_twenty_newsgroups.py 16.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
"""Caching loader for the 20 newsgroups text classification dataset


The description of the dataset is available on the official website at:

    http://people.csail.mit.edu/jrennie/20Newsgroups/

Quoting the introduction:

    The 20 Newsgroups data set is a collection of approximately 20,000
    newsgroup documents, partitioned (nearly) evenly across 20 different
    newsgroups. To the best of my knowledge, it was originally collected
    by Ken Lang, probably for his Newsweeder: Learning to filter netnews
    paper, though he does not explicitly mention this collection. The 20
    newsgroups collection has become a popular data set for experiments
    in text applications of machine learning techniques, such as text
    classification and text clustering.

This dataset loader will download the recommended "by date" variant of the
dataset and which features a point in time split between the train and
test sets. The compressed dataset size is around 14 Mb compressed. Once
uncompressed the train set is 52 MB and the test set is 34 MB.
"""
# Copyright (c) 2011 Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause

import os
from os.path import dirname, join
import logging
import tarfile
import pickle
import shutil
import re
import codecs

import numpy as np
import scipy.sparse as sp
import joblib

from . import get_data_home
from . import load_files
from ._base import _pkl_filepath
from ._base import _fetch_remote
from ._base import RemoteFileMetadata
from ..feature_extraction.text import CountVectorizer
from .. import preprocessing
from ..utils import check_random_state, Bunch
from ..utils.validation import _deprecate_positional_args

logger = logging.getLogger(__name__)

# The original data can be found at:
# https://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
ARCHIVE = RemoteFileMetadata(
    filename='20news-bydate.tar.gz',
    url='https://ndownloader.figshare.com/files/5975967',
    checksum=('8f1b2514ca22a5ade8fbb9cfa5727df9'
              '5fa587f4c87b786e15c759fa66d95610'))

CACHE_NAME = "20news-bydate.pkz"
TRAIN_FOLDER = "20news-bydate-train"
TEST_FOLDER = "20news-bydate-test"


def _download_20newsgroups(target_dir, cache_path):
    """Download the 20 newsgroups data and stored it as a zipped pickle."""
    train_path = os.path.join(target_dir, TRAIN_FOLDER)
    test_path = os.path.join(target_dir, TEST_FOLDER)

    if not os.path.exists(target_dir):
        os.makedirs(target_dir)

    logger.info("Downloading dataset from %s (14 MB)", ARCHIVE.url)
    archive_path = _fetch_remote(ARCHIVE, dirname=target_dir)

    logger.debug("Decompressing %s", archive_path)
    tarfile.open(archive_path, "r:gz").extractall(path=target_dir)
    os.remove(archive_path)

    # Store a zipped pickle
    cache = dict(train=load_files(train_path, encoding='latin1'),
                 test=load_files(test_path, encoding='latin1'))
    compressed_content = codecs.encode(pickle.dumps(cache), 'zlib_codec')
    with open(cache_path, 'wb') as f:
        f.write(compressed_content)

    shutil.rmtree(target_dir)
    return cache


def strip_newsgroup_header(text):
    """
    Given text in "news" format, strip the headers, by removing everything
    before the first blank line.

    Parameters
    ----------
    text : string
        The text from which to remove the signature block.
    """
    _before, _blankline, after = text.partition('\n\n')
    return after


_QUOTE_RE = re.compile(r'(writes in|writes:|wrote:|says:|said:'
                       r'|^In article|^Quoted from|^\||^>)')


def strip_newsgroup_quoting(text):
    """
    Given text in "news" format, strip lines beginning with the quote
    characters > or |, plus lines that often introduce a quoted section
    (for example, because they contain the string 'writes:'.)

    Parameters
    ----------
    text : string
        The text from which to remove the signature block.
    """
    good_lines = [line for line in text.split('\n')
                  if not _QUOTE_RE.search(line)]
    return '\n'.join(good_lines)


def strip_newsgroup_footer(text):
    """
    Given text in "news" format, attempt to remove a signature block.

    As a rough heuristic, we assume that signatures are set apart by either
    a blank line or a line made of hyphens, and that it is the last such line
    in the file (disregarding blank lines at the end).

    Parameters
    ----------
    text : string
        The text from which to remove the signature block.
    """
    lines = text.strip().split('\n')
    for line_num in range(len(lines) - 1, -1, -1):
        line = lines[line_num]
        if line.strip().strip('-') == '':
            break

    if line_num > 0:
        return '\n'.join(lines[:line_num])
    else:
        return text


@_deprecate_positional_args
def fetch_20newsgroups(*, data_home=None, subset='train', categories=None,
                       shuffle=True, random_state=42,
                       remove=(),
                       download_if_missing=True, return_X_y=False):
    """Load the filenames and data from the 20 newsgroups dataset \
(classification).

