discriminant_analysis.py 29.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
"""
Linear Discriminant Analysis and Quadratic Discriminant Analysis
"""

# Authors: Clemens Brunner
#          Martin Billinger
#          Matthieu Perrot
#          Mathieu Blondel

# License: BSD 3-Clause

import warnings
import numpy as np
from scipy import linalg
from scipy.special import expit

from .base import BaseEstimator, TransformerMixin, ClassifierMixin
from .linear_model._base import LinearClassifierMixin
from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance
from .utils.multiclass import unique_labels
from .utils import check_array
from .utils.validation import check_is_fitted
from .utils.multiclass import check_classification_targets
from .utils.extmath import softmax
from .preprocessing import StandardScaler
from .utils.validation import _deprecate_positional_args


__all__ = ['LinearDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis']


def _cov(X, shrinkage=None):
    """Estimate covariance matrix (using optional shrinkage).

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Input data.

    shrinkage : {'empirical', 'auto'} or float, default=None
        Shrinkage parameter, possible values:
          - None or 'empirical': no shrinkage (default).
          - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
          - float between 0 and 1: fixed shrinkage parameter.

    Returns
    -------
    s : ndarray of shape (n_features, n_features)
        Estimated covariance matrix.
    """
    shrinkage = "empirical" if shrinkage is None else shrinkage
    if isinstance(shrinkage, str):
        if shrinkage == 'auto':
            sc = StandardScaler()  # standardize features
            X = sc.fit_transform(X)
            s = ledoit_wolf(X)[0]
            # rescale
            s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :]
        elif shrinkage == 'empirical':
            s = empirical_covariance(X)
        else:
            raise ValueError('unknown shrinkage parameter')
    elif isinstance(shrinkage, float) or isinstance(shrinkage, int):
        if shrinkage < 0 or shrinkage > 1:
            raise ValueError('shrinkage parameter must be between 0 and 1')
        s = shrunk_covariance(empirical_covariance(X), shrinkage)
    else:
        raise TypeError('shrinkage must be of string or int type')
    return s


def _class_means(X, y):
    """Compute class means.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Input data.

    y : array-like of shape (n_samples,) or (n_samples, n_targets)
        Target values.

    Returns
    -------
    means : array-like of shape (n_classes, n_features)
        Class means.
    """
    classes, y = np.unique(y, return_inverse=True)
    cnt = np.bincount(y)
    means = np.zeros(shape=(len(classes), X.shape[1]))
    np.add.at(means, y, X)
    means /= cnt[:, None]
    return means


def _class_cov(X, y, priors, shrinkage=None):
    """Compute weighted within-class covariance matrix.

    The per-class covariance are weighted by the class priors.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Input data.

    y : array-like of shape (n_samples,) or (n_samples, n_targets)
        Target values.

    priors : array-like of shape (n_classes,)
        Class priors.

    shrinkage : 'auto' or float, default=None
        Shrinkage parameter, possible values:
          - None: no shrinkage (default).
          - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
          - float between 0 and 1: fixed shrinkage parameter.

    Returns
    -------
    cov : array-like of shape (n_features, n_features)
        Weighted within-class covariance matrix
    """
    classes = np.unique(y)
    cov = np.zeros(shape=(X.shape[1], X.shape[1]))
    for idx, group in enumerate(classes):
        Xg = X[y == group, :]
        cov += priors[idx] * np.atleast_2d(_cov(Xg, shrinkage))
    return cov


class LinearDiscriminantAnalysis(BaseEstimator, LinearClassifierMixin,
                                 TransformerMixin):
    """Linear Discriminant Analysis

    A classifier with a linear decision boundary, generated by fitting class
    conditional densities to the data and using Bayes' rule.

    The model fits a Gaussian density to each class, assuming that all classes
    share the same covariance matrix.

    The fitted model can also be used to reduce the dimensionality of the input
    by projecting it to the most discriminative directions, using the
    `transform` method.

    .. versionadded:: 0.17
       *LinearDiscriminantAnalysis*.

