number of documents
    in the document set that contain the term t. The effect of adding "1" to
    the idf in the equation above is that terms with zero idf, i.e., terms
    that occur in all documents in a training set, will not be entirely
    ignored.
    (Note that the idf formula above differs from the standard textbook
    notation that defines the idf as
    idf(t) = log [ n / (df(t) + 1) ]).

    If ``smooth_idf=True`` (the default), the constant "1" is added to the
    numerator and denominator of the idf as if an extra document was seen
    containing every term in the collection exactly once, which prevents
    zero divisions: idf(t) = log [ (1 + n) / (1 + df(t)) ] + 1.

    Furthermore, the formulas used to compute tf and idf depend
    on parameter settings that correspond to the SMART notation used in IR
    as follows:

    Tf is "n" (natural) by default, "l" (logarithmic) when
    ``sublinear_tf=True``.
    Idf is "t" when use_idf is given, "n" (none) otherwise.
    Normalization is "c" (cosine) when ``norm='l2'``, "n" (none)
    when ``norm=None``.

    Read more in the :ref:`User Guide <text_feature_extraction>`.

    Parameters
    ----------
    norm : {'l1', 'l2'}, default='l2'
        Each output row will have unit norm, either:
        * 'l2': Sum of squares of vector elements is 1. The cosine
        similarity between two vectors is their dot product when l2 norm has
        been applied.
        * 'l1': Sum of absolute values of vector elements is 1.
        See :func:`preprocessing.normalize`

    use_idf : bool, default=True
        Enable inverse-document-frequency reweighting.

    smooth_idf : bool, default=True
        Smooth idf weights by adding one to document frequencies, as if an
        extra document was seen containing every term in the collection
        exactly once. Prevents zero divisions.

    sublinear_tf : bool, default=False
        Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

    Attributes
    ----------
    idf_ : array of shape (n_features)
        The inverse document frequency (IDF) vector; only defined
        if  ``use_idf`` is True.

        .. versionadded:: 0.20

    Examples
    --------
    >>> from sklearn.feature_extraction.text import TfidfTransformer
    >>> from sklearn.feature_extraction.text import CountVectorizer
    >>> from sklearn.pipeline import Pipeline
    >>> import numpy as np
    >>> corpus = ['this is the first document',
    ...           'this document is the second document',
    ...           'and this is the third one',
    ...           'is this the first document']
    >>> vocabulary = ['this', 'document', 'first', 'is', 'second', 'the',
    ...               'and', 'one']
    >>> pipe = Pipeline([('count', CountVectorizer(vocabulary=vocabulary)),
    ...                  ('tfid', TfidfTransformer())]).fit(corpus)
    >>> pipe['count'].transform(corpus).toarray()
    array([[1, 1, 1, 1, 0, 1, 0, 0],
           [1, 2, 0, 1, 1, 1, 0, 0],
           [1, 0, 0, 1, 0, 1, 1, 1],
           [1, 1, 1, 1, 0, 1, 0, 0]])
    >>> pipe['tfid'].idf_
    array([1.        , 1.22314355, 1.51082562, 1.        , 1.91629073,
           1.        , 1.91629073, 1.91629073])
    >>> pipe.transform(corpus).shape
    (4, 8)

    References
    ----------

    .. [Yates2011] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern
                   Information Retrieval. Addison Wesley, pp. 68-74.

    .. [MRS2008] C.D. Manning, P. Raghavan and H. Schütze  (2008).
                   Introduction to Information Retrieval. Cambridge University
                   Press, pp. 118-120.
    """
    @_deprecate_positional_args
    def __init__(self, *, norm='l2', use_idf=True, smooth_idf=True,
                 sublinear_tf=False):
        self.norm = norm
        self.use_idf = use_idf
        self.smooth_idf = smooth_idf
        self.sublinear_tf = sublinear_tf

    def fit(self, X, y=None):
        """Learn the idf vector (global term weights).

        Parameters
        ----------
        X : sparse matrix of shape n_samples, n_features)
            A matrix of term/token counts.
        """
        X = check_array(X, accept_sparse=('csr', 'csc'))
        if not sp.issparse(X):
            X = sp.csr_matrix(X)
        dtype = X.dtype if X.dtype in FLOAT_DTYPES else np.float64

        if self.use_idf:
            n_samples, n_features = X.shape
            df = _document_frequency(X)
            df = df.astype(dtype, **_astype_copy_false(df))

            # perform idf smoothing if required
            df += int(self.smooth_idf)
            n_samples += int(self.smooth_idf)

            # log+1 instead of log makes sure terms with zero idf don't get
            # suppressed entirely.
            idf = np.log(n_samples / df) + 1
            self._idf_diag = sp.diags(idf, offsets=0,
                                      shape=(n_features, n_features),
                                      format='csr',
                                      dtype=dtype)

        return self

    def transform(self, X, copy=True):
        """Transform a count matrix to a tf or tf-idf representation

        Parameters
        ----------
        X : sparse matrix of (n_samples, n_features)
            a matrix of term/token counts

        copy : bool, default=True
            Whether to copy X and operate on the copy or perform in-place
            operations.