    Download it if necessary.

    =================   ==========
    Classes                     20
    Samples total            18846
    Dimensionality               1
    Features                  text
    =================   ==========

    Read more in the :ref:`User Guide <20newsgroups_dataset>`.

    Parameters
    ----------
    data_home : optional, default: None
        Specify a download and cache folder for the datasets. If None,
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    subset : 'train' or 'test', 'all', optional
        Select the dataset to load: 'train' for the training set, 'test'
        for the test set, 'all' for both, with shuffled ordering.

    categories : None or collection of string or unicode
        If None (default), load all the categories.
        If not None, list of category names to load (other categories
        ignored).

    shuffle : bool, optional
        Whether or not to shuffle the data: might be important for models that
        make the assumption that the samples are independent and identically
        distributed (i.i.d.), such as stochastic gradient descent.

    random_state : int, RandomState instance, default=None
        Determines random number generation for dataset shuffling. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    remove : tuple
        May contain any subset of ('headers', 'footers', 'quotes'). Each of
        these are kinds of text that will be detected and removed from the
        newsgroup posts, preventing classifiers from overfitting on
        metadata.

        'headers' removes newsgroup headers, 'footers' removes blocks at the
        ends of posts that look like signatures, and 'quotes' removes lines
        that appear to be quoting another post.

        'headers' follows an exact standard; the other filters are not always
        correct.

    download_if_missing : optional, True by default
        If False, raise an IOError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : bool, default=False.
        If True, returns `(data.data, data.target)` instead of a Bunch
        object.

        .. versionadded:: 0.22

    Returns
    -------
    bunch : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : list, length [n_samples]
            The data list to learn.
        target: array, shape [n_samples]
            The target labels.
        filenames: list, length [n_samples]
            The path to the location of the data.
        DESCR: str
            The full description of the dataset.
        target_names: list, length [n_classes]
            The names of target classes.

    (data, target) : tuple if `return_X_y=True`
        .. versionadded:: 0.22
    """

    data_home = get_data_home(data_home=data_home)
    cache_path = _pkl_filepath(data_home, CACHE_NAME)
    twenty_home = os.path.join(data_home, "20news_home")
    cache = None
    if os.path.exists(cache_path):
        try:
            with open(cache_path, 'rb') as f:
                compressed_content = f.read()
            uncompressed_content = codecs.decode(
                compressed_content, 'zlib_codec')
            cache = pickle.loads(uncompressed_content)
        except Exception as e:
            print(80 * '_')
            print('Cache loading failed')
            print(80 * '_')
            print(e)

    if cache is None:
        if download_if_missing:
            logger.info("Downloading 20news dataset. "
                        "This may take a few minutes.")
            cache = _download_20newsgroups(target_dir=twenty_home,
                                           cache_path=cache_path)
        else:
            raise IOError('20Newsgroups dataset not found')

    if subset in ('train', 'test'):
        data = cache[subset]
    elif subset == 'all':
        data_lst = list()
        target = list()
        filenames = list()
        for subset in ('train', 'test'):
            data = cache[subset]
            data_lst.extend(data.data)
            target.extend(data.target)
            filenames.extend(data.filenames)

        data.data = data_lst
        data.target = np.array(target)
        data.filenames = np.array(filenames)
    else:
        raise ValueError(
            "subset can only be 'train', 'test' or 'all', got '%s'" % subset)

    module_path = dirname(__file__)
    with open(join(module_path, 'descr', 'twenty_newsgroups.rst')) as rst_file:
        fdescr = rst_file.read()

    data.DESCR = fdescr

    if 'headers' in remove:
        data.data = [strip_newsgroup_header(text) for text in data.data]
    if 'footers' in remove:
        data.data = [strip_newsgroup_footer(text) for text in data.data]
    if 'quotes' in remove:
        data.data = [strip_newsgroup_quoting(text) for text in data.data]

    if categories is not None:
        labels = [(data.target_names.index(cat), cat) for cat in categories]
        # Sort the categories to have the ordering of the labels
        labels.sort()
        labels, categories = zip(*labels)
        mask = np.in1d(data.target, labels)
        data.filenames = data.filenames[mask]
        data.target = data.target[mask]
        # searchsorted to have continuous labels
        data.target = np.searchsorted(labels, data.target)
        data.target_names = list(categories)
        # Use an object array to shuffle: avoids memory copy
        data_lst = np.array(data.data, dtype=object)
        data_lst = data_lst[mask]
        data.data = data_lst.tolist()

    if shuffle:
        random_state = check_random_state(random_state)
        indices = np.arange(data.target.shape[0])
        random_state.shuffle(indices)
        data.filenames = data.filenames[indices]
        data.target = data.target[indices]
        # Use an object array to shuffle: avoids memory copy
        data_lst = np.array(data.data, dtype=object)
        data_lst = data_lst[indices]
        data.data = data_lst.tolist()

    if return_X_y:
        return data.data, data.target
    return data


@_deprecate_positional_args
def fetch_20newsgroups_vectorized(*, subset="train", remove=(), data_home=None,
                                  download_if_missing=True, return_X_y=False,
                                  normalize=True):
    """Load the 20 newsgroups dataset and vectorize it into token counts \
(classification).

