_lda.py 30.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
"""

=============================================================
Online Latent Dirichlet Allocation with variational inference
=============================================================

This implementation is modified from Matthew D. Hoffman's onlineldavb code
Link: https://github.com/blei-lab/onlineldavb
"""

# Author: Chyi-Kwei Yau
# Author: Matthew D. Hoffman (original onlineldavb implementation)

import numpy as np
import scipy.sparse as sp
from scipy.special import gammaln, logsumexp
from joblib import Parallel, delayed, effective_n_jobs

from ..base import BaseEstimator, TransformerMixin
from ..utils import check_random_state, gen_batches, gen_even_slices
from ..utils.validation import check_non_negative
from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args

from ._online_lda_fast import (mean_change, _dirichlet_expectation_1d,
                               _dirichlet_expectation_2d)

EPS = np.finfo(np.float).eps


def _update_doc_distribution(X, exp_topic_word_distr, doc_topic_prior,
                             max_iters,
                             mean_change_tol, cal_sstats, random_state):
    """E-step: update document-topic distribution.

    Parameters
    ----------
    X : array-like or sparse matrix, shape=(n_samples, n_features)
        Document word matrix.

    exp_topic_word_distr : dense matrix, shape=(n_topics, n_features)
        Exponential value of expectation of log topic word distribution.
        In the literature, this is `exp(E[log(beta)])`.

    doc_topic_prior : float
        Prior of document topic distribution `theta`.

    max_iters : int
        Max number of iterations for updating document topic distribution in
        the E-step.

    mean_change_tol : float
        Stopping tolerance for updating document topic distribution in E-setp.

    cal_sstats : boolean
        Parameter that indicate to calculate sufficient statistics or not.
        Set `cal_sstats` to `True` when we need to run M-step.

    random_state : RandomState instance or None
        Parameter that indicate how to initialize document topic distribution.
        Set `random_state` to None will initialize document topic distribution
        to a constant number.

    Returns
    -------
    (doc_topic_distr, suff_stats) :
        `doc_topic_distr` is unnormalized topic distribution for each document.
        In the literature, this is `gamma`. we can calculate `E[log(theta)]`
        from it.
        `suff_stats` is expected sufficient statistics for the M-step.
            When `cal_sstats == False`, this will be None.

    """
    is_sparse_x = sp.issparse(X)
    n_samples, n_features = X.shape
    n_topics = exp_topic_word_distr.shape[0]

    if random_state:
        doc_topic_distr = random_state.gamma(100., 0.01, (n_samples, n_topics))
    else:
        doc_topic_distr = np.ones((n_samples, n_topics))

    # In the literature, this is `exp(E[log(theta)])`
    exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr))

    # diff on `component_` (only calculate it when `cal_diff` is True)
    suff_stats = np.zeros(exp_topic_word_distr.shape) if cal_sstats else None

    if is_sparse_x:
        X_data = X.data
        X_indices = X.indices
        X_indptr = X.indptr

    for idx_d in range(n_samples):
        if is_sparse_x:
            ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]]
            cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]]
        else:
            ids = np.nonzero(X[idx_d, :])[0]
            cnts = X[idx_d, ids]

        doc_topic_d = doc_topic_distr[idx_d, :]
        # The next one is a copy, since the inner loop overwrites it.
        exp_doc_topic_d = exp_doc_topic[idx_d, :].copy()
        exp_topic_word_d = exp_topic_word_distr[:, ids]

        # Iterate between `doc_topic_d` and `norm_phi` until convergence
        for _ in range(0, max_iters):
            last_d = doc_topic_d

            # The optimal phi_{dwk} is proportional to
            # exp(E[log(theta_{dk})]) * exp(E[log(beta_{dw})]).
            norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS

            doc_topic_d = (exp_doc_topic_d *
                           np.dot(cnts / norm_phi, exp_topic_word_d.T))
            # Note: adds doc_topic_prior to doc_topic_d, in-place.
            _dirichlet_expectation_1d(doc_topic_d, doc_topic_prior,
                                      exp_doc_topic_d)

            if mean_change(last_d, doc_topic_d) < mean_change_tol:
                break
        doc_topic_distr[idx_d, :] = doc_topic_d

        # Contribution of document d to the expected sufficient
        # statistics for the M step.
        if cal_sstats:
            norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS
            suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi)

    return (doc_topic_distr, suff_stats)


class LatentDirichletAllocation(TransformerMixin, BaseEstimator):
    """Latent Dirichlet Allocation with online variational Bayes algorithm

    .. versionadded:: 0.17

    Read more in the :ref:`User Guide <LatentDirichletAllocation>`.