        Returns
        -------
        vectors : sparse matrix of shape (n_samples, n_features)
        """
        X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES, copy=copy)
        if not sp.issparse(X):
            X = sp.csr_matrix(X, dtype=np.float64)

        n_samples, n_features = X.shape

        if self.sublinear_tf:
            np.log(X.data, X.data)
            X.data += 1

        if self.use_idf:
            # idf_ being a property, the automatic attributes detection
            # does not work as usual and we need to specify the attribute
            # name:
            check_is_fitted(self, attributes=["idf_"],
                            msg='idf vector is not fitted')

            expected_n_features = self._idf_diag.shape[0]
            if n_features != expected_n_features:
                raise ValueError("Input has n_features=%d while the model"
                                 " has been trained with n_features=%d" % (
                                     n_features, expected_n_features))
            # *= doesn't work
            X = X * self._idf_diag

        if self.norm:
            X = normalize(X, norm=self.norm, copy=False)

        return X

    @property
    def idf_(self):
        # if _idf_diag is not set, this will raise an attribute error,
        # which means hasattr(self, "idf_") is False
        return np.ravel(self._idf_diag.sum(axis=0))

    @idf_.setter
    def idf_(self, value):
        value = np.asarray(value, dtype=np.float64)
        n_features = value.shape[0]
        self._idf_diag = sp.spdiags(value, diags=0, m=n_features,
                                    n=n_features, format='csr')

    def _more_tags(self):
        return {'X_types': 'sparse'}


class TfidfVectorizer(CountVectorizer):
    """Convert a collection of raw documents to a matrix of TF-IDF features.

    Equivalent to :class:`CountVectorizer` followed by
    :class:`TfidfTransformer`.

    Read more in the :ref:`User Guide <text_feature_extraction>`.

    Parameters
    ----------
    input : {'filename', 'file', 'content'}, default='content'
        If 'filename', the sequence passed as an argument to fit is
        expected to be a list of filenames that need reading to fetch
        the raw content to analyze.

        If 'file', the sequence items must have a 'read' method (file-like
        object) that is called to fetch the bytes in memory.

        Otherwise the input is expected to be a sequence of items that
        can be of type string or byte.

    encoding : str, default='utf-8'
        If bytes or files are given to analyze, this encoding is used to
        decode.

    decode_error : {'strict', 'ignore', 'replace'}, default='strict'
        Instruction on what to do if a byte sequence is given to analyze that
        contains characters not of the given `encoding`. By default, it is
        'strict', meaning that a UnicodeDecodeError will be raised. Other
        values are 'ignore' and 'replace'.

    strip_accents : {'ascii', 'unicode'}, default=None
        Remove accents and perform other character normalization
        during the preprocessing step.
        'ascii' is a fast method that only works on characters that have
        an direct ASCII mapping.
        'unicode' is a slightly slower method that works on any characters.
        None (default) does nothing.

        Both 'ascii' and 'unicode' use NFKD normalization from
        :func:`unicodedata.normalize`.

    lowercase : bool, default=True
        Convert all characters to lowercase before tokenizing.

    preprocessor : callable, default=None
        Override the preprocessing (string transformation) stage while
        preserving the tokenizing and n-grams generation steps.
        Only applies if ``analyzer is not callable``.

    tokenizer : callable, default=None
        Override the string tokenization step while preserving the
        preprocessing and n-grams generation steps.
        Only applies if ``analyzer == 'word'``.

    analyzer : {'word', 'char', 'char_wb'} or callable, default='word'
        Whether the feature should be made of word or character n-grams.
        Option 'char_wb' creates character n-grams only from text inside
        word boundaries; n-grams at the edges of words are padded with space.

        If a callable is passed it is used to extract the sequence of features
        out of the raw, unprocessed input.

        .. versionchanged:: 0.21

        Since v0.21, if ``input`` is ``filename`` or ``file``, the data is
        first read from the file and then passed to the given callable
        analyzer.

    stop_words : {'english'}, list, default=None
        If a string, it is passed to _check_stop_list and the appropriate stop
        list is returned. 'english' is currently the only supported string
        value.
        There are several known issues with 'english' and you should
        consider an alternative (see :ref:`stop_words`).

