_nmf.py 46.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
""" Non-negative matrix factorization
"""
# Author: Vlad Niculae
#         Lars Buitinck
#         Mathieu Blondel <mathieu@mblondel.org>
#         Tom Dupre la Tour
# License: BSD 3 clause

import numbers
import numpy as np
import scipy.sparse as sp
import time
import warnings
from math import sqrt

from ._cdnmf_fast import _update_cdnmf_fast
from ..base import BaseEstimator, TransformerMixin
from ..exceptions import ConvergenceWarning
from ..utils import check_random_state, check_array
from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm
from ..utils.validation import check_is_fitted, check_non_negative
from ..utils.validation import _deprecate_positional_args

EPSILON = np.finfo(np.float32).eps


def norm(x):
    """Dot product-based Euclidean norm implementation

    See: http://fseoane.net/blog/2011/computing-the-vector-norm/

    Parameters
    ----------
    x : array-like
        Vector for which to compute the norm
    """
    return sqrt(squared_norm(x))


def trace_dot(X, Y):
    """Trace of np.dot(X, Y.T).

    Parameters
    ----------
    X : array-like
        First matrix
    Y : array-like
        Second matrix
    """
    return np.dot(X.ravel(), Y.ravel())


def _check_init(A, shape, whom):
    A = check_array(A)
    if np.shape(A) != shape:
        raise ValueError('Array with wrong shape passed to %s. Expected %s, '
                         'but got %s ' % (whom, shape, np.shape(A)))
    check_non_negative(A, whom)
    if np.max(A) == 0:
        raise ValueError('Array passed to %s is full of zeros.' % whom)


def _beta_divergence(X, W, H, beta, square_root=False):
    """Compute the beta-divergence of X and dot(W, H).

    Parameters
    ----------
    X : float or array-like, shape (n_samples, n_features)

    W : float or dense array-like, shape (n_samples, n_components)

    H : float or dense array-like, shape (n_components, n_features)

    beta : float, string in {'frobenius', 'kullback-leibler', 'itakura-saito'}
        Parameter of the beta-divergence.
        If beta == 2, this is half the Frobenius *squared* norm.
        If beta == 1, this is the generalized Kullback-Leibler divergence.
        If beta == 0, this is the Itakura-Saito divergence.
        Else, this is the general beta-divergence.

    square_root : boolean, default False
        If True, return np.sqrt(2 * res)
        For beta == 2, it corresponds to the Frobenius norm.

    Returns
    -------
        res : float
            Beta divergence of X and np.dot(X, H)
    """
    beta = _beta_loss_to_float(beta)

    # The method can be called with scalars
    if not sp.issparse(X):
        X = np.atleast_2d(X)
    W = np.atleast_2d(W)
    H = np.atleast_2d(H)

    # Frobenius norm
    if beta == 2:
        # Avoid the creation of the dense np.dot(W, H) if X is sparse.
        if sp.issparse(X):
            norm_X = np.dot(X.data, X.data)
            norm_WH = trace_dot(np.dot(np.dot(W.T, W), H), H)
            cross_prod = trace_dot((X * H.T), W)
            res = (norm_X + norm_WH - 2. * cross_prod) / 2.
        else:
            res = squared_norm(X - np.dot(W, H)) / 2.

        if square_root:
            return np.sqrt(res * 2)
        else:
            return res

    if sp.issparse(X):
        # compute np.dot(W, H) only where X is nonzero
        WH_data = _special_sparse_dot(W, H, X).data
        X_data = X.data
    else:
        WH = np.dot(W, H)
        WH_data = WH.ravel()
        X_data = X.ravel()

    # do not affect the zeros: here 0 ** (-1) = 0 and not infinity
    indices = X_data > EPSILON
    WH_data = WH_data[indices]
    X_data = X_data[indices]

    # used to avoid division by zero
    WH_data[WH_data == 0] = EPSILON

    # generalized Kullback-Leibler divergence
    if beta == 1:
        # fast and memory efficient computation of np.sum(np.dot(W, H))
        sum_WH = np.dot(np.sum(W, axis=0), np.sum(H, axis=1))
        # computes np.sum(X * log(X / WH)) only where X is nonzero
        div = X_data / WH_data
        res = np.dot(X_data, np.log(div))
        # add full np.sum(np.dot(W, H)) - np.sum(X)
        res += sum_WH - X_data.sum()

    # Itakura-Saito divergence
    elif beta == 0:
        div = X_data / WH_data
        res = np.sum(div) - np.product(X.shape) - np.sum(np.log(div))

    # beta-divergence, beta not in (0, 1, 2)
    else:
        if sp.issparse(X):
            # slow loop, but memory efficient computation of :
            # np.sum(np.dot(W, H) ** beta)
            sum_WH_beta = 0
            for i in range(X.shape[1]):
                sum_WH_beta += np.sum(np.dot(W, H[:, i]) ** beta)

        else:
            sum_WH_beta = np.sum(WH ** beta)

        sum_X_WH = np.dot(X_data, WH_data ** (beta - 1))
        res = (X_data ** beta).sum() - beta * sum_X_WH
        res += sum_WH_beta * (beta - 1)
        res /= beta * (beta - 1)

    if square_root:
        return np.sqrt(2 * res)
    else:
        return res


def _special_sparse_dot(W, H, X):
    """Computes np.dot(W, H), only where X is non zero."""
    if sp.issparse(X):
        ii, jj = X.nonzero()
        n_vals = ii.shape[0]
        dot_vals = np.empty(n_vals)
        n_components = W.shape[1]

        batch_size = max(n_components, n_vals // n_components)
        for start in range(0, n_vals, batch_size):
            batch = slice(start, start + batch_size)
            dot_vals[batch] = np.multiply(W[ii[batch], :],
                                          H.T[jj[batch], :]).sum(axis=1)