    Read more in the :ref:`User Guide <lda_qda>`.

    Parameters
    ----------
    solver : {'svd', 'lsqr', 'eigen'}, default='svd'
        Solver to use, possible values:
          - 'svd': Singular value decomposition (default).
            Does not compute the covariance matrix, therefore this solver is
            recommended for data with a large number of features.
          - 'lsqr': Least squares solution, can be combined with shrinkage.
          - 'eigen': Eigenvalue decomposition, can be combined with shrinkage.

    shrinkage : 'auto' or float, default=None
        Shrinkage parameter, possible values:
          - None: no shrinkage (default).
          - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
          - float between 0 and 1: fixed shrinkage parameter.

        Note that shrinkage works only with 'lsqr' and 'eigen' solvers.

    priors : array-like of shape (n_classes,), default=None
        The class prior probabilities. By default, the class proportions are
        inferred from the training data.

    n_components : int, default=None
        Number of components (<= min(n_classes - 1, n_features)) for
        dimensionality reduction. If None, will be set to
        min(n_classes - 1, n_features). This parameter only affects the
        `transform` method.

    store_covariance : bool, default=False
        If True, explicitely compute the weighted within-class covariance
        matrix when solver is 'svd'. The matrix is always computed
        and stored for the other solvers.

        .. versionadded:: 0.17

    tol : float, default=1.0e-4
        Absolute threshold for a singular value of X to be considered
        significant, used to estimate the rank of X. Dimensions whose
        singular values are non-significant are discarded. Only used if
        solver is 'svd'.

        .. versionadded:: 0.17

    Attributes
    ----------
    coef_ : ndarray of shape (n_features,) or (n_classes, n_features)
        Weight vector(s).

    intercept_ : ndarray of shape (n_classes,)
        Intercept term.

    covariance_ : array-like of shape (n_features, n_features)
        Weighted within-class covariance matrix. It corresponds to
        `sum_k prior_k * C_k` where `C_k` is the covariance matrix of the
        samples in class `k`. The `C_k` are estimated using the (potentially
        shrunk) biased estimator of covariance. If solver is 'svd', only
        exists when `store_covariance` is True.

    explained_variance_ratio_ : ndarray of shape (n_components,)
        Percentage of variance explained by each of the selected components.
        If ``n_components`` is not set then all components are stored and the
        sum of explained variances is equal to 1.0. Only available when eigen
        or svd solver is used.

    means_ : array-like of shape (n_classes, n_features)
        Class-wise means.

    priors_ : array-like of shape (n_classes,)
        Class priors (sum to 1).

    scalings_ : array-like of shape (rank, n_classes - 1)
        Scaling of the features in the space spanned by the class centroids.
        Only available for 'svd' and 'eigen' solvers.

    xbar_ : array-like of shape (n_features,)
        Overall mean. Only present if solver is 'svd'.

    classes_ : array-like of shape (n_classes,)
        Unique class labels.

    See also
    --------
    sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis: Quadratic
        Discriminant Analysis

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> y = np.array([1, 1, 1, 2, 2, 2])
    >>> clf = LinearDiscriminantAnalysis()
    >>> clf.fit(X, y)
    LinearDiscriminantAnalysis()
    >>> print(clf.predict([[-0.8, -1]]))
    [1]
    """
    @_deprecate_positional_args
    def __init__(self, *, solver='svd', shrinkage=None, priors=None,
                 n_components=None, store_covariance=False, tol=1e-4):
        self.solver = solver
        self.shrinkage = shrinkage
        self.priors = priors
        self.n_components = n_components
        self.store_covariance = store_covariance  # used only in svd solver
        self.tol = tol  # used only in svd solver

    def _solve_lsqr(self, X, y, shrinkage):
        """Least squares solver.

        The least squares solver computes a straightforward solution of the
        optimal decision rule based directly on the discriminant functions. It
        can only be used for classification (with optional shrinkage), because
        estimation of eigenvectors is not performed. Therefore, dimensionality
        reduction with the transform is not supported.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,) or (n_samples, n_classes)
            Target values.

        shrinkage : 'auto', float or None
            Shrinkage parameter, possible values:
              - None: no shrinkage.
              - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
              - float between 0 and 1: fixed shrinkage parameter.

