_sparse_pca.py 13.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
"""Matrix factorization with Sparse PCA"""
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause

import warnings

import numpy as np

from ..utils import check_random_state, check_array
from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args
from ..linear_model import ridge_regression
from ..base import BaseEstimator, TransformerMixin
from ._dict_learning import dict_learning, dict_learning_online


# FIXME: remove in 0.24
def _check_normalize_components(normalize_components, estimator_name):
    if normalize_components != 'deprecated':
        if normalize_components:
            warnings.warn(
                "'normalize_components' has been deprecated in 0.22 and "
                "will be removed in 0.24. Remove the parameter from the "
                " constructor.", FutureWarning
            )
        else:
            raise NotImplementedError(
                "normalize_components=False is not supported starting from "
                "0.22. Remove this parameter from the constructor."
            )


class SparsePCA(TransformerMixin, BaseEstimator):
    """Sparse Principal Components Analysis (SparsePCA)

    Finds the set of sparse components that can optimally reconstruct
    the data.  The amount of sparseness is controllable by the coefficient
    of the L1 penalty, given by the parameter alpha.

    Read more in the :ref:`User Guide <SparsePCA>`.

    Parameters
    ----------
    n_components : int,
        Number of sparse atoms to extract.

    alpha : float,
        Sparsity controlling parameter. Higher values lead to sparser
        components.

    ridge_alpha : float,
        Amount of ridge shrinkage to apply in order to improve
        conditioning when calling the transform method.

    max_iter : int,
        Maximum number of iterations to perform.

    tol : float,
        Tolerance for the stopping condition.

    method : {'lars', 'cd'}
        lars: uses the least angle regression method to solve the lasso problem
        (linear_model.lars_path)
        cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). Lars will be faster if
        the estimated components are sparse.

    n_jobs : int or None, optional (default=None)
        Number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    U_init : array of shape (n_samples, n_components),
        Initial values for the loadings for warm restart scenarios.

    V_init : array of shape (n_components, n_features),
        Initial values for the components for warm restart scenarios.

    verbose : int
        Controls the verbosity; the higher, the more messages. Defaults to 0.

    random_state : int, RandomState instance, default=None
        Used during dictionary learning. Pass an int for reproducible results
        across multiple function calls.
        See :term:`Glossary <random_state>`.

    normalize_components : 'deprecated'
        This parameter does not have any effect. The components are always
        normalized.

        .. versionadded:: 0.20

        .. deprecated:: 0.22
           ``normalize_components`` is deprecated in 0.22 and will be removed
           in 0.24.

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        Sparse components extracted from the data.

    error_ : array
        Vector of errors at each iteration.

    n_components_ : int
        Estimated number of components.

        .. versionadded:: 0.23

    n_iter_ : int
        Number of iterations run.

    mean_ : array, shape (n_features,)
        Per-feature empirical mean, estimated from the training set.
        Equal to ``X.mean(axis=0)``.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.datasets import make_friedman1
    >>> from sklearn.decomposition import SparsePCA
    >>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
    >>> transformer = SparsePCA(n_components=5, random_state=0)
    >>> transformer.fit(X)
    SparsePCA(...)
    >>> X_transformed = transformer.transform(X)
    >>> X_transformed.shape
    (200, 5)
    >>> # most values in the components_ are zero (sparsity)
    >>> np.mean(transformer.components_ == 0)
    0.9666...

    See also
    --------
    PCA
    MiniBatchSparsePCA
    DictionaryLearning
    """
    @_deprecate_positional_args
    def __init__(self, n_components=None, *, alpha=1, ridge_alpha=0.01,
                 max_iter=1000, tol=1e-8, method='lars', n_jobs=None,
                 U_init=None, V_init=None, verbose=False, random_state=None,
                 normalize_components='deprecated'):
        self.n_components = n_components
        self.alpha = alpha
        self.ridge_alpha = ridge_alpha
        self.max_iter = max_iter
        self.tol = tol
        self.method = method
        self.n_jobs = n_jobs
        self.U_init = U_init
        self.V_init = V_init
        self.verbose = verbose
        self.random_state = random_state
        self.normalize_components = normalize_components

    def fit(self, X, y=None):
        """Fit the model from data in X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples
            and n_features is the number of features.

        y : Ignored

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        random_state = check_random_state(self.random_state)
        X = self._validate_data(X)

        _check_normalize_components(
            self.normalize_components, self.__class__.__name__
        )

        self.mean_ = X.mean(axis=0)
        X = X - self.mean_

        if self.n_components is None:
            n_components = X.shape[1]
        else:
            n_components = self.n_components
        code_init = self.V_init.T if self.V_init is not None else None
        dict_init = self.U_init.T if self.U_init is not None else None
        Vt, _, E, self.n_iter_ = dict_learning(X.T, n_components,
                                               alpha=self.alpha,
                                               tol=self.tol,
                                               max_iter=self.max_iter,
                                               method=self.method,
                                               n_jobs=self.n_jobs,
                                               verbose=self.verbose,
                                               random_state=random_state,
                                               code_init=code_init,
                                               dict_init=dict_init,
                                               return_n_iter=True)
        self.components_ = Vt.T
        components_norm = np.linalg.norm(
            self.components_, axis=1)[:, np.newaxis]
        components_norm[components_norm == 0] = 1
        self.components_ /= components_norm
        self.n_components_ = len(self.components_)

        self.error_ = E
        return self

    def transform(self, X):
        """Least Squares projection of the data onto the sparse components.