    Parameters
    ----------
    n_components : int, optional (default=10)
        Number of topics.

        .. versionchanged:: 0.19
            ``n_topics `` was renamed to ``n_components``

    doc_topic_prior : float, optional (default=None)
        Prior of document topic distribution `theta`. If the value is None,
        defaults to `1 / n_components`.
        In [1]_, this is called `alpha`.

    topic_word_prior : float, optional (default=None)
        Prior of topic word distribution `beta`. If the value is None, defaults
        to `1 / n_components`.
        In [1]_, this is called `eta`.

    learning_method : 'batch' | 'online', default='batch'
        Method used to update `_component`. Only used in :meth:`fit` method.
        In general, if the data size is large, the online update will be much
        faster than the batch update.

        Valid options::

            'batch': Batch variational Bayes method. Use all training data in
                each EM update.
                Old `components_` will be overwritten in each iteration.
            'online': Online variational Bayes method. In each EM update, use
                mini-batch of training data to update the ``components_``
                variable incrementally. The learning rate is controlled by the
                ``learning_decay`` and the ``learning_offset`` parameters.

        .. versionchanged:: 0.20
            The default learning method is now ``"batch"``.

    learning_decay : float, optional (default=0.7)
        It is a parameter that control learning rate in the online learning
        method. The value should be set between (0.5, 1.0] to guarantee
        asymptotic convergence. When the value is 0.0 and batch_size is
        ``n_samples``, the update method is same as batch learning. In the
        literature, this is called kappa.

    learning_offset : float, optional (default=10.)
        A (positive) parameter that downweights early iterations in online
        learning.  It should be greater than 1.0. In the literature, this is
        called tau_0.

    max_iter : integer, optional (default=10)
        The maximum number of iterations.

    batch_size : int, optional (default=128)
        Number of documents to use in each EM iteration. Only used in online
        learning.

    evaluate_every : int, optional (default=0)
        How often to evaluate perplexity. Only used in `fit` method.
        set it to 0 or negative number to not evaluate perplexity in
        training at all. Evaluating perplexity can help you check convergence
        in training process, but it will also increase total training time.
        Evaluating perplexity in every iteration might increase training time
        up to two-fold.

    total_samples : int, optional (default=1e6)
        Total number of documents. Only used in the :meth:`partial_fit` method.

    perp_tol : float, optional (default=1e-1)
        Perplexity tolerance in batch learning. Only used when
        ``evaluate_every`` is greater than 0.

    mean_change_tol : float, optional (default=1e-3)
        Stopping tolerance for updating document topic distribution in E-step.

    max_doc_update_iter : int (default=100)
        Max number of iterations for updating document topic distribution in
        the E-step.

    n_jobs : int or None, optional (default=None)
        The number of jobs to use in the E-step.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : int, optional (default=0)
        Verbosity level.

    random_state : int, RandomState instance, default=None
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        Variational parameters for topic word distribution. Since the complete
        conditional for topic word distribution is a Dirichlet,
        ``components_[i, j]`` can be viewed as pseudocount that represents the
        number of times word `j` was assigned to topic `i`.
        It can also be viewed as distribution over the words for each topic
        after normalization:
        ``model.components_ / model.components_.sum(axis=1)[:, np.newaxis]``.

    n_batch_iter_ : int
        Number of iterations of the EM step.

    n_iter_ : int
        Number of passes over the dataset.

    bound_ : float
        Final perplexity score on training set.

    doc_topic_prior_ : float
        Prior of document topic distribution `theta`. If the value is None,
        it is `1 / n_components`.

    topic_word_prior_ : float
        Prior of topic word distribution `beta`. If the value is None, it is
        `1 / n_components`.