        WH = sp.coo_matrix((dot_vals, (ii, jj)), shape=X.shape)
        return WH.tocsr()
    else:
        return np.dot(W, H)


def _compute_regularization(alpha, l1_ratio, regularization):
    """Compute L1 and L2 regularization coefficients for W and H"""
    alpha_H = 0.
    alpha_W = 0.
    if regularization in ('both', 'components'):
        alpha_H = float(alpha)
    if regularization in ('both', 'transformation'):
        alpha_W = float(alpha)

    l1_reg_W = alpha_W * l1_ratio
    l1_reg_H = alpha_H * l1_ratio
    l2_reg_W = alpha_W * (1. - l1_ratio)
    l2_reg_H = alpha_H * (1. - l1_ratio)
    return l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H


def _check_string_param(solver, regularization, beta_loss, init):
    allowed_solver = ('cd', 'mu')
    if solver not in allowed_solver:
        raise ValueError(
            'Invalid solver parameter: got %r instead of one of %r' %
            (solver, allowed_solver))

    allowed_regularization = ('both', 'components', 'transformation', None)
    if regularization not in allowed_regularization:
        raise ValueError(
            'Invalid regularization parameter: got %r instead of one of %r' %
            (regularization, allowed_regularization))

    # 'mu' is the only solver that handles other beta losses than 'frobenius'
    if solver != 'mu' and beta_loss not in (2, 'frobenius'):
        raise ValueError(
            'Invalid beta_loss parameter: solver %r does not handle beta_loss'
            ' = %r' % (solver, beta_loss))

    if solver == 'mu' and init == 'nndsvd':
        warnings.warn("The multiplicative update ('mu') solver cannot update "
                      "zeros present in the initialization, and so leads to "
                      "poorer results when used jointly with init='nndsvd'. "
                      "You may try init='nndsvda' or init='nndsvdar' instead.",
                      UserWarning)

    beta_loss = _beta_loss_to_float(beta_loss)
    return beta_loss


def _beta_loss_to_float(beta_loss):
    """Convert string beta_loss to float"""
    allowed_beta_loss = {'frobenius': 2,
                         'kullback-leibler': 1,
                         'itakura-saito': 0}
    if isinstance(beta_loss, str) and beta_loss in allowed_beta_loss:
        beta_loss = allowed_beta_loss[beta_loss]

    if not isinstance(beta_loss, numbers.Number):
        raise ValueError('Invalid beta_loss parameter: got %r instead '
                         'of one of %r, or a float.' %
                         (beta_loss, allowed_beta_loss.keys()))
    return beta_loss


def _initialize_nmf(X, n_components, init=None, eps=1e-6,
                    random_state=None):
    """Algorithms for NMF initialization.

    Computes an initial guess for the non-negative
    rank k matrix approximation for X: X = WH

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        The data matrix to be decomposed.

    n_components : integer
        The number of components desired in the approximation.

    init :  None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar'
        Method used to initialize the procedure.
        Default: None.
        Valid options:

        - None: 'nndsvd' if n_components <= min(n_samples, n_features),
            otherwise 'random'.

        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)

        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)

        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)

        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

        - 'custom': use custom matrices W and H

    eps : float
        Truncate all values less then this in output to zero.

    random_state : int, RandomState instance, default=None
        Used when ``init`` == 'nndsvdar' or 'random'. Pass an int for
        reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    W : array-like, shape (n_samples, n_components)
        Initial guesses for solving X ~= WH

    H : array-like, shape (n_components, n_features)
        Initial guesses for solving X ~= WH

    References
    ----------
    C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for
    nonnegative matrix factorization - Pattern Recognition, 2008
    http://tinyurl.com/nndsvd
    """
    check_non_negative(X, "NMF initialization")
    n_samples, n_features = X.shape

    if (init is not None and init != 'random'
            and n_components > min(n_samples, n_features)):
        raise ValueError("init = '{}' can only be used when "
                         "n_components <= min(n_samples, n_features)"
                         .format(init))

    if init is None:
        if n_components <= min(n_samples, n_features):
            init = 'nndsvd'
        else:
            init = 'random'

    # Random initialization
    if init == 'random':
        avg = np.sqrt(X.mean() / n_components)
        rng = check_random_state(random_state)
        H = avg * rng.randn(n_components, n_features).astype(X.dtype,
                                                             copy=False)
        W = avg * rng.randn(n_samples, n_components).astype(X.dtype,
                                                            copy=False)
        np.abs(H, out=H)
        np.abs(W, out=W)
        return W, H