        To avoid instability issues in case the system is under-determined,
        regularization can be applied (Ridge regression) via the
        `ridge_alpha` parameter.

        Note that Sparse PCA components orthogonality is not enforced as in PCA
        hence one cannot use a simple linear projection.

        Parameters
        ----------
        X : array of shape (n_samples, n_features)
            Test data to be transformed, must have the same number of
            features as the data used to train the model.

        Returns
        -------
        X_new array, shape (n_samples, n_components)
            Transformed data.
        """
        check_is_fitted(self)

        X = check_array(X)
        X = X - self.mean_

        U = ridge_regression(self.components_.T, X.T, self.ridge_alpha,
                             solver='cholesky')

        return U

    def _more_tags(self):
        return {
            '_xfail_checks': {
                "check_methods_subset_invariance":
                "fails for the transform method"
            }
        }


class MiniBatchSparsePCA(SparsePCA):
    """Mini-batch Sparse Principal Components Analysis

    Finds the set of sparse components that can optimally reconstruct
    the data.  The amount of sparseness is controllable by the coefficient
    of the L1 penalty, given by the parameter alpha.

    Read more in the :ref:`User Guide <SparsePCA>`.

    Parameters
    ----------
    n_components : int,
        number of sparse atoms to extract

    alpha : int,
        Sparsity controlling parameter. Higher values lead to sparser
        components.

    ridge_alpha : float,
        Amount of ridge shrinkage to apply in order to improve
        conditioning when calling the transform method.

    n_iter : int,
        number of iterations to perform for each mini batch

    callback : callable or None, optional (default: None)
        callable that gets invoked every five iterations

    batch_size : int,
        the number of features to take in each mini batch

    verbose : int
        Controls the verbosity; the higher, the more messages. Defaults to 0.

    shuffle : boolean,
        whether to shuffle the data before splitting it in batches

    n_jobs : int or None, optional (default=None)
        Number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    method : {'lars', 'cd'}
        lars: uses the least angle regression method to solve the lasso problem
        (linear_model.lars_path)
        cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). Lars will be faster if
        the estimated components are sparse.

    random_state : int, RandomState instance, default=None
        Used for random shuffling when ``shuffle`` is set to ``True``,
        during online dictionary learning. Pass an int for reproducible results
        across multiple function calls.
        See :term:`Glossary <random_state>`.

    normalize_components : 'deprecated'
        This parameter does not have any effect. The components are always
        normalized.

        .. versionadded:: 0.20

        .. deprecated:: 0.22
           ``normalize_components`` is deprecated in 0.22 and will be removed
           in 0.24.

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        Sparse components extracted from the data.

    n_components_ : int
        Estimated number of components.

        .. versionadded:: 0.23

    n_iter_ : int
        Number of iterations run.

    mean_ : array, shape (n_features,)
        Per-feature empirical mean, estimated from the training set.
        Equal to ``X.mean(axis=0)``.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.datasets import make_friedman1
    >>> from sklearn.decomposition import MiniBatchSparsePCA
    >>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
    >>> transformer = MiniBatchSparsePCA(n_components=5, batch_size=50,
    ...                                  random_state=0)
    >>> transformer.fit(X)
    MiniBatchSparsePCA(...)
    >>> X_transformed = transformer.transform(X)
    >>> X_transformed.shape
    (200, 5)
    >>> # most values in the components_ are zero (sparsity)
    >>> np.mean(transformer.components_ == 0)
    0.94

    See also
    --------
    PCA
    SparsePCA
    DictionaryLearning
    """
    @_deprecate_positional_args
    def __init__(self, n_components=None, *, alpha=1, ridge_alpha=0.01,
                 n_iter=100, callback=None, batch_size=3, verbose=False,
                 shuffle=True, n_jobs=None, method='lars', random_state=None,
                 normalize_components='deprecated'):
        super().__init__(
            n_components=n_components, alpha=alpha, verbose=verbose,
            ridge_alpha=ridge_alpha, n_jobs=n_jobs, method=method,
            random_state=random_state,
            normalize_components=normalize_components)
        self.n_iter = n_iter
        self.callback = callback
        self.batch_size = batch_size
        self.shuffle = shuffle

    def fit(self, X, y=None):
        """Fit the model from data in X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples
            and n_features is the number of features.

        y : Ignored

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        random_state = check_random_state(self.random_state)
        X = self._validate_data(X)

        _check_normalize_components(
            self.normalize_components, self.__class__.__name__
        )

        self.mean_ = X.mean(axis=0)
        X = X - self.mean_

        if self.n_components is None:
            n_components = X.shape[1]
        else:
            n_components = self.n_components
        Vt, _, self.n_iter_ = dict_learning_online(
            X.T, n_components, alpha=self.alpha,
            n_iter=self.n_iter, return_code=True,
            dict_init=None, verbose=self.verbose,
            callback=self.callback,
            batch_size=self.batch_size,
            shuffle=self.shuffle,
            n_jobs=self.n_jobs, method=self.method,
            random_state=random_state,
            return_n_iter=True)
        self.components_ = Vt.T

        components_norm = np.linalg.norm(
            self.components_, axis=1)[:, np.newaxis]
        components_norm[components_norm == 0] = 1
        self.components_ /= components_norm
        self.n_components_ = len(self.components_)

        return self