        Notes
        -----
        This solver is based on [1]_, section 2.6.2, pp. 39-41.

        References
        ----------
        .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
           (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
           0-471-05669-3.
        """
        self.means_ = _class_means(X, y)
        self.covariance_ = _class_cov(X, y, self.priors_, shrinkage)
        self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T
        self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) +
                           np.log(self.priors_))

    def _solve_eigen(self, X, y, shrinkage):
        """Eigenvalue solver.

        The eigenvalue solver computes the optimal solution of the Rayleigh
        coefficient (basically the ratio of between class scatter to within
        class scatter). This solver supports both classification and
        dimensionality reduction (with optional shrinkage).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Target values.

        shrinkage : 'auto', float or None
            Shrinkage parameter, possible values:
              - None: no shrinkage.
              - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
              - float between 0 and 1: fixed shrinkage constant.

        Notes
        -----
        This solver is based on [1]_, section 3.8.3, pp. 121-124.

        References
        ----------
        .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
           (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
           0-471-05669-3.
        """
        self.means_ = _class_means(X, y)
        self.covariance_ = _class_cov(X, y, self.priors_, shrinkage)

        Sw = self.covariance_  # within scatter
        St = _cov(X, shrinkage)  # total scatter
        Sb = St - Sw  # between scatter

        evals, evecs = linalg.eigh(Sb, Sw)
        self.explained_variance_ratio_ = np.sort(evals / np.sum(evals)
                                                 )[::-1][:self._max_components]
        evecs = evecs[:, np.argsort(evals)[::-1]]  # sort eigenvectors

        self.scalings_ = evecs
        self.coef_ = np.dot(self.means_, evecs).dot(evecs.T)
        self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) +
                           np.log(self.priors_))

    def _solve_svd(self, X, y):
        """SVD solver.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Target values.
        """
        n_samples, n_features = X.shape
        n_classes = len(self.classes_)

        self.means_ = _class_means(X, y)
        if self.store_covariance:
            self.covariance_ = _class_cov(X, y, self.priors_)

        Xc = []
        for idx, group in enumerate(self.classes_):
            Xg = X[y == group, :]
            Xc.append(Xg - self.means_[idx])

        self.xbar_ = np.dot(self.priors_, self.means_)

        Xc = np.concatenate(Xc, axis=0)

        # 1) within (univariate) scaling by with classes std-dev
        std = Xc.std(axis=0)
        # avoid division by zero in normalization
        std[std == 0] = 1.
        fac = 1. / (n_samples - n_classes)

        # 2) Within variance scaling
        X = np.sqrt(fac) * (Xc / std)
        # SVD of centered (within)scaled data
        U, S, V = linalg.svd(X, full_matrices=False)

        rank = np.sum(S > self.tol)
        # Scaling of within covariance is: V' 1/S
        scalings = (V[:rank] / std).T / S[:rank]

        # 3) Between variance scaling
        # Scale weighted centers
        X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) *
                    (self.means_ - self.xbar_).T).T, scalings)
        # Centers are living in a space with n_classes-1 dim (maximum)
        # Use SVD to find projection in the space spanned by the
        # (n_classes) centers
        _, S, V = linalg.svd(X, full_matrices=0)

        self.explained_variance_ratio_ = (S**2 / np.sum(
            S**2))[:self._max_components]
        rank = np.sum(S > self.tol * S[0])
        self.scalings_ = np.dot(scalings, V.T[:, :rank])
        coef = np.dot(self.means_ - self.xbar_, self.scalings_)
        self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) +
                           np.log(self.priors_))
        self.coef_ = np.dot(coef, self.scalings_.T)
        self.intercept_ -= np.dot(self.xbar_, self.coef_.T)

    def fit(self, X, y):
        """Fit LinearDiscriminantAnalysis model according to the given
           training data and parameters.