    # NNDSVD initialization
    U, S, V = randomized_svd(X, n_components, random_state=random_state)
    W = np.zeros_like(U)
    H = np.zeros_like(V)

    # The leading singular triplet is non-negative
    # so it can be used as is for initialization.
    W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0])
    H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :])

    for j in range(1, n_components):
        x, y = U[:, j], V[j, :]

        # extract positive and negative parts of column vectors
        x_p, y_p = np.maximum(x, 0), np.maximum(y, 0)
        x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0))

        # and their norms
        x_p_nrm, y_p_nrm = norm(x_p), norm(y_p)
        x_n_nrm, y_n_nrm = norm(x_n), norm(y_n)

        m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm

        # choose update
        if m_p > m_n:
            u = x_p / x_p_nrm
            v = y_p / y_p_nrm
            sigma = m_p
        else:
            u = x_n / x_n_nrm
            v = y_n / y_n_nrm
            sigma = m_n

        lbd = np.sqrt(S[j] * sigma)
        W[:, j] = lbd * u
        H[j, :] = lbd * v

    W[W < eps] = 0
    H[H < eps] = 0

    if init == "nndsvd":
        pass
    elif init == "nndsvda":
        avg = X.mean()
        W[W == 0] = avg
        H[H == 0] = avg
    elif init == "nndsvdar":
        rng = check_random_state(random_state)
        avg = X.mean()
        W[W == 0] = abs(avg * rng.randn(len(W[W == 0])) / 100)
        H[H == 0] = abs(avg * rng.randn(len(H[H == 0])) / 100)
    else:
        raise ValueError(
            'Invalid init parameter: got %r instead of one of %r' %
            (init, (None, 'random', 'nndsvd', 'nndsvda', 'nndsvdar')))

    return W, H


def _update_coordinate_descent(X, W, Ht, l1_reg, l2_reg, shuffle,
                               random_state):
    """Helper function for _fit_coordinate_descent

    Update W to minimize the objective function, iterating once over all
    coordinates. By symmetry, to update H, one can call
    _update_coordinate_descent(X.T, Ht, W, ...)

    """
    n_components = Ht.shape[1]

    HHt = np.dot(Ht.T, Ht)
    XHt = safe_sparse_dot(X, Ht)

    # L2 regularization corresponds to increase of the diagonal of HHt
    if l2_reg != 0.:
        # adds l2_reg only on the diagonal
        HHt.flat[::n_components + 1] += l2_reg
    # L1 regularization corresponds to decrease of each element of XHt
    if l1_reg != 0.:
        XHt -= l1_reg

    if shuffle:
        permutation = random_state.permutation(n_components)
    else:
        permutation = np.arange(n_components)
    # The following seems to be required on 64-bit Windows w/ Python 3.5.
    permutation = np.asarray(permutation, dtype=np.intp)
    return _update_cdnmf_fast(W, HHt, XHt, permutation)


def _fit_coordinate_descent(X, W, H, tol=1e-4, max_iter=200, l1_reg_W=0,
                            l1_reg_H=0, l2_reg_W=0, l2_reg_H=0, update_H=True,
                            verbose=0, shuffle=False, random_state=None):
    """Compute Non-negative Matrix Factorization (NMF) with Coordinate Descent

    The objective function is minimized with an alternating minimization of W
    and H. Each minimization is done with a cyclic (up to a permutation of the
    features) Coordinate Descent.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Constant matrix.

    W : array-like, shape (n_samples, n_components)
        Initial guess for the solution.

    H : array-like, shape (n_components, n_features)
        Initial guess for the solution.

    tol : float, default: 1e-4
        Tolerance of the stopping condition.

    max_iter : integer, default: 200
        Maximum number of iterations before timing out.

    l1_reg_W : double, default: 0.
        L1 regularization parameter for W.

    l1_reg_H : double, default: 0.
        L1 regularization parameter for H.

    l2_reg_W : double, default: 0.
        L2 regularization parameter for W.

    l2_reg_H : double, default: 0.
        L2 regularization parameter for H.

    update_H : boolean, default: True
        Set to True, both W and H will be estimated from initial guesses.
        Set to False, only W will be estimated.

    verbose : integer, default: 0
        The verbosity level.

    shuffle : boolean, default: False
        If true, randomize the order of coordinates in the CD solver.

    random_state : int, RandomState instance, default=None
        Used to randomize the coordinates in the CD solver, when
        ``shuffle`` is set to ``True``. Pass an int for reproducible
        results across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    W : array-like, shape (n_samples, n_components)
        Solution to the non-negative least squares problem.

    H : array-like, shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    n_iter : int
        The number of iterations done by the algorithm.

    References
    ----------
    Cichocki, Andrzej, and Phan, Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.
    """
    # so W and Ht are both in C order in memory
    Ht = check_array(H.T, order='C')
    X = check_array(X, accept_sparse='csr')

    rng = check_random_state(random_state)

    for n_iter in range(1, max_iter + 1):
        violation = 0.