    Examples
    --------
    >>> from sklearn.decomposition import LatentDirichletAllocation
    >>> from sklearn.datasets import make_multilabel_classification
    >>> # This produces a feature matrix of token counts, similar to what
    >>> # CountVectorizer would produce on text.
    >>> X, _ = make_multilabel_classification(random_state=0)
    >>> lda = LatentDirichletAllocation(n_components=5,
    ...     random_state=0)
    >>> lda.fit(X)
    LatentDirichletAllocation(...)
    >>> # get topics for some given samples:
    >>> lda.transform(X[-2:])
    array([[0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846],
           [0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586  ]])

    References
    ----------
    .. [1] "Online Learning for Latent Dirichlet Allocation", Matthew D.
        Hoffman, David M. Blei, Francis Bach, 2010

    [2] "Stochastic Variational Inference", Matthew D. Hoffman, David M. Blei,
        Chong Wang, John Paisley, 2013

    [3] Matthew D. Hoffman's onlineldavb code. Link:
        https://github.com/blei-lab/onlineldavb

    """
    @_deprecate_positional_args
    def __init__(self, n_components=10, *, doc_topic_prior=None,
                 topic_word_prior=None, learning_method='batch',
                 learning_decay=.7, learning_offset=10., max_iter=10,
                 batch_size=128, evaluate_every=-1, total_samples=1e6,
                 perp_tol=1e-1, mean_change_tol=1e-3, max_doc_update_iter=100,
                 n_jobs=None, verbose=0, random_state=None):
        self.n_components = n_components
        self.doc_topic_prior = doc_topic_prior
        self.topic_word_prior = topic_word_prior
        self.learning_method = learning_method
        self.learning_decay = learning_decay
        self.learning_offset = learning_offset
        self.max_iter = max_iter
        self.batch_size = batch_size
        self.evaluate_every = evaluate_every
        self.total_samples = total_samples
        self.perp_tol = perp_tol
        self.mean_change_tol = mean_change_tol
        self.max_doc_update_iter = max_doc_update_iter
        self.n_jobs = n_jobs
        self.verbose = verbose
        self.random_state = random_state

    def _check_params(self):
        """Check model parameters."""
        if self.n_components <= 0:
            raise ValueError("Invalid 'n_components' parameter: %r"
                             % self.n_components)

        if self.total_samples <= 0:
            raise ValueError("Invalid 'total_samples' parameter: %r"
                             % self.total_samples)

        if self.learning_offset < 0:
            raise ValueError("Invalid 'learning_offset' parameter: %r"
                             % self.learning_offset)

        if self.learning_method not in ("batch", "online"):
            raise ValueError("Invalid 'learning_method' parameter: %r"
                             % self.learning_method)

    def _init_latent_vars(self, n_features):
        """Initialize latent variables."""

        self.random_state_ = check_random_state(self.random_state)
        self.n_batch_iter_ = 1
        self.n_iter_ = 0

        if self.doc_topic_prior is None:
            self.doc_topic_prior_ = 1. / self.n_components
        else:
            self.doc_topic_prior_ = self.doc_topic_prior

        if self.topic_word_prior is None:
            self.topic_word_prior_ = 1. / self.n_components
        else:
            self.topic_word_prior_ = self.topic_word_prior

        init_gamma = 100.
        init_var = 1. / init_gamma
        # In the literature, this is called `lambda`
        self.components_ = self.random_state_.gamma(
            init_gamma, init_var, (self.n_components, n_features))

        # In the literature, this is `exp(E[log(beta)])`
        self.exp_dirichlet_component_ = np.exp(
            _dirichlet_expectation_2d(self.components_))

    def _e_step(self, X, cal_sstats, random_init, parallel=None):
        """E-step in EM update.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        cal_sstats : boolean
            Parameter that indicate whether to calculate sufficient statistics
            or not. Set ``cal_sstats`` to True when we need to run M-step.

        random_init : boolean
            Parameter that indicate whether to initialize document topic
            distribution randomly in the E-step. Set it to True in training
            steps.

        parallel : joblib.Parallel (optional)
            Pre-initialized instance of joblib.Parallel.

        Returns
        -------
        (doc_topic_distr, suff_stats) :
            `doc_topic_distr` is unnormalized topic distribution for each
            document. In the literature, this is called `gamma`.
            `suff_stats` is expected sufficient statistics for the M-step.
            When `cal_sstats == False`, it will be None.