           .. versionchanged:: 0.19
              *store_covariance* has been moved to main constructor.

           .. versionchanged:: 0.19
              *tol* has been moved to main constructor.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.

        y : array-like of shape (n_samples,)
            Target values.
        """
        X, y = self._validate_data(X, y, ensure_min_samples=2, estimator=self,
                                   dtype=[np.float64, np.float32])
        self.classes_ = unique_labels(y)
        n_samples, _ = X.shape
        n_classes = len(self.classes_)

        if n_samples == n_classes:
            raise ValueError("The number of samples must be more "
                             "than the number of classes.")

        if self.priors is None:  # estimate priors from sample
            _, y_t = np.unique(y, return_inverse=True)  # non-negative ints
            self.priors_ = np.bincount(y_t) / float(len(y))
        else:
            self.priors_ = np.asarray(self.priors)

        if (self.priors_ < 0).any():
            raise ValueError("priors must be non-negative")
        if not np.isclose(self.priors_.sum(), 1.0):
            warnings.warn("The priors do not sum to 1. Renormalizing",
                          UserWarning)
            self.priors_ = self.priors_ / self.priors_.sum()

        # Maximum number of components no matter what n_components is
        # specified:
        max_components = min(len(self.classes_) - 1, X.shape[1])

        if self.n_components is None:
            self._max_components = max_components
        else:
            if self.n_components > max_components:
                raise ValueError(
                    "n_components cannot be larger than min(n_features, "
                    "n_classes - 1)."
                )
            self._max_components = self.n_components

        if self.solver == 'svd':
            if self.shrinkage is not None:
                raise NotImplementedError('shrinkage not supported')
            self._solve_svd(X, y)
        elif self.solver == 'lsqr':
            self._solve_lsqr(X, y, shrinkage=self.shrinkage)
        elif self.solver == 'eigen':
            self._solve_eigen(X, y, shrinkage=self.shrinkage)
        else:
            raise ValueError("unknown solver {} (valid solvers are 'svd', "
                             "'lsqr', and 'eigen').".format(self.solver))
        if self.classes_.size == 2:  # treat binary case as a special case
            self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2,
                                  dtype=X.dtype)
            self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0],
                                       ndmin=1, dtype=X.dtype)
        return self

    def transform(self, X):
        """Project data to maximize class separation.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data.

        Returns
        -------
        X_new : ndarray of shape (n_samples, n_components)
            Transformed data.
        """
        if self.solver == 'lsqr':
            raise NotImplementedError("transform not implemented for 'lsqr' "
                                      "solver (use 'svd' or 'eigen').")
        check_is_fitted(self)

        X = check_array(X)
        if self.solver == 'svd':
            X_new = np.dot(X - self.xbar_, self.scalings_)
        elif self.solver == 'eigen':
            X_new = np.dot(X, self.scalings_)

        return X_new[:, :self._max_components]

    def predict_proba(self, X):
        """Estimate probability.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data.

        Returns
        -------
        C : ndarray of shape (n_samples, n_classes)
            Estimated probabilities.
        """
        check_is_fitted(self)

        decision = self.decision_function(X)
        if self.classes_.size == 2:
            proba = expit(decision)
            return np.vstack([1-proba, proba]).T
        else:
            return softmax(decision)

    def predict_log_proba(self, X):
        """Estimate log probability.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data.

        Returns
        -------
        C : ndarray of shape (n_samples, n_classes)
            Estimated log probabilities.
        """
        return np.log(self.predict_proba(X))

    def decision_function(self, X):
        """Apply decision function to an array of samples.

        The decision function is equal (up to a constant factor) to the
        log-posterior of the model, i.e. `log p(y = k | x)`. In a binary
        classification setting this instead corresponds to the difference
        `log p(y = 1 | x) - log p(y = 0 | x)`. See :ref:`lda_qda_math`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Array of samples (test vectors).