        # Update W
        violation += _update_coordinate_descent(X, W, Ht, l1_reg_W,
                                                l2_reg_W, shuffle, rng)
        # Update H
        if update_H:
            violation += _update_coordinate_descent(X.T, Ht, W, l1_reg_H,
                                                    l2_reg_H, shuffle, rng)

        if n_iter == 1:
            violation_init = violation

        if violation_init == 0:
            break

        if verbose:
            print("violation:", violation / violation_init)

        if violation / violation_init <= tol:
            if verbose:
                print("Converged at iteration", n_iter + 1)
            break

    return W, Ht.T, n_iter


def _multiplicative_update_w(X, W, H, beta_loss, l1_reg_W, l2_reg_W, gamma,
                             H_sum=None, HHt=None, XHt=None, update_H=True):
    """update W in Multiplicative Update NMF"""
    if beta_loss == 2:
        # Numerator
        if XHt is None:
            XHt = safe_sparse_dot(X, H.T)
        if update_H:
            # avoid a copy of XHt, which will be re-computed (update_H=True)
            numerator = XHt
        else:
            # preserve the XHt, which is not re-computed (update_H=False)
            numerator = XHt.copy()

        # Denominator
        if HHt is None:
            HHt = np.dot(H, H.T)
        denominator = np.dot(W, HHt)

    else:
        # Numerator
        # if X is sparse, compute WH only where X is non zero
        WH_safe_X = _special_sparse_dot(W, H, X)
        if sp.issparse(X):
            WH_safe_X_data = WH_safe_X.data
            X_data = X.data
        else:
            WH_safe_X_data = WH_safe_X
            X_data = X
            # copy used in the Denominator
            WH = WH_safe_X.copy()
            if beta_loss - 1. < 0:
                WH[WH == 0] = EPSILON

        # to avoid taking a negative power of zero
        if beta_loss - 2. < 0:
            WH_safe_X_data[WH_safe_X_data == 0] = EPSILON

        if beta_loss == 1:
            np.divide(X_data, WH_safe_X_data, out=WH_safe_X_data)
        elif beta_loss == 0:
            # speeds up computation time
            # refer to /numpy/numpy/issues/9363
            WH_safe_X_data **= -1
            WH_safe_X_data **= 2
            # element-wise multiplication
            WH_safe_X_data *= X_data
        else:
            WH_safe_X_data **= beta_loss - 2
            # element-wise multiplication
            WH_safe_X_data *= X_data

        # here numerator = dot(X * (dot(W, H) ** (beta_loss - 2)), H.T)
        numerator = safe_sparse_dot(WH_safe_X, H.T)

        # Denominator
        if beta_loss == 1:
            if H_sum is None:
                H_sum = np.sum(H, axis=1)  # shape(n_components, )
            denominator = H_sum[np.newaxis, :]

        else:
            # computation of WHHt = dot(dot(W, H) ** beta_loss - 1, H.T)
            if sp.issparse(X):
                # memory efficient computation
                # (compute row by row, avoiding the dense matrix WH)
                WHHt = np.empty(W.shape)
                for i in range(X.shape[0]):
                    WHi = np.dot(W[i, :], H)
                    if beta_loss - 1 < 0:
                        WHi[WHi == 0] = EPSILON
                    WHi **= beta_loss - 1
                    WHHt[i, :] = np.dot(WHi, H.T)
            else:
                WH **= beta_loss - 1
                WHHt = np.dot(WH, H.T)
            denominator = WHHt

    # Add L1 and L2 regularization
    if l1_reg_W > 0:
        denominator += l1_reg_W
    if l2_reg_W > 0:
        denominator = denominator + l2_reg_W * W
    denominator[denominator == 0] = EPSILON

    numerator /= denominator
    delta_W = numerator

    # gamma is in ]0, 1]
    if gamma != 1:
        delta_W **= gamma

    return delta_W, H_sum, HHt, XHt


def _multiplicative_update_h(X, W, H, beta_loss, l1_reg_H, l2_reg_H, gamma):
    """update H in Multiplicative Update NMF"""
    if beta_loss == 2:
        numerator = safe_sparse_dot(W.T, X)
        denominator = np.dot(np.dot(W.T, W), H)

    else:
        # Numerator
        WH_safe_X = _special_sparse_dot(W, H, X)
        if sp.issparse(X):
            WH_safe_X_data = WH_safe_X.data
            X_data = X.data
        else:
            WH_safe_X_data = WH_safe_X
            X_data = X
            # copy used in the Denominator
            WH = WH_safe_X.copy()
            if beta_loss - 1. < 0:
                WH[WH == 0] = EPSILON

        # to avoid division by zero
        if beta_loss - 2. < 0:
            WH_safe_X_data[WH_safe_X_data == 0] = EPSILON

        if beta_loss == 1:
            np.divide(X_data, WH_safe_X_data, out=WH_safe_X_data)
        elif beta_loss == 0:
            # speeds up computation time
            # refer to /numpy/numpy/issues/9363
            WH_safe_X_data **= -1
            WH_safe_X_data **= 2
            # element-wise multiplication
            WH_safe_X_data *= X_data
        else:
            WH_safe_X_data **= beta_loss - 2
            # element-wise multiplication
            WH_safe_X_data *= X_data