        If a list, that list is assumed to contain stop words, all of which
        will be removed from the resulting tokens.
        Only applies if ``analyzer == 'word'``.

        If None, no stop words will be used. max_df can be set to a value
        in the range [0.7, 1.0) to automatically detect and filter stop
        words based on intra corpus document frequency of terms.

    token_pattern : str
        Regular expression denoting what constitutes a "token", only used
        if ``analyzer == 'word'``. The default regexp selects tokens of 2
        or more alphanumeric characters (punctuation is completely ignored
        and always treated as a token separator).

    ngram_range : tuple (min_n, max_n), default=(1, 1)
        The lower and upper boundary of the range of n-values for different
        n-grams to be extracted. All values of n such that min_n <= n <= max_n
        will be used. For example an ``ngram_range`` of ``(1, 1)`` means only
        unigrams, ``(1, 2)`` means unigrams and bigrams, and ``(2, 2)`` means
        only bigrams.
        Only applies if ``analyzer is not callable``.

    max_df : float or int, default=1.0
        When building the vocabulary ignore terms that have a document
        frequency strictly higher than the given threshold (corpus-specific
        stop words).
        If float in range [0.0, 1.0], the parameter represents a proportion of
        documents, integer absolute counts.
        This parameter is ignored if vocabulary is not None.

    min_df : float or int, default=1
        When building the vocabulary ignore terms that have a document
        frequency strictly lower than the given threshold. This value is also
        called cut-off in the literature.
        If float in range of [0.0, 1.0], the parameter represents a proportion
        of documents, integer absolute counts.
        This parameter is ignored if vocabulary is not None.

    max_features : int, default=None
        If not None, build a vocabulary that only consider the top
        max_features ordered by term frequency across the corpus.

        This parameter is ignored if vocabulary is not None.

    vocabulary : Mapping or iterable, default=None
        Either a Mapping (e.g., a dict) where keys are terms and values are
        indices in the feature matrix, or an iterable over terms. If not
        given, a vocabulary is determined from the input documents.

    binary : bool, default=False
        If True, all non-zero term counts are set to 1. This does not mean
        outputs will have only 0/1 values, only that the tf term in tf-idf
        is binary. (Set idf and normalization to False to get 0/1 outputs).

    dtype : dtype, default=float64
        Type of the matrix returned by fit_transform() or transform().

    norm : {'l1', 'l2'}, default='l2'
        Each output row will have unit norm, either:
        * 'l2': Sum of squares of vector elements is 1. The cosine
        similarity between two vectors is their dot product when l2 norm has
        been applied.
        * 'l1': Sum of absolute values of vector elements is 1.
        See :func:`preprocessing.normalize`.

    use_idf : bool, default=True
        Enable inverse-document-frequency reweighting.

    smooth_idf : bool, default=True
        Smooth idf weights by adding one to document frequencies, as if an
        extra document was seen containing every term in the collection
        exactly once. Prevents zero divisions.

    sublinear_tf : bool, default=False
        Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

    Attributes
    ----------
    vocabulary_ : dict
        A mapping of terms to feature indices.

    fixed_vocabulary_: bool
        True if a fixed vocabulary of term to indices mapping
        is provided by the user

    idf_ : array of shape (n_features,)
        The inverse document frequency (IDF) vector; only defined
        if ``use_idf`` is True.

    stop_words_ : set
        Terms that were ignored because they either:

          - occurred in too many documents (`max_df`)
          - occurred in too few documents (`min_df`)
          - were cut off by feature selection (`max_features`).

        This is only available if no vocabulary was given.

    See Also
    --------
    CountVectorizer : Transforms text into a sparse matrix of n-gram counts.

    TfidfTransformer : Performs the TF-IDF transformation from a provided
        matrix of counts.

    Notes
    -----
    The ``stop_words_`` attribute can get large and increase the model size
    when pickling. This attribute is provided only for introspection and can
    be safely removed using delattr or set to None before pickling.