        Returns
        -------
        C : ndarray of shape (n_samples,) or (n_samples, n_classes)
            Decision function values related to each class, per sample.
            In the two-class case, the shape is (n_samples,), giving the
            log likelihood ratio of the positive class.
        """
        # Only override for the doc
        return super().decision_function(X)


class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):
    """Quadratic Discriminant Analysis

    A classifier with a quadratic decision boundary, generated
    by fitting class conditional densities to the data
    and using Bayes' rule.

    The model fits a Gaussian density to each class.

    .. versionadded:: 0.17
       *QuadraticDiscriminantAnalysis*

    Read more in the :ref:`User Guide <lda_qda>`.

    Parameters
    ----------
    priors : ndarray of shape (n_classes,), default=None
        Class priors. By default, the class proportions are inferred from the
        training data.

    reg_param : float, default=0.0
        Regularizes the per-class covariance estimates by transforming S2 as
        ``S2 = (1 - reg_param) * S2 + reg_param * np.eye(n_features)``,
        where S2 corresponds to the `scaling_` attribute of a given class.

    store_covariance : bool, default=False
        If True, the class covariance matrices are explicitely computed and
        stored in the `self.covariance_` attribute.

        .. versionadded:: 0.17

    tol : float, default=1.0e-4
        Absolute threshold for a singular value to be considered significant,
        used to estimate the rank of `Xk` where `Xk` is the centered matrix
        of samples in class k. This parameter does not affect the
        predictions. It only controls a warning that is raised when features
        are considered to be colinear.

        .. versionadded:: 0.17

    Attributes
    ----------
    covariance_ : list of len n_classes of ndarray \
            of shape (n_features, n_features)
        For each class, gives the covariance matrix estimated using the
        samples of that class. The estimations are unbiased. Only present if
        `store_covariance` is True.

    means_ : array-like of shape (n_classes, n_features)
        Class-wise means.

    priors_ : array-like of shape (n_classes,)
        Class priors (sum to 1).

    rotations_ : list of len n_classes of ndarray of shape (n_features, n_k)
        For each class k an array of shape (n_features, n_k), where
        ``n_k = min(n_features, number of elements in class k)``
        It is the rotation of the Gaussian distribution, i.e. its
        principal axis. It corresponds to `V`, the matrix of eigenvectors
        coming from the SVD of `Xk = U S Vt` where `Xk` is the centered
        matrix of samples from class k.

    scalings_ : list of len n_classes of ndarray of shape (n_k,)
        For each class, contains the scaling of
        the Gaussian distributions along its principal axes, i.e. the
        variance in the rotated coordinate system. It corresponds to `S^2 /
        (n_samples - 1)`, where `S` is the diagonal matrix of singular values
        from the SVD of `Xk`, where `Xk` is the centered matrix of samples
        from class k.

    classes_ : ndarray of shape (n_classes,)
        Unique class labels.

    Examples
    --------
    >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> y = np.array([1, 1, 1, 2, 2, 2])
    >>> clf = QuadraticDiscriminantAnalysis()
    >>> clf.fit(X, y)
    QuadraticDiscriminantAnalysis()
    >>> print(clf.predict([[-0.8, -1]]))
    [1]

    See also
    --------
    sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear
        Discriminant Analysis
    """
    @_deprecate_positional_args
    def __init__(self, *, priors=None, reg_param=0., store_covariance=False,
                 tol=1.0e-4):
        self.priors = np.asarray(priors) if priors is not None else None
        self.reg_param = reg_param
        self.store_covariance = store_covariance
        self.tol = tol

    def fit(self, X, y):
        """Fit the model according to the given training data and parameters.