        # here numerator = dot(W.T, (dot(W, H) ** (beta_loss - 2)) * X)
        numerator = safe_sparse_dot(W.T, WH_safe_X)

        # Denominator
        if beta_loss == 1:
            W_sum = np.sum(W, axis=0)  # shape(n_components, )
            W_sum[W_sum == 0] = 1.
            denominator = W_sum[:, np.newaxis]

        # beta_loss not in (1, 2)
        else:
            # computation of WtWH = dot(W.T, dot(W, H) ** beta_loss - 1)
            if sp.issparse(X):
                # memory efficient computation
                # (compute column by column, avoiding the dense matrix WH)
                WtWH = np.empty(H.shape)
                for i in range(X.shape[1]):
                    WHi = np.dot(W, H[:, i])
                    if beta_loss - 1 < 0:
                        WHi[WHi == 0] = EPSILON
                    WHi **= beta_loss - 1
                    WtWH[:, i] = np.dot(W.T, WHi)
            else:
                WH **= beta_loss - 1
                WtWH = np.dot(W.T, WH)
            denominator = WtWH

    # Add L1 and L2 regularization
    if l1_reg_H > 0:
        denominator += l1_reg_H
    if l2_reg_H > 0:
        denominator = denominator + l2_reg_H * H
    denominator[denominator == 0] = EPSILON

    numerator /= denominator
    delta_H = numerator

    # gamma is in ]0, 1]
    if gamma != 1:
        delta_H **= gamma

    return delta_H


def _fit_multiplicative_update(X, W, H, beta_loss='frobenius',
                               max_iter=200, tol=1e-4,
                               l1_reg_W=0, l1_reg_H=0, l2_reg_W=0, l2_reg_H=0,
                               update_H=True, verbose=0):
    """Compute Non-negative Matrix Factorization with Multiplicative Update

    The objective function is _beta_divergence(X, WH) and is minimized with an
    alternating minimization of W and H. Each minimization is done with a
    Multiplicative Update.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Constant input matrix.

    W : array-like, shape (n_samples, n_components)
        Initial guess for the solution.

    H : array-like, shape (n_components, n_features)
        Initial guess for the solution.

    beta_loss : float or string, default 'frobenius'
        String must be in {'frobenius', 'kullback-leibler', 'itakura-saito'}.
        Beta divergence to be minimized, measuring the distance between X
        and the dot product WH. Note that values different from 'frobenius'
        (or 2) and 'kullback-leibler' (or 1) lead to significantly slower
        fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input
        matrix X cannot contain zeros.

    max_iter : integer, default: 200
        Number of iterations.

    tol : float, default: 1e-4
        Tolerance of the stopping condition.

    l1_reg_W : double, default: 0.
        L1 regularization parameter for W.

    l1_reg_H : double, default: 0.
        L1 regularization parameter for H.

    l2_reg_W : double, default: 0.
        L2 regularization parameter for W.

    l2_reg_H : double, default: 0.
        L2 regularization parameter for H.

    update_H : boolean, default: True
        Set to True, both W and H will be estimated from initial guesses.
        Set to False, only W will be estimated.

    verbose : integer, default: 0
        The verbosity level.

    Returns
    -------
    W : array, shape (n_samples, n_components)
        Solution to the non-negative least squares problem.

    H : array, shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    n_iter : int
        The number of iterations done by the algorithm.

    References
    ----------
    Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix
    factorization with the beta-divergence. Neural Computation, 23(9).
    """
    start_time = time.time()

    beta_loss = _beta_loss_to_float(beta_loss)

    # gamma for Maximization-Minimization (MM) algorithm [Fevotte 2011]
    if beta_loss < 1:
        gamma = 1. / (2. - beta_loss)
    elif beta_loss > 2:
        gamma = 1. / (beta_loss - 1.)
    else:
        gamma = 1.

    # used for the convergence criterion
    error_at_init = _beta_divergence(X, W, H, beta_loss, square_root=True)
    previous_error = error_at_init

    H_sum, HHt, XHt = None, None, None
    for n_iter in range(1, max_iter + 1):
        # update W
        # H_sum, HHt and XHt are saved and reused if not update_H
        delta_W, H_sum, HHt, XHt = _multiplicative_update_w(
            X, W, H, beta_loss, l1_reg_W, l2_reg_W, gamma,
            H_sum, HHt, XHt, update_H)
        W *= delta_W

        # necessary for stability with beta_loss < 1
        if beta_loss < 1:
            W[W < np.finfo(np.float64).eps] = 0.

        # update H
        if update_H:
            delta_H = _multiplicative_update_h(X, W, H, beta_loss, l1_reg_H,
                                               l2_reg_H, gamma)
            H *= delta_H

            # These values will be recomputed since H changed
            H_sum, HHt, XHt = None, None, None

            # necessary for stability with beta_loss < 1
            if beta_loss <= 1:
                H[H < np.finfo(np.float64).eps] = 0.