        """

        # Run e-step in parallel
        random_state = self.random_state_ if random_init else None

        # TODO: make Parallel._effective_n_jobs public instead?
        n_jobs = effective_n_jobs(self.n_jobs)
        if parallel is None:
            parallel = Parallel(n_jobs=n_jobs, verbose=max(0,
                                                           self.verbose - 1))
        results = parallel(
            delayed(_update_doc_distribution)(X[idx_slice, :],
                                              self.exp_dirichlet_component_,
                                              self.doc_topic_prior_,
                                              self.max_doc_update_iter,
                                              self.mean_change_tol, cal_sstats,
                                              random_state)
            for idx_slice in gen_even_slices(X.shape[0], n_jobs))

        # merge result
        doc_topics, sstats_list = zip(*results)
        doc_topic_distr = np.vstack(doc_topics)

        if cal_sstats:
            # This step finishes computing the sufficient statistics for the
            # M-step.
            suff_stats = np.zeros(self.components_.shape)
            for sstats in sstats_list:
                suff_stats += sstats
            suff_stats *= self.exp_dirichlet_component_
        else:
            suff_stats = None

        return (doc_topic_distr, suff_stats)

    def _em_step(self, X, total_samples, batch_update, parallel=None):
        """EM update for 1 iteration.

        update `_component` by batch VB or online VB.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        total_samples : integer
            Total number of documents. It is only used when
            batch_update is `False`.

        batch_update : boolean
            Parameter that controls updating method.
            `True` for batch learning, `False` for online learning.

        parallel : joblib.Parallel
            Pre-initialized instance of joblib.Parallel

        Returns
        -------
        doc_topic_distr : array, shape=(n_samples, n_components)
            Unnormalized document topic distribution.
        """

        # E-step
        _, suff_stats = self._e_step(X, cal_sstats=True, random_init=True,
                                     parallel=parallel)

        # M-step
        if batch_update:
            self.components_ = self.topic_word_prior_ + suff_stats
        else:
            # online update
            # In the literature, the weight is `rho`
            weight = np.power(self.learning_offset + self.n_batch_iter_,
                              -self.learning_decay)
            doc_ratio = float(total_samples) / X.shape[0]
            self.components_ *= (1 - weight)
            self.components_ += (weight * (self.topic_word_prior_
                                           + doc_ratio * suff_stats))

        # update `component_` related variables
        self.exp_dirichlet_component_ = np.exp(
            _dirichlet_expectation_2d(self.components_))
        self.n_batch_iter_ += 1
        return

    def _more_tags(self):
        return {'requires_positive_X': True}

    def _check_non_neg_array(self, X, reset_n_features, whom):
        """check X format

        check X format and make sure no negative value in X.

        Parameters
        ----------
        X :  array-like or sparse matrix

        """
        X = self._validate_data(X, reset=reset_n_features,
                                accept_sparse='csr')
        check_non_negative(X, whom)
        return X

    def partial_fit(self, X, y=None):
        """Online VB with Mini-Batch update.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        y : Ignored

        Returns
        -------
        self
        """
        self._check_params()
        first_time = not hasattr(self, 'components_')

        # In theory reset should be equal to `first_time`, but there are tests
        # checking the input number of feature and they expect a specific
        # string, which is not the same one raised by check_n_features. So we
        # don't check n_features_in_ here for now (it's done with adhoc code in
        # the estimator anyway).
        # TODO: set reset=first_time when addressing reset in
        # predict/transform/etc.
        reset_n_features = True
        X = self._check_non_neg_array(X, reset_n_features,
                                      "LatentDirichletAllocation.partial_fit")
        n_samples, n_features = X.shape
        batch_size = self.batch_size

        # initialize parameters or check
        if first_time:
            self._init_latent_vars(n_features)

        if n_features != self.components_.shape[1]:
            raise ValueError(
                "The provided data has %d dimensions while "
                "the model was trained with feature size %d." %
                (n_features, self.components_.shape[1]))

        n_jobs = effective_n_jobs(self.n_jobs)
        with Parallel(n_jobs=n_jobs,
                      verbose=max(0, self.verbose - 1)) as parallel:
            for idx_slice in gen_batches(n_samples, batch_size):
                self._em_step(X[idx_slice, :],
                              total_samples=self.total_samples,
                              batch_update=False,
                              parallel=parallel)

        return self

    def fit(self, X, y=None):
        """Learn model for the data X with variational Bayes method.