            .. versionchanged:: 0.19
               ``store_covariances`` has been moved to main constructor as
               ``store_covariance``

            .. versionchanged:: 0.19
               ``tol`` has been moved to main constructor.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like of shape (n_samples,)
            Target values (integers)
        """
        X, y = self._validate_data(X, y)
        check_classification_targets(y)
        self.classes_, y = np.unique(y, return_inverse=True)
        n_samples, n_features = X.shape
        n_classes = len(self.classes_)
        if n_classes < 2:
            raise ValueError('The number of classes has to be greater than'
                             ' one; got %d class' % (n_classes))
        if self.priors is None:
            self.priors_ = np.bincount(y) / float(n_samples)
        else:
            self.priors_ = self.priors

        cov = None
        store_covariance = self.store_covariance
        if store_covariance:
            cov = []
        means = []
        scalings = []
        rotations = []
        for ind in range(n_classes):
            Xg = X[y == ind, :]
            meang = Xg.mean(0)
            means.append(meang)
            if len(Xg) == 1:
                raise ValueError('y has only 1 sample in class %s, covariance '
                                 'is ill defined.' % str(self.classes_[ind]))
            Xgc = Xg - meang
            # Xgc = U * S * V.T
            _, S, Vt = np.linalg.svd(Xgc, full_matrices=False)
            rank = np.sum(S > self.tol)
            if rank < n_features:
                warnings.warn("Variables are collinear")
            S2 = (S ** 2) / (len(Xg) - 1)
            S2 = ((1 - self.reg_param) * S2) + self.reg_param
            if self.store_covariance or store_covariance:
                # cov = V * (S^2 / (n-1)) * V.T
                cov.append(np.dot(S2 * Vt.T, Vt))
            scalings.append(S2)
            rotations.append(Vt.T)
        if self.store_covariance or store_covariance:
            self.covariance_ = cov
        self.means_ = np.asarray(means)
        self.scalings_ = scalings
        self.rotations_ = rotations
        return self

    def _decision_function(self, X):
        # return log posterior, see eq (4.12) p. 110 of the ESL.
        check_is_fitted(self)

        X = check_array(X)
        norm2 = []
        for i in range(len(self.classes_)):
            R = self.rotations_[i]
            S = self.scalings_[i]
            Xm = X - self.means_[i]
            X2 = np.dot(Xm, R * (S ** (-0.5)))
            norm2.append(np.sum(X2 ** 2, axis=1))
        norm2 = np.array(norm2).T  # shape = [len(X), n_classes]
        u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
        return (-0.5 * (norm2 + u) + np.log(self.priors_))

    def decision_function(self, X):
        """Apply decision function to an array of samples.

        The decision function is equal (up to a constant factor) to the
        log-posterior of the model, i.e. `log p(y = k | x)`. In a binary
        classification setting this instead corresponds to the difference
        `log p(y = 1 | x) - log p(y = 0 | x)`. See :ref:`lda_qda_math`.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Array of samples (test vectors).

        Returns
        -------
        C : ndarray of shape (n_samples,) or (n_samples, n_classes)
            Decision function values related to each class, per sample.
            In the two-class case, the shape is (n_samples,), giving the
            log likelihood ratio of the positive class.
        """
        dec_func = self._decision_function(X)
        # handle special case of two classes
        if len(self.classes_) == 2:
            return dec_func[:, 1] - dec_func[:, 0]
        return dec_func

    def predict(self, X):
        """Perform classification on an array of test vectors X.

        The predicted class C for each sample in X is returned.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)

        Returns
        -------
        C : ndarray of shape (n_samples,)
        """
        d = self._decision_function(X)
        y_pred = self.classes_.take(d.argmax(1))
        return y_pred

    def predict_proba(self, X):
        """Return posterior probabilities of classification.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Array of samples/test vectors.

        Returns
        -------
        C : ndarray of shape (n_samples, n_classes)
            Posterior probabilities of classification per class.
        """
        values = self._decision_function(X)
        # compute the likelihood of the underlying gaussian models
        # up to a multiplicative constant.
        likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis])
        # compute posterior probabilities
        return likelihood / likelihood.sum(axis=1)[:, np.newaxis]

    def predict_log_proba(self, X):
        """Return log of posterior probabilities of classification.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Array of samples/test vectors.

        Returns
        -------
        C : ndarray of shape (n_samples, n_classes)
            Posterior log-probabilities of classification per class.
        """
        # XXX : can do better to avoid precision overflows
        probas_ = self.predict_proba(X)
        return np.log(probas_)