        # test convergence criterion every 10 iterations
        if tol > 0 and n_iter % 10 == 0:
            error = _beta_divergence(X, W, H, beta_loss, square_root=True)

            if verbose:
                iter_time = time.time()
                print("Epoch %02d reached after %.3f seconds, error: %f" %
                      (n_iter, iter_time - start_time, error))

            if (previous_error - error) / error_at_init < tol:
                break
            previous_error = error

    # do not print if we have already printed in the convergence test
    if verbose and (tol == 0 or n_iter % 10 != 0):
        end_time = time.time()
        print("Epoch %02d reached after %.3f seconds." %
              (n_iter, end_time - start_time))

    return W, H, n_iter


@_deprecate_positional_args
def non_negative_factorization(X, W=None, H=None, n_components=None, *,
                               init=None, update_H=True, solver='cd',
                               beta_loss='frobenius', tol=1e-4,
                               max_iter=200, alpha=0., l1_ratio=0.,
                               regularization=None, random_state=None,
                               verbose=0, shuffle=False):
    r"""Compute Non-negative Matrix Factorization (NMF)

    Find two non-negative matrices (W, H) whose product approximates the non-
    negative matrix X. This factorization can be used for example for
    dimensionality reduction, source separation or topic extraction.

    The objective function is::

        0.5 * ||X - WH||_Fro^2
        + alpha * l1_ratio * ||vec(W)||_1
        + alpha * l1_ratio * ||vec(H)||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
        + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

    Where::

        ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
        ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

    For multiplicative-update ('mu') solver, the Frobenius norm
    (0.5 * ||X - WH||_Fro^2) can be changed into another beta-divergence loss,
    by changing the beta_loss parameter.

    The objective function is minimized with an alternating minimization of W
    and H. If H is given and update_H=False, it solves for W only.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Constant matrix.

    W : array-like, shape (n_samples, n_components)
        If init='custom', it is used as initial guess for the solution.

    H : array-like, shape (n_components, n_features)
        If init='custom', it is used as initial guess for the solution.
        If update_H=False, it is used as a constant, to solve for W only.

    n_components : integer
        Number of components, if n_components is not set all features
        are kept.

    init : None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom'
        Method used to initialize the procedure.
        Default: None.

        Valid options:

        - None: 'nndsvd' if n_components < n_features, otherwise 'random'.

        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)

        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)

        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)

        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

        - 'custom': use custom matrices W and H

        .. versionchanged:: 0.23
            The default value of `init` changed from 'random' to None in 0.23.

    update_H : boolean, default: True
        Set to True, both W and H will be estimated from initial guesses.
        Set to False, only W will be estimated.

    solver : 'cd' | 'mu'
        Numerical solver to use:

        - 'cd' is a Coordinate Descent solver that uses Fast Hierarchical
            Alternating Least Squares (Fast HALS).

        - 'mu' is a Multiplicative Update solver.

        .. versionadded:: 0.17
           Coordinate Descent solver.

        .. versionadded:: 0.19
           Multiplicative Update solver.

    beta_loss : float or string, default 'frobenius'
        String must be in {'frobenius', 'kullback-leibler', 'itakura-saito'}.
        Beta divergence to be minimized, measuring the distance between X
        and the dot product WH. Note that values different from 'frobenius'
        (or 2) and 'kullback-leibler' (or 1) lead to significantly slower
        fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input
        matrix X cannot contain zeros. Used only in 'mu' solver.

        .. versionadded:: 0.19

    tol : float, default: 1e-4
        Tolerance of the stopping condition.

    max_iter : integer, default: 200
        Maximum number of iterations before timing out.

    alpha : double, default: 0.
        Constant that multiplies the regularization terms.

    l1_ratio : double, default: 0.
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an elementwise L2 penalty
        (aka Frobenius Norm).
        For l1_ratio = 1 it is an elementwise L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

    regularization : 'both' | 'components' | 'transformation' | None
        Select whether the regularization affects the components (H), the
        transformation (W), both or none of them.

    random_state : int, RandomState instance, default=None
        Used for NMF initialisation (when ``init`` == 'nndsvdar' or
        'random'), and in Coordinate Descent. Pass an int for reproducible
        results across multiple function calls.
        See :term:`Glossary <random_state>`.

    verbose : integer, default: 0
        The verbosity level.

    shuffle : boolean, default: False
        If true, randomize the order of coordinates in the CD solver.

    Returns
    -------
    W : array-like, shape (n_samples, n_components)
        Solution to the non-negative least squares problem.

    H : array-like, shape (n_components, n_features)
        Solution to the non-negative least squares problem.

    n_iter : int
        Actual number of iterations.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
    >>> from sklearn.decomposition import non_negative_factorization
    >>> W, H, n_iter = non_negative_factorization(X, n_components=2,
    ... init='random', random_state=0)

    References
    ----------
    Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.

    Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix
    factorization with the beta-divergence. Neural Computation, 23(9).
    """
    X = check_array(X, accept_sparse=('csr', 'csc'),
                    dtype=[np.float64, np.float32])
    check_non_negative(X, "NMF (input X)")
    beta_loss = _check_string_param(solver, regularization, beta_loss, init)

    if X.min() == 0 and beta_loss <= 0:
        raise ValueError("When beta_loss <= 0 and X contains zeros, "
                         "the solver may diverge. Please add small values to "
                         "X, or use a positive beta_loss.")

    n_samples, n_features = X.shape
    if n_components is None:
        n_components = n_features

    if not isinstance(n_components, numbers.Integral) or n_components <= 0:
        raise ValueError("Number of components must be a positive integer;"
                         " got (n_components=%r)" % n_components)
    if not isinstance(max_iter, numbers.Integral) or max_iter < 0:
        raise ValueError("Maximum number of iterations must be a positive "
                         "integer; got (max_iter=%r)" % max_iter)
    if not isinstance(tol, numbers.Number) or tol < 0:
        raise ValueError("Tolerance for stopping criteria must be "
                         "positive; got (tol=%r)" % tol)

    # check W and H, or initialize them
    if init == 'custom' and update_H:
        _check_init(H, (n_components, n_features), "NMF (input H)")
        _check_init(W, (n_samples, n_components), "NMF (input W)")
        if H.dtype != X.dtype or W.dtype != X.dtype:
            raise TypeError("H and W should have the same dtype as X. Got "
                            "H.dtype = {} and W.dtype = {}."
                            .format(H.dtype, W.dtype))
    elif not update_H:
        _check_init(H, (n_components, n_features), "NMF (input H)")
        if H.dtype != X.dtype:
            raise TypeError("H should have the same dtype as X. Got H.dtype = "
                            "{}.".format(H.dtype))
        # 'mu' solver should not be initialized by zeros
        if solver == 'mu':
            avg = np.sqrt(X.mean() / n_components)
            W = np.full((n_samples, n_components), avg, dtype=X.dtype)
        else:
            W = np.zeros((n_samples, n_components), dtype=X.dtype)
    else:
        W, H = _initialize_nmf(X, n_components, init=init,
                               random_state=random_state)

    l1_reg_W, l1_reg_H, l2_reg_W, l2_reg_H = _compute_regularization(
        alpha, l1_ratio, regularization)

    if solver == 'cd':
        W, H, n_iter = _fit_coordinate_descent(X, W, H, tol, max_iter,
                                               l1_reg_W, l1_reg_H,
                                               l2_reg_W, l2_reg_H,
                                               update_H=update_H,
                                               verbose=verbose,
                                               shuffle=shuffle,
                                               random_state=random_state)
    elif solver == 'mu':
        W, H, n_iter = _fit_multiplicative_update(X, W, H, beta_loss, max_iter,
                                                  tol, l1_reg_W, l1_reg_H,
                                                  l2_reg_W, l2_reg_H, update_H,
                                                  verbose)

    else:
        raise ValueError("Invalid solver parameter '%s'." % solver)

    if n_iter == max_iter and tol > 0:
        warnings.warn("Maximum number of iterations %d reached. Increase it to"
                      " improve convergence." % max_iter, ConvergenceWarning)

    return W, H, n_iter


class NMF(TransformerMixin, BaseEstimator):
    r"""Non-Negative Matrix Factorization (NMF)

    Find two non-negative matrices (W, H) whose product approximates the non-
    negative matrix X. This factorization can be used for example for
    dimensionality reduction, source separation or topic extraction.

    The objective function is::

        0.5 * ||X - WH||_Fro^2
        + alpha * l1_ratio * ||vec(W)||_1
        + alpha * l1_ratio * ||vec(H)||_1
        + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
        + 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

    Where::

        ||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
        ||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

    For multiplicative-update ('mu') solver, the Frobenius norm
    (0.5 * ||X - WH||_Fro^2) can be changed into another beta-divergence loss,
    by changing the beta_loss parameter.

    The objective function is minimized with an alternating minimization of W
    and H.

    Read more in the :ref:`User Guide <NMF>`.

    Parameters
    ----------
    n_components : int or None
        Number of components, if n_components is not set all features
        are kept.

    init : None | 'random' | 'nndsvd' |  'nndsvda' | 'nndsvdar' | 'custom'
        Method used to initialize the procedure.
        Default: None.
        Valid options:

        - None: 'nndsvd' if n_components <= min(n_samples, n_features),
            otherwise random.

        - 'random': non-negative random matrices, scaled with:
            sqrt(X.mean() / n_components)

        - 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD)
            initialization (better for sparseness)

        - 'nndsvda': NNDSVD with zeros filled with the average of X
            (better when sparsity is not desired)

        - 'nndsvdar': NNDSVD with zeros filled with small random values
            (generally faster, less accurate alternative to NNDSVDa
            for when sparsity is not desired)

        - 'custom': use custom matrices W and H

    solver : 'cd' | 'mu'
        Numerical solver to use:
        'cd' is a Coordinate Descent solver.
        'mu' is a Multiplicative Update solver.

        .. versionadded:: 0.17
           Coordinate Descent solver.

        .. versionadded:: 0.19
           Multiplicative Update solver.

    beta_loss : float or string, default 'frobenius'
        String must be in {'frobenius', 'kullback-leibler', 'itakura-saito'}.
        Beta divergence to be minimized, measuring the distance between X
        and the dot product WH. Note that values different from 'frobenius'
        (or 2) and 'kullback-leibler' (or 1) lead to significantly slower
        fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input
        matrix X cannot contain zeros. Used only in 'mu' solver.