        When `learning_method` is 'online', use mini-batch update.
        Otherwise, use batch update.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        y : Ignored

        Returns
        -------
        self
        """
        self._check_params()
        X = self._check_non_neg_array(X, reset_n_features=True,
                                      whom="LatentDirichletAllocation.fit")
        n_samples, n_features = X.shape
        max_iter = self.max_iter
        evaluate_every = self.evaluate_every
        learning_method = self.learning_method

        batch_size = self.batch_size

        # initialize parameters
        self._init_latent_vars(n_features)
        # change to perplexity later
        last_bound = None
        n_jobs = effective_n_jobs(self.n_jobs)
        with Parallel(n_jobs=n_jobs,
                      verbose=max(0, self.verbose - 1)) as parallel:
            for i in range(max_iter):
                if learning_method == 'online':
                    for idx_slice in gen_batches(n_samples, batch_size):
                        self._em_step(X[idx_slice, :], total_samples=n_samples,
                                      batch_update=False, parallel=parallel)
                else:
                    # batch update
                    self._em_step(X, total_samples=n_samples,
                                  batch_update=True, parallel=parallel)

                # check perplexity
                if evaluate_every > 0 and (i + 1) % evaluate_every == 0:
                    doc_topics_distr, _ = self._e_step(X, cal_sstats=False,
                                                       random_init=False,
                                                       parallel=parallel)
                    bound = self._perplexity_precomp_distr(X, doc_topics_distr,
                                                           sub_sampling=False)
                    if self.verbose:
                        print('iteration: %d of max_iter: %d, perplexity: %.4f'
                              % (i + 1, max_iter, bound))

                    if last_bound and abs(last_bound - bound) < self.perp_tol:
                        break
                    last_bound = bound

                elif self.verbose:
                    print('iteration: %d of max_iter: %d' % (i + 1, max_iter))
                self.n_iter_ += 1

        # calculate final perplexity value on train set
        doc_topics_distr, _ = self._e_step(X, cal_sstats=False,
                                           random_init=False,
                                           parallel=parallel)
        self.bound_ = self._perplexity_precomp_distr(X, doc_topics_distr,
                                                     sub_sampling=False)

        return self

    def _unnormalized_transform(self, X):
        """Transform data X according to fitted model.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        Returns
        -------
        doc_topic_distr : shape=(n_samples, n_components)
            Document topic distribution for X.
        """
        check_is_fitted(self)

        # make sure feature size is the same in fitted model and in X
        X = self._check_non_neg_array(
            X, reset_n_features=True,
            whom="LatentDirichletAllocation.transform")
        n_samples, n_features = X.shape
        if n_features != self.components_.shape[1]:
            raise ValueError(
                "The provided data has %d dimensions while "
                "the model was trained with feature size %d." %
                (n_features, self.components_.shape[1]))

        doc_topic_distr, _ = self._e_step(X, cal_sstats=False,
                                          random_init=False)

        return doc_topic_distr

    def transform(self, X):
        """Transform data X according to the fitted model.

           .. versionchanged:: 0.18
              *doc_topic_distr* is now normalized

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        Returns
        -------
        doc_topic_distr : shape=(n_samples, n_components)
            Document topic distribution for X.
        """
        doc_topic_distr = self._unnormalized_transform(X)
        doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis]
        return doc_topic_distr

    def _approx_bound(self, X, doc_topic_distr, sub_sampling):
        """Estimate the variational bound.

        Estimate the variational bound over "all documents" using only the
        documents passed in as X. Since log-likelihood of each word cannot
        be computed directly, we use this bound to estimate it.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        doc_topic_distr : array, shape=(n_samples, n_components)
            Document topic distribution. In the literature, this is called
            gamma.

        sub_sampling : boolean, optional, (default=False)
            Compensate for subsampling of documents.
            It is used in calculate bound in online learning.