    Examples
    --------
    >>> from sklearn.feature_extraction.text import TfidfVectorizer
    >>> corpus = [
    ...     'This is the first document.',
    ...     'This document is the second document.',
    ...     'And this is the third one.',
    ...     'Is this the first document?',
    ... ]
    >>> vectorizer = TfidfVectorizer()
    >>> X = vectorizer.fit_transform(corpus)
    >>> print(vectorizer.get_feature_names())
    ['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
    >>> print(X.shape)
    (4, 9)
    """
    @_deprecate_positional_args
    def __init__(self, *, input='content', encoding='utf-8',
                 decode_error='strict', strip_accents=None, lowercase=True,
                 preprocessor=None, tokenizer=None, analyzer='word',
                 stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
                 ngram_range=(1, 1), max_df=1.0, min_df=1,
                 max_features=None, vocabulary=None, binary=False,
                 dtype=np.float64, norm='l2', use_idf=True, smooth_idf=True,
                 sublinear_tf=False):

        super().__init__(
            input=input, encoding=encoding, decode_error=decode_error,
            strip_accents=strip_accents, lowercase=lowercase,
            preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer,
            stop_words=stop_words, token_pattern=token_pattern,
            ngram_range=ngram_range, max_df=max_df, min_df=min_df,
            max_features=max_features, vocabulary=vocabulary, binary=binary,
            dtype=dtype)

        self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf,
                                       smooth_idf=smooth_idf,
                                       sublinear_tf=sublinear_tf)

    # Broadcast the TF-IDF parameters to the underlying transformer instance
    # for easy grid search and repr

    @property
    def norm(self):
        return self._tfidf.norm

    @norm.setter
    def norm(self, value):
        self._tfidf.norm = value

    @property
    def use_idf(self):
        return self._tfidf.use_idf

    @use_idf.setter
    def use_idf(self, value):
        self._tfidf.use_idf = value

    @property
    def smooth_idf(self):
        return self._tfidf.smooth_idf

    @smooth_idf.setter
    def smooth_idf(self, value):
        self._tfidf.smooth_idf = value

    @property
    def sublinear_tf(self):
        return self._tfidf.sublinear_tf

    @sublinear_tf.setter
    def sublinear_tf(self, value):
        self._tfidf.sublinear_tf = value

    @property
    def idf_(self):
        return self._tfidf.idf_

    @idf_.setter
    def idf_(self, value):
        self._validate_vocabulary()
        if hasattr(self, 'vocabulary_'):
            if len(self.vocabulary_) != len(value):
                raise ValueError("idf length = %d must be equal "
                                 "to vocabulary size = %d" %
                                 (len(value), len(self.vocabulary)))
        self._tfidf.idf_ = value

    def _check_params(self):
        if self.dtype not in FLOAT_DTYPES:
            warnings.warn("Only {} 'dtype' should be used. {} 'dtype' will "
                          "be converted to np.float64."
                          .format(FLOAT_DTYPES, self.dtype),
                          UserWarning)

    def fit(self, raw_documents, y=None):
        """Learn vocabulary and idf from training set.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which yields either str, unicode or file objects.
        y : None
            This parameter is not needed to compute tfidf.

        Returns
        -------
        self : object
            Fitted vectorizer.
        """
        self._check_params()
        self._warn_for_unused_params()
        X = super().fit_transform(raw_documents)
        self._tfidf.fit(X)
        return self

    def fit_transform(self, raw_documents, y=None):
        """Learn vocabulary and idf, return document-term matrix.

        This is equivalent to fit followed by transform, but more efficiently
        implemented.

        Parameters
        ----------
        raw_documents : iterable
            An iterable which yields either str, unicode or file objects.
        y : None
            This parameter is ignored.

        Returns
        -------
        X : sparse matrix of (n_samples, n_features)
            Tf-idf-weighted document-term matrix.
        """
        self._check_params()
        X = super().fit_transform(raw_documents)
        self._tfidf.fit(X)
        # X is already a transformed view of raw_documents so
        # we set copy to False
        return self._tfidf.transform(X, copy=False)

    def transform(self, raw_documents, copy="deprecated"):
        """Transform documents to document-term matrix.

        Uses the vocabulary and document frequencies (df) learned by fit (or
        fit_transform).

        Parameters
        ----------
        raw_documents : iterable
            An iterable which yields either str, unicode or file objects.

        copy : bool, default=True
            Whether to copy X and operate on the copy or perform in-place
            operations.

            .. deprecated:: 0.22
               The `copy` parameter is unused and was deprecated in version
               0.22 and will be removed in 0.24. This parameter will be
               ignored.

        Returns
        -------
        X : sparse matrix of (n_samples, n_features)
            Tf-idf-weighted document-term matrix.
        """
        check_is_fitted(self, msg='The TF-IDF vectorizer is not fitted')

        # FIXME Remove copy parameter support in 0.24
        if copy != "deprecated":
            msg = ("'copy' param is unused and has been deprecated since "
                   "version 0.22. Backward compatibility for 'copy' will "
                   "be removed in 0.24.")
            warnings.warn(msg, FutureWarning)
        X = super().transform(raw_documents)
        return self._tfidf.transform(X, copy=False)

    def _more_tags(self):
        return {'X_types': ['string'], '_skip_test': True}