        .. versionadded:: 0.19

    tol : float, default: 1e-4
        Tolerance of the stopping condition.

    max_iter : integer, default: 200
        Maximum number of iterations before timing out.

    random_state : int, RandomState instance, default=None
        Used for initialisation (when ``init`` == 'nndsvdar' or
        'random'), and in Coordinate Descent. Pass an int for reproducible
        results across multiple function calls.
        See :term:`Glossary <random_state>`.

    alpha : double, default: 0.
        Constant that multiplies the regularization terms. Set it to zero to
        have no regularization.

        .. versionadded:: 0.17
           *alpha* used in the Coordinate Descent solver.

    l1_ratio : double, default: 0.
        The regularization mixing parameter, with 0 <= l1_ratio <= 1.
        For l1_ratio = 0 the penalty is an elementwise L2 penalty
        (aka Frobenius Norm).
        For l1_ratio = 1 it is an elementwise L1 penalty.
        For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

        .. versionadded:: 0.17
           Regularization parameter *l1_ratio* used in the Coordinate Descent
           solver.

    verbose : bool, default=False
        Whether to be verbose.

    shuffle : boolean, default: False
        If true, randomize the order of coordinates in the CD solver.

        .. versionadded:: 0.17
           *shuffle* parameter used in the Coordinate Descent solver.

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        Factorization matrix, sometimes called 'dictionary'.

    n_components_ : integer
        The number of components. It is same as the `n_components` parameter
        if it was given. Otherwise, it will be same as the number of
        features.

    reconstruction_err_ : number
        Frobenius norm of the matrix difference, or beta-divergence, between
        the training data ``X`` and the reconstructed data ``WH`` from
        the fitted model.

    n_iter_ : int
        Actual number of iterations.

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
    >>> from sklearn.decomposition import NMF
    >>> model = NMF(n_components=2, init='random', random_state=0)
    >>> W = model.fit_transform(X)
    >>> H = model.components_

    References
    ----------
    Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for
    large scale nonnegative matrix and tensor factorizations."
    IEICE transactions on fundamentals of electronics, communications and
    computer sciences 92.3: 708-721, 2009.

    Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix
    factorization with the beta-divergence. Neural Computation, 23(9).
    """
    @_deprecate_positional_args
    def __init__(self, n_components=None, *, init=None, solver='cd',
                 beta_loss='frobenius', tol=1e-4, max_iter=200,
                 random_state=None, alpha=0., l1_ratio=0., verbose=0,
                 shuffle=False):
        self.n_components = n_components
        self.init = init
        self.solver = solver
        self.beta_loss = beta_loss
        self.tol = tol
        self.max_iter = max_iter
        self.random_state = random_state
        self.alpha = alpha
        self.l1_ratio = l1_ratio
        self.verbose = verbose
        self.shuffle = shuffle

    def _more_tags(self):
        return {'requires_positive_X': True}

    def fit_transform(self, X, y=None, W=None, H=None):
        """Learn a NMF model for the data X and returns the transformed data.

        This is more efficient than calling fit followed by transform.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Data matrix to be decomposed

        y : Ignored

        W : array-like, shape (n_samples, n_components)
            If init='custom', it is used as initial guess for the solution.

        H : array-like, shape (n_components, n_features)
            If init='custom', it is used as initial guess for the solution.

        Returns
        -------
        W : array, shape (n_samples, n_components)
            Transformed data.
        """
        X = self._validate_data(X, accept_sparse=('csr', 'csc'),
                                dtype=[np.float64, np.float32])

        W, H, n_iter_ = non_negative_factorization(
            X=X, W=W, H=H, n_components=self.n_components, init=self.init,
            update_H=True, solver=self.solver, beta_loss=self.beta_loss,
            tol=self.tol, max_iter=self.max_iter, alpha=self.alpha,
            l1_ratio=self.l1_ratio, regularization='both',
            random_state=self.random_state, verbose=self.verbose,
            shuffle=self.shuffle)

        self.reconstruction_err_ = _beta_divergence(X, W, H, self.beta_loss,
                                                    square_root=True)

        self.n_components_ = H.shape[0]
        self.components_ = H
        self.n_iter_ = n_iter_

        return W

    def fit(self, X, y=None, **params):
        """Learn a NMF model for the data X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Data matrix to be decomposed

        y : Ignored

        Returns
        -------
        self
        """
        self.fit_transform(X, **params)
        return self

    def transform(self, X):
        """Transform the data X according to the fitted NMF model

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Data matrix to be transformed by the model

        Returns
        -------
        W : array, shape (n_samples, n_components)
            Transformed data
        """
        check_is_fitted(self)

        W, _, n_iter_ = non_negative_factorization(
            X=X, W=None, H=self.components_, n_components=self.n_components_,
            init=self.init, update_H=False, solver=self.solver,
            beta_loss=self.beta_loss, tol=self.tol, max_iter=self.max_iter,
            alpha=self.alpha, l1_ratio=self.l1_ratio, regularization='both',
            random_state=self.random_state, verbose=self.verbose,
            shuffle=self.shuffle)

        return W

    def inverse_transform(self, W):
        """Transform data back to its original space.

        Parameters
        ----------
        W : {array-like, sparse matrix}, shape (n_samples, n_components)
            Transformed data matrix

        Returns
        -------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Data matrix of original shape

        .. versionadded:: 0.18
        """
        check_is_fitted(self)
        return np.dot(W, self.components_)