        Returns
        -------
        score : float

        """

        def _loglikelihood(prior, distr, dirichlet_distr, size):
            # calculate log-likelihood
            score = np.sum((prior - distr) * dirichlet_distr)
            score += np.sum(gammaln(distr) - gammaln(prior))
            score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1)))
            return score

        is_sparse_x = sp.issparse(X)
        n_samples, n_components = doc_topic_distr.shape
        n_features = self.components_.shape[1]
        score = 0

        dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr)
        dirichlet_component_ = _dirichlet_expectation_2d(self.components_)
        doc_topic_prior = self.doc_topic_prior_
        topic_word_prior = self.topic_word_prior_

        if is_sparse_x:
            X_data = X.data
            X_indices = X.indices
            X_indptr = X.indptr

        # E[log p(docs | theta, beta)]
        for idx_d in range(0, n_samples):
            if is_sparse_x:
                ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]]
                cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]]
            else:
                ids = np.nonzero(X[idx_d, :])[0]
                cnts = X[idx_d, ids]
            temp = (dirichlet_doc_topic[idx_d, :, np.newaxis]
                    + dirichlet_component_[:, ids])
            norm_phi = logsumexp(temp, axis=0)
            score += np.dot(cnts, norm_phi)

        # compute E[log p(theta | alpha) - log q(theta | gamma)]
        score += _loglikelihood(doc_topic_prior, doc_topic_distr,
                                dirichlet_doc_topic, self.n_components)

        # Compensate for the subsampling of the population of documents
        if sub_sampling:
            doc_ratio = float(self.total_samples) / n_samples
            score *= doc_ratio

        # E[log p(beta | eta) - log q (beta | lambda)]
        score += _loglikelihood(topic_word_prior, self.components_,
                                dirichlet_component_, n_features)

        return score

    def score(self, X, y=None):
        """Calculate approximate log-likelihood as score.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Document word matrix.

        y : Ignored

        Returns
        -------
        score : float
            Use approximate bound as score.
        """
        X = self._check_non_neg_array(X, reset_n_features=True,
                                      whom="LatentDirichletAllocation.score")

        doc_topic_distr = self._unnormalized_transform(X)
        score = self._approx_bound(X, doc_topic_distr, sub_sampling=False)
        return score

    def _perplexity_precomp_distr(self, X, doc_topic_distr=None,
                                  sub_sampling=False):
        """Calculate approximate perplexity for data X with ability to accept
        precomputed doc_topic_distr

        Perplexity is defined as exp(-1. * log-likelihood per word)

        Parameters
        ----------
        X : array-like or sparse matrix, [n_samples, n_features]
            Document word matrix.

        doc_topic_distr : None or array, shape=(n_samples, n_components)
            Document topic distribution.
            If it is None, it will be generated by applying transform on X.

        Returns
        -------
        score : float
            Perplexity score.
        """
        check_is_fitted(self)

        X = self._check_non_neg_array(
            X, reset_n_features=True,
            whom="LatentDirichletAllocation.perplexity")

        if doc_topic_distr is None:
            doc_topic_distr = self._unnormalized_transform(X)
        else:
            n_samples, n_components = doc_topic_distr.shape
            if n_samples != X.shape[0]:
                raise ValueError("Number of samples in X and doc_topic_distr"
                                 " do not match.")

            if n_components != self.n_components:
                raise ValueError("Number of topics does not match.")

        current_samples = X.shape[0]
        bound = self._approx_bound(X, doc_topic_distr, sub_sampling)

        if sub_sampling:
            word_cnt = X.sum() * (float(self.total_samples) / current_samples)
        else:
            word_cnt = X.sum()
        perword_bound = bound / word_cnt

        return np.exp(-1.0 * perword_bound)

    def perplexity(self, X, sub_sampling=False):
        """Calculate approximate perplexity for data X.

        Perplexity is defined as exp(-1. * log-likelihood per word)

        .. versionchanged:: 0.19
           *doc_topic_distr* argument has been deprecated and is ignored
           because user no longer has access to unnormalized distribution

        Parameters
        ----------
        X : array-like or sparse matrix, [n_samples, n_features]
            Document word matrix.

        sub_sampling : bool
            Do sub-sampling or not.

        Returns
        -------
        score : float
            Perplexity score.
        """
        return self._perplexity_precomp_distr(X, sub_sampling=sub_sampling)