    Download it if necessary.

    This is a convenience function; the transformation is done using the
    default settings for
    :class:`sklearn.feature_extraction.text.CountVectorizer`. For more
    advanced usage (stopword filtering, n-gram extraction, etc.), combine
    fetch_20newsgroups with a custom
    :class:`sklearn.feature_extraction.text.CountVectorizer`,
    :class:`sklearn.feature_extraction.text.HashingVectorizer`,
    :class:`sklearn.feature_extraction.text.TfidfTransformer` or
    :class:`sklearn.feature_extraction.text.TfidfVectorizer`.

    The resulting counts are normalized using
    :func:`sklearn.preprocessing.normalize` unless normalize is set to False.

    =================   ==========
    Classes                     20
    Samples total            18846
    Dimensionality          130107
    Features                  real
    =================   ==========

    Read more in the :ref:`User Guide <20newsgroups_dataset>`.

    Parameters
    ----------
    subset : 'train' or 'test', 'all', optional
        Select the dataset to load: 'train' for the training set, 'test'
        for the test set, 'all' for both, with shuffled ordering.

    remove : tuple
        May contain any subset of ('headers', 'footers', 'quotes'). Each of
        these are kinds of text that will be detected and removed from the
        newsgroup posts, preventing classifiers from overfitting on
        metadata.

        'headers' removes newsgroup headers, 'footers' removes blocks at the
        ends of posts that look like signatures, and 'quotes' removes lines
        that appear to be quoting another post.

    data_home : optional, default: None
        Specify an download and cache folder for the datasets. If None,
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    download_if_missing : optional, True by default
        If False, raise an IOError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : bool, default=False
        If True, returns ``(data.data, data.target)`` instead of a Bunch
        object.

        .. versionadded:: 0.20

    normalize : bool, default=True
        If True, normalizes each document's feature vector to unit norm using
        :func:`sklearn.preprocessing.normalize`.

        .. versionadded:: 0.22

    Returns
    -------
    bunch : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data: sparse matrix, shape [n_samples, n_features]
            The data matrix to learn.
        target: array, shape [n_samples]
            The target labels.
        target_names: list, length [n_classes]
            The names of target classes.
        DESCR: str
            The full description of the dataset.

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.20
    """
    data_home = get_data_home(data_home=data_home)
    filebase = '20newsgroup_vectorized'
    if remove:
        filebase += 'remove-' + ('-'.join(remove))
    target_file = _pkl_filepath(data_home, filebase + ".pkl")

    # we shuffle but use a fixed seed for the memoization
    data_train = fetch_20newsgroups(data_home=data_home,
                                    subset='train',
                                    categories=None,
                                    shuffle=True,
                                    random_state=12,
                                    remove=remove,
                                    download_if_missing=download_if_missing)

    data_test = fetch_20newsgroups(data_home=data_home,
                                   subset='test',
                                   categories=None,
                                   shuffle=True,
                                   random_state=12,
                                   remove=remove,
                                   download_if_missing=download_if_missing)

    if os.path.exists(target_file):
        X_train, X_test = joblib.load(target_file)
    else:
        vectorizer = CountVectorizer(dtype=np.int16)
        X_train = vectorizer.fit_transform(data_train.data).tocsr()
        X_test = vectorizer.transform(data_test.data).tocsr()
        joblib.dump((X_train, X_test), target_file, compress=9)

    # the data is stored as int16 for compactness
    # but normalize needs floats
    if normalize:
        X_train = X_train.astype(np.float64)
        X_test = X_test.astype(np.float64)
        preprocessing.normalize(X_train, copy=False)
        preprocessing.normalize(X_test, copy=False)

    target_names = data_train.target_names

    if subset == "train":
        data = X_train
        target = data_train.target
    elif subset == "test":
        data = X_test
        target = data_test.target
    elif subset == "all":
        data = sp.vstack((X_train, X_test)).tocsr()
        target = np.concatenate((data_train.target, data_test.target))
    else:
        raise ValueError("%r is not a valid subset: should be one of "
                         "['train', 'test', 'all']" % subset)

    module_path = dirname(__file__)
    with open(join(module_path, 'descr', 'twenty_newsgroups.rst')) as rst_file:
        fdescr = rst_file.read()

    if return_X_y:
        return data, target

    return Bunch(data=data,
                 target=target,
                 target_names=target_names,
                 DESCR=fdescr)